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30 Introduction

31 What is it like to control the world with your mind? Psychokinesis (“mind move-

32 ment” in Greek) is “an alleged psychic ability allowing a person to influence a

33 physical system without physical interaction” (Wikipedia). While there is no

34 evidence that such parapsychological abilities actually exist, the integration of

35 two technologies – BCI and virtual reality (VR) – now allows a wide range of

36 experiences whereby participants can control various aspects of their environment,

37 using mental effort alone.

38 This chapter is not intended as a tutorial on BCI nor as a tutorial on immersive

39 virtual reality. Rather, we focus on the outcome of bringing these two disciplines

40 together. For recent reviews on brain-computer interfaces, we recommend other

41 sources (Huggins and Wolpaw 2014; Krusienski et al. 2011; van Gerven

42 et al. 2009), and we only provide a brief introduction. In addition, we focus on

43 the human-computer interface aspects, getting into the BCI engineering aspects

44 only when they are relevant.

45 Most BCI research in humans is done with electroencephalography (EEG),

46 whereby electrodes are placed on the scalp. Neuroscientific studies overcome the

47 low signal-to-noise ratio of EEG by averaging responses of multiple subjects and

48 multiple events. BCI does not have this luxury, as it requires reasonable accuracy in

49 decoding every single trial, in real time, and thus only a small number of

50 “thought”-based interaction paradigms are possible. In the last two decades, only

51 three EEG-based paradigms have been recruited for BCI. Two of these methods,

52 P300 and SSVEP, are based on evoked potentials and are thus externally driven; i.

53 e., the interaction requires an external stimulus to be provided to the participant, and

54 the participant’s commands are inferred from the neural response to this stimulus.

55 The P300 paradigm utilizes the fact that the infrequent events to which the subject

56 is expecting, based on the so-called oddball paradigm, elicit the P300 component of

57 the event-related potential (ERP) (Donchin et al. 2000). The steady-state visually

58 evoked potential (SSVEP) paradigm utilizes the fact that when the retina is excited

59 by a flickering visual stimulus, the brain generates electrical activity at the same

60 (or multiples of) frequency (Cheng et al. 2002). Although these paradigms are

61 based on brain signals, they can be argued to be functionally equivalent to control

62 using eye gaze (Brunner et al. 2010). The third paradigm is based on subjects

63 imagining moving their left hand, right hand, or legs, which is referred to as motor

64 imagery. This paradigm is internally driven and can be used in ways that intuitively

65 map “thoughts” to functionality. However, it is limited in that it requires extensive

66 training, not everyone can use it (Guger et al. 2003), and its information transfer

67 rate is lower than the other two paradigms.
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68 In this chapter, we focus on virtual reality not only as a technology but also as a

69 conceptual framework. The early pioneer Ivan Sutherland envisioned VR as the

70 ultimate display (Sutherland 1965). Brain-computer interface, in theory, has the

71 potential to become the ultimate interaction device – just “think” of something and

72 it happens. Current state of the art in BCI is, of course, very far from that vision; at

73 the moment, BCI should be referred to as “brain reading” rather than “mind

74 reading,” i.e., it is often based on decoding brain waves rather than decoding mental

75 processes (“thoughts”). Eventually, there may be a one-to-one mapping from brain

76 waves to mental processes, but with the current recording techniques, the brain

77 patterns that can be detected are much coarser than specific thoughts.

78 The relationship between VR and BCI goes further. Recent attempts in

79 explaining the illusions that can be so powerfully induced by highly immersive

80 VR mostly rely on the sensorimotor contingencies between perception and action

81 (Slater 2009). Thus, unlike more traditional interfaces such as keyboard and mouse,

82 VR is based on body-centered interaction and on the immediate feedback that the

83 participants receive when they move their bodies. BCI, however, allows bypassing

84 the muscles and the body, allowing the brain to directly control the environment.

85 The combination of VR and BCI may thus lead to an extreme state of

86 disembodiment – the closest we can get to being a “brain in a vat” (Putnam

87 1982). Char Davies, with her VR art pieces Osmose and Ephemere, wanted to

88 challenge the “disembodied techno-utopian fantasy,” by controlling VR by breath-

89 ing – thus bringing the body back into VR (Davies and Harrison 1996; Davies

90 2004). In this sense, BCI-VR takes us a step backward: while VR attempts to bring

91 back our whole body into the digital realm, BCI attempts to bypass our bodies

92 (Friedman et al. 2009). Until recently, video games have not been played in a highly

93 immersive setup and thus have not utilized the full consequences of VR. However,

94 at the time of writing, the popularity of the low-cost VR devices suggests that this

95 may change.

96 Why is VR a natural addition for BCI? First, the reasons to use VR for BCI are

97 the same as for using VR in general: it is the best option for exploring and practicing

98 tasks in an environment that is dynamic and realistic yet controlled and safe. For

99 example, VR can be used for evaluating BCI and training paralyzed patients before

100 they attempt to use the BCI in the physical world (Leeb et al. 2007a). In addition,

101 VR can provide motivation for BCI training, which is often lengthy and tedious;

102 motivation has also been shown to play an important role in BCI used by paralyzed

103 patients (Alkadhi et al. 2005). Emotionally relevant stimuli enhance BCI, and this

104 has led some to embed faces in the visual stimuli used for SSVEP and P300 BCIs,

105 rather than just using letters or abstract symbols. Using BCI in VR is expected to

106 lead to higher emotional responses. An interesting finding relates to changes in

107 heart rate in VR BCI. In “typical” BCI, with abstract feedback, heart rate is

108 expected to decrease, but it has been found to increase in VR BCI (Pfurtscheller

109 et al. 2008); this is another evidence that VR feedback has a different physiological

110 effect on subjects than “typical” BCI.

111 While developers of both VR and BCI still face many technical challenges, both

112 fields may be at the stage of moving out from the research laboratories into the real
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113 world. At the time of this writing, low-cost VR devices are becoming available to

114 the mass market. Low-cost EEG devices, such as the Emotiv EPOC or the Interaxon

115 MUSE device, are also available. Most of these EEG devices are limited in signal

116 quality, but they may be at least partially sufficient for BCI (Liu et al. 2012). There

117 are open software platforms for BCI development and customization. The

118 OpenVibe platform may be an easy way to get started, even for nonprogrammers

119 using visual programming, and it is integrated with a VR environment (Renard

120 et al. 2010).

121 In this chapter we review over 10 years of BCI-VR research. Our focus will be

122 on human-computer interaction paradigms, and our main goal is to highlight both

123 the constraints and the opportunities of BCI and VR combined. Consequently, the

124 chapter will be divided into four themes: (i) navigation, (ii) controlling a virtual

125 body, (iii) controlling the world directly, and (iv) paradigms beyond direct control.

126 Navigation: Controlling the Viewpoint

127 Typically, our brain controls our body in an action-perception loop: the brain sends

128 commands to the muscles for generating motor movement, and sensory information

129 provides feedback to the brain regarding the resulting body motion and its effects

130 on the environment. A natural BCI paradigm would therefore aim at substituting the

131 physical body with a virtual body. Such substitution can take place in two ways.

132 The first is by allowing the participant to perform navigation – implicitly control-

133 ling the viewpoint; this can be considered a limited form of first-person view. The

134 second is by providing the VR participant with an explicit control over a virtual

135 body – an avatar.

136 A typical BCI navigation experiment follows three steps: (i) training,

137 (ii) cue-based BCI, and (iii) free choice navigation task. The training stage is

138 used to establish a first model of the user’s brain activity: the user is provided

139 with a set of discrete instructions, such as a series of left, right, and forward

140 commands, and no feedback is provided. Cue-based BCI is typically similar, but

141 since a model is already available, feedback is provided about what the system

142 “thinks” that the subject is “thinking,” after each trigger. Typically, several sessions

143 of cue-based BCI take place for further training of both the user and the classifier

144 model. Eventually, the goal is to let the users perform a task with free choice, and

145 the subject performs a navigation task. Here, we distinguish between real and fake

146 free choice; in BCI we often prefer fake free choice – we instruct the user to

147 perform specific actions throughout the session – in order to evaluate the BCI

148 performance.

149 EEG-based BCI suffers from several limitations and constraints as a user input

150 device. Although this varies among the different BCI paradigms, mostly, (i) it is

151 often not 100 % accurate, (ii) it has a long delay, (iii) it has a low information rate,

152 (iv) it requires extensive training, (v) some users cannot perform BCI despite

153 training, (vi) it is difficult to recognize the non-control state, and (vii) it is often

154 synchronous, i.e., the initiation of action and timing are driven by the software.
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155 Most studies to date in BCI-VR used BCI for navigation. The first ever BCI

156 navigation experiment tested whether it can be used in a flight simulator (Nelson

157 et al. 1997). Subjects were trained to control a plane on a single axis in a wide field

158 of view dome display, using a combination of EEG and electrical signals from the

159 muscles – electromyogram (EMG).

160 In the years 2004–2006, I was fortunate to take part in a set of BCI navigation

161 studies in immersive VR (Friedman et al. 2007a; Leeb et al. 2006; Pfurtscheller

162 et al. 2006). We have integrated the Graz BCI, based on motor imagery, with the

163 VR cave automatic virtual environment (CAVE)-like system (Neira et al. 1992) in

164 UCL, London. We have explored several scenarios. For example, one study

165 included a social scenario whereby the subject sits in a virtual barroom, various

166 virtual characters talk to the subject, and he or she has to rotate left or right to face

167 the character speaking. Rotation was achieved by left- and right-hand imagery, and

168 as a result the virtual bar was rotated. The reason we have eventually focused on a

169 navigation task is that it seemed to provide the best motivation – subjects were

170 competitive and wanted to reach down the virtual street further each time.

171 Three subjects, already trained with the Graz BCI, performed BCI tasks with

172 three different setups: (i) abstract feedback, (ii) head-mounted display (HMD), and

173 (iii) the CAVE-like system, over a duration of 5 months. In order to assess the

174 impact of the interface on BCI performance, the subjects all went through the order

175 – abstract feedback, HMD, CAVE, HMD, abstract feedback. In order to be able to

176 determine BCI performance, the navigation experiment was trigger based (this is

177 what we referred to as “fake free choice”): the subjects received one of two cues,

178 “walk” or “stop,” and had to respond by feet or right-hand imagery, correspond-

179 ingly. If the cue was “walk” and they correctly activated feet imagery, they moved

180 forward; otherwise, if they activated hand imagery, they stayed in place. If the cue

181 was “stop” and they correctly activated hand imagery, they stayed in place, and if

182 they incorrectly activated feet imagery, they moved backward. Thus, the distance in

183 the virtual street served as a measure of BCI performance AU3(https://www.youtube.

184 com/watch?v=QjAwmSnHC1Q). This study did not find any consistent perfor-

185 mance trend related to the type of interface (abstract, HMD, or CAVE), but the

186 event-related synchronization (ERS) was most pronounced in the CAVE

187 (Pfurtscheller et al. 2006).

188 Self-paced, asynchronous BCI is more difficult, since the system needs to

189 recognize the non-control (NC) state. Leeb et al. first attempted experimenter-

190 cued asynchronous BCI, i.e., the subject was cued when to rest (move into NC

191 state) and when to move (Leeb et al. 2007c). Five participants navigated in a highly

192 immersive setup in a model of the Austrian National Library, using binary classi-

193 fication: one motor imagery class was selected as the most accurate one in training –

194 left hand, right hand, or feet – and this was compared with NC or no activation. The

195 results indicate a very low false-positive rate of 1.8–7.1 %, but the true-positive rate

196 was also low: 14.3–50 %. The authors suggest that the main challenge in this

197 specific study was that keeping imagery for long durations is very difficult for

198 subjects.
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199 Self-paced BCI navigation based on motor imagery was demonstrated for

200 controlling a virtual apartment (Leeb et al. 2007b). Although successful, we also

201 provide details of the limitations of this study, in order to highlight the limitations of

202 BCI, referred to above. After training, subjects performed a free choice binary

203 navigation (left hand vs. right hand). Walking was along predefined trajectories,

204 subjects had to reach specific targets, but the left/right decisions were made freely.

205 Motor imagery recognition was based on offline processing of a training session,

206 taking the duration between 1.5 s and 4.5 s after the trigger. Separating motor

207 imagery from the NC state in real time was done as follows: classification took

208 place at the sample rate, 250 Hz, and only a unanimous classification over a period

209 of 2 s resulted in an action. This study allowed estimating the delay required to

210 classify motor imagery – between 2.06 s and 20.54 s with a mean of 2.88 s and

211 standard deviation (SD) of 0.52 s. The delay was slightly shorter than in cue-based

212 BCI – 3.14 s. Performance in VR was better than cue-based BCI with abstract

213 feedback, and there were no significant differences between a desktop-based virtual

214 environment and an immersive virtual environment (a “power wall” setup) in BCI

215 performance. Despite extensive training, two out of nine subjects were not able to

216 perform the task, and for the rest, mean error was between 7 % and 33 %.

217 In Leeb et al. (2007a), we showed that a tetraplegic patient could also navigate

218 immersive VR, in the UCL CAVE-like system, in a self-paced study. The subject

219 was trained over 4 months with the Graz BCI until he reached high performance

220 with one class – activating 17 Hz imagining feet movement. Classification was

221 achieved with a simple threshold on the bandpower of a single EEG channel near

222 Cz for determining “go” or NC. Since the subject’s control was very good, there

223 was no dwell time (minimum time over threshold to activate motion) or refractory

224 period (minimum time between two activations). The virtual environment included

225 moving along a straight line and meeting virtual female characters on the way

226 (https://www.youtube.com/watch?v=cu7ouYww1RA). The subject performed

227 10 runs with 15 avatars each and was able to stop in front of 90 % of the avatars.

228 The average duration of motor imagery periods was 1.58 s +� 1.07 s, the maximum

229 5.24 s, and the minimum 1.44 s.

230 In a post-experimental interview, the subject indicated that the VR experience

231 was significantly different than his previous BCI training: “It has never happened

232 before, in the sense of success and interaction. I thought that I was on the street and I

233 had the chance to walk up to the people. I just imagined the movement and walked

234 up to them. However, I had the sensation that they were just speaking but not

235 talking to me. . .” He said that he had the feeling of being in that street and forgot

236 that he was in the lab and people were around him. “Of course the image on the

237 CAVE wall didn’t look like you or me, but it still felt as if I was moving in a real

238 street, not realistic, but real. I checked the people (avatars). We had 14 ladies and

239 1 man” (actually, there were 15 female avatars).

240 Scherer et al. demonstrated a self-paced four-class motor imagery BCI for

241 navigating a virtual environment (Scherer et al. 2008). They combine two classi-

242 fiers: one “typical,” separating among left-hand, right-hand, and feet imagery, and

243 another to detect motor imagery-related activity in the ongoing EEG. They selected
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244 the three top subjects out of eight who performed training, and after three training

245 sessions, they were able to perform cue-based two-class BCI with 71 %, 83 %, and

246 86 %. The second classifier used two thresholds – one for switching from inten-

247 tional control (IC) to non-control (NC) and another to switch from NC to IC. The

248 thresholds were applied to the LDA classifier’s output vectors. The task was to

249 navigate a virtual environment and reach three targets, including obstacle avoid-

250 ance. The second classifier, separating NC and IC, resulted in performance of 80 %,

251 75 %, and 60 %. The mean true-positive (TP) rates for 8 s action period were 25.1 %

252 or 28.4 %. Adapting the thresholds can yield a higher TP rate but at the cost of more

253 false-positives (FPs). Again, we see that keeping motor imagery for long durations

254 is difficult for subjects.

255 Given the limitation of motor imagery for BCI, Lotte et al. suggested an

256 improvement in the control technique (Lotte et al. 2010): the navigation commands

257 were sorted in a binary tree, which the subjects had to traverse using self-paced

258 motor imagery – left and right to select from the tree and feet for “undo.” One

259 branch of the tree allowed selection of points of interest, which were automatically

260 generated based on the subject’s location in the VE. Using this interface, users were

261 able to navigate a large VR and were twice faster than when using low-level,

262 “traditional” BCI.

263 Most BCI-VR navigation studies are aimed at improving the navigation perfor-

264 mance. Only a few studies investigate scientific issues around this fascinating setup.

265 In one such example, we compared free choice with trigger-based BCI in the CAVE

266 (Friedman et al. 2010). Ten subjects were split into two conditions: both used left-

267 hand and right-hand imagery to navigate in a VR, but one condition was instructed

268 at each point in time what “to think” and the other condition was not. The subjects

269 in the control condition, which was cue-based, performed significantly better. Post-

270 experimental interviews may have revealed the reason – the subjects were used to

271 being conditioned by the trigger-based training. This highlights the fact that BCI

272 training under strict conditions, while necessary to achieve a good classifier model,

273 might result in mistraining with respect to the target task, which is typically

274 un-triggered.

275 Larrue et al. compared the effect of VR and BCI on spatial learning (Larrue

276 et al. 2012). Twenty subjects navigated a real city, 20 subjects navigated a VR

277 model of the city using a treadmill with rotation, and eight subjects navigated the

278 same model using BCI. Surprisingly, spatial learning was similar in all conditions.

279 More studies of this type are needed if we want to understand how BCI interacts

280 with cognitive tasks; for example, one limitation of this study is that the BCI

281 required much more time than in the other conditions.

282 Controlling a Virtual Avatar

283 VR navigation is equivalent to controlling the virtual camera. This is equivalent to

284 the trajectory of the viewpoint from your eyes when you walk or drive in the

285 physical world. In the physical world, however, you also have a body. In video

Brain-Computer Interfacing and Virtual Reality 7



286 games, controlling the camera directly is often referred to as “first-person view,”

287 but this is misleading. If you look at yourself now, you will (hopefully) not only see

288 the world around you but also see a body (albeit without a head, unless you are

289 looking at the mirror). The sensation of our own body is so natural that we often

290 forget it, but body ownership has been shown to be highly important for the

291 illusions induced by VR (Maselli and Slater 2013). In this section we focus on

292 studies whereby the visual feedback for the BCI involves a virtual body. Such an

293 experience can be regarded as a radical form of reembodiment; it is as if the system

294 disconnects your brain from your original body and reconnects your brain to control

295 a virtual body.

296 Lalor et al. (2005) demonstrated SSVEP control of a virtual character in a simple

297 video game: the subjects had to keep the balance of a tightrope walking character

298 with two checkerboard SSVEP targets. Whenever the tightrope loses balance, a 3 s

299 animation is played, and the subject has to attend to the correct checkerboard to

300 shift the walker to the other side. Thus, the game consists of multiple mini-trials, in

301 controlling two SSVEP targets, with a video game context instead of abstract

302 feedback.

303 Lalor et al.’s study was a first step, but it did not attempt to provide the subjects

304 with a sense of body ownership, and it was based on arbitrary mapping: gazing at a

305 checkerboard to shift the balance of the character. We have performed a study

306 aimed at checking ownership of a virtual body using motor imagery BCI (Friedman

307 et al. 2007b, 2010). Since this study took place in a CAVE-like system, we opted for

308 third-person embodiment: the subjects sat down on a chair in the middle of the

309 CAVE room and saw a gender-matched avatar standing in front of them, with their

310 back toward the subjects. In one condition the subjects used feet imagery to make

311 the avatar walk forward and right-hand imagery to make the avatar wave its arm,

312 and in the other condition, the control was reversed: hand imagery caused walking

313 and feet imagery caused arm waving. After several training sessions with abstract

314 feedback, three subjects performed the task in eight sessions – four normal and four

315 reversed, in interleaved order. We expected the more intuitive mapping to result in

316 better BCI performance, but the results were not conclusive – one of the subjects

317 did even better in the reverse condition; more studies, with a larger number of

318 subjects, are required to establish the effect of intuitive vs. nonintuitive mapping

319 between imagery and body motion. During the experiment, we have deliberately

320 avoided setting any expectations in the subject regarding body ownership – e.g., in

321 our instructions, we referred to “feet” rather than to “the avatar’s feet” or “your

322 avatar’s feet.” Anecdotally, we have witnessed that one of the subjects, as the

323 experiment progressed, started referring to her avatar as “I” instead of “she.”

324 A more systematic experiment was carried out by Perez-Marcos et al., intended

325 to induce a virtual hand ownership illusion with BCI (Slater et al. 2009). In the

326 rubber hand illusion (Botvinick and Cohen 1998), tactile stimulation of a person’s

327 hidden real hand in synchrony with touching a substitute rubber hand placed in a

328 plausible position results in an illusion of ownership of the rubber hand. This

329 illusion was reconstructed in virtual reality (Slater et al. 2008), and even a full

330 body illusion was achieved (Ehrsson 2007; Marcos et al. 2009). In the BCI version
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331 of this setup, 16 participants went through left-hand vs. right-hand imagery BCI

332 training without receiving any feedback. In the VR stage subjects had their real arm

333 out of view in a hollow box while wearing stereo goggles in front of a “power wall.”

334 The subjects saw a virtual arm and used left-hand imagery to open its fingers and

335 right-foot imagery to close the fingers into a fist. Eight subjects experienced a

336 condition whereby motor imagery was correlated to the virtual hand movement, and

337 eight subjects went through a control condition, in which the virtual hand motion

338 was uncorrelated with the motor imagery. The strength of the virtual arm ownership

339 illusion was estimated from questionnaires, EMG activity, and proprioceptive drift,

340 and the conclusion was that BCI motor imagery was sufficient to generate a virtual

341 arm illusion; this is instead of the “classic” method for inducing the illusion, which

342 is based on synchronous stimulation of the real and virtual arm.

343 Evans et al. showed that reduced BCI accuracy, resulting in a lower sensory

344 feedback, results in a decrease in the reported sense of body ownership of the virtual

345 body (Evans et al. 2015). Their results also suggest that bodily and BCI actions rely

346 on common neural mechanisms of sensorimotor integration for agency judgments,

347 but that visual feedback dominates the sense of agency, even if it is erroneous.

348 The combination of VR, BCI, and body ownership is a promising avenue toward

349 stroke rehabilitation. While BCI and rehabilitation are an active area of research

350 (Huggins and Wolpaw 2014), we are only aware of one study attempting to

351 combine these necessary ingredients (Bermúdez et al. 2013). The authors describe

352 a non-immersive desktop-based setup, which includes a first-person view with only

353 virtual arms visible. They compared among several conditions: passive observation

354 of virtual hand movement, motor activity, motor imagery, and simultaneous motor

355 activity and imagery. The BCI phase included three conditions: left arm stretching,

356 right arm stretching, and none. Unfortunately, the subjects were asked to imagine

357 the avatar moving its hands, rather than imagine moving their own hand, which

358 rules out virtual body ownership. In addition, BCI performance results are not

359 reported. We support the authors’ assumption that the combination of motor

360 imagery and movement is likely to recruit more task-related brain networks than

361 in the rest of the conditions, making such a setup promising for rehabilitation.

362 More recently, we have performed several studies using a BCI based on func-

363 tional magnetic resonance imaging (fMRI) to control avatars. FMRI is expensive, is

364 much less accessible than EEG, and suffers from an inherent delay and low

365 temporal resolution, since it is based on blood oxygen levels rather than directly

366 on electrical brain activity. Nevertheless, fMRI, unlike EEG, has a high spatial

367 resolution: in our typical study using a 3 T fMRI scanner, we perform a whole brain

368 scan every 2 s, and each scan includes approximately 30,000 informative voxels.

369 Our studies aim to show that despite its sluggish signal, fMRI can be used for BCI.

370 We suggest that this method would be extremely useful in BCI for paralyzed

371 patients; due to the limitations of noninvasive BCIs (based on EEG or functional

372 near-infrared spectroscopy – fNIRS), there is a growing effort to opt for invasive

373 BCIs (Hochberg et al. 2012). We suggest that prior to surgery, fMRI-BCI can be

374 used for identifying new mental strategies for BCI, localizing brain areas for

375 implants, and training subjects.
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376 In our studies we have allowed subjects to control a virtual body from a third-

377 person perspective (Cohen et al. 2014b) (https://www.youtube.com/watch?v=
378 rHF7gYD3wI8), as well as a robot from first-person perspective (Cohen

379 et al. 2012) (https://www.youtube.com/watch?v=pFzfHnzjdo4). In our experi-

380 ments the subject, lying down in the fMRI scanner, sees an image projected on a

381 screen (e.g., Fig. 1). We do not use stereoprojection, but since the screen covers

382 most of the field of view, the experience is visually immersive. Our subjects were

383 able to perform various navigation tasks, including walking a very long footpath in

384 the jungle (Video: https://www.youtube.com/watch?v=PeujbA6p3mU). Our first

385 version was based on the experimenter locating regions of interest (ROIs)

386 corresponding to left-hand, right-hand, and feet imagery or movement and a simple

387 threshold-based classification scheme (Cohen et al. 2014b). Recently, we have

388 completed an improved version of fMRI-based BCI, based on machine learning,

389 using information gain (Quinlan 1986) for feature (voxel) selection and a support

390 vector machine (SVM) classifier (Cohen et al. 2014a). This allowed us to test more

391 complex navigation tasks and shorten the delay; we show that subjects can control a

Fig. 1 The subject lying down in the fMRI scanner (top) sees an avatar lying down in a virtual

fMRI scanner (bottom) and controls it using motor movement or imagery
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392 four-class (left hand, right hand, feet, or NC state) BCI with a 2 s delay with very

393 high accuracy.

394 In addition to proving that fMRI-BCI is possible, these studies provided new

395 insights on motor imagery-based BCI. A few anecdotal results came from repeated

396 administration of body ownership questionnaires to the subjects after each exper-

397 imental session. In one study in which the subjects had to navigate toward a balloon

398 (Fig. 2a) (https://www.youtube.com/watch?v=l1yMd_UFp5s), questionnaires

399 revealed that sense of body ownership over the avatar was significantly higher

400 when using motor imagery as compared to using motor execution for BCI. In

401 another study in which the subjects had to navigate along a footpath (Fig. 2b),

402 subjects seemed to be significantly more confused about their body ownership when

403 the delay was reduced to 2 s; this difference was nearly significant for the question,

404 “I was aware of a contradiction between my virtual and real body,” and significant

405 for the question, “It felt like I had more than one body.”

406 Due to fMRI’s superior spatial resolution over EEG, it can highlight the differ-

407 ences between motor execution and motor imagery. Figure 3 compares voxels

408 captured by information gain against voxels captured by a general linear model

409 (GLM) analysis, which is typically used in fMRI studies to obtain brain activation

410 patterns. Since each method captures voxels differently, with different thresholds,

411 the figures cannot be directly compared; however, inspection suggests pre-motor

412 cortex activation in motor imagery whereas motor execution was mostly based on

413 the specific body representations in primary motor cortex. In addition, the differ-

414 ential activations were much stronger using motor execution as compared to motor

415 imagery. Figure 4 shows classification results over time comparing motor execution

416 and imagery, showing that using imagery classification accuracy drops faster than it

417 does when using motor execution. The results are based on tenfold cross validation

418 of 150 cues, 50 from each class: left hand, right hand, and feet.

419 Taken together, these findings suggest that people find it hard to activate motor

420 imagery and especially to keep it active for long durations. Our evidence from

421 fMRI-based BCI thus corresponds to similar evidence obtained in EEG-based BCI.

422 This indicates that these challenges in activating motor imagery are most likely not

423 the result of the limitations of the specific recorded signals but an inherent difficulty

Fig. 2 Snapshots from the fMRI navigation studies: the subjects had to navigate toward a balloon

(a) or along a trail (b)
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424 in motor imagery. In another study using real-time fMRI, we suggest that there are

425 significant differences in the ways different brain areas lend themselves to internal

426 control (Harmelech et al. 2014); this was demonstrated in the context of

427 neurofeedback, but should equally apply to BCI. Using fMRI, we may be able to

428 extend the repertoire of BCI interaction paradigms and to find the paradigms that

429 are easiest for subjects.

430 Controlling the World Directly

431 In the previous sections, we discussed navigation and virtual reembodiment – using

432 BCI to control a virtual body or its position – these interaction paradigms are based

433 on how we interact with the physical world. But in VR we can go beyond – why not

434 control the world directly?

435 As an example of a practical approach, consider using a P300 BCI matrix to

436 control a room in VR (Edlinger et al. 2009). This is a simulation of the scenario

437 whereby a paralyzed patient can control a smart home. Such as setup can allow

Fig. 3 A subset of corresponding slices from S1. The left column shows the GLM contrast (right,

left, forward) > baseline (thresholds: t = 4.6 for MM and t = 3.2 for MI), and the right column

shows the 1024 voxels with highest information gain selected by our algorithm. The top row shows

imagery and the bottom row shows motor movement
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438 people to rapidly select the specific command out of many different choices. The

439 study suggests that more than 80 % of the healthy population could use such a BCI

440 within only 5 min of training. In a further study this approach was improved using a

441 hybrid approach: SSVEP was used to toggle the P300 BCI on and off, in order to

442 avoid false-positive classifications (Edlinger et al. 2011).

443 Using this approach, the P300 matrix serves as a BCI remote control. While this

444 is a practical approach, it goes against VR philosophy. Even the best BCI requires

445 several seconds of attention to the P300 matrix for each selection, which is outside

446 the VR display. This greatly reduces the sense of being present in the VR, as

447 demonstrated in another study by the same authors, after they noted that the subjects
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448 reported a very low sense of presence (Heeter 1992; Lombard and Ditton 1997;

449 Sanchez-Vives and Slater 2005; Slater 1993; Witmer and Singer 1998) in post-

450 experiment questionnaires. In this follow-up study (Groenegress et al. 2010), post-

451 experiment questionnaires revealed that subjects reported a significantly higher

452 sense of presence in a gaze-based interface as compared with the P300 interface,

453 for controlling the same virtual apartment in the same VR setup.

454 In-place Control

455 Given the limitations arising of having the P300 or SSVEP targets outside the VR,

456 several attempts were made to embed the target visual stimuli more naturally into

457 the VR scene. Imagine what it would be like if you could just focus on an object

458 around you and thereby activate it. In fact, one of the first ever BCI-VR studies used

459 this approach by turning the traffic lights in a driving simulation into P300 targets

460 (Bayliss and Ballard 2000; Bayliss 2003). The setup included a modified go-cart

461 and an HMD. Red stoplight was used as the P300 oddball task: most lights were

462 yellow, and the subject was instructed to ignore green and yellow lights and detect

463 red light, which were less frequent.

464 Donnerer and Steed (Donnerer and Steed 2010) embedded P300 in a highly

465 immersive CAVE-like system and compared three paradigms: (i) spheres arranged

466 in an array, (ii) different objects cluttered around the virtual room, and (iii) tiles –

467 different areas of the virtual world can be selected, instead of objects. Each sphere,

468 object, or tile flashed separately in order to enable its selection by the subject’s P300

469 response, after eight flashes (16 in the training phase). The setup was successful but

470 results do not show very high accuracy. In addition, the interaction is relatively

471 slow, since sequential flashing of the stimuli is required, as opposed to SSVEP.

472 Faller et al. have developed such a system using SSVEP, in order to control VR

473 and even augment reality (Faller and Leeb 2010; Faller et al. 2010). They have

474 achieved high classification results using just two occipital electrodes – O1 and O2.

475 They demonstrate three applications, but in all of them, the BCI is used for

476 navigation rather than for controlling the world. They report an average number

477 of true-positive (TP) events of 8.5, 7.1, and 6.5 per minute.

478 In a similar study Legeny et al. also demonstrated BCI navigation with embed-

479 ded SSVEP targets (Legény et al. 2011). They have attempted a more natural

480 embedding, which they call mimesis: rather than controlling buttons or arrows,

481 the SSVEP cues were embedded inside the wings of butterflies. Three butterflies

482 kept hovering around the middle of the screen and were used for navigating

483 forward, left, or right. The wings changed color for SSVEP stimulation and also

484 flapped their wings; the latter did not interfere with SSVEP classification. Feedback

485 about the level of BCI confidence toward one of the classes (distance from

486 separating the hyperplane used by LDA classifier) was also provided in the appear-

487 ance of the butterflies’ antennas. Since the BCI was self-paced, such feedback is

488 useful, especially when none of the classes are activated. The study was carried out

489 in a 2� 2 design: overlay/mimesis and feedback/no feedback. Their results indicate
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490 that overlay was significantly faster than mimesis, mimesis resulted in higher sense

491 of presence, and feedback had no effect on the sense of presence. The mimesis

492 interaction increased subjective preference and sense of presence, but reduced

493 performance in terms of speed, as compared with a more “standard” SSVEP overlay

494 interface.

495 The studies by Faller et al. and Legeny et al. used in-place SSVEP, but only for

496 navigation. In my lab we have also developed such in-place SSVEP, but our

497 interaction approach is different – we are interested in using BCI to activate

498 arbitrary objects in the virtual world, as a form of virtual psychokinesis. We have

499 developed a generic system that allows easily turning any object in a 3D scene in

500 the Unity game engine into an SSVEP target. A Unity script is attached to the

501 object, which makes it flicker at a given frequency. Another script connects to the

502 BCI system using user datagram protocol (UDP), assigns different frequencies to

503 different objects, and activates objects in real time based on classifier input. We

504 have shown that this software implementation of SSVEP allows for very high

505 classification rates and robust BCI control.

506 Given the novel aspect of this interface, we have decided to allow participants to

507 experience a “psychokinesis”-like experience, without telling them that they have

508 such “powers.” We have conducted an experiment in which subjects controlled a

509 brain-computer interface (BCI) without being aware that their brain waves were

510 responsible for events in the scenario. Ten subjects went through a stage of model

511 training in steady-state visually evoked potential (SSVEP)-based BCI, followed by

512 three trials of an immersive experience where stars moved as a response to SSVEP

513 classification. Only then the subjects were explained that they were using a BCI,

514 and this was followed by an additional trial of immersive free choice BCI and a final

515 validation stage. Three out of the ten subjects realized that they controlled the

516 interface, and these subjects had better accuracy than the rest of the subjects and

517 reported a higher sense of agency in a post-study questionnaire (Giron and Fried-

518 man 2014).

519 Furthermore, our study shows that subjects can implicitly learn to use a SSVEP-

520 based BCI (Giron et al. 2014). The SSVEP stimuli were presented in a pseudoran-

521 dom order in an immersive star field virtual environment, and the participants’

522 attention to the stimuli resulted in stars moving within the immersive space (Fig. 5).

523 Participants were asked to view four short clips of the scene and try to explain why

524 the stars were moving, without being told that they are controlling a BCI. Two

525 groups were tested: one that interacted implicitly with the interface and a control

526 group in which the interaction was a sham (i.e., the interface was activated

527 independently of the participants’ attention, with the same response frequency).

528 Following the exposure to the immersive scene, the participants’ BCI accuracy was

529 tested, and the experiment group showed higher accuracy results. This finding may

530 indicate that implicit SSVEP BCI interactions are sufficient in inducing a learning

531 effect for the skill of operating a BCI.
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532 Hybrid Control

533 Due to its limitations, a promising direction for BCI is to be used as an additional

534 input channel complementing other interaction devices, rather than replacing them.

535 This is true for able-bodied users – BCI cannot compete with keyboard, mouse, or

536 similar devices in terms of information rate and accuracy. A similar case can be

537 made for paralyzed patients: BCI does not need to compete with other assistive

538 technologies, but can be part of a basket of solutions, such that patients can leverage

539 whatever muscle control works best for them, in parallel to using the brain waves as

540 an input signal.

541 Leeb et al. demonstrated a hybrid BCI for skiing in a CAVE-like system:

542 steering with a game controller and jumping (to collect virtual fish targets) with a

543 feet motor imagery BCI (Leeb et al. 2013). The joystick controller did not deteri-

544 orate BCI performance. The BCI was continuous, based on crossing a threshold for

545 0.5–1.5 s. The threshold was defined for each subject as the mean plus one standard

546 deviation of the classifier output during the time of the fixation cross, and the dwell

547 time was selected as half of the time over this threshold during the imagery period.

548 The detected events were transferred into control commands for the feedback. After

549 every event, a refractory period of 4 s was applied during which event detection was

550 disabled. The study compared using a push button (94–97 % success) with BCI

551 (45–48 % success).

552 Another form of hybrid BCI involves the combination of two or more BCI

553 paradigms simultaneously. For example, Su et al. used two-class motor imagery for

554 navigation of a virtual environment and P300 over five targets for controlling a

555 device (Su et al. 2011). The control was toggled between P300 and motor imagery

556 rather than simultaneous, and the toggle was automatically activated based on the

557 subject’s location inside the virtual environment: the subject used motor imagery to

558 navigate a virtual apartment and the P300 to control a virtual TV set. Subjects

Fig. 5 The star field experience, responding to SSVEP-based BCI unbeknown to subjects
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559 reported that hybrid control was more difficult than standard BCI, but showed no

560 drop in performance.

561 Beyond Control

562 So far, we have discussed BCI for direct control of VR, but BCI technologies also

563 allow to be used for other closed-loop interaction paradigms. For example, aspects

564 of the user’s cognitive and emotional state can be computed online, and the

565 application can be adapted accordingly. Applications that are based on automatic

566 recognition of emotions have been studied extensively in the field of affective

567 computing (Picard 1997). A more recent term is passive BCIs, referring to appli-

568 cations that respond to online cognitive monitoring (Zander and Kothe 2011).

569 Despite the great promise of this field, there is very little work, and almost none

570 involving VR.

571 One question is how to extract emotional and cognitive state from brain signals;

572 this is a major challenge that is still open (Berka et al. 2004; Liu et al. 2011). The

573 other challenge is how to adapt the application to the feedback; in the context of

574 VR, this opens up opportunities for new types of experiences. In one such creative

575 example, affective mood extracted from online EEG was coupled to the avatar in

576 the massive multiuser game World of Warcraft (Plass-Oude Bos et al. 2010). The

577 parietal power of the alpha band was mapped to shape shifting between animal

578 forms in the fantasy world: e.g., increase in parietal alpha is related to relaxed

579 readiness and thus was mapped in the game world to transforming to an elf. The

580 authors do not validate or evaluate the brain activity or the accuracy of the BCI but

581 provide some useful lessons regarding interaction – for example, they use hysteresis

582 and some dwell time in order to avoid shape-shifting too frequently.

583 Finally, Gilroy et al. suggest a new interaction technique incorporating empathy

584 derived from brain signals which drives interactive narrative generation (Gilroy

585 et al. 2013). Subjects used EEG neurofeedback, based on frontal alpha asymmetry

586 (Coan and Allen 2004; Davidson et al. 1990), to modulate empathic support of a

587 virtual character in a medical drama, and their degree of success affected the

588 unfolding of the narrative. FMRI analysis also showed activations in associated

589 regions of the brain during expression of support. This study demonstrates that there

590 are yet many opportunities for integrating real-time information from brain activity

591 into virtual environments and VR. While some progress can be made with periph-

592 eral physiological signals, such as heart rate and its derivatives, electrodermal

593 activity (EDA, “sweat response”), or EMG (indicating muscle activity), the infor-

594 mation from the central nervous system is expected to contain more information.

Brain-Computer Interfacing and Virtual Reality 17



595 Conclusion and Future Directions

596 BCI still faces many challenges, but it has matured, especially over the last decade.

597 There is now growing interest in getting BCI out of the laboratory and into real-

598 world applications. For paralyzed patients the goal is restoring basic communica-

599 tions and control abilities. For able-bodied participants, it seems that the greatest

600 potential is in hybrid BCI and passive BCI. In all cases VR is a natural partner

601 for BCI.

602 Due to the limitations of EEG, there is an effort in exploiting other brain signals.

603 For medical applications, methods such as fMRI and electrocorticogram (ECoG)

604 hold much promise for moving BCI forward. For other applications the devices

605 need to be low cost and noninvasive. FNIRS may allow for novel BCI paradigms,

606 instead or in addition to EEG. Furthermore, we see potential in combining brain

607 signals with other signals, such as from the autonomous nervous system – heart rate

608 and its derivatives, electrodermal activity, and respiration – as well as eye tracking.

609 It remains to be seen whether the value of these joint signals would be greater than

610 their sum and if so how this value can be translated into new interaction paradigms

611 and applications.

612 The combination of VR and BCI offers radically new experiences. Since both of

613 these fields are young, especially BCI, we have only scratched the surface, and we

614 have barely begun to study the resulting psychological impact and user experience.

615 Each breakthrough in BCI would allow us to provide VR participants with novel

616 experiences.
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