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Abstract
Objective. We have developed a brain–computer interface (BCI) system based on real-time
functional magnetic resonance imaging (fMRI) with virtual reality feedback. The advantage of
fMRI is the relatively high spatial resolution and the coverage of the whole brain; thus we
expect that it may be used to explore novel BCI strategies, based on new types of mental
activities. However, fMRI suffers from a low temporal resolution and an inherent delay, since
it is based on a hemodynamic response rather than electrical signals. Thus, our objective in this
paper was to explore whether subjects could perform a BCI task in a virtual environment using
our system, and how their performance was affected by the delay. Approach. The subjects
controlled an avatar by left-hand, right-hand and leg motion or imagery. The BCI classification
is based on locating the regions of interest (ROIs) related with each of the motor classes, and
selecting the ROI with maximum average values online. The subjects performed a cue-based
task and a free-choice task, and the analysis includes evaluation of the performance as well as
subjective reports. Main results. Six subjects performed the task with high accuracy when
allowed to move their fingers and toes, and three subjects achieved high accuracy using
imagery alone. In the cue-based task the accuracy was highest 8–12 s after the trigger, whereas
in the free-choice task the subjects performed best when the feedback was provided 6 s after
the trigger. Significance. We show that subjects are able to perform a navigation task in a
virtual environment using an fMRI-based BCI, despite the hemodynamic delay. The same
approach can be extended to other mental tasks and other brain areas.

Keywords: fMRI, BCI, avatar

(Some figures may appear in colour only in the online journal)

1. Introduction

Brain–computer interfaces (BCIs) allow people to interact
with external devices using their thought alone. Most BCI
research is aimed at helping patients with severe nervous-
system damage including spinal cord injuries and stroke,
and the goal is to provide such patients with some levels of
communication, control of external devices, and mobility.

BCI can be invasive, using electrocorticography (e.g. [1])
and intracortical neural implants (e.g. [2–4]). Non-invasive
BCIs are often based on electroencephalography (EEG). Non-
invasive BCI-controlled navigation have been demonstrated
using mainly three major EEG-based BCI paradigms: the
steady state visually-evoked potential (SSVEP), the P300

wave, and motor imagery (MI). SSVEP-based BCIs were
used to control virtual environments [5, 6], mobile robots
[7, 8], manipulators [9], a wheelchair [10], and recently,
humanoid robots [11, 12]. P300 is typically used for spelling
application, but was also used in several virtual environment
studies [13, 14].

Because they rely on visual evoked responses, both
SSVEP and P300 can be compared to eye-tracking systems:
they provide similar functionality and suffer from similar
limitations. MI has also been used for EEG-based BCI;
imagination of movement evokes brain networks that are
similar to the networks evoked by real execution of the
corresponding physical movement [15]. A series of studies
were carried out with MI based navigation of highly-immersive
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virtual reality [16–19] including experiments with a tetraplegic
patient [20].

fMRI-based BCI is promising for several reasons.
Although it is expensive, fMRI is a risk free procedure, unlike
invasive methods. Due to the superior spatial resolution fMRI
may be used to classify a much wider set of mental patterns
than EEG, and thus fMRI-based BCI may allow exploring
new BCI paradigms. While the temporal resolution of fMRI is
significantly lower than EEG, in practice the difference might
not be so dramatic. EEG has a high temporal resolution, but
due to the low spatial resolution the classification requires a
time window, which in practice results in a delay of several
seconds. For example, SSVEP-based BCIs, which have the
highest bit rate among EEG-based methods, provide the best
results with a 3.4 s delay [21]. If successful, attempts can
be made to localize underlying brain patterns and transfer the
paradigms back to other, more accessible signals, such as EEG,
near-infrared spectography (NIRS) [22, 23], and hybrid EEG-
NIRS-based BCIs [24]. fMRI-based BCI can also be used for
training patients in BCI (e.g. before surgery), for rehabilitation
sessions, or for next generation neurofeedback—in all these
cases very specific brain areas may be targeted. In addition,
smaller, less expensive and portable fMRI devices may become
available [25].

Real-time fMRI has been suggested for various
applications [26]. Typically, real-time fMRI is used as a form of
neurofeedback, i.e., the raw signal values from a specific region
of interest (ROI) in the brain are visualized on the screen,
either as a bar or as a time-course plot. The subject uses a
mental strategy to increase or decrease the activity in the target
brain region. Berman et al [27] found that subjects quickly
gained the ability to self-modulate their primary motor cortex
by using finger tapping, in contrast to using tapping imagery.
Similar strategies involved using continuous feedback [28–30]
or intermittent feedback [31]. Such neurofeedback sessions are
different from BCI in several ways. First, the goal is different:
in neurofeedback the goal is to train the subjects to modulate
their brain activity, whereas in BCI the goal is to allow subjects
to control an external device by thought. In BCI the subject
has to toggle among two or more different mental patterns,
in a relatively fast pace, in order to control the environment.
In neurofeedback most of the effort is done by the subject,
and the system is used only for visualizing the brain signals,
whereas BCI systems include algorithms for processing the
brain signals and mapping them into specific actions taken by
the external device, in real time. In the last few years, there
have been a few attempts at fMRI-based BCI systems, beyond
neurofeedback. Subjects were able to move a computer cursor
[32, 33], balance an inverted pendulum [34], control a robotic
arm [35–37], and a wheeled robot [38]. Our main contributions
in this paper are the comparison of cue-based and free-choice
tasks, the systematic analysis of several time delays, and the
analysis of subjective responses to controlling an avatar by
thought.

Using the same approach and system as described here,
we have performed a pilot study whereby subjects were able to
control a humanoid robot [39]. In this study we go beyond the
robotic pilot study, which was intended to verify technical

feasibility. We provide a subject with the sense of being
embodied in a 3D avatar while performing a task in a virtual
environment. Since one of the main hurdles in fMRI is the
temporal delay, we introduce the concept of time to feedback
(TTF) and study it systematically. Since the BOLD signal lags
after the mental activity by a few seconds, we assume that a
classification result obtained at time t relates to the subject’s
intentions at time t − d, where d is the magnitude of the delay.
Thus, even though we can provide feedback to the subject
following every scan (in our case every 2 s), we also explored
slower control schemes, such that each action is based on
durations of 2, 4, 6, 8 or 10 s; we refer to these durations as
TTFs.

BCI systems rely not only on the engineered components,
but also on the mental effort of the participants. There has been
surprisingly little research on the subjective and psychological
aspects of using BCI as an interaction device. Ohara et al [40]
observed gamers’ body language when playing a MindFlex4

game. They point out that people want to compensate for
the lack of bodily manifestations to intentionality, and thus
performed a qualitative analysis of the body gestures during
interaction. Friedman et al [41] describe the subjective
experience of controlling a highly-immersive virtual reality
using an EEG-based BCI. In follow up work they also describe
controlling an avatar by thought, with some insights into
human–computer interface issues arising in such experiences
[16].

2. The system

Imaging was performed on a 3T Trio Magnetom Siemens
scanner, and all images were acquired using a 12 channel
head matrix coil. Three-dimensional T1-weighted anatomical
scans were acquired with high resolution 1 mm slice thickness,
3D MP-RAGE sequence, repetition time (TR) 2300 ms,
TE 2.98 ms, 1 mm3 voxels). For blood-oxygenation-level-
dependent (BOLD) scanning, T2*-weighted images using
echo planar imaging sequence (EPI) were acquired using the
following parameters: TR 2000 ms, TE 30 ms, flip angle 80,
35 oblique slices without gap, 20 toward coronal plane from
anterior commissure–posterior commissure, 3 × 3 × 4 mm
voxel size, covering the whole cerebrum. Visual feedback is
provided by a mirror, placed 11 cm from the eyes of the subject
and 97.5 cm from a screen, which results in a total distance of
108.5 cm from the screen to the eyes of the subject.

There is a tradeoff between the scanning rate and the
number of slices scanned, and we have opted for a scan time
(TR) of 2000 ms. A lower TR of 1000 ms is possible if we
scan a smaller portion of the brain (i.e., less slices), but this
would prevent us from performing a full brain analysis in the
future.

Our system is based on Turbo Brain Voyager (TBV, Brain
Innovation, Netherlands)5. Dicom files6 from the scanner are
processed by TBV, which computes the average raw data
values for each ROI selected by the operator online. Using

4 http://mindflexgames.com/
5 www.brainvoyager.com/
6 http://medical.nema.org/
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Figure 1. The subject sees an avatar in the center of a three-door
room and needs to rotate or move the avatar toward the
corresponding door, using either motor imagery or finger movement.

TBV all subject scans are auto aligned by a real-time on-
line algorithm that uses a statistical atlas to automatically
position the scanned slices [42] and by a real-time three-
dimensional motion correction algorithm, the prospective
acquisition correction algorithm, which adjusts slice position
and orientation in order to reduce motion artifacts [43]. This
pre-processing is applied at the initial scan, between every two
scans for subsequent subject movement, and when subjects
return for additional scans, on different days.

Our system includes a complete tool for running
a wide range of real-time fMRI studies with different
experimental protocols, different analysis methods, and
different virtual environments, using the Unity game engine7

(Unity Technologies, California). The values that take part
in the computation can be inspected online, during the
experiment, and are logged offline for further analysis. The
system allows easily configuring classification and interaction
parameters during an experiment, playing back experimental
sessions, and interfacing with external devices. In this paper
we describe the first analysis method that we have used, which
was deliberately kept simple, based on comparing activation
levels of ROIs.

3. The ROI-based paradigm

An experiment is divided into three parts. The first part is
intended for localization of brain areas. The subject sees an
avatar standing in the center of a three-door room, as seen
in figure 1. The subject is given pseudo-random instructions
(‘left’, ‘right’, and ‘forward’). Six seconds after each action
the subject is instructed to rest and during that time the avatar
executes a pre-determined command that corresponds with
the instruction. The rest duration is 8–10 s; we avoided a
fixed rest period in order to avoid habituation and anticipation
of the next cue. The ‘right’ and ‘left’ commands cause the
avatar to turn toward the right and left doors correspondingly
and the ‘forward’ command causes the avatar to move toward
the door on the front. The entire session is recorded for the
purpose of finding ROIs: selecting a group of voxels that are

7 http://unity3d.com/

Figure 2. An example taken from one subject over the first stage of
the experiment, intended for localization of ROIs. The three regions
(from left to right) represent the three areas correspondingly:
left-hand, legs, and right-hand, in the primary motor cortex, and are
delineated by a left versus right-hand contrast as well as a legs
versus baseline contrast, using a GLM analysis.

more active in one experimental condition compared to the
other conditions, as detected by a general linear model (GLM)
analysis. The experimenter manually marks the ROIs inside
the most saturated regions in yellow and blue for the three
classes, as seen in figure 2. Figure 3 depicts the event-related
average time-course of the contrast. We assume that there are
inter-subject differences in the size and position of specific
ROIs. For every subject we calibrate the ROIs only once at
the beginning of the experiment, and continue to use them in
every subsequent run, over multiple days.

In the second part of the experiment we instruct the subject
to rest for 1 min, and the system collects the mean and standard
deviation (STD) for each of the three ROIs for the entire
baseline period.

In the third and last part, the task stage, the system collects
the average values from each ROI every 2 sec. A classification
is made every TR t using the Z-score formula:

zt = xt − μ

σ
. (1)

where:

• xt is the average raw value in an ROI at TR t;
• μ is the mean raw value of the ROI in the baseline period;

and
• σ is the STD value of the ROI in the baseline period.

The selected class is the one corresponding to the ROI
with the maximal Z-score value, and the system transmits the
classification result to the Unity engine for execution. Each
ROI is mapped to a different action performed by the subject:
turning left, right, or walking forward corresponds to left-hand,
right-hand, or leg imagery, respectively. Each action executed
by the avatar is a fixed step that takes under 2 s to complete.

3
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Figure 3. An example of an event-related averaging plot for
left-hand ROI, from a complete run, taken from one subject. The
green curve represents the hemodynamic response evoked by the
left-hand cue at the left-hand ROI and the red and blue curve
represent the right-hand and legs respectively. The cue is provided in
TR 0, and peak occurs at TR 5.

4. Cue-based experiment

4.1. Method

We first performed a cue-based experiment: the subject is given
auditory cues that instruct him what to ‘think’, in pseudo-
random order. This has the advantage that we can compute the
accuracy of the BCI, but it does not provide the subject with a
sensation of controlling an interface.

We tested two conditions: MI and motor movement
(MM). In the latter case we allow subjects to move their toes
and fingers. When using fMRI it is easy to verify that all
information comes from the brain, and in our studies we make
sure that the classification is based only on motor areas, and
is not based on auditory processing (e.g., responding to the
auditory cues) or visual areas (e.g., looking at the direction
that you expect the avatar to move to). Eventually, BCI is
intended for paralyzed patients. When our system would be
used by paralyzed patients we expect things to be different
in several respects: on the one hand, they would not need
to actively suppress using their muscles and body; on the
other hand, depending on the nature of their illness or injury
the brain activity may be significantly different than that of
healthy subjects. In this experiment we compare both cases of
control. We allowed two groups to repeat the task until reaching
reasonable performance, and thus there were differences in the
number of runs performed by the subjects.

Written informed consent was obtained from all
volunteers. The study was approved by the Ethics Committee
of the Weizmann Institute of Science, which complies with the
Code of Ethics of the World Medical Association (Declaration
of Helsinki). Six subjects participated in the experiment.

Figure 4. A comparison between the average classification accuracy
of groups A (MM) and B (MI). Each TR is 2 s, and the TTF is 10 s.

Group A consisted of five subjects who performed the
experiment by using MM (three females, mean age 27). Group
B consisted of three subjects: two who also belonged to group
A and an additional subject (overall two females, mean age
26). All subjects were healthy and right handed. We have
verified that subjects were not moving their body during the MI
experiments by visual inspection (the subject is visible to the
fMRI operators through a transparent window and is covered
by two video cameras). In addition, subject S1 performed one
session with simultaneous electromyogram (EMG) recording.
Data (bandpass 1–5000 Hz; sampling rate 10 000 Hz) obtained
from the hand and leg (extensor digitorum communis and
tibialis anterior) was collected in one experimental session to
validate that no muscle activity is involved in MI. A comb
band stop filter was used with a fixed value of 16 Hz to
remove repetitive noise that came from scanning 32 slices
every 2000 ms.

The structure of this step is identical to the structure of
the localization stage, with the only difference being that the
feedback is based on classification result rather than on the
trigger. In each run of the cue-based experiment the subjects
received 30 triggers, ten from each class, in a pseudo-random
order. The trigger was given by a voice command. The subject
was expected to keep the mental imagery in his mind (or
perform a physical action in the MM condition) for three TRs
(6 s), until he heard a ‘rest’ cue. This was followed by either
four or five TRs of rest in between triggers; the rest between
triggers was pseudo random, in order to avoid expectation and
habituation. The classification and the feedback took place 10 s
after voice trigger.

4.2. Results

The chance level in this 3-class task is 33.3%. Figure 4
describes the average classification results in the first seven
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Figure 5. The subject sees an avatar standing in the center of the space (on top of the black circle) and needs to freely navigate the avatar
toward the red balloon.

TRs following a trigger. Classification accuracy coincides with
the hemodynamic response: in TR 1 and TR 2 the accuracy
is around chance level, then it gradually increases with the
best accuracy in TR 4 to TR 6 (8–12 s after the trigger), and
gradually drops to chance level. The classification accuracy
in the MM condition was significantly higher (p < 0.000 01)
than in the MI condition. A GLM analysis using Bonferroni
corrections indicates that the performance after the first two
TRs was significantly lower than in all the other TRs (p <

0.000 01), and the performance in TRs 3 and 7 is significantly
higher than TRs 1 and 2 (p < 0.000 01) and significantly lower
than the performance in TRs 4, 5, and 6 (p < 0.000 01).

5. Free-choice experiment

5.1. Method

In the free-choice task the subject sees an avatar standing in the
center of a space (figure 5). The subject is instructed to control
the avatar using MM or MI, and the subject has to reach the
balloon by using a minimal number of steps (figure 6). At the
beginning of each trial a red balloon appears in front of the
subject, in a different location. The subject then hears a voice
command that instructs him to start the trial. During the trial
the subject does not know when the trial ends, is not limited
to a fixed path, and can choose his actions freely. Each run is
composed of six trials, and each trial lasted 1 min and 48 s,
with 12 s rest between trials. Each subject performed several
such 12 min runs per session.

Performance is affected by the nature of the task. There
would be a great difference between navigation tasks that
require frequent control changes (such as ‘left’, ‘forward’,
‘right’) and tasks that require long sequences of the same
command. In principle, only tasks of the first kind would
pose a substantial test of the subject’s ability to control the
interface and change commands quickly. Our tasks were
relatively simple, as in principle they did not require many
changes; the subject was expected to rotate to the correct angle
and then continuously move forward. In practice, however,
most subjects did not have a 100% control of the interface.

Figure 6. A birds-eye view of a near optimal trial performed by
subject S1. The black spot indicates the starting point. The subject
needs to guide the avatar toward the balloon, which is indicated as a
blue spot. When the avatar reaches the surrounding perimeter
around the balloon, indicated as a circle, we consider the trial to be
successful.

Thus, in practice, even in this simple navigation task, subjects
often had to switch commands in order to correct for their
previous errors. For example, unpracticed subjects would often
overshoot the rotation due to the delay, and would then have
to keep rotating in both directions till they faced the balloon
directly.

Each subject started performing the task with a TTF of
8 s (four TRs). When the subject was able to reach the balloon
in at least half of the trials he continued to perform the same
task with a smaller TTF, including three, two, and one TRs
(6, 4, and 2 s, correspondingly). In all cases the feedback
was based on the classification result of the last TR within
the TTF duration. Only one command was sent to the avatar
at each TTF interval, and the avatar’s walking distance and
rotation had fixed values. The time for each trial was fixed so
the number of possible steps varies as we varied the TTF. In
larger TTFs we expected the subjects to have a more accurate
control, but they were given less opportunities for errors.
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Figure 7. Average time to reach the balloon in both imagery (MI)
and motion (MM), in the four different TTFs: 1–4 TRs, or 2–8 s
(** indicates p < 0.01).

Seven subjects participated in the experiment. Group A,
using MM, consisted of the initial five subjects of group A
with one additional subject. Group B, using MI, was the
same as in the MI cue-based experiment. All subjects were
healthy and right-handed. As in the cue-based experiments we
have verified that subjects were not moving their body during
the experiments by visual inspection and EMG, and that the
selected voxels in the ROIs are not taken from auditory or
visual areas.

5.2. Results

In free-choice tasks it is impossible to know for certain what
the subject was trying to achieve. Therefore, it is not possible
to provide a direct comparison of free-choice versus cue-
based performance, and in the free-choice task we provide
two estimates of the performance. The shortest path to the
balloon was either 5 or 6 steps. Figure 7 summarizes the
time it took the subjects to reach the balloons. If a subject
failed to reach the balloon in the allocated time then we assign
the maximum time (108 s) for that trial. A two-way factorial
ANOVA with factors condition (MM versus MI) and TTF, and
Bonferroni correction for multiple comparisons, indicates that
MI required significantly more time to reach the balloons than
MM (p < 0.000 01). The time required to reach the balloons
when the TTFs were 2, 4 and 6 was significantly shorter than
with TTF 8 (p = 0.001). There were no significant differences
between TTFs 2, 4, and 6 and no significant interaction effect
was found between condition and TTF.

The second measurement, performance, was calculated as
follows:

γ = α

β
(2)

Figure 8. Average performance in both conditions: imagery (MI)
and motion (MM), in the four different TTFs: 1–4 TRs, or 2–8 s
(* indicates p < 0.05 and ** indicates p < 0.01).

where:

• α is the optimal (hypothetic) number of steps required to
reach the balloon in the specific trial.

• β is the actual number of steps taken by the subject in the
specific trial.

• γ is the inverse of the overhead. If a subject was not able
to reach the balloon we assign a value of 0.

Figure 8 summarizes the subjects’ performance. A two-
way factorial ANOVA with factors condition (MM versus MI)
and TTF, and Bonferroni correction for multiple comparisons,
indicates that the performance in the MM condition was
significantly better than the MI condition (p < 0.000 01).
The performance with a TTF of 6 s was the best; this was
significantly better than TTFs 2 (p < 0.000 01) and 4 (p =
0.03); the difference between TTFs 6 and 8 was not significant
(p = 0.061). Rather, an interaction between condition and
TTF was found significant for TTF 8 (p < 0.000 01); i.e., the
difference between MM and MI was especially large in TTF 8.

5.3. Subjective reports

The fMRI environment is far from natural and subjects need
to get used to it: they are expected not to move their head
during scans and stay still for a long duration of 1 or 2 h.
They can only communicate with the experimenter during
breaks between sessions, and the scanner is very noisy during
the scan. When they get used to the scanner, the subjects
report finding our tasks entertaining. Although we have not
used stereo (depth) display, the subjects report being highly
immersed in the virtual scene, since this is the only thing they
can see, and it fills in a large part of their field of view. Some
of the subjects were able to reach the target quickly, and then

6
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Figure 9. Reported degree of embodiment, in the free-choice
experiment, using (1) motor imagery and (2) motor movement, for
questions 1, 2, 3 and 7.

continued to explore the environment; e.g., they have tried to
rotate around the balloon or even take their avatar outside the
frame.

The subjects were asked to fill questionnaires and were
interviewed multiple times, at the end of most of the free-
choice sessions. The questionnaires included 14 questions with
10-step Likert scale. The analysis is based on 52 questionnaire
instances.

The questionnaires included questions about the degree of
feeling embodied in the avatar (four questions), the degree of
the sense of control (four questions), and additional questions
that we ignore here since they did not reveal significant effects.
A multivariate analysis of variance (MANOVA) indicated that
all factors had significant effects: subject (p = 0.000 05),
control type (motion versus imagery)(p = 0.01) and TTF

(p = 0.05). There were no significant interaction effects.
Further ANOVA tests with Bonferroni corrections indicated
that the reporting of the sense of embodiment with the avatar
was higher when controlling the avatar using imagery than
when the avatar was controlled by motion (figure 9). This was
significant in two out of the four questions (p = 0.02 and
p = 0.0001) and nearly significant in the other two questions
(p = 0.063 and p = 0.076). ANOVA tests also revealed that
subjects reported a significantly lower sense of control in the
shortest TTF (2s) as compared to the other TTF conditions
(figure 10). This was significant in three questions (p < 0.01)
and nearly significant in the fourth question (p = 0.062).

6. Discussion

An important issue with fMRI-based BCI is the delay between
initiating a mental pattern (‘thought’) and the amount of
time to detect it in the BOLD signal. The cue-based task
results indicate that we can expect the highest accuracy 8–
12 s following a cue. However, in the free-choice task the
best performance was achieved 6 s following the cue. Our
explanation for this difference is that subjects can adapt
to the delay, probably by planning ahead their activity.
A previous study have found out that subjects perform
better neurofeedback with intermittent feedback than with
continuous feedback [31]. Our study suggests that subjects
can perform well with continuous feedback, given appropriate
context and a long enough TTF.

Performing the task using imagery is more difficult than
performing it when being allowed to move the fingers and
toes. Our performance measurement is more sensitive than
measuring the time, and it reveals that the difference between
motion and imagery is most evident when the TTF is 8 s; i.e.,
it seems that subjects cannot ‘keep the imagery’ for more than
a few seconds.

Figure 10. Reported degree of control with the different TTFs of 1–4 TRs, in the free-choice experiment, for questions 4, 5, 6 and 9.
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When comparing the objective performance results with
the subjective reports an interesting incongruence relates to a
TTF of 4 s. The degree of control that the subjects reported
is significantly higher than that reported for a TTF of 2 s,
and seems to be as high as for TTFs of 6 and 8 s. However,
the performance in TTF 4 was significantly lower than the
performance in TTFs 6 and 8.

Subjects using imagery felt a higher sense of being
embodied in the avatar. This could be a result of the increased
effort and mental focus. Regardless of the explanation, this
raises hope for rehabilitation applications of BCI, which lack
proprioceptive feedback.

7. Conclusion and future work

The results of this study indicate that subjects can learn to
control an avatar using motor imagery or movement, classified
by our system online from fMRI data. We note that high
performance is achieved with very little training, whereas
motor-imagery based BCI using EEG typically requires
extensive training. fMRI-based BCI may provide an essential
tool in the future, when preparing for invasive BCI surgery,
or for rehabilitation. fMRI can also aid in recognizing new
mental patterns for BCI and developing new BCI paradigms,
and the patterns can then be searched for in other types of
signals, such as EEG, fNIRS, and invasive methods.

The ROI-based method we have presented here is simple
and computationally efficient; we plan to extend it using
machine learning techniques in order to identify more specific
multi-voxel brain patterns that may lead to identifying more
complex intentions. We also hope to explore global brain
activity rather than only the activity in specific ROIs, taking
advantage of the fact that the whole brain is scanned. Finally,
in the course of these studies we also intend to further explore
how the sensation of agency and embodiment develop in the
context of such BCI experiences.
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