Portability by Automatic Translation
A Large-Scale Case Study

Yishai A. Feldman and Doron A. Friedman
Dept. of Computer Science
Tel Aviv University
69978 Tel Aviv, Israel
E-mail: {yishai,doronf}@math.tau.ac.il

Abstract

Automatic code translation could be a useful tech-
nique for software migration, provided it can be done
in large-scale industrial applications. We have built an
automatic translation system for converting IBM 370
assembly-language programs to C, in order to port the
original programs to different architectures. This sys-
tem, called Bogart, first analyzes the original program
in terms of data flow and control flow, and trans-
lates ¢t into an absiract internal representation. It
performs various transformations on the abstract rep-
resentation, and finally re-implements it in the target
language.

Bogart was successfully tested on several large mod-
ules with thousands of lines of assembly code each,
taken from a commercial database system and appli-
cation generator. The results of this research are com-
pared with the brute-force approach first implemented
by the company, showing Bogart to be superior on all
counts. This research is unusual in that it took place
in industry, and had a clear objective of transiating a
real program and not just demonsirating the feasibility
of the approach in an academic setting. Lessons from
this experience are discussed at the end of the paper.

1 Introduction

Many organizations today are facing the problem
of porting existing code to new architectures and op-
erating systems. In many cases, such legacy code is
written in a mainframe-specific assembly langnage and
needs to be translated to a high-level language (HLL)
in order to be run on different architectures. Qur re-
search focused on one such example, a large database

This research was supported in part by a grant from the Israel

Ministry of Science and Technology.

1068-3062/95 $4.00 © 1995 IEEE

123

system and application generator written in IBM 370
assembly language, the main product of Sapiens In-
ternational, Ltd.

The Sapiens application consists of several hun-
dred thousand lines of manually-optimized code, de-
veloped over two decades. A few years ago, Sapiens de-
cided to port their application to other architectures,
most notably Unix workstations and PCs. At the
same time, the main product running on IBM main-
frames had to be supported and maintained. While
HLL code performance was expected to be adequate
for modern workstations, the same was not true for
large databases running on mainframe computers, and
therefore the original assembly-language code had to
be retained. Because the cost of manually re-writing
the code at the same time as maintaining and develop-
ing the assembly-language version was too prohibitive,
and backward-compatibility was paramount, this op-
tion was ruled out. Sapiens therefore turned to au-
tomatic translation as a cheaper solution. It was im-
portant that the HLL code be generated completely
automatically from the assembly-language source, in
order to allow continuing modification of the latter.
However, readability of the HLL code was not consid-
ered important at this stage.

In 1992 Sapiens started to develop an assembly-
language-to-C translator. They used a “literal” ap-
proach in which each source line was translated to a
single C statement, and an array in memory was used
to simulate the registers of the IBM 370. In effect,
the result of the translation was an IBM 370 simula-
tor partially evaluated with the application program.
Since it was clear that this simple-minded approach
would not be sufficient, it was to be aided by extensive
re-writing of the original assembly-language sources,
and guidelines for this code improvement were drawn
up. These included generally beneficial improvements
such as the eradication of techniques that have no par-

allel in high-level languages and are even bad practice
in assembly language, and the use of macros for struc-
tured programming constructs such as conditionals
and loops. However, also included were special macros
that specified C code to be inserted into the translated
code directly, as well as other harmful changes from
the assembly-language programming point of view.

2 The AI Solution

The situation at Sapiens was thus an excellent op-
portunity for testing Al approaches to the translation
problem as well as for comparing it with the indus-
trial brute-force approach. It was clear to us that the
literal translation approach, besides being grossly in-
efficient, would also fail to be portable, because it fails
to recognize idioms that are architecture-specific and
would not have the same meaning when translated lit-
erally. Examples are the use of the high-order bit of
a pointer as a flag (depending on the assumption that
pointers are at most 31-bits long), and access to parts
of multi-byte entities (depending on byte order within
words).

In 1993 we started developing, together with Sapi-
ens, a different automatic translator based on abstrac-
tion and re-implementation [1], and called Bogart.!
Both translators were implemented and used, proving
Bogart to be superior to the brute-force translator on
all counts (detailed comparisons are presented below).

Bogart is based on the premise that a program is
conveniently manipulated not in a textual format, but
is best represented in terms of data flow and control
flow. (This also seems to fit the way programmers
think about their code.) The first step Bogart per-
forms when translating a program is therefore data
flow and control flow analysis, and the construction
of an abstract representation, similar in spirit to the
Plan Calculus [2]. Once an abstract representation
of the program is constructed, it is possible to tran-
scend the details of the source language that are ir-
relevant to the algorithm. For example, one of the
fundamental aspects of assembly-language program-
ming, the use of registers, is abstracted away because
registers are only used for effecting the flow of data.
The second stage in the translation consists of further
analysis and transformations of the abstract represen-
tation. Cliché recognition and other advanced tech-
niques could be added to this stage. The last stage
is the re-implementation of the algorithm in the tar-

1Better Optimizing General-purpose Abstract Representa-
tion Translator, also named after the second author’s dog.

124

get language. This is a relatively simple step, mainly
because the resulting code was not required to be par-
ticularly readable.

Currently, Bogart performs mainly local analysis of
its input program. While this has been sufficient to
produce code that is superior and more portable than
that of the simulating translator, we expect that global
analysis would be required for further improvements.

Bogart’s performance can be illustrated by one
of the small examples for automatic translation, the
Horner routine, taken from an IBM 360 assembly text-
book [3]:

HORNER CSECT
STM R14,R12,12(R13)
LR R12,R15
USING *,R12
* #% INITIALIZATION **
LA R7,COEF
L R5,0(R7) SUM = AO
LA R9,0 I=0
* *% TEST FOR EXIT #*
LOOP CR R9,R2
BNL OUT
* *% ADJUSTMENT STEP **
LA R9,1(R9)
LA R7,4(R7) NEXT COEFFICIENT
* *% BODY OF LOOP **
MR R4,R3 SUM*X
A R5,0(R7) SUM = SUM*X + AI
B LooP
ouT LR RO,R5
LM R1,R12,24(R13)
BR R14
COEF DS 10F
END

The simulating translator generated the following
code:

void HORNER (tagSAPReg *Reg)

{
T_stm(14,12, ((Reg[13].ucp+12)),Reg) ;
Regl12].sw = Regl[15].sw ;
Regl7].pv = &(COEF[0]) ;
Regl[5].sw = *(sWord *)Regl7].ucp;
Regl9].sw = 0 ;

LOOP:

if ((Regl9].sw)>= Regl2].sw) goto OUT;
Regl9].sw += 1;

Regl7].sw += 4;
T_mult(&Regl[4],Regl3].sw) ;

Regl[5].sw += *((sWord *)(Reg[7].ucp)) ;

goto LOOP ;

QUT:
Reg[0].sw = Reg[5].sw
T_1m(1,12, ((Reg[13] .ucp+24)),Reg) ;
return;

As can be seen from this example, the simulating
translator relies on an array of a union type to simulate
the assembly registers, and literally translates each as-
sembly instruction into a corresponding C statement.
If a corresponding C operator is not available, a library
function is used to translate the operation. An exam-
ple is multiplication, which generates a 64-bit result
on the IBM 370 but only a 32-bit result in C.

The following code was produced by Bogart for the
same routine:

sWord HORNER(sWord r2sw, sWord r3sw)
{

sWord rbsw;
sWordPtr r7swp;
sWord 1r9sW;

r7swp = (sWord #*)(&COEF[0]);
rbsw = *r7swp;
r9sw = 0;
while (r9sw < r2sw) {
r9sw++;
r7suptt;
rbsw = rbsw * r3sw + *r7swp;

}

return rb5sw;

This example demonstrates several important ways
in which Bogart produces shorter and more efficient
code. (For each point there are better and more im-
pressive examples, but presenting them all would re-
quire more space than available here.)

o Removal of redundant code. Some assembly in-
structions do not have to appear in the high-level
code at all. For example, the first few and last few
assembler instructions have to do with OS/370
calling conventions and register save-areas, which
are irrelevant to other architectures and supplied
by the C compiler on OS/370.

o Combination of expressions. Assembly language
does not support compound expressions, and
therefore neither does the simulating translator.
Because of the data-flow analysis it performs,
Bogart can collect several instructions into one C

125

statement, even if the assembly instructions are
not consecutive.

In the example, Bogart was able to generate the
single statement rS5sw = rSswxr3sw + *r7swp;
instead of two statements generated by the simu-
lating translator.

Remowal of computations of unused results. Cer-
tain machine instructions generate results that
are not used by subsequent code. This can hap-
pen because the instruction is used for effect
rather than for value, or because multiple results
are generated. An example of the latter case is
multiplication, which on the IBM 370 generates a
64-bit result, placed in a pair of 32-bit registers.
Often, it is known that the actual result is only
32 bits long, and the upper part of the result is
ignored by the assembler programmer.

The simulating translator has no information
about the use of such results, and is therefore re-
quired to generate them in every case. For multi-
plication, this means that a function from a spe-
cial simulation library must be called to calculate
the full 64-bit result. Bogart can identify those
cases in which a result is not used, and can there-
fore translate the multiplication in terms of the
32-bit C operator.

Similar effects can be seen in the case of integer
division, which produces a quotient as well as a
remainder, only one of which is subsequently used
in many cases.

A prime example of the same phenomenon is the
setting of the condition code. As in many other
hardware architectures, many IBM 370 instruc-
tions set a condition code, consisting of two bits
in the Program Status Word, to indicate the re-
sults of the operation. All comparison instruc-
tions, most arithmetic instructions, and many
other instructions set the condition code. While
in many cases the condition code is ignored by the
assembly-language programmer, it may be tested
by one or more subsequent instructions, not nec-
essarily adjacent.

The simulating translator was enhanced with spe-
cial ad-hoc code to recognize the common case in
which a conditional branch instruction immedi-
ately follows a comparison instruction. This code
is based on the assumption that the condition
code is not tested any further at the destination
of the branch; this assumption is statistically rea-
sonable but can generate subtle bugs when vio-
lated. (Unfortunately, the simulating translator

does not even issue a warning in this case.) How-
ever, the following code fragment, taken from the
Sapiens module GREDCE, stumps the simulat-
ing translator, because of the logical shift (SRL)
instruction that intervenes between the setting of
the condition code by the compare (CH) instruc-
tion and its subsequent use by the branch instruc-
tions (BH, BNH):

CH R7,0(R5,R4)
SRL R2,1

BH CGADD

BNH CGSUB

The simulating translator generates the following
code for this fragment:

if (Regl[7].sw ==
SH(Reg[4] .ucp+ReglE] .sw))

._CC = _CZero;

else if (Regl7].sw <
SH(Reg[4] .ucp+Reg[5] .sw))

__CC = _COne;
else __CC = _CTwo;
Regl2] .uw >>= 1;
if (__CC & 0x4) goto CGADD;
if (__CC & 0x3) goto CGSUB;

Bogart, in contrast, analyses the data-flow of the
condition code and can therefore generate the fol-
lowing code:

r2sh >>= 1;

temp = SH(r4ucp + r5sh);

if (r7sh > temp) goto CGADD;
if (r7sh <= temp) goto CGSUB;

Computation of routine interfaces. The simulat-
ing translator has no information about subrou-
tine interfaces, and therefore passes the array cor-
responding to the machine’s 16 general registers
to every subroutine. The subroutine can change
the values of some of the simulated registers, thus
passing results back to the calling routine.

Bogart analyses the usage of registers inside each
routine, and can thus recover the actual inter-
face: which registers are used for input, output,
or both. It can therefore declare the subroutine
with a number of parameters corresponding to
the registers it actually uses, and, in the case of
a single returned value, returns it as the value of
the function.

126

o Type analysits. Bogart performs limited and lo-
cal type analysis (future extensions are described
later in this paper). This enables it to generate
more portable and more readable code. In con-
trast, the simulating translator relies heavily on
type casting, with its attendant portability risks.
A small example of this can be seen in the Horner
routine, where Bogart was able to deduce that
register 7 contains a pointer to a 32-bit word, and
could therefore declare it as such and generate the
concise and portable r7swp++ instead of the sim-
ulating translator’s Reg[7].sw += 4.

e Recognition of control structures. Readability was
only a secondary goal in this case, because the tar-
get code was not meant to be handled by human
programmers. However, simple control structures
such as if-then-else and while loops were recog-
nized by Bogart with little effort.

Results

Bogart was tested on several Sapiens modules.
SAPDBMS, a central Sapiens module, was chosen by
Sapiens management as a major test case. A basic
database transaction (such as insert, find, delete, or
map) enters SAPDBMS at least a hundred times and
potentially more than a thousand times. SAPDBMS
was integrated into a working subsystem and com-
pared with the version produced by the simulating
translator. Bogart was also tested on several small
routines taken from an IBM 360 assembly-language
textbook [3]. For obvious reasons, these could be
tested on more platforms and more measurements
could be performed on them.

Bogart’s performance was found to be superior to
that of the literal translator on all counts, as detailed
below. The two translators had different sets of re-
quirements from the company and its programmers;
these are discussed in the final section of the paper.

3.1 Portability

As expected, Bogart produced more portable code
than the literal translator. The code translated by
the literal approach is expected to run only on sys-
tems with 32-bit word and pointer sizes, flat memory
model, and big-endian byte order. In contrast, Bog-
art produced code that was successfully executed on
an AS/400 machine,? for which the literal translator

2The AS/400 pointer size is 128 bits!,

failed. Translation by abstraction also allows support-
ing a larger portion of the source language. As work
progressed, more and more cases were found which the
literal translator could not handle correctly without
more global information. This led to further require-
ments from the programmers modifying the source,
with the undesirable effects described in the next sub-
section.

The only method that will allow the literal trans-
lator approach to produce more portable code is by
additional manual work. In contrast, the abstraction
approach can be improved by deeper analysis, such as
the suggested constraint-propagation component for
type analysis (see Section 4).

3.2 Manual Preparation

Translation by abstraction requires less manual
work, since it enables the translator to use the avail-
able global information to support larger portions of
the original code. Since Bogart used the code that had
already been manually processed for the literal trans-
lator, it is impossible to quantify the difference, but it
is clear that several of the “improvements” hecessary
for the literal translator are not necessary for the ab-
stracting translator, and may even degrade its perfor-
mance. For example, literal constants in the assembly-
language code were converted into variables, thus los-
ing the important information of their immutability
and forcing Bogart to translate them to C variables
instead of constants.

Manual modification of Sapiens code was found to
proceed at a pace of about 3600 lines of code per
person-month. Since rewriting the whole system in C
was estimated to require 100 person years, the prepa-
ration time was considered reasonable by manage-
ment. However, it turned out to be a tiresome job
with serious undesired effects on staff morale.

Manual preparation of the code has probably dam-
aged the code’s quality. Programmers estimate that
the code is less efficient after standardization, and,
naturally, new bugs were introduced. In order to avoid
introducing errors, many programmers over-used the
ability to write C code that coexists with the orig-
inal assembly code. This violated one of the major
requirements of the translation project—two versions
now had to be debugged, tested, and maintained. This
is an important lesson: extensive manual work is not
only harmful for the resources 1t requires, 1t may also
endanger the whole translation enterprise.

127

3.3 Efficiency

Bogart produced much more efficient code, in terms
of both space and time. Typically, Bogart code was
between half and three quarters as large and more
than twice as fast as the literal translator’s output.
This is due to the abstraction performed by Bogart
and to the optimizing transformations performed on
the abstract representation. Bogart is even able to
improve on parts of the original assembly-language
sources. Our experience with Sapiens code has shown
that large and complex assembly-language programs
that are maintained by several different programmers
contain patches and unnecessary code, such as load-
ing a register with a value already present in it. Such
cases are discovered by the abstraction analysis per-
formed by Bogart, and are removed in the transfor-
mation phase of the translation.

Table 1 presents some of the results for the
SAPDBMS module described earlier, as well as for
three small programs (Bin, Horner, and Random,
taken from an IBM 360 assembly textbook [3]). Times
for SAPDBMS were computed for a sequence of thou-
sands of transactions running in batch. All programs
were run on an RS/6000 machine under AIX.

Table 2 shows more detailed comparisons of the pro-
gram Bin (a binary search program) on different plat-
forms and compilers. Shown are times for both trans-
lators, a manually hand-crafted C program, and (for
the IBM 370) the original assembly-language code.
(The program was run in a loop, with different num-
bers of iterations on different platform.)

A striking result was achieved with some small
examples—the code produced by Bogart slightly out-
performed code written in the target language by a
human programmer! This is probably due to the fact
that in these small programs using structured pro-
gramming constructs is less efficient than direct jumps
out of multiple-exit loops, as is natural when program-
ming in assembly language.

More significant is the comparison between the orig-
inal assembly code and the result of Bogart’s trans-
lation. The translated C code was only three times
slower than the original, which in our opinion is quite
reasonable for such translation. In fact, it is less than
10% slower than the hand-crafted C version on the
same platform. Unfortunately, we could not test the
translated SAPDBMS module on the IBM mainframe,
but we expect similar results.

Table 1: Results of translated programs on RS/6000

Literal Translator Output

Bogart Output

Time (sec.) Space (bytes) Time (sec.) Space (bytes)
Bin 63 4170 33 2802
Horner 10 3302 3 2465
Random 9 5447 4 2741
SAPDBMS 18 41700 9 29073

Table 2: Running time of BIN program on various platforms (in sec.)

RS/6000 Microsoft C 7.0 Borland C

IBM 370 AS/400

Original (assembly)

Hand-crafted C 32
Literal translator 63
Bogart 33

36
46
35

— 1.14 =
39 3.18 52
42 6.08 failed
35 3.49 107

4 Future Work

Although Bogart is now capable of adequate trans-
lation, it does not implement the full theoretical
framework of translation by abstraction. The current
version of Bogart performs mostly local analysis, and
relies on reasoning from first principles rather than
on chunked knowledge. It needs to be extended to
do more global analysis and possibly use a knowledge
library.

The most significant improvement in Bogart’s ca-
pability to generate high-quality portable code would
come from the addition of a data-type recognition
component. Assembly language requires very little
type information, and does not provide the means to
describe complex structures. For the purposes of writ-
ing assembly code, there is little difference between a
32-bit integer, a pointer, or a 4-byte string. However,
the way in which a given location is accessed can pro-
vide some information about its type. For example,
storing the result of an arithmetic addition operation
into such a location indicates that it contains an in-
teger or a pointer. Information about the operands
of the addition operation can further restrict the pos-
sible types of the result; for example, if it is known
that neither operand is a pointer, the result cannot be
a pointer either. When a value is dereferenced, it is
clear that it is a pointer. In this case, similar reason-
ing can be used to deduce the type of the object it
points to.

In this way a constraint-propagation network can
be constructed from the original assembly-language

128

program. This network connects all storage variables
and dereferenced pointers through the operations they
participate in, and type information can be refined by
reasoning of the kind shown above. We have designed
such a type reasoner, but it has not yet been imple-
mented.

The unstructured and undisciplined nature of
assembly-language programming and the fact that
C is a relatively low-level language dicatate a first-
principles approach to the automatic translation task.
Any solution that relies on the recognition of specific
idioms in the assembly-language program is likely to
be limited to a small part of the program. However,
in certain cases the recognition of high-level clichés [4]
can aid the translation effort, particularly in the anal-
ysis of data structures.

An example in which cliché recognition could be
useful is the recognition of variable-length lists of
pointers. Since pointers on the IBM 370 are either
24 or 31 bits long, such lists are typically represented
as vectors of pointers, with the most-significant bit
used to indicate the end of the list. If the clichés of
building or accessing such lists can be recognized, the
data structure can be replaced by a different represen-
tation, more typical to C programming, such as an ad-
ditional integer storing the length of the list. However,
at present it seems that the current state-of-the-art in
this area is not yet applicable to large-scale programs.

5 Related Work

Abstraction of programs has been used for many
purposes, including automatic documentation, mod-
ularization, recovery of reusable components, transla-
tion, and even compilation. Most research efforts have
been tested on small examples, with a few notewor-
thy exceptions. Abstraction systems also differ in the
amount of interaction they require from their users.

Bogart is most similar in spirit to Faust’s SATCH
[5], which translates Cobol programs to the more ab-
stract non-procedural language HIBOL. SATCH, like
Bogart, represents programs in a formalism based on
the Plan Calculus [6]. SATCH performs deeper anal-
ysis of its source code, but it has not passed the stage
of a demonstration system, and has only been tested
on a few small examples.

Another translation effort was the transformation-
based conversion of the program transformation sys-
tem TAMPR from a highly abstract form (pure ap-
plicative LISP with dynamic scope) to Fortran [7].
1300 lines of LISP were translated into 3000 lines of
Fortran, with a 25% gain in performance. However,
This is not a typical example. Because of the unusu-
ally abstract way in which the source program was
written, all that was necessary was to add design de-
cisions in order to generate a concrete program in For-
tran. In contrast, Bogart’s main effort was abstracting
away from the details of the source program. For ex-
ample, the TAMPR translator had to choose a specific
order of execution where LISP leaves it unspecified,
whereas Bogart relaxes the overspecified order of the
assembly-language program.

Cobol/SRE [8] and Refine/Cobol [9] use abstrac-
tion for recovery of reusable components from and
modularization of legacy Cobol programs. Both are
interactive tools allowing the user to manipulate the
source program in various ways. Cobol/SRE has only
been tested in the laboratory, but Refine/Cobol has
been used to re-engineer modules of up to 40,000 lines
of code.)

As mentioned above, Bogart does not yet per-
form recognition of high-level clichés. While such
a capability might be useful, research on this prob-
lem [4, 10, 11, 12] has been confined to small exam-
ples, and no way to control the inherent combinatorial
explosion of the recognition task has yet been found.

6 Discussion

This work can be considered as an “industry as lab-
oratory” case study in the spirit advocated by Colin

129

Potts [13]. It was an excellent opportunity to compare
the AT approach with a typical industry approach. We
believe our research showed that the AT approach can
be more successful and cost-effective than the “brute
force” approach, but its limitations were also made
clear.

The main advantage of the literal translation ap-
proach is its simplicity. The core of the literal trans-
lator was implemented in three months by one pro-
grammer. The corresponding part of Bogart required
30 person-months, and relied on existing framework
(such as parser and data dictionary) from the literal
translator.

Another surprising advantage of the literal transla-
tor was found in the Sapiens case study. After transla-
tion, the resulting code has to be tested and debugged.
Debugging is done by the assembly-language program-
mers, who are familiar with the original code. They
found it much more convenient to work with the lit-
eral translation: after getting used to the C syntax,
they could recognize the original code in the translated
code, and could use their existing debugging meth-
ods and knowledge of the code. Debugging Bogart-
generated code was much more difficult for them, since
they found it much harder to recognize the original
code. This problem could of course be alleviated by an
intelligent browsing tool for Bogart that could explain
the assembly origins of the resulting C code. Cur-
rently, this information is only available in the form of
comments in the translated code.

The AI approach often requires a large effort in
preparing a foundation. The case described here may
be representative, in that the efforts pay off only for
the long term, and only if enough resources are al-
located. Bogart now is about to produce a Sapiens
version that is twice as efficient as that produced by
the literal translator. If it had been finished earlier,
it would have saved a significant amount of manual
work. Since versions of Sapiens are needed on other
platforms, the benefit is expected to grow. With fur-
ther development, it is also expected to aid in code
maintenance and debugging.

None of this could be said about the literal trans-
lator; however, it was crucial as a short-term solution.
Moreover, the changes in the external and internal
conditions were too rapid for Bogart’s development
pace; although it has proved its utility, it is not clear
at the moment to what extent it will be utilized by the
organization. Thus, the attempt to use Al technology
should take into account the relatively long develop-
ment times and heavy investment required. The de-
velopment time could have been reduced, but compa-

nies hesitate to invest large resources on experimental
projects.

Some conclusions about academic and industrial co-
operation can also be drawn from this research. It is
important to note that the organization had little in-
terest in automatic translation per se, and was only in-
terested in the best translation possible in terms of the
target quality and investment of resources. The coop-
eration was convenient for both sides, and we had full
access to the data, services from the literal translator,
and full cooperation from company staff. Organiza-
tional considerations dictated some parts of the work,
but on the whole we were free to choose the architec-
ture of the translator. We therefore consider this case
to be a successful cooperation, but unfortunately such
opportunities are quite rare.

A large part of the development of Bogart was dedi-
cated to many theoretically-unimportant details, such
as supporting most of the IBM 370 instruction set.
This is of course crucial to the industrial translation
effort, and is unavoidable if we want to prove that a
theoretically-elegant approach is applicable to the real
world. However, it is impossible in a purely academic
setting, and requires support and help from industry.

An important aspect of the abstraction approach
to translation is its generality. We believe that the
same approach could be used to translate other as-
sembly languages. Although other architectures con-
tain different idiosyncrasies that might require spe-
cial treatment, the general framework of abstraction,
transformation, and re-implementation should still be
applicable. In addition, the information collected dur-
ing translation could be used to support other re-
engineering tasks.

Acknowledgments

We are grateful to Sapiens International Ltd. for
their support of this project, and in particular to N.
Barzilay, A. Cohen, I. Judkevitz, Y. Kazmirsky, and
E. Kiril. A. Yehudai provided useful comments on this
paper.

References

[1] R. C. Waters, “Program translation via abstrac-
tion and reimplementation,” IEEE Trans. Soft-
ware Engineering, vol. 14, pp. 1207-1228, Aug.
1988.

130

[2] C. Rich and R.. C. Waters, The Programmer’s Ap-
prentice. ACM Press and Addison Wesley, 1990.

[3] G. Struble, Assembler Language Programming:
The IBM System/360. Addison Wesley, 1969.

[4] L. M. Wills, “Automated program recognition by
graph parsing,” Technical Report 1358, MIT Ar-

tifictal Intelligence Lab., July 1992. PhD thesis.

G. Faust, “Semiautomatic translation of COBOL
into HIBOL,” Technical Report 256, MIT Lab.
for Computer Science, Mar. 1981. Master’s thesis.

C. Rich, “A formal representation for plans in
the Programmer’s Apprentice,” in Proc. 7th Int.
Joint Conf. Artificial Intelligence, (Vancouver,
British Columbia, Canada), pp. 1044-1052, Aug.
1981. Reprinted in M. Brodie, J. Mylopoulos, and
J. Schmidt, editors, On Conceptual Modelling,
pages 239-270, Springer-Verlag, New York, NY,
1984, and in C. Rich and R. C. Waters, editors,
Readings in Artificial Intelligence and Software
Engineering, Morgan Kaufmann, 1986.

J. M. Boyle and M. N. Muralidharan, “Program
reusability through program transformation,”
IEEE Trans. Software Engineering, vol. SE-10,
pp. 574-588, Sept. 1984.

J. Q. Ning, A. Engberts, and W. Kozaczynski,
“Automated support for legacy code understand-
ing,” Comm. ACM, vol. 37, pp. 50-57, May 1994.

L. Markosian, P. Newcomb, R. Brand, S. Burson,
and T. Kitzmiller, “Using an enabling technol-
ogy to reengineer legacy systems,” Comm. ACM,
vol. 37, pp. 58-70, May 1994.

M. T. Harandi and J. Q. Ning, “Knowledge-based
program analysis,” IEFFE Software, vol. 7, pp. 74—
81, Jan. 1990.

A. Quilici, “A memory-based approach to rec-
ognizing programming plans,” Comm. ACM,
vol. 37, pp. 84-93, May 1994.

P. A. Hausler, M. G. Pleszkoch, R. C. Linger,
and A. R. Hevner, “Using function abstraction to
understand program behavior,” IEFE Software,
vol. 7, pp. 55-63, Jan. 1990.

C. Potts, “Software-engineering research revis-
ited,” IFEE Software, vol. 10, pp. 19-28, Sept.
1993.

