
Automated Creation of Movie Summaries

in Interactive Virtual Environments

Doron Friedman
Department of Computer Science

University College of London
d.friedman@cs.ucl.ac.uk

Yishai A. Feldman
Efi Arazi School of Computer Science
The Interdisciplinary Center, Herzliya

yishai@idc.ac.il

Ariel Shamir
Efi Arazi School of Computer Science
The Interdisciplinary Center, Herzliya

arik@idc.ac.il

Tsvi Dagan
Department of Computer Science

The Academic College of Tel Aviv Yaffo

Abstract

Virtual environments and artificial worlds are becom-
ing multi-user, complex, and long lasting. Someone who
was away from the environment for awhile maywish to be
informed of interesting events that happened during her
absence without watching hours or even days of interac-
tion. A movie is the natural medium for such a summary.
At the end of a long interaction, participants maywish for
such a movie as a keepsake. However, creating a movie
summary of a given set of events is delicate, complicated,
and time-consuming. In this paper we discuss some of
the issues involved in creating a tool that can create such
movie summaries automatically. We describe the stages
in transforming a chronicle of events into a movie and
present an implementation of such a system.We show re-
sults of transforming a log from a life-simulation game to
a movie script.

1. Introduction

More and more people are spending longer times
playing computer games and visiting virtual environ-
ments. As technology advances, these virtual worlds are
becoming more complicated and more realistic. Spend-
ing time in them is much like travelling to fantastic
destinations. As in real-life journeys, people would like
to preserve some of their own personal memories and
experiences from these places. What better souvenir
is there than a short movie displaying the highlights
of their journey? Similarly, online multi-user computer
games can be played in persistent virtual worlds that

may exist for years, and may be shared by thousands
of people. When a player logs on to the game after a
few days, she may want to see what she missed in the
form of a short movie summary.

There is clearly a need for various types of sum-
maries and replays of interactions in virtual environ-
ments. Intelligent summaries may also be useful for
training simulations, educational applications, and in
fact almost any type of virtual environment used over a
long period of time. One would not want, or sometimes
cannot, view a replay of the whole interaction session.
A short movie summarizing the highlights and impor-
tant events is sufficient and many times is even prefer-
able. Furthermore, due to the large amount of peo-
ple involved in virtual environments and games, and
the need to add their personal points of view of the
events, it is unrealistic to expect that such summaries
will be produced manually. There is a need for auto-
matic tools that can extract the interesting highlights
out of long interaction sessions, manipulate them, and
present them as movie clips that can be easily under-
stood and are fun to watch.

We have identified two main stages in the automatic
creation of high-quality movie summaries from complex
environments. The first is the extraction stage, which
involves decisions of what we want to show in the sum-
mary. The second is the production stage and involves
decisions on how to display it in the best possible way.
In fact, the extraction and production stages are not
totally independent, since how you show some scene is
closely related to what you choose to show and vice-
versa. Nevertheless, it is useful to address them sepa-
rately. A schematic overview of the whole process can
be seen in Figure 1. The log of all events from a vir-



tual world is the input to the narrative extractor (NE),
which analyzes the input session log and tags the in-
teresting parts. This information is sent into the movie
constructor (MC), which decides how to concatenate
the tagged parts into a coherent movie. The movie con-
structor can manipulate important events, remove un-
important events and (as will be seen later), can also
add some artificially-created events. The output of the
movie constructor is still a series of events augmented
with some information, which we call the script.

A script is the usual medium that describes what
is happening in a movie before it is shot. Our script
is used as the input to the animation generator (AG),
which creates the actual movie. It is easy to see that
simply concatenating scene fragments together will not
create an appealing movie. Moreover, there is no rea-
son to replay the events from the same angle the user
saw it originally. For example, in a multi-user environ-
ment, a user may wish to review how the scene looked
from another participant’s point of view, or from an
overview that covers a wide range. The animation gen-
erator includes a knowledge-based cinematography sys-
tem, which makes cinematic decisions about camera
behavior.

In this paper we will concentrate on the first two
parts of the process: the extraction part, and the movie
construction part. More details on the animation gen-
erator and the production part can be found in [1]. A
pre-requisite of the extraction stage is the availability
of some form of a chronicle, or log. This log describes
all events that took place during an interaction over
some period of time in a virtual environment. There
are many issues involved in defining, gathering, and
ordering such chronicles of highly distributed scenes
such as virtual environments. We defined a simple for-
mat that is general enough to apply to most environ-
ments and games, and manually created artificial logs
of events inspired by a life-simulation game such as The
Sims (http://thesims.ea.com). In such a game, sim-
ulated characters are engaged in everyday activities.
Some of the actions of the characters are decided au-
tonomously based on a model of need-satisfaction, and
some are controlled by the player’s commands. We cre-
ated a small environment in VRML to model such a
game environment with different characters and ob-
jects. (see Figure 2).

The main task of the extraction stage is to distin-
guish between interesting and non-interesting events.
This requires a computational theory of what is inter-
esting. In its most general form, this problem is obvi-
ously beyond the capabilities of the state-of-the-art of
artificial intelligence. We rely on Schank and Abelson’s
theory of scripts, developed in the context of automatic

story understanding [2]. They define a script as a set
of routine actions. One of the examples they provide
is eating in a restaurant. When you are told about a
person who went to a restaurant, you can implicitly as-
sume that a large number of things have happened: the
person waited for the hostess, sat at a table, read the
menu, ordered, received his order, ate, paid, left a tip,
and then left the restaurant. If you read about a per-
son going to a restaurant in a book, you will not be pro-
vided with all this information, or else you will find the
book very boring. Instead, you will be provided infor-
mation about the unusual things that may have hap-
pened in this restaurant visit, such as that the food
was not served, or that the person decided not to leave
a tip.

Schank and Abelson suggested the mechanism of
scripts as a tool for story understanding. We suggest
using scripts as an aid for deciding what is interest-
ing in a log of events. We will typically be interested in
scripts if they do not take place as they are supposed
to; that is, we are especially interested in near-missed
scripts. We describe an algorithm to find such scripts
in the log and tag them as interesting. Other specific
pre-defined actions or characters are also used to tag
events as interesting in creating the tagged log.

Simply removing all untagged events from the log
can cause serious problems both in terms of the con-
sistency of events that occurred and in terms of the
story line and movie creation. To overcome these prob-
lems, we introduce mechanisms that can modify events
(create ease-in and ease-out of actions) and even in-
sert new artificial events.

2. Related Work

Surprisingly, virtual environment summariza-
tion has not been addressed by the research com-
munity. Some work based on a similar motivation
was done by Halper and Masuch [3]. They allow ac-
tion summarization as well as live viewing of action
in multi-player games. Their definition of what is in-
teresting is very different from ours; they look at the
derivative of a function that samples some story re-
lated parameters over the duration of the game. They
admit that this method is tuned for action games,
and may be limited for other types of virtual environ-
ments, such as strategy games, where actions can have
long-term effects. Also, they did not address the is-
sue of movie construction after the interesting parts
were detected.

Substantial research is currently dedicated to auto-
matic video summarization, but most of the research is
focused on the very difficult problems of image analysis



and understanding [4, 5]. In our domain the input is on
the much more convenient level of abstraction: objects
and actions, rather than pixels. If a system is able to ex-
tract this kind of information from video sequences, it
could then benefit from our approach for creating au-
tomated summaries; this would serve a very wide range
of applications.

Our research can be thought of as a new incarnation
of research in automated story understanding. This is
a problem that was investigated in the early days of ar-
tificial intelligence. As it proved to be a very difficult
problem, it was either abandoned, or incorporated into
research in natural language understanding [6]. Our
context serves to separate the challenge of natural lan-
guage understanding from the challenge of story under-
standing, since the input to our system is a formal ac-
count of events, rather than a natural-language descrip-
tion. Our research is thus mostly inspired by relatively
early work in artificial intelligence, such as Schank and
Abelson [2].

Some of the more recent research dedicated to au-
tomated text understanding does try to address the
problem of what makes a piece of information interest-
ing. For example, Byrne and Hunter [7] try to extract
useful information from news reports by trying to de-
tect violations of expectations. Their system accepts
structured news reports as inputs, translates each re-
port to a logical literal, identifies the story of which the
report is a part, looks for inconsistencies between the
report, the background knowledge, and a set of expec-
tations, classifies and evaluates these inconsistencies,
and outputs news reports of interest to the user to-
gether with associated explanations of why they are
interesting.

Movie summaries play a significant role in many
video games, especially sports games. However, these
summaries usually do not go beyond simply showing a
single event with an obvious meaning, such as a goal
in a soccer game, or the player being killed in an ac-
tion game. There is no attempt at story understanding,
and no attempt at collecting various scene fragments
into one coherent movie summary. An interesting re-
cent trend is the new genre of filmmaking called Ma-
chinima (http://www.machinima.com): hobbyists pro-
ducing animated movies using video game engines. The
popularity of this trend further indicates the need for
easy-to-use tools for the creation of movie summaries.

3. Narrative Extraction

The input to the narrative extraction stage includes
three components:

1. the interaction session log of actions and events
that took place during a scene;

2. a description of the virtual space including all
characters and objects; and

3. predefined information for filtering the interesting
parts of the session.

We first illustrate how narrative extraction works
using a simple example. Our example will include one
character called Joe, who carries out his morning ac-
tivities and goes to work. For simplicity, our scene hap-
pens in one room (such as a large studio flat). The room
includes a toilet, a shower, a garbage can, a table, and
a chair. This is described in a textual format, includ-
ing the positions and orientations of the objects. The
log of this example scene is as follows:
00 00 Joe sit Chair2

00 00 Joe wake-up

00 02 Joe move walk p1

02 04 Joe move walk p2

04 09 Joe use-bathroom Toilet

10 12 Joe move walk p3

12 13 Joe jump

13 16 Joe move walk p2

16 18 Joe move walk Shower_op

18 22 Joe take-a-shower Shower

24 26 Joe move walk p4

26 28 Joe move walk p5

28 30 Joe move walk Chair2_op

30 32 Joe look-at Chair2_up

32 34 Joe sit Chair2

34 36 Joe stand

36 38 Joe move walk p6

38 40 Joe move walk p7

40 42 Joe move walk Food_op

42 44 Joe prepare-breakfast Food

44 46 Joe move walk p8

46 48 Joe move walk p9

48 50 Joe move walk Chair2_op

50 52 Joe look-at Chair2_up

52 54 Joe put Food Table

54 56 Joe sit Chair2

56 64 Joe eat Food

64 66 Joe stand

66 68 Joe take Food

68 72 Joe move walk p6

72 74 Joe move walk p10

74 76 Joe move walk p11

76 78 Joe move walk p12

78 80 Joe move walk GarbageCan_up

80 82 Joe drop-garbage Food Can Bottom

82 84 Joe look-at p13

84 86 Joe speak "Bye, honey!"

86 88 Joe move walk p14

88 92 Joe go-work Car

Each line of the log describes an action, beginning with
its start and end times. Thus, the original scene takes



a minute and a half (note that this is only an illustra-
tion; in real life it should probably take more than two
seconds to prepare breakfast). p1 to p14 are specific lo-
cations in the room, which describe Joe’s walking path.
It is clear from this log file that Joe performs a morn-
ing routine including going to the toilet, showering, and
having breakfast. It is also clear that rather than per-
forming these acts in the most efficient way, Joe occa-
sionally wanders around the room or sits down point-
lessly.

While this scene in itself is not very exciting, it can
be seen as a typical fragment of a life-simulation game.
This log is converted into a data structure in mem-
ory, called the intermediate representation (IR). A sim-
ple way to think about the IR is as a list of actions
placed on a time-line. Each action includes several ar-
guments such as actor, positions, angles, and target
objects. Using the IR we can specify different filter-
ing criteria to create different summaries based on the
same scene log. There are four types of filtering crite-
ria:

1. Specific events that should be tagged as interest-
ing.

2. Specific characters whose actions should be tagged
as interesting.

3. Composite boolean combinations of the above.

4. Definition of routines that should be recognized in
the log.

For example, we can specify that we are interested
in a specific action, such as eating. This will result in
all eating actions in the IR being tagged. If we spec-
ify that we are interested in a specific actor, all the ac-
tions performed by that actor will be tagged. Compos-
ite rules extend the tagging by allowing boolean com-
binations of both actor and action such as: “I’d like
to see all the cases where Joe is having a shower,” or
“I’d like to see all eating actions except for the ones
that involve Jill.” The tagging procedure for such cri-
teria is straightforward: the IR is scanned, and the ac-
tions matching one of the criteria are tagged.

The fourth filtering criterion is more complicated.
We allow the definition of sets of actions, which we
call routines. Routines are an abstraction of actions. In
some occasions, such routines indicate that the story
can be considered interesting, such as a set of actions
that imply that an actor is being robbed. However, of-
ten a story is interesting when in fact there is a devi-
ation from a regular routine. For example, we can de-
fine a morning routine to include the following actions:
taking a shower, going to the toilet, and having break-
fast. If Joe performs the same routine every morning,

it would not be considered interesting (except, pos-
sibly, for the first time). However, if Joe were to go
through the morning routine without taking a shower,
that could have (unpleasant) implications on the story
development. This would make the whole morning ses-
sion worth watching.

Routines are more than just a set of actions; they
are a set of actions with causal dependencies. While we
do not have information about causality in the session
log, we do have temporal information. We can plausi-
bly assume that a routine is a set of actions that take
place through a scene, with some temporal restrictions.
We assume each routine has a first action, a last action,
and several intermediate actions. The intermediate ac-
tions have partial dependencies, resulting in a directed
a-cyclic graph (DAG). The textual description of the
morning routine is as follows:

Routine: wake-up ~ go-work
Time-limit: 1200
Actions:
prepare-breakfast, eat, drop-garbage,
use-bathroom, take-a-shower

Dependencies:
prepare-breakfast < eat
eat < drop-garbage

Miss: 2

This routine assumes the same actor carries out all
actions. The routine section constrains the routine to
start with the actor waking up and end with the ac-
tor going to work. The time-limit requires that the
whole routine will take no longer than twenty minutes
to perform. The routine includes five internal actions,
but they do not need to appear in a specific sequen-
tial order. Instead, the dependencies section describes
any partial order requirements. In this case, eating can
only happen after preparing breakfast, and dropping
the garbage can only happen after eating. All actions
in the routine are implicitly dependent on the frame
start-action, and the frame end-action is dependent on
all other actions. The miss argument will be explained
below. The resulting DAG for this routine is shown in
Figure 3.

Searching for a routine in the IR representing the
session log is done using topological sorting. Assume
G = {V, E} is the DAG representing the routine. V
is the list of nodes in the DAG, each one representing
an action. E is the list of directed edges in the DAG,
each one representing a dependency relation e = 〈m, n〉
where m, n ∈ V . The dependents of m ∈ V are defined
as dep(m) = {n ∈ V |〈m, n〉 ∈ E}.

The search for routines is performed by traversing
the list of actions according to their order. Whenever a



first action of a routine is found, this triggers a search
to match this routine. This means that several searches
for the same routine can be carried out in parallel if the
first action is encountered more than once. The search
for routine match ends either when a match is found or
when the time limit of the routine is reached. We ini-
tialize d(n) for each node n ∈ V to be the in-degree
of n (that is, the number of edges entering n). We de-
fine the zero-set Z ⊂ V as all nodes with zero degree.
Note that initially only the start-action has a zero de-
gree, and therefore Z includes only the start-action.
The search for a specific routine match is as follows:

begin loop:
extract next action m from log
if m is the end-action or time limit is reached then

exit loop
if m ∈ Z then

remove m from Z
set d(m)← −1
for each k ∈ dep(m)

d(k)← d(k)− 1
if d(k) = 0

insert k to Z
end loop
check for a match or near miss

If we reached the end-action in the routine, we can
search for a match. A routine match occurs if for all
n ∈ V, d(n) < 0. If there is no match, we may still be
interested in near misses. Therefore, when the routine
match search ends we define: M = {m ∈ V |d(m) ≥ 0}.
We further define δ =

∑
m∈M (d(m) + 1), which will

give us an indication on the magnitude of the miss.
Now, recall that each routine had its miss parameter.
This parameter indicates if we are interested in an ac-
curate match, and if not it specifies the miss tolerance
we are interested in. We mark a routine as interest-
ing only if one of the following cases apply:

1. δ = 0, i.e. perfect match.

2. 0 < δ ≤ miss, i.e., a missed routine within the ac-
cepted tolerance.

We typically define the miss parameter to be 1 or
2 which means we are only looking at scenarios with
a small deviation from a routine. We have found this
to be a satisfactory criteria for interesting scenarios.
Nevertheless, using this scheme means that longer rou-
tines have a smaller chance of creating a near-miss.
We have also implemented a version that allows defin-
ing the miss parameter as a percentage of the sum of
all in-degrees in the graph.

4. Movie Construction

So far we have shown how the actions in the log ses-
sion are tagged as interesting. If we take this set of ac-
tions and simply concatenate them into a movie, the
result will be very difficult to understand. We want to
construct a coherent movie out of such a collection of
isolated actions. In fact, early filmmakers in the begin-
ning of the 20th century were faced by the same prob-
lem. They discovered that movie time does not need
to be equal to story time. In our context, story time
refers to the time actions took place in the virtual envi-
ronment as given by the log session. Movie time refers
to the time in which these actions are displayed in the
resulting movie. Early filmmakers gradually discovered
that they could show a scene over a period of time that
is shorter than the duration in which it took place on
the set. This was done by cutting out some of the ac-
tion in the editing room. They discovered (or invented)
the cinematic techniques that allow this manipulation
of time to appear flawless for the viewers.

Manipulation of story time is of course not limited
to shortening. We can define the story time as a set
of discrete intervals S, and the movie time as a set of
discrete intervals M . A manipulation of time can be
any function that maps story time into presentation
time. Time can be shortened or extended. The order of
events (intervals) can be completely transformed. Also,
some parts of the story can be omitted altogether. The
presentation time may also include new intervals not
matching any interval in the story time, as we may
want to add events that did not actually happen in
the original story. In fact, it became necessary to use
such manipulation in our movie constructor as will be
explained shortly. Our movie construction has a rela-
tively modest goal: we want to include only the tagged
actions from the log. Therefore, we only used two oper-
ations: omitting intervals and inserting intervals. More
complex manipulations such as shortening, extending,
or changing the order of intervals are left for future
work.

4.1. Ease-in and Ease-out

If we simply concatenate the intervals with the
tagged actions and display the result as a movie, we
get what film makers call jump cuts. For example, if we
shoot Joe walking from his bed to the bathroom and
then stop the camera, and restart it from the same an-
gle when he is already sitting at the table and eating,
the result is a (correct) impression of a jump in time.
Although this was deliberately introduced into the cin-
ematic language by French film maker Goddard in the



1950s, it is still typically avoided by mainstream film
makers [8].

Typically, when filmmakers contract the presenta-
tion time, they want the viewers to be aware that time
had elapsed. One possible cinematic technique is to use
transitions such as fade or wipe effects. In our context
there are too many cases in which we want the sys-
tem to connect two temporally-separated scene frag-
ments, and we did not want to make excessive use of
such transitions.

Another way to avoid the effect of a jump cut when
contracting time, is to use significantly different cam-
era angles before and after cuts. However, when time
manipulation is involved, this might not be acceptable,
specifically if the actors remain in the frame in a cer-
tain posture when cut, and then shown immediately in
the next frame in a different posture. For example, if
at one moment you see an actor sitting on the chair,
and at the next fraction of second you see the same ac-
tor standing in another part of the room, this would
still constitute the disturbing effect of a jump cut, even
if the camera angle would be significantly different be-
fore and after the cut. This problem only arises when
the time is manipulated.

Our solution to remove possible jump-cut problems
was to add an ease-in phase if an actor is seen in two
consecutive tagged actions. For such marked action, we
search for the previous motion of the same actor, and
tag it as well. If the previous action is long, we only
want to show its last few seconds. We then interpolate
the point on the walking path according to the time
that we want to show. This allows us to find the correct
position to begin, remove the previous segment and in-
sert the new shorter segment. Likewise, given a tagged
action, we can look for the next action of the same ac-
tor and tag it in a similar manner.

4.2. World and Story Consistency

Assume that the original session log included inter-
vals I1, . . . , In, and the movie constructor decided to re-
move a section of intervals in the middle Ij , . . . , Ik such
that 1 < j < k < n. This means we need to concate-
nate the end of interval Ij−1 with the beginning of in-
terval Ik+1. The problem is that if we look at the state
of the scene by the end of Ij−1, we might find that it
is inconsistent with the state of the scene at the begin-
ning of Ik+1. For example, by the end of Ij−1, we might
have clothes scattered all around the floor in a room.
During the intervals Ij , . . . , Ik the room was cleaned
up. However, since we cut out these intervals, these ac-
tions will not be performed and the resulting movie
would still include the clothes on the floor.

The reason for this abnormality is that once the
tagged log is converted to a script and sent to the
animation generator, the animation generator is com-
pletely ignorant of the original story and actions. Its
only task is to choose camera positions and angles and
create shots from the set of intervals of the script. This
is reminiscent of the continuity problem in film mak-
ing: a specific scene is typically composed of separate
shots, which may have been filmed several times, and
at different times. The editor needs to make sure that
the edited version of the scene appears continuous in
space and time to the viewer.

The solution to this is to process all removed inter-
vals Ij , . . . , Ik, and in fact perform all actions of char-
acters and objects in the original session log, in the or-
der of their appearance, but in zero duration. This is
done by inserting a new zero-time event for each ac-
tion in the intervals. Performing these zero-time ac-
tions will take care of world and story consistency, and
their zero duration ensures that they will not appear
in the movie itself. As a result actors and objects “tele-
port” to their new position, change their shape or state
or posture instantly, etc. It is obvious that not all such
actions need to be performed (think of a person pac-
ing up and down a room). Nevertheless, since they all
have zero duration, and our system works off-line to
create the movie, we did not include any optimization
mechanism.

Once all chosen intervals are tagged, the script is cre-
ated by choosing, in serial order, all tagged actions from
the log, and copying them. New beginning and ending
times are assigned by accumulating the time for each
action copied. Hence, the zero-time actions are copied
to the script but do not contribute to the movie-time.

5. Examples and Results

Going back to our example of Joe’s morning log and
applying the morning routine extraction, tags all ac-
tions related to this routine. In this example, there
is a perfect match and we decide to include it in the
movie, although we would typically prefer to ignore
such perfect-match routines. The resulting script is:

00 00 Joe sit

00 00 Joe wake-up

00 02 Joe move walk p1

02 04 Joe move walk p2

04 09 Joe use-bathroom Toilet

10 12 Joe move walk p3

12 12 Joe move walk p2

12 14 Joe move walk Shower_op

14 18 Joe take-a-shower

20 22 Joe move walk p4

22 22 Joe move walk p7



22 24 Joe move walk Food_op

24 26 Joe prepare-breakfast

26 28 Joe move walk p8

28 28 Joe move walk p9

28 30 Joe move walk Chair2_op

30 32 Joe look-at Chair2_up

32 34 Joe put Food Table

34 36 Joe sit Chair2

36 44 Joe eat Food

44 46 Joe stand

46 48 Joe take Food

48 50 Joe move walk np0

50 50 Joe move walk p12

50 52 Joe move walk GarbageCan_up

52 54 Joe drop-garbage

54 56 Joe look-at p13

56 58 Joe speak "Bye, honey!"

58 60 Joe move walk p14

60 64 Joe go-work Car

This differs from the original session log in several ways.
Some actions were removed: Joe jumping (originally af-
ter 12 seconds), sitting near the table, and other actions
that were not part of the morning routine. There are
several zero-time actions and the overall scene time is
reduced to one minute.

In the original session Joe wanders around with the
food remainders before throwing them to the garbage,
for some 10 seconds (68-78 in the original session log).
The Narrative Extractor decided to remove this wan-
dering about and replaced it by two walking actions:
in the interval [48, 50] Joe walks to np0, and in the in-
terval [50, 52] Joe is displayed walking to the garbage
can. Hence, we introduced a cut in the original ses-
sion, so we need the “teleport” action from np0 to p12
with zero duration to fill the gap. The action of walking
to np0 did not exist in the original session. It was gen-
erated to avoid the jump cut after Joe got up from the
chair. It is part of an action that took place in the orig-
inal script; the original action took 4 seconds (68–72),
and the NE decided to cut it into a 2 second inter-
val. This is not a significant modification of the story
line, but it illustrates the introduction of new actions
to the script.

As can be seen, the log includes some high-level ac-
tions such as wake-up (standing after lying in bed)
or drop-garbage (put an object in the garbage can).
These are collections of more atomic actions that of-
ten appear together and can be recognized in the ses-
sion log, and facilitate the specification and recognition
of routines. When such actions are sent into the anima-
tion generation component, they need to be expanded
back into lower-level components. Such high-level ac-
tions can be extracted from the virtual environment,
and thus appear in the original session log, or can be

introduced by the NE.
A second, more elaborate, example scene includes

four actors. Jogger is a girl jogging around the house.
Joe is performing his morning routine as in the previ-
ous example, and after about a minute and a half, he
goes off to work. Just after Joe goes to work, a thief
comes running into the house, grabs a fancy object (a
wrapped gift), and runs away. A lady called Nana is
casually hanging around the house all that time, un-
til she suddenly spots the thief. This makes her scream
and run out for help (see Figure 4). The whole scene
now takes around two minutes.

Different versions of movie summaries can be gener-
ated out of this log depending on the filters specified.
Consider a simple example when we tag the thief as
an interesting actor, and watching TV as an interest-
ing action. No routine is tagged, because we are not in-
terested in a morning routine, unless it was a near miss.
The resulting screenplay includes several zero-time ac-
tions. For brevity, we omitted those that have no effect
on the resulting movie.

The resulting summary is half a minute long, instead
of the original two-minute session. It includes parts of
the morning session, since Nana is watching TV, which
was tagged as an interesting action. Then it includes
the whole burglary scene. Note that although we only
focus on the thief, the movie will include all other im-
portant actions occurring at the same time. In this case
it will also include Nana spotting the thief, shouting,
and running away. Also, the jogger would appear in cor-
rect places at the right time. For example, in the origi-
nal session the thief waits for the jogger to pass behind
the house and out of sight before entering the house.
This will also be displayed in the summary movie.

One deficiency of this summary is that watching
the movie we will miss the point that the thief en-
ters right after Joe leaves for work. This exposes a gap
in our story understanding. A human who would be
making this summary would understand this causal-
ity. Therefore, he would probably decide to show Joe
leaving the house before showing the thief arrive in
the scene. This is beyond our system’s current capa-
bilities. In order to understand this information, we
would need additional artificial intelligence capabili-
ties, such as common-sense reasoning and the ability
to infer causality relationships.

6. Conclusion and Future Work

Although we had to make several simplifying as-
sumptions in the course of this work, we have man-
aged to show that interesting and intelligent movie
summaries can indeed be created automatically from



virtual world session logs. Not surprisingly, we found
that cinematographic knowledge is a crucial compo-
nent of such an automatic system. Nevertheless, we also
found that in many senses, generating virtual world
summaries is different from editing movies. Specifically,
there is a greater challenge to keep the world and story-
line consistent.

We also found it extremely important to evaluate
our methodologies by experimentation. Although we
could easily theorize about the algorithms and trans-
formations, we were often surprised by the results. Such
algorithms should be evaluated empirically by receiv-
ing systematic feedback from domain experts (e.g., film
makers) and from the target audience of a specific ap-
plication (e.g., game players). We believe multi-user en-
vironments, and especially persistent, massive multi-
player, online games will especially benefit from our
paradigm. If we think of these as virtual alternatives
to our world, watching such summaries may be the es-
sential equivalent of watching broadcasted newscasts in
the real world.

The creation of more elaborate movie summaries
from virtual world sessions is still a challenging and
important problem. For example, we have illustrated
only the very basics of temporal manipulation. Future
work can explore how story time can be transformed
into movie time in a more complex manner. Also, it
will be interesting to see how we can automatically de-
cide about scene boundaries, and how we can auto-
matically intertwine scenes, for instance, as it is done
in most soap operas.

We also believe that in the scope of a closed world
domain (such as The Sims), we should be able to lever-
age the rich information provided by the application.
These include the relationships between the characters,
the characters’ personalities, and their mood. It should
also be possible to automatically infer some causality
chains which will allow progress in two directions. First,
we may be able to extend the narrative extraction com-
ponent and its definition of what constitutes an inter-
esting action. Second, a higher level of story under-
standing can result in higher-quality cinematic deci-
sions.

Our implementation is limited in scope, specific, and
domain dependent, but our approach can be general-
ized to many types of virtual environments. Our re-
search highlights the need for a higher level of abstrac-
tion in representing virtual scenes. The objects, actors,
events, and actions in each application are different.
However, if they are abstracted, it should be straight-
forward to define routines based on these entities, and
to generate a log of the events and actions.

While our case study is based on the specific-domain

of life-simulation computer games, we believe the re-
sults are also of high relevance to immersive virtual re-
ality research. Virtual reality systems are typically ex-
pensive and complex, and organizations spend signif-
icant resources on their construction. Thus, the ses-
sions are very often video recorded for later analysis.
For many applications, automated summaries can be
useful, either instead of, or in addition to, these video
recordings.

Finally, many researchers and artists are investigat-
ing the possibilities for non-linear narrative and inter-
active digital storytelling. Our research can be thought
of as a complementary approach. We recognize that
complex environments can generate multiple narrative
threads. Our approach can thus be seen as the reverse
engineering of narrative, rather than the authoring of
it.

All examples in this paper can be viewed at http:
//www.cs.ucl.ac.uk/staff/D.Friedman/sims.

References

[1] D. Friedman and Y.Feldman, “Knowledge-based formal-
ization of cinematic expression and its application to an-
imation,” in Proc. Eurographics 2002, Saarbrücken, Ger-
many, 2002, pp. 163–168.

[2] R. C. Schank and R. P. Abelson, Scripts, Plans, Goals,
and Understanding. Erlbaum, 1977.

[3] N. Halper and M. Masuch, “Action summary for com-
puter games: Extracting action for spectator modes and
summaries,” in Proc. 2nd Int’l Conf. Application and De-
velopment of Computer Games, L. W. Sing, W. H. Man,
and W. Wai, Eds. Division of Computer Studies of the
City University of Hong Kong, 2003, pp. 124–132.

[4] H. D. Wactlar, “New directions in video information ex-
traction and summarization,” in 10th DELOS Workshop,
Santorini, 1999, pp. 66–73.

[5] M. Brand, “The inverse Hollywood problem: From video
to scripts and storyboards via causal analysis,” in Proc.
14th Nat’l Conf. Artificial Intelligence (AAAI-97), 1997,
pp. 132–137.

[6] E. T. Mueller, “Prospects for in-depth story understand-
ing by computer,” 1999, manuscript.

[7] E. Byrne and A. Hunter, “Man bites dog: Looking for
interesting inconsistencies in structured news reports,”
Data and Knowledge Engineering, 2003.

[8] T. Yaron, Editing Movies. Israeli Ministry of Culture,
1995, in Hebrew.



NE:
Narration
Extractor

MC:
Movie

Constructor

AG :
Animation
Generator

Extraction Production

log
10 wake up

20 sit

30 stand

35 walk to bath

10 wake up

20 sit

30 stand

35 walk to bath

10 wake up

20 sit

30 stand

35 walk to bath

10 wake up

20 sit

30 stand

35 walk to bath

10 wake up

20 sit

30 stand

35 walk to bath

30 stand

35 walk to bath

…

Tagged
log

10 wake up

20 sit

30 stand

35 walk to bath

10 wake up

20 sit

30 stand

35 walk to bath

10 wake up

20 sit

30 stand

35 walk to bath

10 wake up

20 sit

30 stand

35 walk to bath

10 wake up

20 sit

30 stand

35 walk to bath

30 stand

35 walk to bath

…

Script

10 wake up

20 sit

30 stand

35 walk to bath

10 wake up

2 30 stand

35 walk to bath

30 stand

35 walk to bath

…

Movie

Figure 1. An overview of the stages in the system for automatic creation of movie summaries.

Figure 2. The VRML environment and char-
acters used for modelling of a life-simulation
game.

Prepare
breakfast

Take a
shower

Go to
work

Drop
garbage

Eat

Use
bathroom

Wake up

Figure 3. An example of a DAG representing a
routine.

(a) (b) (c)

Figure 4. (a) Start of scene: girl is jogging; thief is lurking outside; inside the house morning routine is per-
formed. (b) Middle of scene: girl is still jogging; inside the house morning routine is continued. (c) Towards
the end of scene: Joe has gone off to work; the thief is entering the house; Nana is scared and runs out-
side; the girl is still jogging (see bottom of frame).


