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Abstract 

Neuroimaging studies typically focus on either resting state or task-based fMRI data. Prior 

research has shown that similarity in functional connectivity between rest and cognitive tasks, 

interpreted as reconfiguration efficiency, is related to task performance and IQ. Here, we extend 

this approach from adults to children, and from cognitive tasks to a threat-based attention task. 

The goal of the current study was to examine whether similarity in functional connectivity during 

rest and an attention bias task relates to threat bias, IQ, anxiety symptoms, and social reticence. 

fMRI was measured during resting state and during the dot-probe task in 41 children (M = 13.44, 

SD = 0.70). Functional connectivity during rest and dot-probe was positively correlated, 

suggesting that functional hierarchies in the brain are stable. Similarity in functional connectivity 

between rest and the dot-probe task only related to threat bias (puncorr < .03). This effect did not 

survive correction for multiple testing. Overall, children who allocate more attention towards 

threat also may possess greater reconfiguration efficiency in switching from intrinsic to threat-

related attention states. Finally, functional connectivity correlated negatively across the two 

conditions of the dot-probe task. Opposing patterns of modulation of functional connectivity by 

threat-congruent and threat-incongruent trials may reflect task-specific network changes during 

two different attentional processes. 
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1. Introduction 

Neuroimaging studies typically focus on either resting state or task-based fMRI1 data. 

Recent studies have combined resting state and task-related fMRI data to gain insights on the 

relation between brain function and behavior (Bolt, Nomi, Rubinov, & Uddin, 2017; J. R. Cohen 

& D'Esposito, 2016; Hearne, Cocchi, Zalesky, & Mattingley, 2017; Ito et al., 2017; Mennes et 

al., 2010; Schultz & Cole, 2016). One approach of combining these two types of data is to 

investigate the similarity in functional connectivity between resting state and task data (Schultz 

& Cole, 2016). The current study extends this approach from adults to children, and from 

cognitive tasks to a threat-based attention task. This is important to test whether this novel 

analytic approach can be used in the field of developmental psychopathology. 

 Resting-state functional connectivity refers to temporal correlations that index brain 

network intrinsic activity (Fox & Raichle, 2007). Functional connectivity during rest and 

cognitive tasks appear to be strongly related, suggesting the presence of stable functional 

hierarchies (Smith et al., 2009) that reflect both intrinsic, task-general, and also task-specific 

brain networks (Cole, Bassett, Power, Braver, & Petersen, 2014). Changes in patterns of 

functional connectivity from intrinsic to task-related states may reflect reconfiguration efficiency 

and can be measured as the similarity in (or correlation between) functional connectivity during 

rest and task (Schultz & Cole, 2016). When assessed during cognitive tasks, such reconfiguration 

efficiency relates to better task performance and, more generally, higher IQ (Schultz & Cole, 

2016). We aimed to examine reconfiguration efficiency from rest to task in children, using a 

paradigm that has successfully uncovered correlates of anxiety, particularly among youth. The 

                                                 
1 Abbreviations: fMRI = functional magnetic resonance imaging; IQ = intelligence quotient; SCARED = Screen for 
Child Anxiety Related Disorders; RT = reaction time; ABV = attention bias variability; ICA = independent 
component analysis; PPI = psychophysiological interaction 



 5

study of the reconfiguration efficiency of the emotional attention network around the mean age 

of onset of several anxiety disorders (e.g., specific phobia, social anxiety disorder) (de Lijster et 

al., 2017) might yield several new insights into the pathophysiological mechanisms of anxiety 

disorders. 

The dot-probe task examines the effects of threats on attention orienting (Bar-Haim, 

Lamy, Pergamin, Bakermans-Kranenburg, & van IJzendoorn, 2007). In this task, participants 

initially view two adjacent faces (angry-neutral, happy-neutral, or neutral-neutral) and then 

identify the location of a probe replacing either the angry (threat congruent) or neutral (threat 

incongruent) face (Macleod, Mathews, & Tata, 1986). Meta-analysis relates performance on this 

task, as expressed in an attention bias towards threats, to anxiety (Bar-Haim et al., 2007). 

Specifically, higher levels of anxiety predict shorter reaction-times during threat-congruent 

relative to threat-incongruent trials (threat bias; (Abend et al., 2018; Bar-Haim et al., 2007)). 

Several studies have used the dot-probe task in the MRI scanner to investigate 

mechanisms underlying threat-related attentional processes in youth, focusing on amygdala-

related functional connectivity using a seed-based approach. Functional connectivity between the 

amygdala and several regions during threat-incongruent versus threat-congruent trials has 

demonstrated stability in youth when measured approximately nine weeks apart (White et al., 

2016). Negative functional connectivity between the amygdala and the insula during threat 

versus neutral trials placed individuals with early-childhood behavioral inhibition at risk for 

developing internalizing symptoms in adulthood (Hardee et al., 2013). Longitudinal studies 

found that amygdala-PFC connectivity during threat-congruent moderated relations between 

early-childhood behavioral inhibition and anxiety symptoms in adolescence (Abend et al., 2019). 

Moreover, patterns of threat-related amygdala-insula functional connectivity during threat-
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congruent trials were found to differentiate pediatric anxiety patients from healthy controls 

(White et al., 2017).  

Of note, prior studies have all used a seed-based approach to study amygdala connectivity 

during the dot-probe task. Several limitations of this literature are noted. These studies focus on 

different conditions within the dot-probe task (e.g. threat-incongruent versus threat-congruent). 

Furthermore, because the amygdala is only one of many regions implicated in anxiety and threat 

processing (Bruhl, Delsignore, Komossa, & Weidt, 2014; Etkin & Wager, 2007; Xu et al., 2019), 

whole-network based analyses complement prior studies focused on isolated brain regions. Seed-

based connectivity analyses in specific contrasts could be insensitive to network-level 

perturbations in connectivity, both quantified during resting state and during task-based fMRI. 

Therefore, it is important to examine functional connectivity on a whole-brain level both at rest 

and during threat-processing tasks to quantify the neural correlates of anxiety and threat 

processing. To do so, we extend prior seed-based connectivity findings by examining functional 

connectivity at the whole brain level, by focusing on reconfiguration efficiency from resting state 

to the dot-probe task. 

Finally, beyond extending previous approaches to emotional-task data in children, the 

current study also implements two novel procedures to extend previous approaches. First, the 

study utilizes ICA with both resting-state and task-based data. Second, prior functional 

connectivity analyses with the dot-probe task used a seed-based approach to contrast 

connectivity in threat-congruent and threat-incongruent conditions. Beyond comparing 

connectivity across rest and task, the current study also employs a PPI approach within the 

emotional task to study modulation of functional connectivity by the two threat-related task 

conditions.    
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The current study assessed similarity in patterns of functional connectivity during rest 

and the dot-probe task in 13-year-old children, testing five specific hypotheses. First, we 

hypothesized that functional connectivity during rest correlates strongly with functional 

connectivity during the dot-probe task (Cole et al., 2014; Schultz & Cole, 2016). Second, we 

hypothesized that the degree of similarity in functional connectivity between rest and the dot-

probe task (i.e., reconfiguration efficiency) relates to task performance (i.e., threat bias) (Schultz 

& Cole, 2016). Third, we hypothesized that reconfiguration efficiency also relates to IQ. This is 

because prior work finds IQ to relate to many individual-difference factors among children and 

adolescents, including performance in many cognitive tasks and many aspects of psychological 

function. Thus, IQ may also relate to efficiency in switching from resting state to task states in 

general, both for emotional tasks examined in the current study as well as cognitive tasks more 

closely linked to IQ in prior work (Schultz & Cole, 2016). Fourth, we hypothesized that 

reconfiguration efficiency relates to individual differences in anxiety-related measures, such as 

self-reported and parent-reported anxiety symptoms and socially reticent behavior. Finally, we 

explored whether task-evoked activity modulates functional connectivity and hypothesized that 

patterns of connectivity differ between the threat-congruent and threat-incongruent trials of the 

dot-probe task. 

 

2. Materials and Methods 

2.1 Participants 

Participants were recruited from a longitudinal study on behaviorally inhibited temperament and 

early childhood reticence. Data in the current report were collected when the children were 

approximately 13 years old. 42 children had fMRI data for both resting state and the dot-probe 
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task. However, for one child, data were excluded because of excessive motion, yielding a final 

sample of 41 children (19 girls) with a mean age of 13.44 years (SD = 0.70, range = 12.42-

15.33). Resting state and task-based data were collected on the same day for 25 children, and on 

different days for 16 children (resting state scan was 1-307 days after the dot-probe scan, median 

= 101 days). Children entered the longitudinal study through two paths: one group (n = 291) was 

selected based on temperamental reactivity at four months (Hane, Fox, Henderson, & Marshall, 

2008) and the other group (n = 384) was randomly recruited from the community at age two 

years (Jarcho et al., 2016; Michalska et al., 2019). Among the 41 children in the current report, 

18 were recruited as infants and 23 were recruited at two years. All children provided written 

assent, and all parents provided written informed consent. The study was approved by the 

University of Maryland-College Park and National Institute of Mental Health institutional review 

boards. 

 Descriptive statistics appear in Table 1. Girls reported slightly more anxiety symptoms 

than boys, F(1,39) = 3.85, p = 0.057, but there were no differences between boys and girls on 

any of the other variables, Fs < 2.91, ps > 0.096. Children selected as infants (M = 13.04, SD = 

0.63) were slightly younger than children recruited at two years (M = 13.75, SD = 0.61), F(1,39) 

= 13.55, p = 0.001. Children who did both scans on the same day (M = 13.64, SD = 0.65) were 

slightly older than children who did the scans on different days (M = 13.14, SD = 0.69), F(1,39) 

= 5.49, p = 0.024. No other variables differed between children recruited as infants or at two 

years or between children who did both scans on same or different days, Fs < 3.20, ps > 0.082. 

The main analyses were corrected for age, sex, participant recruitment source (i.e., during 

infancy or at age two years), and time between scans. 
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Table 1. 

Means, standard deviations and range for the behavioral and motion measures across the sample. 

  Mean SD Min Max 

Age 13.44 0.7 12.42 15.33 

Accuracy dot-probe 92.76 4.81 79.8 100 

Threat bias 0.81 30.74 -55.89 69.72 

Threat ABV 0.05 0.02 0.02 0.1 

Happy bias 1.67 25 -66.72 45.32 

Happy ABV 0.05 0.03 0.02 0.14 

IQ 115.95 13.54 84 140 

SCARED-C Total 11.54 7.71 0 32 

SCARED-P Total 6.69 6.75 0 31 

Social Reticence -0.02 0.5 -0.99 1.33 

std DVARS (task) 1.14 0.05 1.02 1.24 
std DVARS (rest) 1.11 0.08 0.95 1.32 
DVARS (task) 22.45 3.87 15.71 31.04 
DVARS (rest) 21.80 6.72 13.95 40.46 
FD (task) 0.12 0.08 0.04 0.38 
FD (rest) 0.18 0.14 0.05 0.65 
Note: social reticence scores for two participants were missing. 

SD = standard deviation; ABV = attention bias variability; SCARED = Screen for Child Anxiety Related 

Disorders; C = child-reported; P = parent-reported; std DVARS = standardized spatial standard deviation of 

the data after temporal differencing; DVARS = original spatial standard deviation of the data after temporal 

differencing; FD = framewise displacements. See main text for definitions of bias and bias variability. 

 

2.2 Dot-probe task 

The dot-probe task has been used extensively to measure attention bias to threat (Abend et al., 

2019; Bar-Haim et al., 2007; Macleod et al., 1986). In each trial of this task, a pair of faces was 

shown (either angry-neutral, happy-neutral, or neutral-neutral; see Figure 1). After 500 ms, an 

arrow (i.e., probe) appeared at the location of one of these faces. The locations of the faces and 



 10 

arrows were counterbalanced across the task. Participants had to press a button as quickly as 

possible to indicate the direction of the arrow. In congruent trials the probe was presented at the 

location of the emotional face, in incongruent trials the probe was presented at the location of the 

neutral face. The task consisted of 48 threat-congruent, 48 threat-incongruent, 48 happy-

congruent, 48 happy-incongruent, and 96 neutral-neutral trials across four blocks of 4:15 

minutes. The task was programmed and administered with E-Prime (Psychology Software Tools, 

Pittsburgh, PA) and faces from the NimStim set were used (Tottenham et al., 2009). 

 

 

Figure 1. Overview of the dot-probe task. 

2.3 Other behavioral measures 

 2.3.1 IQ. IQ was estimated when children were approximately 10 years old using the 

vocabulary and matrix reasoning subscales of the Wechsler Abbreviated Scale of Intelligence 

(Wechsler, 1999). IQ has been shown to have high long-term stability (Canivez & Watkins, 

1998; Watkins & Smith, 2013). 
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 2.3.2 Anxiety symptoms. Trait anxiety symptoms were measured using the SCARED, a 

reliable child- and parent-report questionnaire with 42 items (Birmaher et al., 1997; Muris, 

Dreessen, Bogels, Weckx, & van Melick, 2004). We used the SCARED total score for self-

report and parent-report separately, replacing up to two missing responses in the total score with 

the subject’s mean value for the other items. Children and parents filled out the questionnaire 

separately within a year of the dot-probe scan (M=99.92 days, SD=108.29, range = -1 to 348 

days), with 31 (75.6%) children and parents completing the SCARED within 6 months. Test-

retest reliability of the child- and parent-reported SCARED total score is moderate to good over 

a period of three to six months (Behrens, Swetlitz, Pine, & Pagliaccio, 2019; Birmaher et al., 

1997; Boyd, Ginsburg, Lambert, Cooley, & Campbell, 2003; Haley, Puskar, & Terhorst, 2011). 

Over a period of five years, most anxiety symptoms slightly decrease, whereas social anxiety 

symptoms remain relatively stable and generalized anxiety symptoms slightly increase in 

adolescent girls (Hale, Raaijmakers, Muris, van Hoof, & Meeus, 2008). 

 2.3.3 Social reticence. Social reticence reflects shy and anxiously avoidant behavior 

during early childhood (Degnan et al., 2014), and predicts later anxiety symptoms and related 

neural measures (Jarcho et al., 2016; Michalska et al., 2019). It was measured using a composite 

score of maternal-report questionnaires and behavioral observations collected at 2, 3, 4, 5, and 7 

years of age (Jarcho et al., 2016; Michalska et al., 2019). The Social Fear subscale from the 

Toddler Behavioral Assessment Questionnaire (Goldsmith, 1996) was used at 2 and 3 years, and 

the Shyness subscale from the Children’s Behavior Questionnaire (Rothbart, Ahadi, Hershey, & 

Fisher, 2001) was used at 4, 5 and 7 years. Socially reticent behavior was observed during free 

play, cleanup and social problem-solving interactions with an unfamiliar, age-matched peer at 2, 
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3, 4, 5 and 7 years (Degnan et al., 2014; Degnan et al., 2011). All subscales and behavior scores 

were standardized within timepoint and averaged together. 

 

2.4 fMRI data collection 

fMRI data were collected during resting state and the dot-probe task on a 3T MR750 General 

Electric scanner (Waukesha, Wisconsin, USA) with a 32-channel head coil. For resting state, 180 

functional image volumes with 47 contiguous interleaved axial slices were collected with a T2*-

weighted echo-planar sequence (TR = 2000ms, TE = 30ms, flip angle = 90, field of view (FOV) 

= 192mm, matrix = 64x64, in plane resolution 3x3x4mm). For each of the four blocks of the dot-

probe task, 111 functional image volumes with 47 contiguous interleaved axial slices were 

collected with a T2*-weighted echo-planar sequence (TR = 2300ms, TE = 25ms, flip angle = 50, 

FOV = 240mm, matrix = 96×96 in plane resolution 2.5×2.5×3mm). In addition, a high-resolution 

T1-weighted whole-brain volumetric scan was acquired during each scan session, with a high-

resolution magnetization prepared gradient echo sequence (MPRAGE; TE = min full; TI = 

425ms; flip angle = 7; FOV = 256mm; matrix = 256×256; in plane resolution = 1x1x1mm). 

 

2.5 Behavioral analysis 

Selection of dot-probe trials to be included in analyses followed the same criteria used by Abend 

et al. (2019). Trials were included only if the response to the probe was correct and if RT was 

between 150 and 2000 ms and less than 2.5 standard deviations away from the participant’s 

mean RT. In line with prior studies (Abend et al., 2019; White et al., 2017), task data were 

considered valid if accuracy was ≥70%; all 41 participants surpassed this threshold. Task 

performance was measured by calculating threat bias scores (mean RT in threat-incongruent 
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trials minus mean RT in threat-congruent trials), with higher scores reflecting an attention bias 

towards threat (that is, slower responding in threat-incongruent trials). Happy bias scores were 

also calculated (mean RT in happy-incongruent minus mean RT in happy-congruent trials).  

 In addition, secondary analyses examined ABV, an index of temporal variability in 

attention allocation previously found to relate to anxiety symptoms and brain function (Abend et 

al., 2019; Iacoviello et al., 2014). In a moving-window analysis, threat bias scores (as described 

above) were calculated for all 10 successive angry-neutral trials. The standard deviation of all 

these threat bias scores within one participant was calculated, and then divided by the overall 

mean RT of the participant. The procedure was repeated for happy-neutral trials to calculate 

happy ABV scores (Abend et al., 2019). 

 

2.6 fMRI preprocessing 

Quality of fMRI data was assessed using the MRI Quality Control tool (MRIQC) (Esteban et al., 

2017). Data of one participant were excluded, because this subject was an outlier based on 

AFNI’s outlier ratio and because visual inspection showed excessive movement. The first 4 TRs 

from each scan were removed to account for non-steady-state data. fMRI data from resting state 

and the dot-probe task were preprocessed using fMRIPrep (Esteban et al., 2019) including the 

following steps: skull stripping, correction for head-motion parameters, slice time correction, co-

registration to corresponding structural image (boundary-based registration with 9 degrees of 

freedom), spatial normalization to MNI space (nonlinear registration), and ICA-AROMA (Pruim 

et al., 2015). All spatial transformations in fMRIPrep are done in one step, to allow for a single-

interpolation resampling of volumes. 
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 The following nuisance variables were regressed out from both resting state and dot-

probe time series: motion parameters (translation in x, y and z directions, plus rotations around 

these axes), cerebral spinal fluid signal, white matter signal, original and standardized spatial 

standard deviation of the data after temporal differencing (DVARS and std DVARS), framewise 

displacement (Power, Barnes, Snyder, Schlaggar, & Petersen, 2012), 6 temporal and anatomical 

noise components calculated with CompCor (Behzadi, Restom, Liau, & Liu, 2007), cosine 

variables, and ICA-AROMA components that were classified as related to head motion. The data 

for both rest and task were high-pass filtered (0.04 Hz). Correlations between motion variables 

and the behavioral variables are shown in Table 2. 

 

Table 2. 

Pearson’s correlations between motion, behavioral and neural variables. 

  std DVARS 
(task) 

std DVARS 
(rest) 

DVARS 
(task) 

DVARS 
(rest) 

FD (task) FD (rest) 

Age -0.03 -0.02 0.01 0.09 0.05 0.17 
Accuracy dot-probe 0.04 0.04 -0.05 0.05 -0.06 0.12 
Threat bias 0.10 0.01 -0.07 -0.14 -0.15 -0.22 
Threat ABV 0.10 -0.24 0.08 0.10 0.02 0.10 
Happy bias 0.02 -0.17 0.06 0.24 0.16 0.30 
Happy ABV 0.22 -0.27 0.24 0.19 0.16 0.12 
IQ 0.15 -0.20 0.02 -0.09 0.00 -0.06 
SCARED-C Total -0.33* -0.03 -0.29 -0.11 -0.14 -0.06 
SCARED-P Total 0.14 0.10 0.00 -0.12 -0.10 -0.18 
Social Reticence 0.10 0.15 -0.12 -0.09 -0.14 -0.09 
Similarity 0.11 0.09 -0.23 -0.29 -0.27 -0.25 
Distance 0.12 0.02 -0.11 -0.34* -0.12 -0.30 
Similarity PPI -0.03 0.09 0.18 0.30 0.10 0.19 
Distance PPI 0.06 0.31* -0.10 0.07 -0.23 -0.09 

Note: * p < 0.05, uncorrected. 
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ABV = attention bias variability; SCARED = Screen for Child Anxiety Related Disorders; C = child-reported; 

P = parent-reported; std DVARS = standardized spatial standard deviation of the data after temporal 

differencing; DVARS = original spatial standard deviation of the data after temporal differencing; FD = 

framewise displacements. 

 

2.7 ICA and dual regression 

ICA was run on the resting state data using Multivariate Exploratory Linear Optimized 

Decomposition into Independent Components (MELODIC). The model order was selected using 

Bayesian methods described in Beckmann and Smith (2004); 20 components were automatically 

identified. After visual inspection, three were removed as they were comprised of regions 

occupied by cerebrospinal fluid or other non-brain tissue. The remaining 17 components were 

selected for further analyses (Figure 2). Naming of these components was based on putative 

functions related to their topography; we also used previous literature on resting-state imaging as 

reference (Beckmann, DeLuca, Devlin, & Smith, 2005; Damoiseaux et al., 2006; Smith et al., 

2009). Time series for these 17 components were extracted from resting state and from dot-probe 

data (in native resolution) using dual regression in FSL (Filippini et al., 2009). Thus, for each 

independent component, a time course for rest and another for the dot-probe task were obtained. 

In addition, for the dot-probe task, task events (threat-congruent, threat-incongruent, happy-

congruent, happy-incongruent, and neutral trials and trials with errors) were convolved using a 

canonical hemodynamic response function (HRF) approach with Glover’s HRF (Glover, 1999) 

and were regressed out from the fMRI time course. 
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Figure 2. Spatial maps for each of the 17 independent components. Their putative functional 

interpretation based on previous studies is as follows: a = right dorsal visual stream, b = lateral 

visual cortical areas, c = left dorsal visual stream, d = sensory-motor system, e = medial visual 

cortical areas, f = auditory system, g = visuo-spatial system, h = executive control. 

 

2.8 Functional connectivity and clustering 

Full and partial correlations between each pair of the 17 components were calculated as 

measurements of functional connectivity, converted to a z-score using Fisher’s r-to-z 

transformation, and assembled into connectivity matrices. For each subject, this generated one 

functional connectivity matrix for resting state and another for the dot-probe task. Since these 
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matrices are symmetric, for convenience we chose to retain only the upper triangular part (above 

the main diagonal) for partial correlations, leaving the lower triangular part (below the main 

diagonal) to hold the full (not partial) correlations, thus avoiding redundancies when generating 

figures. These steps were conducted using customized FSLNets scripts 

(http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLNets) (Smith et al., 2013). To assess the similarity 

between these two matrices, the partial correlations above the main diagonal of each matrix were 

unwrapped into a vector, and the Pearson’s correlation between the vector for resting state and 

the vector for the dot-probe task was calculated and converted to a z-score using Fisher’s r-to-z 

transformation (Schultz & Cole, 2016)2. These steps were performed for each participant, 

thereby generating one similarity value for each participant. 

 For visualization purposes, functional connectivity matrices were averaged across 

participants. To visualize the temporal proximity between the 17 ICA components, these 

components were clustered using hierarchical nearest neighbor with Ward’s linkage as 

implemented in FSLNets. 

 To investigate whether task-evoked activity would modulate functional connectivity, two 

additional functional connectivity matrices, one for the threat-congruent and another for the 

threat-incongruent trials, were computed using a PPI strategy (Friston et al., 1997; O'Reilly, 

Woolrich, Behrens, Smith, & Johansen-Berg, 2012). Instead of computing the correlation in the 

time series between all 17 components (FC), we performed a regression analysis with the time 

series of one component modulated by the time series for threat-congruent trials (i.e., an 

interaction term) predicting the time series of another component, while including the modeled 

time series for threat-congruent trials as nuisance. This analysis assessed whether functional 

                                                 
2 Note that at this stage, investigations that use both resting state and task-based fMRI do not require these two 
modalities have the same spatial or temporal resolution. 
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connectivity between these two components would be modulated by threat-congruent trials. This 

was done for all 17 components predicting all other components, resulting in a matrix similar to 

the FC matrix. As with the analyses for rest and task data, Pearson’s correlation between these 

two matrices for each participant were calculated, and then subjected to the Fisher’s r-to-z-

transformation. 

 

2.9 Between-subject statistical analysis 

Group analyses assessed whether similarity in functional connectivity during rest and dot-probe 

was related to task performance (threat bias) as well as IQ, anxiety symptoms, and social 

reticence. These analyses used nonparametric permutation inference using Permutation Analysis 

of Linear Models (PALM) (Winkler, Ridgway, Webster, Smith, & Nichols, 2014). Five designs 

were tested, each including similarity as the dependent variable, an intercept, nuisance variables, 

and an independent variable of interest (Table 2) Only the independent variable of interest 

differed per design, such that each design tested how the similarity in functional connectivity 

during rest and dot-probe relates to threat bias, IQ, child-reported anxiety symptoms, parent-

reported anxiety symptoms, and social reticence. We tested both positive and negative effects 

(i.e., contrasts) for each of these five independent variables of interest, e.g. a positive effect of 

threat bias on similarity and a negative effect of threat bias on similarity in design 1. For the first 

design (testing threat bias), we also tested the intercept, that is, whether the correlation between 

resting state and dot-probe functional connectivity matrices was significantly different than zero. 

Family-wise error rate (FWER) was used in PALM to correct non-parametrically for multiple 

testing across the five designs (Winkler et al., 2016). 



Table 3. 

Overview of the five designs that were tested using nonparametric permutation tests. 

  Design 1 Design 2 Design 3 Design 4 Design 5 

Dependent 
variable 

Similarity Similarity Similarity Similarity Similarity 

Independent 
variable of 
interest 

Threat bias IQ SCARED-C 
Total 

SCARED-P 
Total 

Social 
Reticence 

Nuisance 
variables 

Age Age Age Age Age 

Sex Sex Sex Sex Sex 

Participant 
recruitment 
source 

Participant 
recruitment 
source 

Participant 
recruitment 
source 

Participant 
recruitment 
source 

Participant 
recruitment 
source 

Time 
between 
scans 

Time 
between 
scans 

Time 
between 
scans 

Time 
between 
scans 

Time 
between 
scans 

Intercept Intercept Intercept Intercept Intercept 

Note: SCARED = Screen for Child Anxiety Related Disorders; C = child-reported; P = parent-reported 

  

 A final set of exploratory nonparametric permutation tests in PALM was performed on 

six different dependent variables: similarity, distance measures (correlations between two vectors 

transformed to Euclidean distances), functional connectivity matrix during rest (full and partial 

correlations), and functional connectivity matrix during task (full and partial correlations). 

Consistent with the previous five designs, these analyses included each an intercept and the 

following nuisance variables: age, sex, participant recruitment source (i.e., during infancy or at 

age two years), and time between scans. We tested twelve different designs, each with the 

nuisance variables and one extra independent variable of interest: threat bias, IQ, child-reported 

anxiety symptoms, parent-reported anxiety symptoms, social reticence, interaction between sex 

and child-reported anxiety symptoms, interaction between sex and parent-reported anxiety 
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symptoms, absolute threat bias, threat ABV, happy bias, absolute happy bias, and happy ABV 

(Supplementary Table 1). The p-values were corrected non-parametrically for multiple testing 

across the six independent variables and twelve designs in PALM using FWER (Winkler et al., 

2016). The main analysis with five designs and the exploratory analyses with twelve designs 

were repeated for the functional connectivity matrices based on PPI analysis. 

 

3. Results 

3.1 Functional connectivity matrices 

Three clusters of correlated networks emerged from the data in both resting state and dot-probe 

functional connectivity matrices: one cluster encompassing default-mode, executive control, 

visual, and auditory networks; a second encompassing visual networks; and a third 

encompassing sensory-motor and auditory networks (see Figure 3 and 4 for the FC matrices with 

z-statistics, and see Supplementary Figures 1 and 2 for the FC matrices with rs). The cluster 

encompassing sensory-motor and auditory networks was the same during resting state and the 

dot-probe task. The only difference in clustering between the resting state and the dot-probe task 

was that two networks (left dorsal visual stream [component 3] and left/right dorsal visual stream 

[component 15]) were part of the visual cluster during resting state and part of the default-mode, 

executive control, visual and auditory cluster during the dot-probe task3. Treated separately, 

patterns of correlations during either resting state or the dot-probe task were unrelated to threat 

bias, IQ, anxiety symptoms, social reticence or any other measures from secondary regression 

analyses.

                                                 
3 We reran the same analysis stream for examining the similarity between resting state and the dot-probe task 
without component 3 and 15, to investigate whether the association with threat bias would be stronger if only the 
stable networks were considered. The results, however, remained the same. 
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Figure 3. Functional connectivity matrix during resting state. Full correlations (transformed to z-

statistics) are presented below the diagonal, partial correlations (transformed to z-statistics) are 

presented above the diagonal. Three clusters emerged: a) visuo-spatial system, executive control 

and some visual and auditory networks (in red); b) visual networks (in green); and c) sensory-

motor and auditory networks (in blue). Components with more similar time courses appear closer 

together. The threshold for unique colors in the dendrogram was set at 0.75. 

Note: numbers correspond to the 17 components from Figure 2. 
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Figure 4. Functional connectivity matrix during the dot-probe task. Full correlations 

(transformed to z-statistics) are presented below the diagonal, partial correlations (transformed to 

z-statistics) are presented above the diagonal. Three clusters emerged: a) visuo-spatial system, 

executive control and some visual and auditory networks (in red); b) visual networks (in green); 

and c) sensory-motor and auditory networks (in blue). Components with more similar time 

courses appear closer together. The threshold for unique colors in the dendrogram was set at 

0.75. 

Note: numbers correspond to the 17 components (based on resting state data) from Figure 2. 
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3.2 Similarity between resting state and the dot-probe task 

The first PALM analysis testing the intercept showed that the average similarity between 

functional connectivity matrices during resting state and the dot-probe task was significantly 

different than zero across participants, with an average r-to-z = 0.37, test statistic t = 20.67, 

pFWER < 0.001, two-tailed. After controlling for all designs tested, the main PALM analysis with 

five designs showed that similarity between resting state and the dot-probe task was not related 

to threat bias, IQ, anxiety symptoms, or social reticence (Table 4). However, when we did not 

correct for multiple testing, similarity between resting state and the dot-probe task was positively 

related to threat bias, partial r = 0.32, puncorrected = 0.03, pFWER = 0.23 (corrected for age, sex, 

participant recruitment source, and time between scans)4,5. This demonstrates that enhanced 

reconfiguration efficiency relates to greater bias towards threat in children. We calculated the 

characteristic path length (Rubinov & Sporns, 2010) for both resting state and the dot-probe task, 

to test whether this effect was driven by differences in rest or task functional connectivity. The 

relation between threat bias and characteristic path length during both rest and task was not 

significant, respectively r = 0.27, p = 0.093 and r = 0.27, p = 0.087. This suggests that the 

relation between threat bias and reconfiguration efficiency was not driven by either resting state 

or the dot-probe task, but rather a combination. The exploratory PALM analysis with twelve 

designs showed no additional significant effects (see Supplementary Table 2). Finally, to test 

whether one of the clusters drove the association between similarity and threat bias, we 

                                                 
4
 There was no difference in similarity between resting state and the dot-probe task between participants who did the 

scans on the same day versus different days, F(1, 39) = 0.52, p = 0.48. Furthermore, there was no correlation 
between similarity and the number of days between scans, r = 0.06, p = 0.69. We repeated the analyses including 
only children who performed both scans on the same day (n = 25). The correlation between similarity and threat bias 
retained the same direction but was no longer significant, potentially due to lower power, r = 0.20, t = 1.20, pFWER = 
0.76, puncorrected = 0.12. 
5 When analyses were repeated with the thresholded (0.5) MELODIC output with the left and right amygdala added 
to the functional connectivity matrices, the correlation between similarity and threat bias did not remain significant. 
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calculated similarity between resting state and the dot-probe task for each cluster separately 

(excluding components 3 and 15 because they belonged to different clusters in rest versus task 

data). The relation between similarity and threat bias was not significant within each of these 

clusters, suggesting that the observed correlation is not driven by any of these three clusters, and 

therefore, may reflect global reconfiguration. 

 

Table 4. 

Results of the main PALM analysis with five designs testing the effect of threat bias, IQ, anxiety 

symptoms and social reticence on similarity between resting state and the dot-probe task. 

Independent variable of 
interest 

Contrast partial r t pFWER 

Threat bias Positive 0.32 2.02 0.23 
Negative -0.32 -2.02 1.00 

IQ Positive 0.00 -0.02 1.00 
Negative 0.00 0.02 1.00 

SCARED-C Total Positive -0.19 -1.16 1.00 
Negative 0.19 1.16 0.78 

SCARED-P Total Positive 0.01 0.06 1.00 
Negative -0.01 -0.06 1.00 

Social Reticence Positive 0.13 0.75 0.96 
  Negative -0.13 -0.75 1.00 
Note: rs are corrected for the nuisance variables in the design (age, sex, participant recruitment 

source, and time between scans). 
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Figure 5. Effect of similarity between resting state and dot-probe task on threat bias. 

 

3.3 PPI analyses 

The functional connectivity matrices based on PPI analyses are shown in Figure 6 and 7 

(displaying z-statistics, and see Supplementary Figures 3 and 4 for the PPI matrices with rs). No 

significant clusters emerged from the data in either the threat-congruent or threat-incongruent 

conditions. The first PALM analysis testing the intercept showed that the average similarity 

between functional connectivity matrices as modulated by threat-congruent and threat-

incongruent conditions was significantly different than zero across participants, with an average 

r-to-z = −0.11, test statistic t = −5.28, pFWER < 0.001, two-tailed. The degree to which functional 

connectivity among brain regions was modulated by the task effects was not related to threat 

bias, IQ, anxiety symptoms, social reticence, or any other measures from exploratory analyses. 

The main PALM analysis with five designs showed that the similarity of task-related 

connectivity modulation between the threat-congruent and threat-incongruent conditions was 
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unrelated to threat bias, IQ, anxiety symptoms, and social reticence (Table 5). The exploratory 

PALM analysis with twelve designs showed no additional significant effects (see Supplementary 

table 3). 

 

Table 5. 

Results of the main PALM analysis with five designs testing the effect of threat bias, IQ, anxiety 

symptoms and social reticence on similarity of modulation by task-related connectivity in threat-

congruent and threat-incongruent trials. 

Independent variable of 
interest 

Contrast partial r t pFWER 

Threat bias Positive -0.15 -0.90 1.00 

Negative 0.15 0.90 0.91 

IQ Positive -0.03 -0.15 1.00 

Negative 0.03 0.15 1.00 

SCARED-C Total Positive 0.07 0.43 1.00 

Negative -0.07 -0.43 1.00 

SCARED-P Total Positive 0.01 0.05 1.00 

Negative -0.01 -0.05 1.00 

Social Reticence Positive -0.24 -1.46 1.00 

  Negative 0.24 1.46 0.56 
Note: rs are corrected for the nuisance variables in the design (age, sex, participant recruitment 

source, and time between scans). 
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Figure 6. Functional connectivity matrix (transformed to z-statistics) with results from PPI 

analyses focusing on threat-congruent trials. Components with more similar time courses appear 

closer together. The threshold for unique colors in the dendrogram was set at 0.75. 

Note: numbers correspond to the 17 components (based on resting state data) from Figure 2. 
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Figure 7. Functional connectivity matrix (transformed to z-statistics) with results from PPI 

analyses focusing on threat-incongruent trials. Components with more similar time courses 

appear closer together. The threshold for unique colors in the dendrogram was set at 0.75. 

Note: numbers correspond to the 17 components (based on resting state data) from Figure 2. 
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4. Discussion 

The goal of the current study was to examine whether similarity in functional 

connectivity during rest and the dot-probe task relates to threat bias, IQ, anxiety symptoms and 

social reticence in children. The study generated three main findings. First, functional 

connectivity during rest and dot-probe was positively correlated. Second, levels of similarity 

between rest and the dot-probe task related to threat bias, but not to IQ, anxiety symptoms or 

socially reticent behavior. However, this finding should be interpreted with caution since the 

association did not remain significant when correcting for all tested designs. Finally, functional 

connectivity based on PPI analyses was negatively correlated between threat-congruent and 

threat-incongruent conditions, though such task-related modulation in connectivity did not relate 

to measures of threat bias nor anxiety. 

Functional connectivity during rest and the dot-probe task was positively correlated, 

suggesting that functional hierarchies in the brain are stable (Cole et al., 2014; Smith et al., 

2009). Our finding extends similar findings from previous studies focusing on cognitive tasks in 

adults (Cole et al., 2014; Schultz & Cole, 2016; Smith et al., 2009) to an emotional task in 

children. In addition, we have shown that these functional hierarchies in the brain can also be 

found using a resting-state ICA approach which has not been used in previous studies. 

Similarity in functional connectivity during rest and the dot-probe task was positively 

related to threat bias, although this did not survive correction for multiple testing. This pattern of 

findings suggests that children with a greater bias towards threat possess greater efficiency in 

switching from resting state to the dot-probe task. This might further imply that, in children with 

threat bias, the brain during rest could already be preconfigured to a threat-bias state. This could 

be related to anxiety symptoms, as threat-related attentional biases are related to anxiety (Bar-
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Haim et al., 2007). Approximately half of the participants were drawn from infants selected for 

heightened risk for psychopathology, but this greater efficiency in switching from resting state to 

a threat-bias state was not related to anxiety. However, the participants were relatively young and 

had few anxiety symptoms, which typically increase in mid-adolescence. Future studies 

examining children with anxiety disorders are needed to clarify if children with anxiety disorders 

are more preconfigured to a threat-bias state and the clinical implications of these findings.  

The current study demonstrates comparable effects, in terms of correlations between 

similarity and task performance, for an emotional task to the effects for cognitive tasks used in 

prior research. Importantly, in the current study, the correlation between reconfiguration 

efficiency and attention bias would be classified as a small-to-medium effect size, using criteria 

from J. Cohen (1988), and was only significant before correction for multiple testing. Similarly, 

Schultz and Cole (2016) detected associations between reconfiguration efficiency and measures 

of task performance across three cognitive tasks that also would be classified as small-to-

medium. The current focus on an emotional instead of cognitive tasks may explain other 

differences in the observed findings between the current study and Schultz and Cole (2016). For 

example, Schultz and Cole (2016) related reconfiguration efficiency for cognitive tasks to both 

performance on cognitive tasks and IQ, the two of which were correlated (Schultz & Cole, 

2016). In the current study, threat bias during the dot-probe task was not related to IQ (r = 0.13, 

p = 0.43), possibly explaining why there was no correlation between reconfiguration efficiency 

and IQ in the current study. 

Variations in brain parcellations, such as anatomical templates or ICA-based functional 

networks, can influence the number of statistical tests performed in a study (Eickhoff, Yeo, & 

Genon, 2018). We did not use the same approach as Schultz and Cole (2016) because they used a 
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template derived from data in adults (Power et al., 2011). In addition, a paucity of time points in 

our data precluded partial correlation computations for 264 regions. For these reasons we 

performed an ICA on the resting state data to reduce the data to 17 networks. Beyond reducing 

the number of parameters, ICA has other key advantages: it reliably identifies resting state 

networks that are interpretable (Damoiseaux et al., 2006), that resemble discrete functional units 

(Beckmann et al., 2005), that have spatial correspondence with task-related activity (Smith et al., 

2009), and that are heritable (Glahn et al., 2010). Group ICA, as was used here, captures spatial 

patterns that are consistent across participants, being less prone to subject-specific variability or 

artefacts than other methods. Of note, our results for threat bias associations were non-significant 

when applying another parcellation (Yeo et al., 2011) complemented with additional, subcortical 

regions derived from FreeSurfer. 

A final set of unique observations arose from the PPI analyses. These analyses showed 

that levels of event-related modulation of functional connectivity were negatively correlated for 

the threat-congruent and threat-incongruent trials. These two trial types represent events where 

the spatial location of threats and probes lie in respectively similar and opposite hemi-fields. 

Such negative correlations could arise from the unique psychological demands placed on 

children from distinct event types, i.e. maintaining versus redirecting attention. Both previous 

studies and our current findings reveal positive correlations between functional connectivity 

during rest and tasks, suggesting that task-related connectivity consists of both intrinsic, task-

general, and task-specific network activity (Cole et al., 2014). The negative correlation between 

threat-congruent and threat-incongruent could be interpreted as reflecting the deployment of 

task-specific changes in network connectivity, related to the distinct attentional demands of the 

threat-congruent and threat-incongruent trials. By examining these task-specific changes, the 
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current study adds to the repertoire of available tools for understanding the potential clinical 

significance of individual differences in functional connectivity.   

This study showed that similarity in functional connectivity during rest and the dot-probe 

task was related to threat bias in children (although, as noted, this correlation did not survive 

correction for multiple testing), extending previous research on cognitive tasks in adults to an 

emotional task in children. Several limitations should be noted, however. First, the sample size 

was relatively small. Second, the sample consisted of mostly typically developing children, only 

half of whom were selected for risk for anxiety, thus there may have been insufficient variability 

to precisely estimate associations with anxiety symptoms. In addition, some participants 

completed the SCARED up to a year apart from the MRI scans. Although the SCARED has 

shown acceptable test-retest reliability (Behrens et al., 2019; Birmaher et al., 1997; Boyd et al., 

2003; Haley et al., 2011), these estimates of test-retest reliability mainly arise in studies using 

time windows that do not extend beyond six months. Future research in larger samples of 

anxious patients with concurrent assessment of symptoms is needed to test if similarity in 

functional connectivity during rest and the dot-probe task is related to anxiety symptoms. Third, 

fMRI during resting state and the dot-probe task was not measured on the same day in all 

children. Even though resting state functional networks have high reproducibility over 3.5 years, 

some changes can be seen over time (Choe et al., 2015; Poldrack et al., 2015). Therefore, future 

research should attempt to collect resting state and task data on the same day. We did find a 

positive correlation between functional connectivity during rest and task, so future studies should 

indicate if this similarity could be seen as a trait measure or how it develops over time. Fourth, 

we used a canonical HRF approach to regress out task activations instead of a finite impulse 

response (FIR) task regression. A recent paper (Cole et al., 2019) has shown that task FC 
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estimates may be consistently and spuriously influenced by task activations, and that the FIR 

approach is the best way to correct for this. We were not able to apply this FIR approach because 

we would not have had enough degrees of freedom for the analysis. Future studies should 

consider the possibility of FIR modelling for the removal of task effects. 

To conclude, functional connectivity during rest and the dot-probe task was positively 

correlated, confirming previous findings of stable functional hierarchies in the brain. 

Reconfiguration efficiency was related to threat bias if we did not correct for multiple testing. 

Children with a bias towards threat might be more prone to process threat, as they can more 

efficiently switch from rest to threat processing. Modulation of functional connectivity by task-

evoked activity during threat-congruent and threat-incongruent trials was negatively correlated, 

possibly reflecting task-specific network changes during two different attentional processes. We 

applied a novel analytic method for combining resting state and task-related fMRI data to an 

emotional paradigm in children. The next step in applying this method in the field of 

developmental psychopathology would be to test between-group differences in a larger sample of 

children with and without anxiety disorders. 
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