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ABSTRACT: In previous studies we have shown
that real-time fMRI, despite the low temporal
resolution of the brain oxygen level dependent
(BOLD) signal, can be used as a brain-computer
interface for navigation tasks, using motor im-
agery and motor execution. Here we describe
a pilot study aimed at leveraging the superior
spatial resolution of fMRI and describe a BCI
paradigm going beyond a single brain network for
control, retaining an intuitive mapping between
brain activity and BCI functionality. The exper-
iment simulates non-trivial navigation and item
selection tasks. We allow a subject to teleoper-
ate an HRP-4 humanoid robot: motor actions
are mapped into simple navigation commands to
navigate the robot inside a room and visual atten-
tion is mapped to direct the robot’s arm toward
one of three objects placed on a table. When the
correct item has been selected, the subject navi-
gates the robot toward the experimenter in order
to simulate the delivery of the object. Here we
describe the method based on seven classes, of-
fline classification results, and results from a real
time pilot with a single subject performing the
task several times.

INTRODUCTION

This research is part of a thread of studies aimed
at dissolving the boundary between the human
body and a surrogate robotic representation in a
physical reality. The subject is expected to act
as if the robotic body is his own body, and our
aim was to provide the subject with an intuitive
thought-based control of this surrogate represen-
tation. The subject was located in Israel and the
robot was located in France; this geographic split
was only made due to the availability of the fa-
cilities.

EEG-based BCI for device control, despite much

recent progress, is still mostly based on three
paradigms (with some variants): motor imagery,
P300, and steady state visually evoked potential
(SSVEP). Our overarching goal in this research is
to leverage the superior spatial resolution of fMRI
in order to explore novel BCI control paradigms
based on multiple brain systems simultaneously,
such that we map different types of mental pat-
terns to relevant functional goals, approximating
a realistic task. Specifically, in this study we al-
low the subject to navigate using three motor
classes, to select one of three objects using the
visual system, and a null class.

There have been several studies including EEG-
based BCI control of avatars [1, 2, 3] and teleop-
eration of a humanoid robot [4, 5], including stud-
ies with spinal cord injured people [6]. We have
demonstrated teleoperating a humanoid robot us-
ing motor imagery and execution with real-time
fMRI [7, 8], and others have demonstrated nav-
igating a robot using covert visuospatial atten-
tion [9]. In this pilot study we aim going beyond
these studies, using two different brain systems
simultaneously.

MATERIALS

Functional magnetic resonance imaging (fMRI)
scans were performed on a 3T Trio Magnetom
Siemens scanner as described in [7, 10], with a
repetition time (TR) of 2000ms. Our system in-
cludes a tool for whole brain classification of raw
data in real-time as described in [11]. Visual feed-
back is provided by a mirror, placed 11cm from
the eyes of the subject and 97.5cm from a screen,
which results in a total distance of 108.5cm from
the screen to the eyes of the subject.
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Figure 1: Sample stimuli for testing the visual
category task. From left to right the categories
are: faces, tools and houses.

We used the vision system framework (VSF)1 to
acquire, transcode and transmit the video stream
between the scanner (in Israel) and the robot (in
France) with minimum latency.

METHODS

We created a complete software suite for running
a wide range of real-time fMRI studies, which is
able to process both brain data arriving in real
time from the fMRI scanner and pre-recorded
fMRI data [11]. It supports various experimen-
tal protocols, includes several analysis methods,
is integrate with the Unity3D game engine for
virtual environment feedback, and can interface
with other external devices. Our tool is effi-
cient in terms of processing, can be configured
for a wide range of experimental protocols and
was previously tested in several types of real-time
fMRI BCI experiments. It is based on statistical
machine learning classification of subjects’ brain
state in real time, based on whole brain activity.

Training and applying classifiers in real-time re-
quires that learning be executed faster than is
generally done in the application of machine
learning to fMRI. Our system is optimized for
memory usage, processing speed, and classifica-
tion speed using feature reduction, feature selec-
tion, and redundant data reduction. The sys-
tem uses pre-recorded raw brain data for the pur-
pose of learning a classifier using Platt’s sequen-
tial minimal optimization (SMO) version of the
SVM learning algorithm [12]. The system culls
empty voxels and the subject’s eyes and corrects
non linear non-homogeneous drifts. For classifi-
cation and feature selection we use Weka, which
is a collection of machine learning algorithms [13].
For feature selection we use the information gain
(IG) algorithm, in which we select the most rel-
evant voxels [14]. The filtered dataset is passed
into Weka’s [15] implementation of multiclass [16]
SVM [12], using default parameters. The re-
sult of the training phase is an SVM classifier
model that can classify previously unseen vectors.

The system automatically verifies that the model
classifies the training data with perfect accuracy
(“test on train” for sanity check) and displays the
selected voxels.

In the real-time classification stage, the subjects
perform a task and the system classifies their
intentions in real time. The system classifies a
brain scan every TR (2 seconds). It uses the fil-
tering and normalization methods as in the train-
ing stage and select the same voxels based on the
IG filtering performed at model training. The
data is then passed into the trained SMO model,
and the classification result is then transmitted
to the external application using a user datagram
protocol (UDP). The classification process takes
approximately 50 milliseconds. Before moving to
a free choice task the subject undergoes a cue-
based part of the study, the task is similar to
training but feedback is provided based on real
time classification.

The subject (female, 31) underwent several train-
ing sessions for each classification task: i) mo-
tor execution (4 sessions) – moving left fingers,
right fingers, toes, and a null (rest) class; ii) mo-
tor imagery (4 sessions) – imagining left hand,
right hand, feet, and a null class; and iii) vi-
sual categories (5 sessions) – viewing images of
houses, faces and tools. The motor execution
classifier was trained 3 months prior to this exper-
iment, the motor imagery classifier was trained
2.5 months prior and the visual categories classi-
fier was trained 24 days prior.

Each motor training session included 40 events
from each category, i.e., for four training sessions
there are 160 labelled samples; the details are as
in [10]. For visual classification training is done
using a block design – a sequence of images from
the same category is flashed, one per second, for
12 seconds, followed by a duration of 6 seconds
during which the category images were painted
in white to allow the signal to return to baseline.
The subject was trained with 36 image sequences
for each category, i.e., for five training sessions
there were 180 samples. In test sessions each
stimulus includes three images from the three cat-
egories simultaneously, and the target category
is indicated by a fixation dot (Figure 1). The
subject carried out three such test runs, with 30
stimuli in each session (10 from each category).

The motivation behind the visual paradigm is to
allow the subject to select one of several objects
by visual attention, even if the multiple objects
are seen together. Our processing pipeline as-
sures that information from the areas surround-

1https://github.com/LIRMM-Beziers/visionsystem
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ing the eyes is pruned prior to being fed into the
machine learning system [11]. Thus, we expect
that the machine learning system can classify this
task by decoding, in real time, the activity of the
well known visual areas in the cortex, correspond-
ing to the visual categories of faces, tools, and
houses. Such decoding in real time and as part
of a BCI task has never been attempted to our
knowledge, and the task is especially challenging
given that the training and testing of the algo-
rithm are not done in the same conditions – the
training is based on a single image display and
the testing is based on three images simultane-
ously. The goal in this paradigm is to move to-
wards new naturalistic BCI paradigms, such that
training is done in controlled conditions, and the
model can be applied in real time, in naturalis-
tic conditions, which may be different than those
available for training. In our case, we expect the
classifier to be trained separately over different
object categories, whereas the free choice task
includes multiple object categories at the same
time.

Figure 2: A schematic drawing of the intended
walking path inside the room. The red dot indi-
cates the robot’s fixed position. The path goes
around the chair rotating towards the sign, and
then towards the table that has the three cat-
egory items placed on top. Following the vi-
sual task, the path continues toward the experi-
menter.

The experiment and the robot’s control were
based on a predefined state machine (Figure 3).
The task included several stages, including nav-
igation and object selection (see Figure 2 and
companion video2). The robot was placed in
a fixed orientation . First, the subject steered

the robot towards a table, by passing a obstacle
chair and by utilizing all four motor commands
in order to reach the table (Figures 4, 2). The
subject was instructed to guide the robot around
the chair and then turn towards the printed sign
as seen in 4(b) (on the right). The subject had
to read, through the eyes of the robot, the in-
structions from the sign with the target object to
select. After seeing the instruction, the subject
was expected to navigate towards a table, even-
tually stopping in front of it. On top of the table
we placed three objects: a (toy) doll’s head, a
(toy) house, and a tool (either a hammer or a tea
cup). Prior to the experiment, the subject was
instructed that in order to select an object she
had to rotate towards the sign to learn about the
target object, and from that moment she had to
focus her attention to the target physical object
on the table at all times and study it, until it
is selected. For example, if the experimenter re-
vealed the word “face” then the subject had to
focus attention to the head’s eyes, nose and chin,
i.e., pay attention to the features of the object. If
the word “tool” is revealed then the subject had
to imagine herself using that tool.

After walking the path, the subject was expected
to stop within grasping distance from the objects.
Once the subject reached the table the steering
was deactivated, the robot stood still and the
robot’s left hand was pointed toward one of the
items on the table. The item was selected by
a majority vote from the classification at times
0-16 seconds following the instruction from the
experiment (8 TRs). The 16 seconds delay was
based on the optimal classification time as deter-
mined in offline evaluation. If a majority vote
did not take place (i.e., a draw) the classification
continued until there was a decision.

Following the classification the subject had to in-
dicate whether she agrees with the selection or
not using motor categories. The subject used ei-
ther motor execution or motor imagery (in differ-
ent runs), as follows: feet – try again, right hand
– activate a grasp motion. If the motor action
was classified as null then the subject received
feedback indicating her to repeat the motor ac-
tion. The subject repeated this step until she
was satisfied with the category that was selected.
Immediately after the subject activated the grasp
motion by selecting the category, the robot takes
a few steps backward away from the table. Only
then the system is re-activated the steering and
the subject was allowed to control the robot and
navigate it towards the experimenter.

2http://y2u.be/eYSb9Q5PcP8
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During the task our system ran two classifiers
in parallel: motor (motor execution or motor im-
agery) and visual categories, the former with four
categories and the latter with three. The sub-
ject teleoperated the robot using all seven classes:
left, right, forward, null class, house, face and
tool. The longest run was 12 minutes. For each
run the subject was assigned with a different tar-
get category (face, house, or tool). During the
navigation part of the experiment, the flow of
high level commands (forward, left, right, null,
face, tool, house) was sent to the robot through
a user datagram protocol (UDP) connection with
a latency of 100-150 milliseconds using the VSF.

Figure 3: The HRP-4 humanoid robot’s state-
machine protocol for the visual-motor task.

RESULTS

Throughout the experiment we used three clas-
sifier models: motor execution, motor imagery,

and visual categories. A combination of motor
execution and visual categories was used on the
first day of the experiment, and a combination of
motor imagery and visual categories on the sec-
ond day. Estimating accuracy for the free choice
is difficult, so we provide offline evaluation of the
classification models.

Figure 4: The HRP-4 humanoid robot during a
visual-motor task, standing in front of three ob-
jects. Top: the target objects as seen from the
robot camera by the subject, bottom: the robot
performing the task, escorted by an experimenter
for robot safety.

Offline analysis of the motor classifier are based
on a single training session (Figure 5). As ex-
pected, a cue-based session with real time feed-
back using the same classifier yields similar re-
sults. More real-time data is required to assess
the difference in accuracy in TR3. The motor
execution classifier was trained and tested three
months prior to this real-time experiment and
test. Similarly, single-run motor imagery classifi-
cation accuracy results can be seen in Figure 6;
we note that the pre-recorded and real-time tests
were done 2.5 months apart.

Offline analysis of the visual classifier was per-
formed as follows. A single model was trained
on five sessions – overall 180 stimuli, each includ-
ing one category. The model was then tested in
two conditions: i) another run of 36 stimuli with
one image displayed on screen, and ii) a run of
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36 stimuli, each comprising of all three categories
displayed on the screen simultaneously. Figure 7
presents the results, indicating that while both
methods perform significantly better than chance
(33%), testing on a single image is superior to
testing on three parallel images.

Figure 5: Motor execution cue-base classifica-
tion accuracy comparison between a single pre-
recorded and a single real-time run.

Figure 6: Motor imagery cue-base classifica-
tion accuracy comparison between a single pre-
recorded and a single real-time run.

Figure 7: Cue-base classification accuracy, com-
paring single and triple frame (best run and av-
erage).

A qualitative assessment of the subject’s perfor-

mance can be provided for the free choice task.
In the motor execution experiment the subject
performed the navigation part successfully in all
four experimental sessions. In the motor imagery
experiments the subject failed to stop the robot
near the table and was only successful on the
third session.

Thus, our subject had five attempts at the visual
task: four in the motor execution conditions and
one in the motor imagery condition. The sub-
ject succeeded in all cases, but only in the second
attempt (in all of the motor execution sessions)
or in the fourth attempt (in the motor imagery
session).

The classification seemed to be skewed towards
the face category. Figure 8(A) shows several red
dots that correspond to the a successful classifi-
cation of the “face” command in each time point
during 8 TRs. However, when the subject was
instructed to focus on one of the two other cate-
gories (house or tool) there was category rivalry
between the classes. Figure 8(B) is a rivalry ex-
ample that show a fluctuation between “face” and
“house”. When category rivalry occurs, it pro-
longs the classification stage and it is harder to
get a majority vote. In other words, without ri-
valry there are less classification attempts and a
majority vote occurs quickly.

Figure 8: Visual categories real-time classifica-
tion examples. The subject was instructed to fo-
cus on a) face, b) house.

DISCUSSION

We have developed a novel paradigm, based on

5



simultaneous classification of both motor and vi-
sual brain networks, and have evaluated it in
the context of a complex navigation and object-
selection task, involving teleoperating of a hu-
manoid robot. The pilot study with one subject
served to demonstrate that our system is fully
operable, and provide a preliminary evaluation
of the paradigm. Our results indicate that the
task can be performed, although motor imagery
and visual classification are challenging. Specifi-
cally, further work is required to refine the visual
paradigm. Our offline evaluation results suggest
that training subjects on simultaneous images (in
the same fashion as the actual task) may be more
appropriate.
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