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ABSTRACT
BACKGROUND: Imaging research has not yet delivered reliable psychiatric biomarkers. One challenge, particularly
among youth, is high comorbidity. This challenge might be met through canonical correlation analysis designed to
model mutual dependencies between symptom dimensions and neural measures. We mapped the multivariate as-
sociations that intrinsic functional connectivity manifests with pediatric symptoms of anxiety, irritability, and attention-
deficit/hyperactivity disorder (ADHD) as common, impactful, co-occurring problems. We evaluate the replicability of
such latent dimensions in an independent sample.
METHODS:We obtained ratings of anxiety, irritability, and ADHD, and 10 minutes of resting-state functional magnetic
resonance imaging data, from two independent cohorts. Both cohorts (discovery: n = 182; replication: n = 326)
included treatment-seeking youth with anxiety disorders, with disruptive mood dysregulation disorder, with ADHD,
or without psychopathology. Functional connectivity was modeled as partial correlations among 216 brain areas.
Using canonical correlation analysis and independent component analysis jointly we sought maximally correlated,
maximally interpretable latent dimensions of brain connectivity and clinical symptoms.
RESULTS: We identified seven canonical variates in the discovery and five in the replication cohort. Of these ca-
nonical variates, three exhibited similarities across datasets: two variates consistently captured shared aspects of
irritability, ADHD, and anxiety, while the third was specific to anxiety. Across cohorts, canonical variates did not relate
to specific resting-state networks but comprised edges interconnecting established networks within and across both
hemispheres.
CONCLUSIONS: Findings revealed two replicable types of clinical variates, one related to multiple symptom di-
mensions and a second relatively specific to anxiety. Both types involved a multitude of broadly distributed, weak
brain connections as opposed to strong connections encompassing known resting-state networks.

https://doi.org/10.1016/j.biopsych.2020.10.018
The current study combines the dimensional assessment of
psychiatric symptoms, potentially providing a better fit to
neural measures than diagnostic categories (1–5) with resting-
state functional magnetic resonance imaging (rsfMRI). We
used advanced multivariate statistical techniques to identify
highly correlated latent dimensions of psychopathology and
brain connectivity. This is essential in identifying neural
mechanisms that mediate clinical symptoms and thus repre-
sent appropriate targets for novel interventions. Such work is
particularly needed among youth, in whom seeds of later-life
psychopathology present as common, often co-occurring
problems (6). Specifically, the study focuses on the neural
correlates of pediatric irritability, attention-deficit/hyperactivity
disorder (ADHD), and anxiety given prior evidence of both
shared and distinct neural correlates among these symptom
domains (1).
Published by Elsevier Inc on behalf of Society of B
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We use canonical correlation analysis (CCA) to simulta-
neously model dimensional clinical and neural measures (7,8).
This approach might be more sensitive to complex relation-
ships among symptom and neural data than alternative ap-
proaches. This includes approaches used previously that first
model covariance structure among clinical dimensions before
relating these latent symptom dimensions to preselected brain
networks (1).

Recent studies applied CCA to clinical and rsfMRI data in
adults and adolescents (9,10). The current study extends such
work in three ways. First, while prior work applied CCA to
rsfMRI data in treatment-seeking adults (10) and community-
dwelling youth (9), we target treatment-seeking youth identi-
fied by clinicians. Second, prior work in youth confirmed that
this method can differentiate well-established, but vastly
distinct, clinical domains such as psychosis and emotional and
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behavioral problems. Here, we focus on three more closely
related and often comorbid domains: irritability, ADHD, and
anxiety. We test a hypothesis consistent with previous work
using other latent variable approaches combined with task-
based fMRI (1,2): CCA yields latent phenotypes that capture
both unique and shared aspects of irritability, ADHD, and
anxiety. However, unlike past work, brain connectivity is not
evoked by highly controlled tasks in the current study. Thus,
more broadly distributed neural circuitry correlates are ex-
pected in the current study, as compared with correlates in
previous studies.

Finally, as a third extension of past work, we evaluate the
latent variables’ replicability using novel sampling and analytic
techniques. Prior CCA studies find replicable associations
when discovery and replication cohorts represent subsets of
the same sample (9,10) but not when they arise from inde-
pendent cohorts (11). Robustness against sampling variability
is essential for clinical applications of CCA, which possesses
exploratory components that can make replication difficult.
Thus, the current study used data from 2 independent cohorts
of treatment-seeking youth assessed with similar methods. We
treated the smaller sample (n = 182) as the discovery dataset,
because it was assessed with homogeneous imaging param-
eters. The larger cohort (n = 326), assessed with heteroge-
neous imaging parameters, served as a replication dataset
(12). Moreover, we employed analytic techniques that leverage
independent component analysis (ICA) to improve interpret-
ability of the canonical variates (13). Finally, we used a novel,
stepwise permutation scheme (14) that addresses limitations in
other CCA studies concerning the handling of nuisance vari-
ables and possible inflation of type I errors.

METHODS AND MATERIALS

Participants

Both samples comprised healthy volunteers and youth diag-
nosed with an anxiety disorder, disruptive mood dysregulation
disorder, or ADHD by licensed clinicians using the Kiddie
Schedule for Affective Disorders and Schizophrenia (K-SADS)
(15). Exclusion criteria were neurological disorders, autism and
bipolar spectrum disorders, psychosis, substance use, MRI
contraindications, and Full Scale IQ , 70. Anxiety was
assessed by using the parent- and youth-reported ratings of
the five subscales of the Screen for Child Anxiety Related
Disorders (16). Irritability was assessed with the first six items
of the parent- and youth-reported Affective Reactivity Index
(17). Parents quantified ADHD symptoms such as inattention
and disruptive behavior through seven items assessed with the
ADHD subscale of the Conners (18) in the discovery sample
and the Child Behavior Checklist (19) in the replication sample.
These 29 ratings of anxiety, irritability, and disruptive behavior
(18 parent-reported, 11 self-reported) were used as input for
the joint CCA1ICA.

Samples were similar in terms of sex ratios, proportions of
anxiety disorders, oppositional defiant disorder, medication-
free-to-medication-use ratios, and levels of parent-reported
symptoms of irritability, ADHD, and anxiety. However, the
discovery sample was older and had a higher IQ, a lower
proportion of ADHD cases, a higher proportion of diagnosis-
free and disruptive mood dysregulation disorder cases, and
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lower self-reported irritability and anxiety. Both cohorts were
ethnically diverse and were recruited from urban, semi-rural,
and rural areas (Figure 1, Supplement).

Acquisition and Preprocessing of Imaging Data

Discovery sample data were acquired at one site with two
identical 3T General Electric Signa scanners (GE Healthcare,
Chicago, IL). The replication sample comprised data from a 1.5T
Siemens Avanto scanner (Siemens Healthineers, Erlangen,
Germany), a 3T Siemens Tim Trio scanner, and a 3T Siemens
Prisma scanner. A high-resolution T1-weighted structural image
and 10 minutes of blood oxygen level–dependent changes
during rest were collected from all participants, although se-
quences varied between samples and within the replication
dataset (Supplement). Quality of the imaging datawas assessed
using MRIQC (20). The automated pipeline FMRIPREP (21) was
used for preprocessing. We refrained from motion scrubbing
and used instead ICA-AROMA, which reduces motion-related
artifacts at least as well (22,23).

Functional Connectivity

The rsfMRI-connectivity network comprised 216 nodes
derived from a 200-region parcellation scheme (24),
augmented by eight subcortical regions per hemisphere ob-
tained using FreeSurfer segmentation (nucleus accumbens,
nucleus caudatus, pallidum, putamen, amygdala, hippocam-
pus, thalamus, and ventral diencephalon) (25). Framewise
displacement and spatial standard deviation of the temporal
difference data (26), but not global signal, were regressed out
from the time series. Functional connectivity was quantified
using partial correlations, which offer an estimate of direct (as
opposed to indirect or shared) connectivity between each pair
of nodes (edges). Because the resulting network matrices are
symmetric, only half of the edges (i.e., 23,220) were analyzed.

CCA, ICA, and Permutation Testing

Covariates (age, sex, race, IQ, psychotropic medication, and
scanner for the discovery sample; additionally, site and
sequence type for the replication sample) were regressed out
from both imaging and clinical variables before dimensionality
reduction. All 29 symptom ratings were included; dimension-
ality of rsfMRI was reduced using principal component analysis
(PCA) before CCA (7). Residuals were projected to a lower
dimensional space where data are exchangeable, thus miti-
gating spurious dependencies among observations introduced
by residualization (14).

Given two sets of variables (here, imaging data [Y] and
symptom ratings [X]), CCA seeks linear mixtures within each
set (i.e., canonical variables [CVs]; U = Y 3 A and V = X 3 B),
such that each resulting mixture (U) from one set is maximally
correlated with a corresponding mixture (V) from the other set,
but uncorrelated with all other mixtures in either set. We use
upper-case letters U and V to represent the whole set of ca-
nonical variables on the imaging and clinical side, respectively,
and lower-case letters followed by subscripts to indicate the
order of the canonical correlations, from higher to smaller, uk
and vk, to denote specific latent variables.

Small perturbations in the original data could possibly lead
to arbitrary rotations of the CCA solutions. To mitigate the
/journal
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Figure 1. Demographics and clinical characteristics of the discovery and replication samples. ADHD, attention-deficit/hyperactivity disorder; ARI, Affective
Reactivity Index; CBCL, Child Behavior Checklist; CMI, Child Mind Institute; DMDD, disruptive mood dysregulation disorder; DX, diagnosis; NIMH, National
Institute of Mental Health; ODD, oppositional defiant disorder; SCARED, Screen for Child Anxiety Related Disorders.
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problem and aid interpretability, we subjected the stacked CVs
to ICA, seeking CVs that were not only orthogonal but also
statistically independent. The joint CCA1ICA procedure was
performed using a modification of a recently proposed algo-
rithm for permutation inference for CCA (14), thus allowing not
only characterization and better disambiguation of the result-
ing CVs but also valid statistical inference (details in the
Supplement). Below, where we refer to results of CCA, these
are to be understood as results of the joint inference using
CCA1ICA.

Because the number of CVs is determined by the smallest
input dataset, we obtained 29 CVs. Statistical significance was
determined using 10,000 permutations. In the permutation
test, for each estimated CV (post-ICA), variance already
explained by CVs with stronger, significant canonical correla-
tions were removed in an iterative procedure (14). Canonical
correlations were considered significant at alpha = .05 after
familywise error rate (FWER) correction using a closed testing
procedure. The nonsymmetric redundancy index (27), which
gives the mean variance of the clinical data explained by im-
aging data, and vice versa, is reported in the Supplement.
Replicability

Replicability of the CVs was determined based on three
criteria: 1) stability within the same dataset across variations in
the number of PCA components that entered CCA relative to
the sample size (input-to-participant ratio), 2) similarities of
latent clinical patterns, and 3) similarities of latent connectivity
patterns identified independently in the two samples. A prior
CCA study in youth reported replicability only for clinical but
not for rsfMRI patterns (9); thus, we decided to evaluate the
Biological Ps
replicability of the clinical and the connectivity patterns as
separate criteria.

To evaluate the first criterion, we performed three analyses
that varied the input-to-participant ratios. The primary analyses
used an input-to-participant ratio of 1:2, which translated into
64 rsfMRI components, explaining 75% of the between-
subject variance in rsfMRI connectivity in the discovery sam-
ple. In the replication cohort, 134 rsfMRI components were
used; these explained only 57% of the variance, possibly
owing to more unstructured noise in this dataset. This primary
analysis was supplemented by two secondary analyses using
input-to-participant ratios of 1:3 and 1:4, thereby reducing
risks of overfitting, at the expense of explaining less variance.
This was accomplished by using fewer imaging principal
components as input to the CCA. Results were compared
across the three ratios by examining cross-correlations among
CCA components (e.g., corr[v1j1:2, YD3a1j1:3] and corr[u1j1:2,
XD3b1j1:3]). Statistical significance was determined using
10,000 permutations, with a threshold of pFWER , .05 within
each set of comparisons. Because psychiatric symptoms
might relate to components that explain relatively little variance
in the imaging data, we also discuss CVs that solely replicated
at the 1:3 ratio but could be found in the replication cohort.

To test the second and third criteria, we used joint CCA1-
ICA in the replication dataset. Canonical weights from each
dataset were applied to the input data from the other dataset;
these products were then correlated with the CVs identified in
that dataset (e.g., corr[v1jD, YD 3 a1jR] and corr[u1jD, XD3b1jR]).
Clinical and connectivity patterns were considered replicable
when both the application of weights from the discovery to the
replication dataset and the application of weights from the
replication to discovery dataset yielded statistically significant
ychiatry March 15, 2021; 89:579–587 www.sobp.org/journal 581
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Figure 2. Clinical loadings in the discovery data-
set. Associations between the latent dimensions and
symptoms in the domains of anxiety, irritability, and
behavioral problems. Each of the seven concentric
circles shows the positive (solid fill) and negative
correlations (transparent fill) between the canonical
variate and the original symptom ratings as bars. The
length of the bar indicates the strength of the asso-
ciation. Exact numbers of the loadings are provided
in Table S3. Canonical correlation analysis results
are characterized by sign indeterminacy, meaning
that it is valid to flip the sign for an entire latent
dimension, which will affect the directions of the
correlations.
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associations. We used 10,000 permutations to establish sig-
nificance. However, thresholds differed for clinical and con-
nectivity patterns. We used a stringent threshold of pFWER ,

.05 to determine replicability of the imaging and clinical pat-
terns; additionally, we also investigated a more lenient
threshold of puncorr , .05 for replicability of the connectivity
pattern. This decision was motivated by two factors. First, a
prior CCA study finding replicable clinical patterns did not
report replicable connectivity patterns across two subsets of a
single sample (9). This raises questions as to whether any
evidence of replicability can be detected with even liberal
statistical thresholds. Second, in the current study, significant
differences exist between cohorts in all metrics, quantifying the
quality of the imaging data (Figure S1); this contrasts with the
broadly similar profiles for symptom ratings (Table S1 and
Figure S1).

Interpretation of CVs

To interpret the significant CVs, we investigated their correla-
tions with the residualized input data. These correlations be-
tween latent variables derived from the CCA and input data
(i.e., symptom ratings, connectivity matrices) are henceforth
referred to as canonical loadings. Consistent with prior studies
(7,28), we focused on clinical items with loadings jrj . 0.2,
resembling a small to moderate effect, to interpret and label
key CVs. However, we extended this approach by limiting our
582 Biological Psychiatry March 15, 2021; 89:579–587 www.sobp.org
focus to replicating clinical loadings, i.e., loadings jrj . 0.2 that
could be observed across samples. Similarly, we emphasized
edge loadings that replicated across samples. However, given
the differences in the quality of the imaging data across
samples, we applied a more lenient threshold of jrj . 0.15 to
the replication cohort.

RESULTS

In the discovery cohort, seven CVs associated symptoms with
rsfMRI-connectivity (CV1jD: r = .74, pFWER = .0029; CV2jD: r =
.73, pFWER = .0045; CV3jD: r = .73, pFWER = .0092; CV4jD: r = .70,
pFWER = .0175; CV5jD: r = .69, pFWER = .0245; CV6jD: r = .69,
pFWER = .0340; CV7jD: r = .68, pFWER = .0497) (Figure S2). These
seven CVs explained 27.7% of symptom-level variance
and 8.1% of rsfMRI-connectivity variance. Joint CCA1ICA in
the replication dataset generated five CVs (CV1jR: r = .75,
pFWER = .0198; CV2jR: r = .72, pFWER = .0311; CV3jR: r = .72,
pFWER = .0321; CV4jR: r = .72, pFWER = .0364; CV5jR:
r = .71, pFWER = .0440) (Figure S11) that represented 18.8% of
the variance in the clinical data and 0.9% of the variance in the
rsfMRI-connectivity data.

Our key hypothesis concerned identifying both cross-
dimension and specific variates. Consistent with this hypoth-
esis, latent clinical phenotypes (v1-7jD and v1-5jR) could be
differentiated in terms of specificity of associated symptoms.
In both datasets, we observed latent variables that loaded
/journal
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jrj . 0.2 exclusively on several items from the anxiety domain
(v7jD, v1jR) and others capturing aspects shared across two
(v3jD, v4jD, v3jR) or all three domains (v1jD, v2jD, v5jD, v6jD, v2jR, v4jR,
v5jR) (Figure 2, Figure S12, Tables S7 and S12).

All latent variables (u1-7jD and u1-5jR) involved distinct, albeit
broadly distributed, connectivity patterns with many connec-
tions between well-known resting-state networks within and
across both hemispheres. All u1-7jD and u1-5jR showed equal
numbers of negative and positive correlations with edges.
Connectivity patterns were denser in the discovery relative to
the replication dataset applying a threshold of jrj . 0.2 (dis-
covery dataset: u1jD: 1404 connections, u2jD: 2068 connec-
tions, u3jD: 5602 connections, u4jD: 2490 connections, u5jD:
2968 connections, u6jD: 2656 connections, and u7jD: 3226
connections; replication dataset: u1jR: 150 connections; u2jR:
130 connections, u3jR: 74 connections; u4jR: 74 connections;
u5jR: 132 connections) (Figures 3–5, Figures S5–S10,
S13–S17).

We highlight three CVs passing all three replicability criteria
highlighted in the Methods and Materials section and two
latent dimensions passing only the first two replicability criteria
(stability within the same dataset and replicability of clinical
patterns). Full results concerning replicability appear in the
Supplement (Tables S8–S11, S13–S20). We describe
Biological Ps
replicable CVs based on the specificity of the clinical patterns
ranging from shared between all three clinical domains to
anxiety-specific.
Irritability, Anxiety, and ADHD (CV2jD, CV3jD, and
CV5jR)

In both samples, CV2jD, CV3jD, and CV5jR were robust to vari-
ations in the participant-to-input ratios (all r . .67, all pFWER =
.0001) (Tables S8–S11, S13–S16). Clinical patterns associated
with v3jD and v5jR were negatively associated across samples
(corr[v5jR, XR 3 b3jD]: r = 2.20, puncorr = .0006, pFWER = .0175;
corr[v3jD, XD 3 b5jR]: r = 2.19, puncorr = .0141, pFWER = .3797).
Both v3jD and v5jR loaded ..20 on the irritability and anxiety
domains, where close inspection suggested informant effects;
v3jD captured youth-reported whereas v5jR loaded on parent-
reported irritability and anxiety (Figure 3, Tables S7 and S12).
Yet, connectivity patterns correlated across samples (corr[u5jR,
YR 3 a3jD]: r = .12, puncorr = .0375, pFWER = .7425; corr[u3jD,
YD3a5jR]: r = .32, puncorr = .0001, pFWER = .0007). Inspection of
the connectivity loadings showed that in both samples this
transdimensional phenotype was associated with edges
interconnecting established resting-state networks within and
across both hemispheres (Figure S18).
Figure 3. Replicable, transdimensional latent var-
iable (CV3jD, CV5jR). (A) Scatter plots show canonical
variate (CV) 3 from the discovery dataset (D) and 5
from the replication dataset (R), which represent
linear combinations of brain connectivity scores
obtained during resting-state functional magnetic
resonance imaging in the horizontal axis, and linear
combinations of clinical scores derived from symp-
tom ratings in the vertical axis. (B) Clinical loadings
jrj . 0.2 in for both datasets, showing the same
symptoms but an informant effect. Dark red indicates
symptoms associated with the latent dimension in
both datasets. (C) Edges in red that load strongly
positively on u3jD and u5jR. Edges that load strongly
negatively on u3jD and u5jR are depicted in blue.
Given baseline differences in the strength of the
connectivity patterns, connectivity maps were
thresholded at jrj . 0.2 for the discovery sample and
at jrj . 0.15 for the replication sample. Only edges
that loaded highly positively or negatively in both
datasets were retained for this figure. ADHD,
attention-deficit/hyperactivity disorder; P, parent; Y,
youth.
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Figure 4. Replicable, shared aspects of disruptive
behavior and irritability (CV4jD, CV4jR). (A) Scatter
plots show canonical variate (CV) 4 from the dis-
covery dataset (D) and 4 from the replication dataset
(R), which represent linear combinations of brain
connectivity scores obtained during resting-state
functional magnetic resonance imaging in the hori-
zontal axis, and linear combinations of clinical scores
derived from symptom ratings in the vertical axis. (B)
Clinical loadings jrj . 0.2 in for both datasets. Dark
red indicates symptoms associated with the latent
dimension in both datasets. (C) Edges in red that
load strongly positively on u4jD and u4jR. Edges that
load strongly negatively on u4jD and u4jR are depicted
in blue. Given baseline differences in the strength of
the connectivity patterns, connectivity maps were
thresholded at jrj . 0.2 for the discovery sample and
at jrj . 0.15 for the replication sample. Only edges
that loaded highly positively or negatively in both
datasets were retained for this figure. P, parent; Y,
youth.
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Interestingly, v2jD was also robust against variations in
participant-to-input ratios and showed substantial positive
loadings ..20 on the same three parent-report items from the
irritability domain (“Often loses temper,” “Angry for a long
time,” “Loses temper easily”) and one from the ADHD domain
as v5jR (“Talks excessively”) (Figure 2 and Figure S12,
Tables S7 and S12). Moreover, clinical loadings for CV2jD and
CV5jR significantly correlated across cohorts (corr[v5jR, XR 3

b2jD]: r = .25, puncorr = .0001, pFWER = .0004; corr[v2jD, XD 3

b5jR]: r = .45, puncorr = .0001, pFWER = .0001). However, within
each sample, connectivity patterns associated with the two
latent phenotypes were different, although brain connectivity
data informed latent clinical dimensions.
Disruptive Behavior and Irritability (CV4jD and CV4jR)

In both cohorts, CV4jD and CV4jR were robust to input-to-
participant ratio variations (all r . .31, pFWER = .0001)
(Tables S8–S11, S13–S16). Similarities between CV4jD and
CV4jR arose when applying clinical weights from the discovery
to the replication dataset (corr[v4jR, XR 3 b4jD]: r = .19, puncorr =
.0006, pFWER = .0229) and vice versa (corr[v4jD, XD 3 b4jR]: r =
.27, puncorr = .0009, pFWER = .0190). Connectivity patterns were
also associated using an uncorrected threshold, when
584 Biological Psychiatry March 15, 2021; 89:579–587 www.sobp.org
applying weights from the replication to the discovery sample
(corr[u4jD, YD3a4jR]: r = .19, puncorr = .0108, pFWER = .3494).

Across samples, CV4jD and CV4jR loaded ..20 on three
items characterizing disruptive behavior from the ADHD
domain (“Can’t sit still,” “Impulsive,” “Loud”) and one item from
the domain of irritability (“Loses temper easily”). Furthermore,
both CV4jD and CV4jR loaded negatively on one irritability item
(“Angry most of the time”) (Figure 4, Tables S7 and S12). In-
spection of substantial edge loadings in both samples indi-
cated strong representations in the variate of connections
among nodes in motor, attention, default mode, and temporal-
parietal networks (Figure S19).

Anxiety (CV7jD and CV1jR, CV3jR)

The last set of replicable CVs comprised CV7jD in the discovery
cohort, which correlated with both CV1jR and CV3jR in the
replication data set. All three CVs emerged in analyses using
input-to-participant ratios of 1:2 and 1:3 (all r . .31, all pFWER =
.0001) (Tables S8–S11, S13–S16). Associations manifested
between v7jD and v3jR for clinical (corr[v7jD, XD 3 b3jR]: r = .31,
puncorr = .0001, pFWER = .0017; corr[v3jR, XR 3 b7jD]: r = .44,
puncorr = .0001, pFWER = .0001) and for connectivity patterns,
when applying an uncorrected threshold (corr[u7jD, YD 3 a3jR]:
r = .19, puncorr = .0136, pFWER = .4120; corr[u3jR, YR 3 a7jD]: r =
/journal
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Figure 5. Replicable, anxiety-specific latent vari-
able (CV7jD, CV3jR). (A) Scatter plots show canonical
variate (CV) 7 from the discovery dataset (D) and 3
from the replication dataset (R), which represent
linear combinations of brain connectivity scores
obtained during resting-state functional magnetic
resonance imaging in the horizontal axis, and linear
combinations of clinical scores derived from symp-
tom ratings in the vertical axis. (B) Clinical loadings
jrj . 0.2 in for both datasets. Dark red indicates
symptoms associated with the latent dimension in
both datasets. (C) Edges in red load strongly posi-
tively on u7jD and u3jR. Edges that load strongly
negatively on u7jD and u3jR are depicted in blue.
Given baseline differences in the strength of the
connectivity patterns, connectivity maps were
thresholded at jrj . 0.2 for the discovery sample and
at jrj . 0.15 for the replication sample. Only edges
that loaded highly positively or negatively in both
datasets were retained for this figure. GAD, gener-
alized anxiety disorder; P, parent; Y, youth.
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.10, puncorr = .0696, pFWER = 1). For V7jD and v3jR, both variates
loaded ..20 on the same three anxiety items (“parent-reported
generalized anxiety disorder,” “youth-reported generalized
anxiety disorder,” “youth-reported panic”) (Figure 5, Tables S7
and S12). Replicable edges connected subcortical structures
with the dorsal-attention and motor network as well as the
control and default mode networks with sensory, motor, and
attention networks (Figure S20).

Similarities in the clinical patterns were also observed be-
tween v7jD and v1jR. Both loaded ..20 on four items measuring
anxiety (“parent-reported generalized anxiety disorder,”
“parent-reported panic,” “parent-reported school avoidance,”
“youth-reported panic”; corr[v7jD, XD 3 b1jR]: r = .45, puncorr =
.0001, pFWER = .0001; corr[v1jR, XR 3 b7jD]: r = .51, puncorr =
.0001, pFWER = .0001) (Figure 2 and Figure S12; Tables S7 and
S12). However, unlike for u3jR, associated connectivity pat-
terns between u7jD and u1jR were uncorrelated even when the
uncorrected threshold was applied.
DISCUSSION

Three key findings emerge from this study. First, analyses
found seven CVs in a discovery dataset; four showed stability
within the discovery dataset and replicability of clinical
Biological Ps
patterns in an independent sample; three CVs demonstrated at
least weak signs of replicability for the associated rsfMRI
connectivity patterns. This suggests the presence of mean-
ingful relations between patterns of intrinsic brain connectivity
and psychiatric symptom dimensions in youth. Second, the
three most strongly replicable CVs from the discovery dataset
varied in clinical specificity; one loaded on all three domains,
the second captured shared aspects of irritability and ADHD,
and the third loaded specifically on anxiety. Finally, CVs
showed weak to modest associations, with multiple edges
spanning widely distributed brain areas.

Pediatric psychopathology involves broadly correlated
symptom dimensions (1–6). Dimensions of irritability, ADHD,
and anxiety are particularly closely interrelated. Understanding
of these cross-dimension relations may follow from research
on shared and unique neural correlates. Past work in this area
assessed symptom covariation independent of imaging data
before then relating symptoms to task-based imaging pat-
terns (1). CCA connects clinical and neural measures simul-
taneously to identify more complex relations (7,8). We used
rating scales employed in the previous task-based fMRI
research examining unique and shared dimensions of pedi-
atric psychopathology (1). Using these measures, the current
rsfMRI study identified two variates loading strongly on
ychiatry March 15, 2021; 89:579–587 www.sobp.org/journal 585
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multiple clinical dimensions and a third loading strongly only
on anxiety items. Thus, consistent with our hypotheses based
on past studies, current findings demonstrate coexisting
cross-dimensional and domain-specific neural correlates in
treatment-seeking youth.

The detection of only anxiety but not irritability or ADHD-
specific neural correlates in the current study could reflect
many factors. These include differences between task-based
and rsfMRI methods, differential sensitivity in CCA to partic-
ular domain-specific features, or biological features of anxiety
that generate specific rsfMRI signatures. Additional imaging
research might seek to refine clinical groupings based on
replicable cross-study patterns for these and other interrelated
dimensions.

Findings in the current and past CCA studies exhibited
both similarities and differences. Cross-sample correlations
for clinical loadings in the current study were notably similar
in magnitude to those for variables involving emotion symp-
toms in the only other study of cross-domain pediatric psy-
chopathology (9). Given differences across the two studies,
such consistency speaks to the robust nature of pediatric
emotional problem manifestations. The previous study also
found strong cross-sample replicability for a pure external-
izing factor, which did not emerge in the current study. Fail-
ure to detect this factor might reflect lesser diversity in
targeted symptoms or larger proportions of treatment-seeking
cases in the current study. Finally, unlike past research in
treatment-seeking adults, the current study showed cross-
sample replicability of latent clinical and connectivity pat-
terns, a finding that might reflect age-related differences or
distinct analytic approaches.

Interesting rsfMRI patterns manifested. Connectivity related
to clinical dimensions was broadly distributed, involving
hundreds of relatively weakly loading interhemispheric and
within-hemisphere connections spanning distinct networks.
Moreover, while within-sample stability was acceptable in the
discovery sample, rsfMRI patterns minimally correlated across
datasets. Interestingly, such weak replicability manifested
alongside stronger replicability for clinical patterns, themselves
defined by relations with rsfMRI. Replicable clinical patterns
defined by less replicable rsfMRI patterns raise important
questions for future studies. First, greater cross-sample dif-
ferences existed for the fMRI than clinical assessments. Thus,
whether homogeneous cross-sample imaging methods could
generate improved rsfMRI replicability remains unclear. Sec-
ond, replicable clinical patterns defined by minimally replicable
fMRI patterns could arise from “many-to-one” mappings be-
tween neural and clinical variables. Such configurations
commonly underlie brain-behavior relationships at many
spatial scales. Thus, whether such “many-to-one” patterns
also represent a common motif for mental disorders remains
unclear.

From the clinical perspective, broadly distributed connec-
tivity disturbances might require a diverse set of approaches
to identify targets for novel interventions. Currently, therapies
such as cognitive training or neural stimulation target func-
tions in specific networks (29–31). However, at least for pe-
diatric anxiety, irritability, and disruptive behavior, broadly
distributed patterns may better represent the nature of con-
nectivity disturbances during rest than patterns limited to
586 Biological Psychiatry March 15, 2021; 89:579–587 www.sobp.org
particular networks. The focus on broad connectivity distur-
bances as opposed to particular networks might increase
effect sizes of studies relating clinical domains to intrinsic
brain connectivity.

Findings inform analytic decisions in future CCA studies.
Different analyses within and across samples used different
rsfMRI data, accounted for different amounts of overall
rsfMRI variance, and yielded differences in CV structure. That
input affects output is not unique to CCA. However, no
ground truth informs selection of PCA-based or other input
components for CCA. Thus, risk of overfitting is balanced
against risk of omitting relevant variance through dimen-
sionality reduction. Overfitting is reduced by ensuring pro-
portionally more research participants than variables (32,33).
However, particularly in moderately sized datasets, dimen-
sionality reduction can exclude rsfMRI variance components
that, even if small, powerfully relate clinical dimensions to
connectivity patterns. Such factors create challenges that
likely impact findings. The presence of modestly replicable
clinical loadings across analyses in the current study sug-
gests the promise of continued iterative work targeting these
challenges.

One major limitation of the current study are the medium
sample sizes. Also, differences in scanners, imaging-
acquisition parameters, and data-quality indices introduced
noise that decreased the probability of fully replicating findings
across datasets. In effect, larger proportions of rsfMRI con-
nectivity variance are explained in the smaller but homoge-
neous discovery sample, as evidenced by PCA. Furthermore,
we did not include youth ratings of ADHD symptoms or ratings
of depressive symptoms, another highly prevalent symptom
dimension in youth.

Our findings implicate co-occurring transdimensional and
anxiety-specific neural features in pediatric psychopathology.
Results further suggest that pediatric clinical dimensions
reflect widely distributed brain connectivity patterns. Thus, as
with genetic correlates, neural correlates of some pediatric
psychopathology dimensions may reflect hundreds of indi-
vidually small associations.
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Supplementary Methods 
 

Detailed description of the methods 

Participants 
The present study comprised two independent samples. One sample was recruited at the 

National Institutes of Mental Health Intramural Research Program (NIMH-IRP) with the goal of 

investigating brain mechanisms mediating anxiety, irritability and disruptive behavior in youth. 

This sample was selected as the discovery sample because data was collected in-house on two 

identical scanners with the same imaging parameters. The other sample was recruited by the 

Child Mind Institute (CMI) as part of research assembling a publicly available, transdiagnostic 

sample of treatment-seeking youth (1) and served as the replication dataset. Imaging data of the 

replication dataset was collected in three different model scanners of varied field strengths.  

Both samples comprised healthy volunteers (HV) and youth diagnosed with an anxiety disorder 

(ANX), disruptive mood dysregulation disorder (DMDD), or attention-deficit/hyperactivity disorder 

(ADHD). In both samples, diagnoses were established by licensed clinicians using the Kiddie 

Schedule for Affective Disorders and Schizophrenia (K-SADS) (2). Exclusion criteria for both 

samples comprised neurological disorders, autism spectrum disorders, psychosis, bipolar 

disorder, substance use, MRI contraindications, and full-scale IQ < 70. Further, participants in 

each sample were required to have completed relevant questionnaire data. In the discovery 

sample, participants over age 18 and parents of minor participants gave written informed consent 

after receiving a complete description of the study; minors gave written assent. Procedures were 

approved by the Institutional Review Board of the NIMH. 

Samples were similar in terms of sex ratios, proportions of anxiety disorders, oppositional defiant 

disorder, medication-free-to-medication-use ratios, as well as levels of parent-reported 

symptoms of irritability, disruptive behavior, and anxiety. However, the discovery sample was 

older, had a higher IQ, lower proportions of ADHD cases, higher proportions of diagnosis-free 

and DMDD cases, and lower levels of self-reported irritability and anxiety (Table S1). 
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Table S1. Comparison of the Sample Characteristics 

 Discovery 
sample 

Replication 
sample 

Statistic p-
value 

Sex, male : female 1 : 1.1 1.2 : 1 Chi2(1) = 3.4 .07 
Age in years, mean (SD, range) 13.8 (2.58, 9-19) 12.1 (2.83, 8-18) t(507) = 6.72 < .001 
Intelligence score, mean (SD) 113.4 (11.16) 100.8 (15.49) t(474.2) = 10.55 < .001 
Psychotropic medication, n : y 2.8 : 1 3.1 : 1 Chi2(1) = 0.3 .62 
     
Diagnoses     
ADHD, % 27 53 Chi2(1) = 30.8 < .001 
Anxiety disorder, % 44 39 Chi2(1) = 1.2 .26 
DMDD, % 23 3 Chi2(1) = 54.9 < .001 
HV, % 32 23 Chi2(1) = 5.2 .02 
ODD, % 15 11 Chi2(1) = 1.8 .18 
     
Questionnaires     
ARI-P, mean (SD) 2.8 (3.4) 3.1 (3.3) U = 27291.0 .10 
ARI-S, mean (SD) 2.6 (2.9) 3.3 (3.3) U = 24910.5 < .01 
SCARED-P, mean (SD) 15.4 (13.8) 15.2 (12.6) U = 28788.0 .51 
SCARED-S, mean (SD) 18.6 (15.0) 24.1 (16.4) U = 23730.0 < .001 
ADHD*, mean (SD) .06 (4.93) -.01 (3.47) U = 29658.0 .91 
Abbreviations: ADHD, Attention-Deficit/Hyperactivity Disorder; ARI_P, Affective Reactivity Index rated by the parent; ARI_S, Affective Reactivity 

Index rated by the child; DMDD, Disruptive Mood Dysregulation Disorder; HV, healthy volunteers; ODD, Oppositional Defiant Disorder; SCARED-

P, Screen for Child Anxiety Related Disorders rated by the parent;  SCARED-C, Screen for Child Anxiety Related Disorders rated by the child 

* In the discovery sample, ADHD symptoms were rated by the parents using the Connors, whereas the same items were rated by the parents with 

the Child Behavior Checklist in the replication sample. Values presented here are normalized.  

 

Further, we observed no differences between subsets of subjects from the discovery 

sample with data acquired on the two different 3T scanners (Table S2). In the replication 

dataset, sequence was confounded with the scan site. Thus, we compared the sample 

characteristics across the three sites. At the Staten Island, compared to the other two 

sites, we found that a significantly lower proportion of individuals met criteria for ADHD 

and a significantly higher proportion of individuals were classified as healthy volunteers. 

Further, youth-reported levels of irritability were lower at the CBIC site than the other 

two sites.  The three sites were comparable with regard to all other sociodemographic 

and clinical variables (Table S3).  
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Table S2. Characteristics of the discovery sample separately for the two different 
scanners 
 Scanner 1 

(N=143) 
Scanner 2 

(N=40) 
Statistic p-

value 
Sex, male : female 1 : 1.1 1  : 1.2 Chi2(1) = 0.08 .78 
Age in years, mean (SD, range) 13.9 (2.60) 13.6 (2.51) t(181) = 0.61 .54 
Intelligence score, mean (SD) 113.5 (11.33) 113.0 (10.66) t(180) = 0.29 .77 
Psychotropic medication, n : y 2.8 : 1 3.0 : 1 Chi2(1) = 0.04 .84 
     
Diagnoses     
ADHD, % 31 25 Chi2(1) = 0.62 .43 
Anxiety disorder, % 44 43 Chi2(1) = 0.03 .86 
DMDD, % 21 25 Chi2(1) = 0.30 .59 
HV, % 35 25 Chi2(1) = 1.23 .27 
ODD, % 15 13 Chi2(1) = 0.21 .65 
     
Questionnaires     
ARI-P, mean (SD) 2.9 (3.38) 2.7 (3.37) U = 2757.0 .72 
ARI-S, mean (SD) 2.5 (2.85) 2.7 (3.21) U = 2853.0 .98 
SCARED-P, mean (SD) 14.7 (13.87) 17.8 (13.41) U = 2419.5 .14 
SCARED-S, mean (SD) 18.4 (14.42) 19.3 (17.12) U = 2798.5 .84 
Conners-P, mean (SD) 4.7 (4.78) 5.0 (5.48) U = 2775.0 .77 

Abbreviations: ADHD, Attention-Deficit/Hyperactivity Disorder; ARI_P, Affective Reactivity Index rated by the parent; ARI_S, Affective Reactivity 

Index rated by the child; Conners, Conners III ADHD Rating Scales and specifically the sum score of the items that correspond to those in the ADHD 

subscale of the Child Behavior Checklist; DMDD, Disruptive Mood Dysregulation Disorder; HV, healthy volunteers; ODD, Oppositional Defiant 

Disorder; SCARED-P, Screen for Child Anxiety Related Disorders rated by the parent;  SCARED-C, Screen for Child Anxiety Related Disorders 

rated by the child 
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Table S3.  Characteristics of the replication sample separately for the three different 
sites/ scanners 

 SI 
(N=112) 

RUBIC 
(N=137) 

CBIC 
(N=77) 

Statistic p-
value 

Sex, male : female 1.1 : 1 1.4 : 1 1.1  : 1 χ2
(2) = 1.25 .54 

Age in years, mean (SD) 12.1 (2.89) 12.2 (2.72) 12.1 (2.83) F(2,323) = 0.05 .96 
Intelligence score, mean (SD) 100.0 (14.91) 100.1 (15.62) 103.8 (15.99) F(2,323) = 1.36 .26 
Psychotropic medication, y:n 1 : 4.6 1 : 3.0 1 : 2.1 χ 2

(2) = 5.35 .07 
      
Diagnoses      
ADHD, % 44 60 57 χ 2

(2) = 9.50 .009 
Anxiety disorder, % 35 37 46 χ 2

(2) = 2.94 .23 
DMDD, %* 5 1 1  .15 
HV, % 35 17 17 χ 2

(2) = 13.4 .001 
ODD, %* 13 13 4  .08 
      
Questionnaires      
ARI-P, mean (SD) 3.3 (3.40) 3.3 (3.36) 2.6 (2.99) H = 1.77 .41 
ARI-S, mean (SD) 3.6 (3.29) 3.7 (3.60) 2.3 (2.45) H = 8.59 .01 
SCARED-P, mean (SD) 15.8 (13.52) 16.3 (12.23) 12.5 (11.41) H = 5.77 .06 
SCARED-S, mean (SD) 25.6 (16.10) 23.9 (16.5) 22.1 (16.73) H = 3.27 .20 
CBCL ADHD, mean (SD) 4.96 (4.09) 5.95 (3.70) 5.42 (3.86) H = 5.34 .07 

Abbreviations: ADHD, Attention-Deficit/Hyperactivity Disorder; ARI_P, Affective Reactivity Index rated by the parent; ARI_S, Affective Reactivity Index 

rated by the child; CBCL ADHD, Attention-Deficit/ Hyperactivity subscale of the Child Behavior Checklist; DMDD, Disruptive Mood Dysregulation 

Disorder; HV, healthy volunteers; ODD, Oppositional Defiant Disorder; SCARED-P, Screen for Child Anxiety Related Disorders rated by the parent;  

SCARED-C, Screen for Child Anxiety Related Disorders rated by the child  

* As cell sizes were <5, Fisher’s Exact Test was calculated. 

Clinical assessment 
Anxiety symptoms were assessed with the Screen for Child Anxiety Related Disorders 

(SCARED) (3) completed by both parent and child. Its subscales of social anxiety, separation 

anxiety, panic, and school refusal were used as input for the CCA. Irritability symptoms were 

rated with the Affective Reactivity Index (ARI) by both parent and child (4). The first 6 items 

measuring intensity and frequency of angry mood and temper outbursts, which are rated on a 

scale from 0 to 2, were used as input for the CCA. In the discovery sample, disruptive behavior 

was quantified through seven items (failure to finish, difficulties concentrating, difficulties sitting 

still, impulsiveness, inattention, talking excessively and being loud) rated by the parent with the 

Conners (5); in the replication sample, these same seven items were rated on the Child 

Behavior Checklist (CBCL) (6). In both samples, all three dimensions were moderately 

correlated with one another (see Table S2). 
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Table S4. Associations among symptom dimensions. As correlation matrices are 
symmetric, we depict Spearman correlation coefficients (bold font) of the discovery dataset in 
the upper- right triangle and correlation coefficients of the replication sample in the lower-left 
triangle.  
 

 ARI-P ARI-Y SCARED-P SCARED-Y ADHD 
ARI-P  .55  

5.1×10-16 
.32  

8.0×10-5 
.23  

.002 
.50  

6.1×10-13 
ARI_Y .35  

4.5×10-11 
 .38  

9.1×10-8 
.42  

2.6×10-9 
.28  

9.9×10-5 
SCARED-P .39  

4.2×10-13 
.18  

.001 
 .58  

1.5×10-17 
.23  

.002 
SCARED-Y .10  

.074 
.40  

4.2×10-14 
.26  

2.0×10-6 
 .14  

.065 
ADHD .45  

3.0×10-17 
.27  

6.4×10-7 
.26  

2.0×10-6 
.08  

.177 
 

Abbreviations: ARI-P, Affective Reactivity Index completed by the parent; ARI-Y, Affective Reactivity Index completed 

by the child; SCARED-P, Screen for Child Anxiety Related Disorders completed by the parent;  SCARED-Y, Screen for 

Child Anxiety Related Disorders completed by the child; ADHD, 7 items assessing inattention and disruptive behavior 

taken from the Conners in the discovery dataset and from the Child Behavior Checklist in the replication dataset 

Acquisition of imaging data 
Imaging data of the discovery dataset were acquired on two identical 3.0 Tesla General Electric 

Signa scanners using a 32-channel head coil. Blood-oxygen-level-dependent (BOLD) changes 

during rest were measured for 10 minutes with a multi-echo planar imaging sequence (TR = 

2000 msec, TE1/2/3 = 14.8 / 28.4 / 42.0msec, flip angle 77°, FoV 240x240x260, matrix size 

64×64, 34 axial interleaved slices, slice thickness 3.8mm, bandwidth = 7812.5 Hz/Pixel). 

During this scan, participants were instructed to keep their eyes open and focus on white 

fixation cross in the middle of a black screen. In addition, a T1-weighted, magnetization-

prepared, rapid-acquisition gradient echo (MPRAGE) sequence was acquired (TE = min full; 

TI = 425; FOV = 25.6; freq×phase = 256 × 256; flip angle = 7°; 1mm3 voxels). 

Imaging data of the replication dataset were acquired at three different sites (Staten Island – 

1.5T Siemens Avanto: n=112, Rutgers University Brain Imaging Center – Siemens 3T Tim Trio: 

n=136, CitiGroup Cornell Brain Imaging Center – Siemens 3T Prisma: n=77). Scanning 

parameters have been described in detail elsewhere (1). Across sites, two different multiband 

echo planar imaging sequences were used to collect 10 minutes of resting-state data (Rutgers 

& CitiGroup: TR/ TE = 800/ 30 msec, flip angle 31°, 60 axial slices, resolution 2.4x2.4x2.4mm, 

multiband factor 6, sometimes administered as 1 and sometimes as 2 runs, 750 acquired 

volumes; Staten Island: TR/ TE = 1450/ 40 msec, flip angle 55°, 54 axial slices, resolution 

2.5mm3, multiband factor 3, 420 acquired volumes). Participants viewed a fixation cross on the 

center of a computer screen and were instructed to open or close their eyes at various points 
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throughout the scan. Further, two different MPRAGE sequences were acquired (Rutgers & 

CitiGroup: TR/ TE/ TI = 2500/ 3.15/ 1060 msec; 224 slices; resolution 0.8 mm3, flip angle = 8°; 

Staten Island: TR/ TE/ TI = 2730/ 1.64/ 1000 msec; 176 slices; resolution 1 mm3, flip angle = 

7°). 

Quality assessment of imaging data 
Quality of the imaging data was assessed using MRIQC version 0.14.2 (7). Based on the 

indices provided by MRIQC (T1-weighted image: coefficient of joint variation, contrast to noise 

ratio, signal to noise ratios; fMRI: AFNI’s outlier ratio, AFNI’s quality index, DVARS, framewise 

displacement, signal to noise ratio, and temporal signal to noise ratio) and visual inspection, 

50 participants from the discovery sample and 219 participants from the replication sample 

were excluded, mostly due to the presence of motion-related artefacts. Comparisons of the 

quality indices of the final discovery (N=182) and replication sample (N=326) showed large 

differences between the two samples (Figure S1). The quality of the functional data obtained 

at the two scanners in the discovery sample were comparable (see Table S5).  

 

 

Figure S1. A selection of indices provided by MRIQC for the discovery (black) and 
replication samples (gray). Samples differ significantly in all indices (all p < .001). 

Abbreviations: AQI, AFNI’s quality index (lower values are better); CJV, coefficient of joint variation (lower values are better); CNR, 

contrast to noise ratio (higher values are better); DVarsNStd, per-image standard deviation of the temporal derivative of the data (lower 

values are better); FD%, percent of timepoints above the framewise displacement threshold of 0.2 mm; SNR, signal to noise ratio (higher 

values are better); tSNR, temporal signal to noise ratio (higher values are better). 
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Table S5. rsfMRI quality indices separately for the two different scanners used 
for the discovery sample 
 Scanner 1 

(N=143) 
Scanner 2 

(N=40) 
Statistic p-value 

aor .006 (.006) .008 (.007) t (181) = -1.69 .094 
aqi .005 (.003) .006 (.003) t (181) = -1.60 .112 
dvars_nstd 19.5 (5.62) 17.9 (4.86) t (181) = 1.62 .106 
FD, mean .14 (.108) .17 (.120) t (181) = -1.65 .101 
FD, percent 13.2 (15.91) 16.8 (14.57) t (181) = -1.28 .202 
tsnr 62.78 60.24 t (181) = 1.04 .301 

Abbreviations: aor, AFNI’s outlier ratio; aqi, AFNI’s quality index; dvars_nstd, the per-image standard deviation of the temporal derivative of the 

data. A measure of how much the intensity of a brain image changes in comparison to the previous timepoint (as opposed to the global signal); 

FD, framewise displacement; tsnr, temporal signal-to-noise ratio 

Image processing 

Based on MRIQC (v0.14.2), four initial volumes from the functional data from the discovery 

sample and five initial volumes from each run of the replication sample were discarded. Image 

processing used the FMRIPREP (v1.3.2), (8) an automated processing pipeline based on 

Nipype (9). First a reference image and mask were created based on the initial functional 

volumes. Next, functional data were slice time corrected using 3dTshift from AFNI, motion 

corrected using MCFLIRT from FSL (10), and co-registered to the structural volume using 

boundary-based registration with 9 degrees of freedom (11); these spatial transformations 

were concatenated and applied all in a single interpolation step. Finally, ICA-based Automatic 

Removal of Motion Artifacts (AROMA) was used to non-aggressively denoise the time courses 

(14). We refrained from motion scrubbing as it has been repeatedly shown that AROMA 

performs adequately in reducing motion-related artefacts. (15,16) In addition, the use of 

AROMA allows us to keep a constant number of timepoints across participants and does not 

compromise the temporal dynamics, which facilitate approaches to data analysis. For the multi-

echo data from the discovery dataset the Tedana T2* workflow (17) was used to create an 

optimally weighted combination of the three echo times.  

Structural scans were subjected to FreeSurfer processing, as called from FMRIPREP. The T1-
weighted images were initially corrected for magnetic field inhomogeneities and skull-stripped 

(18). A mass of segmented white matter voxels was produced for each hemisphere, and a 

mesh of triangular faces was tightly built around this mass, using two triangles per exposed 

voxel face. The mesh was smoothed taking into account the local intensity in the original 

images, (19) at a subvoxel resolution. Topological defects were corrected (20,21) ensuring that 

the surfaces for each hemisphere had the same topological properties of a sphere. A second 

iteration of smoothing was applied, resulting in a fiducial representation of the interface 
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between gray and white matter (the white surface). The external cortical surface (the pial 

surface) was produced by nudging outwards the white surface towards a point where the tissue 

contrast was maximal, maintaining constraints on smoothness and on the possibility of self-

intersection. (22) Once the cortical models were complete, surfaces were homomorphically 

transformed into a sphere, registered and resampled to a common space (“fsaverage”) based 

on individual cortical folding patterns so as to match cortical geometry across subjects. (23) 

Functional, processed resting stated time series were then resampled from voxel space to 

surface space. 

Network construction 
Because the shortest time series contained 300 time points, a published 200-region parcellation 
scheme (24) was used to define the network nodes.  This generated for data analysis more 

timepoints than parcels. The parcellation scheme used was originally derived through the 

combination of two algorithms (boundary mapping and clustering), such that parcels are 

expected to be functionally and connectionally more homogeneous than, for example, random 

parcels. These parcels have previously been assigned to known intrinsic functional networks. 

(24,25) The 200 cortical areas were augmented by the inclusion of 8 subcortical regions per 

hemisphere obtained using FreeSurfer segmentation; these were nucleus accumbens, nucleus 

caudatus, pallidum, putamen, amygdala, hippocampus, thalamus and ventral diencephalon (a 

miscellaneous group of structures that include hypothalamus, mammillary bodies, subthalamic 

nuclei, substantia nigra, red nucleus, and medial and lateral geniculate nuclei; white matter 

areas such as the zona incerta, crus cerebri, lenticular fasciculus, and medial lemniscus are 

also included in this area). Thus, the functional connectivity network comprised 216 nodes. 

Framewise displacement and spatial standard deviation of the temporal difference data (dvars) 

were regressed out from the time series; global signal was not regressed out or used as a 

nuisance variable. Functional connectivity was quantified using partial correlations, which offer 

an estimate of direct (as opposed to indirect or shared) connectivity between each pair of nodes; 

these correlations were then transformed to z-scores using Fisher’s transformation, i.e., z = 

arctanh(r). As the resulting network matrices are symmetric, we only analyzed the 23220 edges 

on one side of the diagonal of the connectivity matrix (i.e., 216×215/2 connections). For the 

participants of the discovery sample that had two runs, z-scores for each edge were averaged 

and the variance was re-scaled by a factor of √2. 
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CCA, ICA, and permutation testing 

Covariates were regressed out from the imaging and clinical variables before dimensionality 

reduction.  These covariates comprised age, sex, race, IQ, psychotropic medication, and 

scanner for the discovery sample; plus site and sequence for the replication sample. An 

intercept was also included as a nuisance variable, thus obviating the need for further mean-

centering. Next, while we included all 29 symptom ratings, dimensionality of rsfMRI was 

reduced using principal component analysis (PCA) prior to CCA.(26) Residuals were then 

projected, after dimensionality reduction, to a lower dimensional space where data are 

exchangeable, thus mitigating spurious dependencies among observations introduced by 

residualization (27). 

CCA is a multivariate method that aims to reduce the correlation structure between two sets of 

variables (here rsfMRI and symptoms).  In this approach, the simplest possible form is sought 

through linear transformations of the variables within each set. That is, given two sets of 

variables (here, symptom ratings, X, and imaging data, Y), the method seeks linear mixtures 

(i.e., canonical variables, CVs) within each set (i.e., U = A×Y and V = B×X), such that each 

resulting mixture (U) from one set is maximally correlated with a corresponding mixture (V) 

from the other set, but uncorrelated with all other mixtures in either set.  As the number of 

canonical variables is determined by the smallest input dataset, we obtained 29 CVs.  

Given the CCA orthogonality constraint, it is possible, for canonical correlations of similar 

magnitudes, for small perturbations within a data set to generate solutions that are arbitrarily 

rotated. To mitigate this problem, aid with interpretation, and use principles adopted in previous 

studies (28–30) we subjected the results of CCA to Independent Component Analysis (ICA) 

(31,32). Unlike in previous studies, however, we did not use the canonical loadings to produce 

a single set of independent components for both clinical and imaging data, to which canonical 

variables would be correlated. Rather, we subjected the canonical variables from both sides to 

a joint ICA after concatenation of U and V, nesting the whole procedure into the iterative 

algorithm used for permutation inference for CCA, described below. Thus, rather than simply 

using ICA to characterize CCA results, we tested the significance of the joint CCA+ICA 

correlations between underlying latent factors that associate imaging and clinical data. The 

permutation test involved, for each permutation, re-estimating the post-ICA canonical 

correlations, while removing the variance already explained by all previous canonical variables, 

i.e., the ones with stronger canonical correlations than the current one, in an iterative procedure 

(27); in other words, for each permutation, an iterative re-estimation of the canonical 

correlations is performed, in which only variance not already explained by previous canonical 

https://www.zotero.org/google-docs/?kFSDmj
https://www.zotero.org/google-docs/?8Wpl9p
https://www.zotero.org/google-docs/?AgQ0V7
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variables is used. Canonical correlations were considered significant at alpha = 0.05 after 

10000 permutations and when using family wise error rate (FWER) correction, with a closed 

testing procedure. We also report the non-symmetric redundancy index (33), which gives the 

mean variance of the clinical data explained by imaging data, and vice versa.  

Code related to this analysis is available at https://github.com/JuliaLinke/Linke_jointCCAICA. 

Similarities across scanners 

In our analysis, we adjusted for site and sequence using a linear model. The model includes one 

regressor per site (scanner) such that non-linear effects across sites are naturally accommodated. 

Nonetheless, differences in the distributions of the data across scanners/ sites may exist. Thus, 

we compared the distributions of the residuals stratified by site, using a two-sample Kolmogorov-

Smirnov (KS) test, comparing two sites at a time. We note, however, that CCA is invariant to linear 

transformations of the input data, which in turn allows infinite possibilities of inputs for this KS test. 

Since exchangeability is asserted at the level of the canonical variables, we subject these to the 

KS-test. That is, we break the canonical variables per scanner in the discovery sample, and per 

site/scanner in the replication sample, and investigate distributional differences. Because this 

analysis uses the same data used in the CCA+ICA inference, it is already free of all nuisance 

variables (including age, sex, comorbidities, etc.), such that eventual residual differences would 

be the ones impacting CCA+ICA results. The results of this analysis are shown in Supplementary 

Table S6. The significant canonical variates were not affected by differences in the residuals of 

the distributions of the input data. 

 
  

https://www.zotero.org/google-docs/?wcfQ9X
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Table S6. Comparison of the distributions of the residuals stratified by scanner and 
site. Gray background indicates the significant canonical variates.  
 
 Discovery sample Replication sample 

 
CV Scanner 1 vs. 

Scanner2 
Site 1 vs. Site 2 Site 1 vs. Site 3 Site 2 vs. Site 3 

 KS puncorr pFWER KS puncorr pFWER KS puncorr pFWER KS puncorr pFWER 
1 0.18 0.18 0.18 0.19 0.19 0.19 0.22 0.22 0.22 0.1 0.1 0.1 
2 0.21 0.26 1 0.2 0.06 1 0.13 0.01 0.38 0.12 0.65 1 
3 0.32 0.13 0.98 0.22 0.05 0.99 0.21 0.26 1 0.17 0.49 1 
4 0.25 0 0.08 0.22 0.02 0.76 0.17 0.01 0.45 0.11 0.11 1 
5 0.17 0.03 0.63 0.18 0.02 0.84 0.17 0.06 1 0.06 0.52 1 
6 0.17 0.32 1 0.28 0.1 1 0.23 0.05 0.99 0.1 0.99 1 
7 0.29 0.29 1 0.24 0 0.1 0.11 0 0.22 0.16 0.65 1 
8 0.36 0.01 0.22 0.23 0.01 0.47 0.16 0.37 1 0.1 0.14 1 
9 0.16 0 0.01 0.21 0.01 0.61 0.16 0.08 1 0.11 0.72 1 
10 0.23 0.41 1 0.17 0.04 0.96 0.22 0.07 1 0.2 0.53 1 
11 0.18 0.07 0.89 0.23 0.14 1 0.15 0 0.33 0.13 0.03 0.95 
12 0.24 0.26 1 0.19 0.02 0.75 0.14 0.1 1 0.08 0.34 1 
13 0.14 0.06 0.81 0.22 0.07 1 0.18 0.15 1 0.12 0.9 1 
14 0.33 0.55 1 0.19 0.02 0.88 0.13 0.03 0.93 0.1 0.47 1 
15 0.2 0 0.04 0.2 0.07 1 0.16 0.24 1 0.08 0.69 1 
16 0.12 0.14 0.99 0.18 0.05 0.98 0.17 0.09 1 0.11 0.87 1 
17 0.13 0.73 1 0.14 0.09 1 0.18 0.05 0.99 0.17 0.58 1 
18 0.36 0.62 1 0.16 0.29 1 0.12 0.04 0.96 0.12 0.1 1 
19 0.24 0 0.01 0.18 0.16 1 0.14 0.35 1 0.06 0.49 1 
20 0.11 0.05 0.79 0.17 0.09 1 0.22 0.19 1 0.13 0.99 1 
21 0.19 0.79 1 0.19 0.14 1 0.12 0 0.34 0.1 0.33 1 
22 0.18 0.19 1 0.15 0.07 1 0.16 0.29 1 0.09 0.69 1 
23 0.15 0.26 1 0.18 0.22 1 0.11 0.09 1 0.12 0.81 1 
24 0.14 0.47 1 0.19 0.1 1 0.17 0.46 1 0.09 0.45 1 
25 0.15 0.58 1 0.17 0.08 1 0.12 0.05 0.98 0.1 0.79 1 
26 0.33 0.45 1 0.28 0.14 1 0.22 0.28 1 0.12 0.65 1 
27 0.12 0 0.05 0.18 0 0.08 0.17 0 0.25 0.11 0.4 1 
28 0.11 0.73 1 0.23 0.08 1 0.12 0.05 0.98 0.16 0.54 1 
29 0.09 0.85 1 0.19 0.01 0.69 0.15 0.33 1 0.17 0.17 1 

Abbreviations: CV, canonical variate; KS, Kolmogorov-Smirnoff test statistic 

Replicability 

Robustness of the CVs was determined based on three criteria: (1) stability within the same 

dataset across varying input-to-participant ratios, (2) similarities of latent clinical patterns across 

the two independent samples, and (3) similarities of latent connectivity patterns across the two 

independent samples. A prior CCA study in youth reported replicability only for clinical but not 

rsfMRI patterns (34). Thus, we decided to evaluate the replicability of the clinical and the 

connectivity patterns as separate criteria.  
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Few studies exist to guide the decision of how many principal components should be used as 

input for a CCA analysis, given a specific sample size. Therefore, we performed three analyses 

that varied in the input-to-participant ratios within each sample. The primary analyses used an 

input-to-participant ratio of 1:2, which translated into 64 rsfMRI components explaining 75% of 

the between-subject variance in rsfMRI-connectivity in the discovery sample. In the replication 

cohort, 134 rsfMRI components were used; these explained only 57% of the variance, possibly 

due to more heterogeneous imaging parameters. This primary analysis was supplemented by 

two secondary analyses using input-to-participant ratios of 1:3 and 1:4 to reduce risks of 

overfitting, at the expense of explaining less variance. In the discovery sample, 32 and 17 

components, which explained 60% and 47% of the between-subject connectivity variance, 

respectively, were used in these additional analyses. In the replication dataset, 79 and 53 

components that explained 55% and 39% of the between-subject variance, respectively, 

entered these analyses. Results were compared across the three ratios by examining cross-

correlations among CCA components (e.g., corr(v1|1:2, YD × a1|1:3) and corr(u1|1:2, XD × b1|1:3)). 

Statistical significance was determined using 10000 permutations, with a threshold of pFWER < 

.05 within each set of comparisons. As psychiatric symptoms might relate to components that 

explain relatively little variance in the imaging data, we will also discuss CVs that solely 

replicated at the 1:3 ratio but could be found in the replication cohort. 

To test the second and third criteria, we used joint CCA+ICA in the replication dataset. Canonical 

weights from each dataset were applied to the input data from the other dataset; these products 

were then correlated with the CVs identified in that dataset (e.g., corr(v1|D, YD × a1|R) and corr(u1|D, 

XD × b1|R)). Clinical and connectivity patterns were considered replicable when both the 

application of weights from the discovery to the replication dataset and the application of weights 

from the replication to discovery dataset yielded statistically significant associations. We used 

10000 permutations to establish significance. However, thresholds differed for clinical and 

connectivity patterns. We used a stringent threshold of pFWER < .05 to determine replicability of 

the imaging and clinical patterns; additionally, we also investigate a more lenient threshold of 

puncorr < .05 for replicability of the connectivity pattern. This decision was motivated by two factors.  

First, a prior CCA study finding replicable clinical patterns did not report replicable connectivity 

patterns across two subsets of a single sample (9). This raises questions as to whether any 

evidence of replicability can be detected with even liberal statistical thresholds. Second, in the 

current study, significant differences exist between cohorts in all metrics quantifying the quality 

of the imaging data (Figure S1); this contrasts with the broadly similar profiles for symptom 

ratings (Table S1 and Figure S1).  
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Interpretation of canonical variables 

CVs might be interpreted by examining (a) the standardized coefficients of the CVs (canonical 

weights), (b) the correlations between the CVs and the input data (canonical loadings), and (c) 

the amount of variance explained (redundancy index). (33) Since input variables were 

moderately correlated, interpretations discuss canonical loadings, as multicollinearity might 

result in low canonical weights. Prior literature (26,30) highlights loadings with an absolute value 

larger than 0.20 in either positive or negative directions. While we present all loadings, 

discussions focus on loadings above the 0.20 threshold, despite the arbitrary nature of this 

threshold. In fact, we extend this approach by limiting our focus to replicating clinical loadings, 

i.e., loadings |r| > 0.2 that could be observed across samples. Similarly, we emphasize edge 

loadings that replicate across samples. However, given the differences in the quality of the 

imaging data across samples, we apply a more lenient threshold of |r| > 0.15 to the replication 

cohort.  

Additional Results 

Redundancy index 
The redundancy index was calculated as in (33). In the discovery sample, CVs explained 14.2% 

of the variance of the symptom ratings from rsfMRI-connectivity, though only 2.2% of the 

between-subject variance in brain connectivity was explained by the clinical CVs. In the 

replication cohort, 3.4% of the variance of the symptom ratings was explained by the significant 

CVs from resting-state connectivity, whereas only 0.4% of the between-subject variance in brain 

connectivity was explained by the significant CVs from symptom ratings. 
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Canonical correlations in the discovery dataset 

 
Figure S2. Illustration of the seven significant canonical variates in the discovery dataset. 
Scatter plots show the latent dimensions (linear combinations of brain connectivity scores 
obtained during rsfMRI in the horizontal axis, and linear combinations of clinical scores derived 
from symptom ratings in the vertical axis). For each latent dimension unique to the discovery 
dataset the highest loading clinical item is included. P-values are corrected for multiple testing 
using the family wise error rate. 
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Clinical loadings in the discovery dataset 

Table S7. Clinical loadings in the discovery dataset 
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Edge loadings in the discovery data set 

 
Figure S3. Overview of connectivity patterns associated with the three replicating latent 
variables. The two inner columns show the associations between the latent dimensions and 
resting-state connectivity patterns thresholded at |r| > 0.2. Red colored lines represent positive 
associations between the latent dimension and the edge, whereas blue lines indicate a negative 
relationship. The intensity of the lines shows the magnitude of the correlation on a scale from -
1 to 1, and the thickness reflects the importance of the connection in general (i.e., full 
correlations). The two outer columns indicate the strength (thicker lines represent stronger 
correlations) and direction (red indicates positive and blue resembles negative connections) of 
the full correlations between the relevant nodes. For each hemisphere, the colors on the outer 
rings represent the nine large-scale networks our parcellation scheme maps onto: visual, 
somatomotor, dorsal attention, salience, limbic, control, default mode, temporal, and the eight 
subcortical structures taking from the FreeSurfer segmentation.  



Linke et al.  Supplement 

18 

 
 

Figure S4. Enlarged depiction of the connectivity pattern associated with the 1st canonical 
variate in the discovery dataset. Edges are thresholded at |r| > 0.2.  
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Figure S5. Enlarged depiction of the connectivity pattern associated with the 2nd canonical 
variate in the discovery dataset. Edges are thresholded at |r| > 0.2.   
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Figure S6. Enlarged depiction of the connectivity pattern associated with the 3rd canonical 
variate in the discovery dataset. Edges are thresholded at |r| > 0.2.  
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Figure S7. Enlarged depiction of the connectivity pattern associated with the 4th canonical 
variate in the discovery dataset. Edges are thresholded at |r| > 0.2.  
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Figure S8. Enlarged depiction of the connectivity pattern associated with the 5th canonical 
variate in the discovery dataset. Edges are thresholded at |r| > 0.2.  
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Figure S9. Enlarged depiction of the connectivity pattern associated with the 6th canonical 
variate in the discovery dataset. Edges are thresholded at |r| > 0.2.  
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Figure S10. Enlarged depiction of the connectivity pattern associated with the 7th canonical 
variate in the discovery dataset. Edges are thresholded at |r| > 0.2.  
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Stability of results in the discovery dataset 
When applying a input-to-participant ratio of 1:3 to the to select the PCA-components that 

entered the CCA, CCA yielded 17 significant CVs (CV1: r = .59, p = 0.0002; CV2: r = .53, p =  

0.0002; CV3: r =.52 , p = 0.0002 ; CV4: r = .50, p = 0.0003; CV5: r = .50, p = 0.0003; CV6: r = .49, 

p = 0.0003; CV7: r = .49, p = 0.0003; CV8: r = .49, p = 0.0003; CV9: r = .48, p = 0.0003; CV10: r = 

.47, p = 0.0007; CV11: r = .46, p =  0.0010; CV12: r = .45, p = 0.0015; CV13: r = .45, p = 0.0021; 

CV14: r = .45, p = 0.0034; CV15: r = .45, p = 0.0078; CV16: r = .44, p = 0.0188; CV17: r = .42, p =  

0.0485).  When applying an input-to-participant ratio of 1:4 to the to select the PCA-components 

that entered the CCA, CCA yielded 4 significant CVs (CV1: r = .59, p = 0.0031; CV2: r = .52, p =   

0.0127; CV3: r =.51, p = 0.0218; CV4: r = .51, p = 0.0324).        
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Table S8. Cross-loadings of the clinical side for the 2:1 and 3:1 participant-to-input ratios in the 
discovery dataset. P-values were obtained using 10000 permutations corrected over 119 tests. 
Colored cells indicate stability on both the clinical and imaging side. Light green and yellow cells 
further indicate the CVs highlighted in the main text, which replicate across samples for both 
clinical and imaging loadings in green or only clinical loadings in purple.  
 v1|D1:2 v2|D1:2 v3|D1:2 v4|D1:2 v5|D1:2 v6|D1:2 v7|D1:2 
v1|D1:3 -0.07 -0.04 0.97 0.02 0.04 0.01 -0.01 

.3946/ 1 .6065/ 1 .0001/ .0001 .8042/ 1 .6328/ 1 .9461/ 1 .8763/ 1 
v2|D1:3 -0.13 -0.91 -0.06 0.06 0.02 0.14 -0.04 

.0983/ 1 .0001/ .0001 .4244/ 1 .4448/ 1 .8338/ 1 .0688/ .9999 .5826/ 1 
v3|D1:3 -0.24 -0.05 0.05 0.08 0.00 -0.06 -0.04 

.0021/ .2248 .4987/ 1 .4866/ 1 .2816/ 1 .9927/ 1 .4743/ 1 .5954/ 1 
v4|D1:3 0.01 0.03 0.04 -0.16 0.02 0.00 -0.03 

.8666/ 1 .7147/ 1 .6477/ 1 .0368/ .9915 .8453/ 1 .9981/ 1 .6672/ 1 
v5|D1:3 -0.05 -0.05 -0.05 -0.07 0.05 -0.09 0.00 

.4887/ 1 .5111/ 1 .5264/ 1 .3556/ 1 .5558/ 1 .2776/ 1 .9500/ 1 
v6|D1:3 -0.12 0.06 -0.04 0.15 0.91 0.04 0.00 

.1339/ 1 .4584/ 1 .6109/ 1 .0604/ .9995 .0001/ .0001 .6218/ 1 .9682/ 1 
v7|D1:3 -0.64 0.12 -0.09 -0.37 -0.04 0.01 0.11 

.0001/ .0001 .1228/ 1 .2315/ 1 .0001/ .0002 .5919/ 1 .9327/ 1 .1638/ 1 
v8|D1:3 -0.17 0.00 0.03 -0.21 -0.01 0.09 0.02 

.0253/ .9548 .9516/ 1 .7016/ 1 .0087/ .6303 .9396/ 1 .2467/ 1 .7522/ 1 
v9|D1:3 0.14 -0.02 0.06 -0.22 -0.01 -0.09 0.01 

.0814/ 1 .7576/ 1 .4563/ 1 .0050/ .4684 .9054/ 1 .2590/ 1 .8824/ 1 
v10|D1:3 0.01 0.07 -0.04 0.14 -0.07 -0.05 -0.86 

.9370/ 1 .3890/ 1 .6269/ 1 .0704/ 1 .3969/ 1 .4894/ 1 .0001/ .0001 
v11|D1:3 -0.19 0.02 -0.05 0.43 -0.08 -0.03 0.06 

.0172/ .8602 .7941/ 1 .4919/ 1 .0001/ .0001 .2930/ 1 .7273/ 1 .4311/ 1 
v12|D1:3 0.02 0.04 0.00 0.16 -0.06 0.01 0.03 

.7860/ 1 .5929/ 1 .9814/ 1 .0354/ .9889 .4499/ 1 .9170/ 1 .7224/ 1 
v13|D1:3 0.00 0.03 0.04 -0.10 -0.07 -0.17 0.02 

.9791/ 1 .6665/ 1 .5820/ 1 .2117/ 1 .3392/ 1 .0307/ .9765 .7863/ 1 
v14|D1:3 0.27 0.13 -0.05 0.13 0.04 0.25 0.18 

.0004/ .0588 .0990/ 1 .5117/ 1 .0799/ 1 .6556/ 1 .0015/ .1574 .0166/ .9013 
v15|D1:3 -0.26 -0.10 0.00 0.06 -0.10 -0.11 -0.03 

.0006/ .0832 .1848/ 1 .9876/ 1 .4739/ 1 .1895/ 1 .1445/ 1 .7117/ 1 
v16|D1:3 0.09 0.00 -0.05 -0.20 -0.03 0.66 0.02 

.2300/ 1 .9566/ 1 .5579/ 1 .0080/ .6390 .7106/ 1 .0001/ .0001 .8318/ 1 
v17|D1:3 0.10 -0.04 -0.03 0.16 -0.02 -0.14 0.32 

.1846/ 1 .6037/ 1 .6946/ 1 .0353/ .9899 .7869/ 1 .0781/ 1 .0001/ .0039 
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Table S9. Cross-loadings of the imaging side for the 2:1 and 3:1 participant-to-input ratios in 
the discovery dataset. P-values were obtained using 10000 permutations corrected over 119 
tests. Colored cells indicate stability on both the clinical and imaging side. Light green and yellow 
cells further indicate the CVs highlighted in the main text, which replicate across samples for 
both clinical and imaging loadings in green or only clinical loadings in purple.  
 u1|D1:2 u2|D1:2 u3|D1:2 u4|D1:2 u5|D1:2 u6|D1:2 u7|D1:2 
u1|D1:3 -0.03 0.00 0.84 0.00 -0.02 0.01 0.00 

.6967/ 1 .9696/ 1 .0001/ .0001 .9961/ 1 .7699/ 1 .8612/ 1 .9950/ 1 
u2|D1:3 -0.03 -0.78 -0.06 0.05 0.01 0.02 0.01 

.7331/ 1 .0001/ .001 .4132/ 1 .5606/ 1 .8617/ 1 .8360/ 1 .8634/ 1 
u3|D1:3 -0.10 -0.08 0.08 0.04 0.02 0.06 -0.05 

.1899/ 1 .3390/ 1 .3278/ 1 .5969/ 1 .7714/ 1 .4353/ 1 .5110/ 1 
u4|D1:3 -0.01 0.04 0.04 -0.11 0.00 -0.01 0.00 

.8798/ 1 .5746/ 1 .6024/ 1 .1472/ 1 .9962/ 1 .8780/ 1 .9890/ 1 
u5|D1:3 -0.08 -0.02 -0.09 -0.02 0.00 -0.09 -0.04 

.2787/ 1 .8265/ 1 .2657/ 1 .8213/ 1 .9620/ 1 .2712/ 1 .5696/ 1 
u6|D1:3 0.00 0.06 -0.07 0.00 0.76 0.03 0.02 

.9601/ 1 .4840/ 1 .3889/ 1 .9805/ 1 .0001/ .0001 .7050/ 1 .7680/ 1 
u7|D1:3 -0.32 0.16 -0.11 -0.33 -0.04 -0.04 0.11 

.0001/ .0043 .0370/ .9919 .1438/ 1 .0001/ .0026 .6225/ 1 .6118/ 1 .1727/ 1 
u8|D1:3 -0.14 0.03 0.02 -0.15 0.02 0.00 0.05 

.0710/ 1 .7158/ 1 .7532/ 1 .0560/ .9994 .7987/ 1 .9729/ 1 .4922/ 1 
u9|D1:3 0.05 -0.04 0.08 -0.12 -0.03 0.00 0.09 

.5572/ 1 .6323/ 1 .3316/ 1 .1190/ 1 .6945/ 1 .9479/ 1 .2587/ 1 
u10|D1:3 0.05 0.11 -0.04 0.04 -0.10 0.01 -0.72 

.5568/ 1 .1481/ 1 .5955/ 1 .5832/ 1 .2173/ 1 .8630/ 1 .0001/ .0001 
u11|D1:3 -0.09 0.03 -0.08 0.26 -0.09 0.03 0.06 

.2550/ 1 .7203/ 1 .3106/ 1 .0007/ .0732 .2752/ 1 .6987/ 1 .4335/ 1 
u12|D1:3 0.05 0.06 -0.03 0.09 -0.09 0.01 -0.01 

.5339/ 1 .4764/ 1 .7191/ 1 .2175/ 1 .2395/ 1 .8596/ 1 .9290/ 1 
u13|D1:3 0.02 0.06 0.05 -0.02 -0.12 -0.13 0.00 

.7561/ 1 .4224/ 1 .5379/ 1 .7635/ 1 .1296/ 1 .0882/ 1 .9686/ 1 
u14|D1:3 0.17 0.13 -0.05 0.09 -0.01 0.15 0.17 

.0260/ .9573 .0933/ 1 .5239/ 1 .2359/ 1 .8904/ 1 .0541/ .9994 .0278/ .9707 
u15|D1:3 −0.01 −0.11 0.07 −0.03 −0.18 −0.02 −0.03 

.3525/ 1 .1131/ 1 .8315/ 1 .3253/ 1 .1103/ 1 .1111/ 1 .7405/ 1 
u16|D1:3 -0.07 -0.12 0.02 0.08 -0.13 -0.12 -0.02 

.3569/ 1 .8726/ 1 .8879/ 1 .1224/ 1 .9388/ 1 .0001/ .0002 .9635/ 1 
u17|D1:3 0.05 -0.02 -0.04 0.11 -0.03 -0.02 0.27 

.5444/ 1 .8410/ 1 .6017/ 1 .1471/ 1 .6837/ 1 .7876/ 1 .0004/ .0432 
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Table S10. Cross-loadings of the clinical side for the 2:1 and 4:1 participant-to-input ratios in 
the discovery dataset. P-values were obtained using 10000 permutations corrected over 28 
tests. Colored cells indicate stability on both the clinical and imaging side. Light green and yellow 
cells further indicate the CVs highlighted in the main text, which replicate across samples for 
both clinical and imaging loadings in green or only clinical loadings in purple.  

 v1|D1:2 v2|D1:2 v3|D1:2 v4|D1:2 v5|D1:2 v6|D1:2 v7|D1:2 
v1|D1:4 0.01 -0.04 -0.96 0.00 -0.03 0.02 0.01 

.8893/ 1 .6607/ 1 .0001/ .0001 .9875/ 1 .6958/ 1 .8301/ 1 .8652/ 1 
v2|D1:4 0.10 -0.22 0.08 -0.15 -0.91 -0.02 -0.01 

.1846/ .9971 .0041/ .1098 .3089/ 1 .0575/ .8025 .0001/ .0001 .7831/ 1 .9425/ 1 
v3|D1:4 -0.03 0.02 -0.07 0.15 -0.05 0.02 0.00 

.7352/ 1 .8375/ 1 .3506/ 1 .0538/ .7962 .4841/ 1 .8220/ 1 .9868/ 1 
v4|D1:4 0.53 -0.31 0.17 0.43 0.10 0.04 -0.03 

.0001/ .0001 .0001/ .0007 .0287/ .5762 .0001/ .0001 .2174/ .9988 .5953/ 1 .7471/ 1 
 

 

Table S11. Cross-loadings of the imaging side for the 2:1 and 4:1 participant-to-input ratios in 
the discovery dataset. P-values were obtained using 10000 permutations corrected over 28 
tests. Colored cells indicate stability on both the clinical and imaging side. Light green and yellow 
cells further indicate the CVs highlighted in the main text, which replicate across samples for 
both clinical and imaging loadings in green or only clinical loadings in purple.  

 u1|D1:2 u2|D1:2 u3|D1:2 u4|D1:2 u5|D1:2 u6|D1:2 u7|D1:2 
u1|D1:4 0.04 0.02 -0.82 0.01 0.01 0.00 -0.03 

.6268/ 1 .8024/ 1 .0001/ .0001 .9189/ 1 .9045/ 1 .9555/ 1 .7336/ 1 
u2|D1:4 -0.01 -0.10 0.06 0.00 -0.72 -0.03 -0.04 

.8985/ 1 .1981/ .9986 .4313/ 1 .9842/ 1 .0001/ .0001 .7387/ 1 .6313/ 1 
u3|D1:4 0.00 -0.03 -0.04 0.09 0.00 0.00 -0.01 

.9823/ 1 .7046/ 1 .5693/ 1 .2292/ .9994 .9590/ 1 .9548/ 1 .9038/ 1 
u4|D1:4 0.30 -0.19 0.12 0.33 0.06 0.02 0.03 

.0004/ .0031 .0191/ .3822 .1368/ .9831 .0002/ .0009 .4530/ 1 .8115/ 1 .6541/ 1 
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Canonical correlations in the replication dataset 

 

Figure S11. Illustration of the five significant canonical variates in the replication dataset. 
Scatter plots show the latent dimensions (linear combinations of brain connectivity scores 
obtained during rsfMRI in the horizontal axis, and linear combinations of clinical scores derived 
from symptom ratings in the vertical axis). Labels for each latent dimension are derived from 
the highest loading clinical item. P-values are corrected for multiple testing using the family wise 
error rate. 
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Overview of canonical loadings in the replication dataset 

 

Figure S12. Illustration of the CCA results in the replication sample. The clinical loadings for 
the five significant canonical variates in the replication dataset are depicted at the left. The 
connectivity patterns that correlate with the five canonical variates (thresholded at |r| > 0.2) are 
shown in the middle. Red colored lines represent positive associations between the latent 
dimension and the edge, whereas blue lines indicate a negative relationship. The intensity of 
the lines shows the magnitude of the correlation on a scale from -1 to 1, and the thickness 
reflects the importance of the connection in general (i.e., full correlations). The column to the 
right shows the directions of the full correlations for that edge, with red indicating positive 
connectivity and blue negative connectivity.  
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Clinical loadings in the replication dataset 

Table S12. Clinical loadings of the replication dataset 
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Connectivity loadings in the replication dataset 

 

 

Figure S13. Enlarged depiction of the connectivity pattern associated with the 1st canonical 
variate in the replication dataset. Edges are thresholded at |r| > 0.2. 
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Figure S14. Enlarged depiction of the connectivity pattern associated with the 2nd canonical 
variate in the replication dataset. Edges are thresholded at |r| > 0.2.  
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Figure S15. Enlarged depiction of the connectivity pattern associated with the 3rd canonical 
variate in the replication dataset. Edges are thresholded at |r| > 0.2.  
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Figure S16. Enlarged depiction of the connectivity pattern associated with the 4th canonical 
variate in the replication dataset. Edges are thresholded at |r| > 0.2.  

  



Linke et al.  Supplement 

36 

 

Figure S17. Enlarged depiction of the connectivity pattern associated with the 5th canonical 
variate in the replication dataset. Edges are thresholded at |r| > 0.2.   
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Stability of results in the replication dataset 
When applying a input-to-participant ratio of 1:3 to select the PCA-components that entered the 

CCA, CCA yielded 26 significant CVs (CV1: r = .60, p = 0.0002; CV2: r = .60, p =  0.0002; CV3: 

r =.59 , p = 0.0002 ; CV4: r = .58, p = 0.0005; CV5: r = .58, p = 0.0006; CV6: r = .56, p = 0.0013; 

CV7: r = .55, p = 0.0016; CV8: r = .55, p = 0.0016; CV9: r = .54, p = 0.0016; CV10: r = .54, p = 

0.0018; CV11: r = .53, p =  0.0023; CV12: r = .53, p = 0.0029; CV13: r = .51, p = 0.0037; CV14: r = 

.51, p = 0.0037; CV15: r = .51, p = 0.0037; CV16: r = .51, p = 0.0037; CV17: r = .50, p =  0.0046; 

CV18: r = .49, p =  0.0056; CV19: r = .48, p =  0.0066; CV20: r = .47, p =  0.0071; CV21: r = .47, p 

=  0.0071; CV22: r = .46, p =  0.0071; CV23: r = .46, p =  0.0071; CV24: r = .43, p =  0.0071; CV25: 

r = .41, p =  0.0112; CV26: r = .41, p =  0.0283).  When applying a input-to-participant ratio of 1:4 

to the to select the PCA-components that entered the CCA, CCA yielded 22 significant CVs 

(CV1: r = .53, p = 0.003; CV2: r = .48, p =   0.0055; CV3: r =.48 , p = 0.0061; CV4: r = .47, p = 

0.0063; CV5: r = .46, p = 0.0070; CV6: r = .46, p = 0.0072; CV7: r = .46, p = 0.0084; CV8: r = .44, 

p = 0.0096; CV9: r = .44, p = 0.0107; CV10: r = .43, p = 0.0131; CV11: r = .42, p =  0.0143; CV12: 

r = .41, p = 0.0143; CV13: r = .41, p = 0.0143; CV14: r = .41, p = 0.0143; CV15: r = .40, p = 0.0143; 

CV16: r = .40, p = 0.0143; CV17: r = .39, p =  0.0143; CV18: r = .39, p =  0.0143; CV19: r = .39, p 

=  0.0143; CV20: r = .39, p =  0.0143; CV21: r = .38, p =  0.0315; CV22: r = .37, p =  0.0369). 
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Table S13. Cross-loadings of the clinical side across participant-to-input ratios in the replication 
dataset. P-values were obtained using 10000 permutations corrected over 130 tests. Colored 
cells indicate stability on both the clinical and imaging side. Light green and purple cells further 
indicate the CVs highlighted in the main text, which replicate across samples for both clinical 
(and imaging data). 

 v1|R1:2 v2|R1:2 v3|R1:2 v4|R1:2 v5|R1:2 
v1|R1:3 0.01 0.00 0.06 0.02 -0.06 

.8635/ 1 .9876/ 1 .3026/ 1 .7327/ 1 .2786/ 1 
v2|R1:3 0.98 0.07 -0.03 -0.03 -0.01 

.0001/ .0001 .2205/ 1 .6440/ 1 .6444/ 1 .8065/ 1 
v3|R1:3 0.02 -0.13 -0.35 0.04 -0.06 

.7348/ 1 .0168/ .9004 .0001/ .0001 .5275/ 1 .2543/ 1 
v4|R1:3 0.03 -0.01 -0.11 -0.08 -0.05 

.5713/ 1 .8867/ 1 .0584/ .9998 .1368/ 1 .3955/ 1 
v5|R1:3 -0.03 -0.05 -0.17 -0.04 0.04 

.5898/ 1 .4010/ 1 .0038/ .3587 .5025/ 1 .4684/ 1 
v6|R1:3 -0.04 0.14 -0.03 0.04 0.04 

.4799/ 1 .0133/ .8340 .5591/ 1 .4433/ 1 .5299/ 1 
v7|R1:3 0.04 -0.88 -0.18 0.07 -0.12 

.4934/ 1 .0001/ .0001 .0011/ .1617 .2235/ 1 .0399/ .9961 
v8|R1:3 0.00 -0.10 -0.05 -0.07 0.98 

.9607/ 1 .0764/ .9999 .4245/ 1 .2228/ 1 .0001/ .0001 
v9|R1:3 0.05 -0.06 -0.01 0.16 -0.01 

.3473/ 1 .3292/ 1 .8416/ 1 .0049/ .4651 .8880/ 1 
v10|R1:3 -0.02 -0.11 0.08 -0.12 -0.02 

.7030/ 1 .0612/ .9999 .1544/ 1 .0424/ .9957 .7350/ 1 
v11|R1:3 0.01 0.10 -0.37 0.02 0.03 

.9152/ 1 .0733/ .9998 .0001/ .0001 .7162/ 1 .6305/ 1 
v12|R1:3 0.03 -0.03 0.03 0.28 0.06 

.7860/ 1 .5929/ 1 .9814/ 1 .0354/ .9889 .4499/ 1 
v13|R1:3 0.01 0.05 -0.03 0.47 0.06 

.7978/ 1 .3800/ 1 .5762/ 1 .0001/ .0001 .3273/ 1 
v14|R1:3 0.02 0.05 -0.10 -0.20 0.00 

.7616/ 1 .3930/ 1 .0689/ .9998 .0004/ .0543 .9936/ 1 
v15|R1:3 0.05 -0.03 0.06 0.48 0.02 

.4238/ 1 .6474/ 1 .3205/ 1 .0001/ .0001 .6687/ 1 
v16|R1:3 -0.03 0.05 0.11 0.24 -0.01 

.5573/ 1 .3517/ 1 .0442/ .9977 .0002/ .0043 .9161/ 1 
v17|R1:3 0.04 0.00 0.06 0.15 -0.02 

.5157/ 1 .9367/ 1 .2663/ 1 .0103/ .7288 .7443/ 1 
v18|R1:3 0.03 0.03 -0.16 -0.19 -0.05 

.5815/ 1 .6292/ 1 .0051/ .4973 .0005/ .0970 .3569/ 1 
v19|R1:3 -0.03 -0.15 0.10 -0.06 -0.05 

.5776/ 1 .0100/ .7221 .0784/ 1 .3211/ 1 .3392/ 1 
v20|R1:3 0.02 -0.11 0.41 0.18 0.03 

.6762/ 1 .0466/ .9993 .0001/ .0001 .0020/ .2227 .5636/ 1 
v21|R1:3 0.06 0.05 0.40 -0.12 -0.05 

.3237/ 1 .3371/ 1 .0001/ .0001 .0273/ .9799 .3984/ 1 
v22|R1:3 -0.06 0.00 -0.03 0.25 -0.03 

.2725/ 1 .9846/ 1 .5755/ 1 .0002/ .0022 .6123/ 1 
v23|R1:3 -0.05 -0.05 0.22 -0.09 -0.02 

.3791/ 1 .3942/ 1 .0002/ .0099 .1283/ 1 .7009/ 1 
v24|R1:3 -0.05 0.01 0.12 -0.21 0.00 

.4150/ 1 .9277/ 1 .0368/ .9914 .0003/ .0214 .9653/ 1 
v25|R1:3 -0.01 0.01 0.15 0.19 0.03 

.8086/ 1 .8567/ 1 .0075/ .6626 .0005/ .0778 .6195/ 1 
v26|R1:3 -0.04 -0.06 0.13 0.00 0.02 

.5030/ 1 .3091/ 1 .0228/ .9607 .9697/ 1 .6673/ 1 
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Table S14. Cross-loadings of the imaging side across participant-to-input ratios in the 
replication dataset. P-values were obtained using 10000 permutations corrected over 130 tests. 
Colored cells indicate stability on both the clinical and imaging side. Light green and purple cells 
further indicate the CVs highlighted in the main text, which replicate across samples for both 
clinical (and imaging data).  
 u1|R1:2 u2|R1:2 u3|R1:2 u4|R1:2 u5|R1:2 
u1|R1:3 0.00 -0.02 0.02 0.01 -0.03 

.9883/ 1 .7085/ 1 .6755/ 1 .8123/ 1 .5448/ 1 
u2|R1:3 0.80 -0.01 -0.06 0.01 -0.01 

.0001/ .0001 .8394/ 1 .2706/ 1 .8737/ 1 .8993/ 1 
u3|R1:3 0.05 -0.11 -0.33 0.04 -0.07 

.4032/ 1 .0555/ .9993 .0001/ .0001 .4373/ 1 .2260/ 1 
u4|R1:3 0.07 -0.01 -0.08 -0.08 -0.07 

.2231/ 1 .9272/ 1 .1548/ 1 .1520/ 1 .2395/ 1 
u5|R1:3 -0.02 0.01 -0.14 -0.02 -0.01 

.7231/ 1 .8379/ 1 .0130/ .8657 .7790/ 1 .8149/ 1 
u6|R1:3 -0.03 0.15 -0.04 0.05 0.03 

.6228/ 1 .0077/ .6207 .4717/ 1 .4144/ 1 .5519/ 1 
u7|R1:3 0.11 -0.71 -0.15 0.06 -0.13 

.0657/ .9998 .0001/ .0001 .0111/ .6768 .3014/ 1 .0178 
u8|R1:3 0.01 -0.03 -0.02 0.00 0.77 

.8956/ 1 .5671/ 1 .7441/ 1 .9379/ 1 .0001/ .0001 
u9|R1:3 0.06 -0.08 -0.03 0.10 0.01 

.3334/ 1 .1641/ 1 .5903/ 1 .0861/ .9999 .8691/ 1 
u10|R1:3 0.01 -0.07 0.08 -0.09 0.01 

.8346/ 1 .1940/ 1 .1581/ 1 .0980/ .9999 .8348/ 1 
u11|R1:3 0.04 0.11 -0.31 0.01 0.05 

.4774/ 1 .0492/ .9991 .0001/ .0001 .8381/ 1 .4071/ 1 
u12|R1:3 0.02 -0.04 -0.01 0.19 0.06 

.6965/ 1 .5365/ 1 .9054/ 1 .0008/ .0860 .3027/ 1 
u13|R1:3 0.00 0.01 0.01 0.36 0.08 

.9988/ 1 .7940/ 1 .8640/ 1 .0001/ .0001 .1690/ 1 
u14|R1:3 0.04 0.04 -0.06 -0.08 0.02 

.5416/ 1 .4890/ 1 .2614/ 1 .1694/ 1 .7417/ 1 
u15|R1:3 0.05 -0.03 -0.02 0.35 0.03 

.4257/ 1 .6431/ 1 .7942/ 1 .0001/ .0001 .6023/ 1 
u16|R1:3 -0.03 0.07 0.08 0.11 -0.01 

.5588/ 1 .2307/ 1 .1419/ 1 .0472/ .9988 .8038/ 1 
u17|R1:3 0.02 0.00 0.05 0.11 -0.04 

.7197/ 1 .9409/ 1 .3817/ 1 .0595/ .9998 .4757/ 1 
u18|R1:3 0.02 0.00 -0.11 -0.20 -0.08 

.6911/ 1 .9825/ 1 .0578/ .9997 .0005/ .0563 .1860/ 1 
u19|R1:3 -0.03 -0.10 0.13 0.03 -0.08 

.6335/ 1 .0695/ .9998 .0215/ .9468 .6093/ 1 .1817/ 1 
u20|R1:3 0.04 -0.08 0.32 0.09 0.05 

.5141/ 1 .1830/ 1 .0001/ .0001 .0978/ .9999 .3660/ 1 
u21|R1:3 0.04 0.09 0.30 -0.13 -0.06 

.4979/ 1 .1350/ 1 .0001/ .0002 .0164/ .9190 .3173/ 1 
u22|R1:3 -0.07 0.00 -0.05 0.23 -0.02 

.2232/ 1 .9827/ 1 .3348/ 1 .0001/ .0079 .6582/ 1 
u23|R1:3 -0.08 -0.02 0.17 -0.01 -0.05 

.1454/ 1 .7689/ 1 .0036/ .3539 .8201/ 1 .3722/ 1 
u24|R1:3 -0.08 0.03 0.09 -0.15 -0.04 

.1864/ 1 .6013/ 1 .0941/ .9999 .0053/ .5622 .4904/ 1 
u25|R1:3 0.01 0.04 0.13 0.10 0.04 

.8529/ 1 .5154/ 1 .0276/ .9682 .0732/ .9999 .4853/ 1 
u26|R1:3 -0.02 -0.07 0.07 0.01 0.05 

.7546/ 1 .2378/ 1 .2166/ 1 .8215/ 1 .4131/ 1 
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Table S15. Cross-loadings of the clinical side for the 2:1 and 4:1 participant-to-input ratios in 
the replication dataset. P-values were obtained using 10000 permutations corrected over 110 
tests. Colored cells indicate stability on both the clinical and imaging side. Light green and yellow 
cells further indicate the CVs highlighted in the main text, which replicate across samples for 
both clinical and imaging loadings in green or only clinical loadings in purple.  

 v1|R1:2 v2|R1:2 v3|R1:2 v4|R1:2 v5|R1:2 
v1|R1:4 0.01 0.01 0.05 0.09 0.04 

.9117/ 1 .8510/ 1 .4299/ 1 .1061 .4425/ 1 
v2|R1:4 0.01 0.03 0.13 0.05 -0.03 

.8315/ 1 .6251/ 1 .0188/ .8613 .3975/ 1 .6395/ 1 
v3|R1:4 -0.02 0.11 0.11 0.27 0.12 

.7477/ 1 .0530/ .9990 .0637/ .9993 .0001/ .0003 .0324/ .9721 
v4|R1:4 0.02 0.05 0.17 0.05 -0.93 

.7063/ 1 .3415/ 1 .0038/ .3239 .3655/ 1 .0001/ .0001 
v5|R1:4 -0.13 -0.16 0.05 -0.08 -0.02 

.0194/ .8969 .0049/ .3772 .3828/ 1 .1606/ 1 .6594/ 1 
v6|R1:4 -0.20 0.23 -0.15 -0.14 0.03 

.0010/ .0393 .0001/ .0001 .0109/ .6784 .0114/ .7239 .6518/ 1 
v7|R1:4 -0.19 -0.05 -0.01 -0.18 -0.04 

.0009/ .0879 .3374/ 1 .8557/ 1 .0016/ .1797 .5308/ 1 
v8|R1:4 0.06 0.34 0.12 -0.02 -0.08 

.2620/ 1 .0001/ .0001 .0307/ .9684 .7375/ 1 .1422/ 1 
v9|R1:4 -0.06 0.03 0.18 -0.08 -0.02 

.3147/ 1 .5911/ 1 .0022/ .1702 .1647/ 1 .7633/ 1 
v10|R1:4 -0.07 0.03 -0.18 0.31 -0.07 

.2472/ 1 .5760/ 1 .0011/ .1183 .0001/ .0001 .2123/ 1 
v11|R1:4 0.09 0.62 0.15 -0.33 0.09 

.1006/ .9999 .0001/ .0001 .0068/ .5678 .0001/ .0001 .1176/ 1 
v12|R1:4 -0.10 -0.01 0.12 -0.05 -0.03 

.0809/ .9999 .7912/ 1 .0294/ .9682 .4131/ 1 .6408/ 1 
v13|R1:4 0.55 -0.01 0.06 -0.19 -0.08 

.0001/ .0001 .8629/ 1 .3252/ 1 .0005/ .0930 .1608/ 1 
v14|R1:4 -0.12 0.24 0.17 0.53 0.03 

.0387/ .9885 .0001/ .0001 .0029/ .2786 .0001/ .0001 .6400/ 1 
v15|R1:4 0.70 0.04 -0.14 0.13 0.00 

.0001/ .0001 .4857/ 1 .0127/ .7221 .0161/ .8683 .9721/ 1 
v16|R1:4 -0.04 -0.27 -0.05 -0.10 0.01 

.4871/ 1 .0001/ .0002 .3766/ 1 .0712/ .9996 .8212/ 1 
v17|R1:4 0.11 -0.05 0.16 0.07 0.07 

.0552/ .9909 .3432/ 1 .0057/ .4407 .2127/ 1 .2460/ 1 
v18|R1:4 -0.11 0.24 -0.45 -0.06 -0.10 

.0563/ .9990 .0001/ .0011 .0001/ .0001 .2892/ 1 .0912/ .9999 
v19|R1:4 -0.06 0.07 0.14 0.20 -0.05 

.3340/ 1 .2061/ 1 .0168/ .8434 .0005/ .0326 .3686/ 1 
v20|R1:4 0.04 -0.03 0.14 -0.18 0.01 

.5098/ 1 .5677/ 1 .0178/ .8585 .0016/ .1292 .8000/ 1 
v21|R1:4 0.11 -0.09 -0.21 0.19 -0.02 

.0433/ .9936 .1195/ 1 .0002/ .0161 .0006/ .0972 .6911/ 1 
v22|R1:4 -0.13 -0.10 0.14 -0.11 -0.02 

.0295/ .9517 .0744/ .9997 .0151/ .8318 .0532/ .9984 .7467/ 1 
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Table S16. Cross-loadings of the imaging side for the 2:1 and 4:1 participant-to-input ratios in 
the replication dataset. P-values were obtained using 10000 permutations corrected over 110 
tests. Colored cells indicate stability on both the clinical and imaging side. Light green and yellow 
cells further indicate the CVs highlighted in the main text, which replicate across samples for 
both clinical and imaging loadings in green or only clinical loadings in purple.  

 u1|R1:2 u2|R1:2 u3|R1:2 u4|R1:2 u5|R1:2 
u1|R1:4 0.00 -0.01 -0.01 0.05 0.04 

.9432/ 1 .8768/ 1 .8767/ 1 .3687/ 1 .4982/ 1 
u2|R1:4 0.03 -0.02 0.12 0.01 0.02 

.6488/ 1 .6995/ 1 .0314/ .9664 .8954/ 1 .6993/ 1 
u3|R1:4 -0.03 0.13 0.04 0.11 0.11 

.5514/ 1 .0194/ .9020 .4703/ 1 .0514/ .9968 .0536/ .9986 
u4|R1:4 -0.01 -0.01 0.04 0.00 -0.67 

.8119/ 1 .9283/ 1 .4527/ 1 .9547/ 1 .0001/ .0001 
u5|R1:4 -0.10 -0.13 0.02 -0.07 -0.03 

.0607/ .9997 .0222/ .9157 .7312/ 1 .2354/ 1 .6351/ 1 
u6|R1:4 -0.11 0.22 -0.02 -0.08 0.02 

.0646/ .9995 .0002/ .0165 .6743/ 1 .1410/ 1 .7181/ 1 
u7|R1:4 -0.16 -0.04 0.03 -0.07 -0.07 

.0066/ .4823 .5102/ 1 .6620/ 1 .2115/ 1 .2479/ 1 
u8|R1:4 -0.02 0.29 0.06 0.00 -0.06 

.7731/ 1 .0001/ .0001 .2762/ 1 .9554/ 1 .2568/ 1 
u9|R1:4 -0.06 0.06 0.08 -0.03 -0.02 

.2750/ 1 .3060/ 1 .1539/ 1 .5760/ 1 .7779/ 1 
u10|R1:4 -0.03 -0.01 -0.11 0.22 -0.05 

.6021/ 1 .9294/ 1 .0577/ .9987 .0002/ .0098 .3725/ 1 
u11|R1:4 0.06 0.43 0.11 -0.18 0.10 

.3282/ 1 .0001/ .0001 .0530/ .9976 .0009/ .1420 .0650/ .9996 
u12|R1:4 -0.14 -0.03 0.07 -0.06 -0.08 

.0162/ .8323 .6267/ 1 .2049/ 1 .2618/ 1 .1803/ 1 
u13|R1:4 0.44 -0.04 0.02 -0.07 -0.03 

.0001/ .0001 .4772/ 1 .6733/ 1 .2357/ 1 .6587/ 1 
u14|R1:4 -0.12 0.17 0.12 0.35 0.03 

.0377/ .9880 .0027/ .2617 .0283/ .9614 .0001/ .0001 .6418/ 1 
u15|R1:4 0.48 0.00 -0.11 0.06 -0.02 

.0001/ .0001 .9320/ 1 .0632/ .9995 .2671/ 1 .6695/ 1 
u16|R1:4 -0.08 -0.23 0.04 -0.08 -0.03 

.1617/ 1 .0002/ .0086 .5338/ 1 .1856/ 1 .6508/ 1 
u17|R1:4 0.10 -0.05 0.11 -0.03 0.07 

.0873/ 1 .3951/ 1 .0511/ .9967 .6354/ 1 .2491/ 1 
u18|R1:4 -0.12 0.12 -0.17 -0.01 -0.09 

.0287/ .9652 .0380/ .9782 .0029/ .2838 .8738/ 1 .1088/ 1 
u19|R1:4 -0.03 0.03 0.13 0.11 -0.03 

.5489/ 1 .6426/ 1 .0246/ .9458 .0622/ .9995 .6596/ 1 
u20|R1:4 0.06 -0.04 0.08 -0.08 0.02 

.3300/ 1 .4704/ 1 .1493/ 1 .1784/ 1 .7516/ 1 
u21|R1:4 0.12 -0.09 -0.06 0.11 -0.03 

.0385/ .9910 .1186/ 1 .2640/ 1 .0593/ .9995 .6435/ 1 
u22|R1:4 -0.09 -0.08 0.05 -0.01 -0.03 

.1217/ 1 .1505/ 1 .3453/ 1 .8004/ 1 .5888/ 1 
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Replicability across cohorts 

Table S17. Correlations between the significant latent clinical variables (v1-5) from the replication 
dataset (R) and the clinical data from the replication cohort multiplied by the canonical weights 
of the significant clinical variables (b1-7) from the discovery dataset (D). In each cell the first value 
represents the correlation coefficient, the second value gives the uncorrected p-value, and the 
third value shows the pFWER-value. Light green cells indicate robust cross-correlations for both 
clinical and imaging CVs, whereas light purple cells indicate robust cross-correlations for the 
clinical CVs only.  
 v1|R v2|R v3|R v4|R v5|R 

XR × b1|D 0.08 
.1360/ .9944 

0.11 
.0528/ .8430 

−0.13 
.0256/ .5831 

−0.26 
.0001/ .0001 

0.33 
.0001/ .0001 

XR × b2|D 0.08 
.1516/ .9954 

−0.22 
.0001/ .0024 

0.26 
.0001/ .0001 

−0.04 
.4633/ 1 

0.25 
.0001/ .0004 

XR × b3|D −0.20 
.0008/ .0093 

0.13 
.0214/ .5061 

−0.08 
.1417/ .9941 

0.32 
.0001/ .0001 

-0.20 
.0006/ .0175 

XR × b4|D 0.28 
.0001/ .0001 

0.01 
.8646/ 1 

−0.15 
.0089/ .2613 

0.19 
.0006/ .0229 

−0.10 
.0861/ .9559 

XR × b5|D −0.14 
.0130/ .3477 

−0.07 
.2114/ .9997 

0.00 
.9601/ 1 

−0.02 
.7398/ 1 

0.22 
.0004/ .0022 

XR × b6|D −0.04 
.5347/ 1 

−0.06 
.2766/ 1 

0.09 
.0965/ .9672 

0.10 
.0830/ .9390 

0.16 
.0045/ .1237 

XR × b7|D 0.51 
.0001/ .0001 

−0.29 
.0001/ .0001 

0.44 
.0001/ .0001 

−0.26 
.0001/ .0001 

0.02 
.7305/ 1 
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Table S18. Correlations between the significant latent resting-state connectivity variables (u1-5) 
from the replication dataset (R) and the resting-state data from the replication cohort multiplied 
by the canonical weights of the significant resting-state connectivity variables (a1-7) from the 
discovery dataset (D). In each cell the first value represents the correlation coefficient, the 
second value gives the uncorrected p-value, and the third value shows the pFWER-value. Light 
green cells indicate robust cross-correlations for both clinical and imaging CVs. 
 u1|R u2|R u3|R u4|R u5|R 

YR × a1|D 0.03 
.6312/ 1 

0.03 
.6257/ 1 

0.03 
.9646/ 1 

−0.04 
.4690/ 1 

−0.01 
.8429/ 1 

YR × a2|D −0.02 
.7744/ 1 

0.04 
.4609/ 1 

0.00 
.9819/ 1 

−0.01 
.8981/ 1 

−0.03 
.6355/ 1 

YR × a3|D 0.02 
.6792/ 1 

0.06 
.2748/ 1 

0.01 
.7990/ 1 

−0.00 
.9845/ 1 

0.12 
.0375/ .7425 

YR × a4|D −0.11 
.0650/ .8938 

0.07 
.2515/ .9998 

−0.07 
.2214/ .9998 

0.06 
.2518/ .9998 

0.02 
.7046/ 1 

YR × a5|D −0.01 
.8061/ 1 

0.08 
.1827/ .9989 

0.01 
.8101/ .9977 

−0.08 
.1655/ .9977 

−0.03 
.5406/ 1 

YR × a6|D −0.01 
.9136/ 1 

0.07 
.1957/ .9991 

0.07 
.1965/ 1 

0.00 
.9723/ 1 

0.02 
.7862/ 1 

YR × a7|D −0.08 
.1512/ .9962 

0.08 
.1499/ .9967 

0.10 
.0696/ 1 

−0.00 
.9897/ 1 

0.00 
.9669/ 1 
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Table S19. Correlations between the significant latent clinical variables (v1-7) from the discovery 
dataset (D) and the clinical data from the discovery cohort multiplied by the canonical weights of 
the significant clinical variables (b1-5) from the replication dataset (R). In each cell the first value 
represents the correlation coefficient, the second value gives the uncorrected p-value, and the 
third value shows the pFWER-value. Light green cells indicate robust cross-correlations for both 
clinical and imaging CVs, whereas light purple cells indicate robust cross-correlations for the 
clinical CVs only.  
 XD × b1|R XD × b2|R XD × b3|R XD × b4|R XD × b5|R 

v1|D 0.08 
.2999/ 1 

0.02 
.7689/ 1 

0.12 
.1332/ .9922 

0.15 
.0625/ .8859 

-0.16 
.0430/ .8030 

v2|D 0.06 
.4087/ 1 

0.08 
.3254/ 1 

0.13 
.0934/ .9693 

−0.01 
.9068/ 1 

0.45 
.0001/ .0001 

v3|D −0.15 
.0531/ .8200 

−0.10 
.1811/ .9988 

0.28 
.0003/ .0106 

-0.24 
.0019/ .0698 

-0.19 
.0141/ .3797 

v4|D -0.17 
.0232/ .5884 

0.02 
.7919/ 1 

−0.04 
.5782/ 1 

0.27 
.0009/ .0190 

-0.10 
.1877/ .9993 

v5|D 0.01 
.8800/ 1 

−0.16 
.0497/ .8045 

0.17 
.0257/ .6148 

0.06 
.4768/ 1 

0.12 
.1265/ .9905 

v6|D -0.09 
.2344/ .9999 

-0.08 
.2919/ 1 

0.22 
.0033/ .1240 

−0.06 
.4601/ 1 

-0.16 
.0362/ .7287 

v7|D 0.45 
.0001/ .0001 

0.19 
.0205/ .4473 

0.31 
.0001/ .0017 

−0.16 
.0385/ .7313 

-0.02 
.7869/ 1 
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Table S20. Correlations between the significant latent resting-state connectivity variables (u1-7) 
from the discovery dataset (D) and the resting-state data from the discovery cohort multiplied by 
the canonical weights of the significant resting-state connectivity variables (a1-5) from the 
replication dataset (R). In each cell the first value represents the correlation coefficient, the 
second value gives the uncorrected p-value, and the third value shows the pFWER-value. Light 
green cell color indicates robust cross-correlations for both clinical and imaging CVs. 
 YD × a1|R YD × a2|R YD × a3|R YD × a4|R YD × a5|R 

u1|D 0.06 
.4236/ 1 

0.10 
.2204/ .9996 

0.09 
.2748/ 1 

0.09 
.2655/ 1 

−0.03 
.6609/ 1 

u2|D -0.07 
.3673/ 1 

-0.07 
.3673/ 1 

−0.05 
.5121/ 1 

−0.04 
.6400/ 1 

0.00 
.9935/ 1 

u3|D −0.04 
.6009/ 1 

0.16 
.0375/ .7224 

-0.03 
.7488/ 1 

-0.11 
.1665/ .9982 

0.32 
.0001/ .0007 

u4|D 0.09 
.2318/ .9997 

-0.08 
.3321/ 1 

−0.19 
.0212/ .5444 

0.19 
.0108/ .3494 

-0.12 
.1324/ .9945 

u5|D 0.04 
.6039/ 1 

0.05 
.5060/ 1 

0.00 
.9506/ 1 

0.07 
.5908/ 1 

−0.10 
.1796/ .9987 

u6|D -0.06 
.4066/ 1 

-0.12 
.1140/ .9860 

0.06 
.4728/ 1 

−0.04 
.5908/ 1 

-0.04 
.6315/ 1 

u7|D 0.08 
.3188/ 1 

-0.13 
.0904/ .9612 

0.19 
.0136/ .4120 

−0.03 
.7530/ 1 

-0.02 
.7905/ 1 
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Figure S18. Enlarged edge loadings of CV3|D and CV5|R. Edges that load strongly negatively on 
u3|D and u5|R are depicted in blue. Given baseline differences in the strength of the connectivity 
patterns, connectivity maps were thresholded at |r| > 0.2 for the discovery sample and at |r| > 
0.15 for the replication sample. Next only edges that loaded highly positively or negatively in 
both datasets were retained for this figure.  
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Figure S19. Enlarged edge loadings of CV4|D and CV4|R. Depicted edges load strongly positively 
(red) or strongly negatively (blue) on u4|D and u4|R. Given baseline differences in the strength of 
the connectivity patterns between cohorts, connectivity maps were thresholded at |r| > 0.2 for 
the discovery sample and at |r| > 0.15 for the replication sample. Next only edges that loaded 
highly positively or negatively in both datasets were retained for this figure.  
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Figure S20. Enlarged edge loadings of CV7|D and CV3|R. The circle plot depicts edges in red 
that load strongly positively (red) or strongly negatively (blue) on u7|D and u3|R. Given baseline 
differences in the strength of the connectivity patterns between cohorts, connectivity maps were 
thresholded at |r| > 0.2 for the discovery sample and at |r| > 0.15 for the replication sample. Next 
only edges that loaded highly positively or negatively in both datasets were retained for this 
figure.  
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