
Automated cinematic reasoning about camera behavior

Doron Friedmana, Yishai A. Feldmanb,*

aVECG Laboratory, Department of Computer Science, University College London, UK
bEfi Arazi School of Computer Science, The Interdisciplinary Center, P.O. Box 167, 46150 Herzliya, Israel

Abstract

Automated control of a virtual camera is useful for both linear animation and interactive virtual environments. It has been partially

addressed in the past by numeric constraint optimization and by idiom-based approaches. We have constructed a knowledge-based system

that allows users to experiment with various cinematic genres and view the results in the form of animated 3D movies. We have followed a

knowledge acquisition process converting domain expert principles into declarative rules, and our system uses non-monotonic reasoning in

order to support absolute rules, default rules, and arbitrary user choices. We evaluated the tool by generating various movies and showing

some of the results to a group of expert viewers.

q 2005 Elsevier Ltd. All rights reserved.

Keywords: Virtual camera; Knowledge-based systems; Virtual cinematography
1. Introduction

Automating camera behavior has applications for both

off-line generation of linear animation and non-immersive1

interactive virtual environments. For linear animation,

automated camera control is an essential part of any fully

automated tool for animation generation, and may be a

useful component in high-level authoring tools. For

interactive environments, the need is even more obvious:

since a real-time director is not available, all camera-related

decisions need to be done automatically.

Cinematographers have been dealing with camera issues

for over a century. The cinematic expression is an arsenal of

principles and conventions, including, but not limited to,

camera behavior. Professional filmmakers learn these

principles, while naive viewers who watch TV or film are

usually not consciously aware of them. For example, a shot

is a consecutive set of frames shot continuously by a single
0957-4174/$ - see front matter q 2005 Elsevier Ltd. All rights reserved.

doi:10.1016/j.eswa.2005.07.027

* Corresponding author. Tel.: C972 99527305; fax: C972 99527246.

E-mail addresses: d.friedman@cs.ucl.ac.uk (D. Friedman), yishai@idc.

ac.il (Y.A. Feldman).

URLs: http://www.cs.ucl.ac.uk/staff/d.friedman (D. Friedman), http:

//www.idc.ac.il/yishai (Y.A. Feldman).
1 We assume that in immersive virtual reality the viewpoint is always

identical to the participant’s first-person view, although this convention

may also be questioned and investigated.
camera; shots are separated by cuts. Normally, a cut would

be a startling event, where the point of view changes

instantly. However, over the years filmmakers discovered

how to use cuts, making them cognitively unnoticed (in the

process, audiences were also ‘educated’ in the cinematic

language).

These principles can be formalized. For example, ‘jump

cuts’ are usually forbidden. These are cuts in which the

camera’s position does not change noticeably (an extreme

case is where the camera stops and restarts from the same

position after some time has passed). The rule usually found

in film textbooks requires at least 308 difference in camera

angle between shots. Sometimes, filmmakers deliberately

violate these principles. For example, Godard introduced

jump cuts in his film Breathless. It is this complexity that we

want to capture; we want to be able to formalize rules, but

also to allow the system to override them in specific

circumstances.

In this paper, we attempt to formalize a non-trivial

portion of the cinematic expression. We have used a

knowledge-based approach, in which rules and principles

were collected from textbooks and from interviews with a

domain expert. In order to evaluate our approach, we have

implemented a system called Mario. Our requirements from

the system include flexibility, high-level knowledge

specification, scalability, generality, and tractability.

Mario is able to convert screenplays, given in a high-level

formal language, into shooting scripts, which contain
Expert Systems with Applications 30 (2006) 694–704
www.elsevier.com/locate/eswa

http://www.elsevier.com/locate/eswa


D. Friedman, Y.A. Feldman / Expert Systems with Applications 30 (2006) 694–704 695
explicit instructions on camera placement and behavior.

Mario also includes a component that can generate an

animation sequence from the script, if all the objects and

actions included in the script are in the 3D library. The

camera behavior in the output movie is determined by an

automated reasoning process using a cinematic knowledge

base.2

Clearly, an ‘automated Fellini’ is far beyond our

capabilities, and thus our goals are more moderate; we

hope that Mario’s results can be useful for rapid prototyping

and for specific applications. We have evaluated Mario with

several example scenes from several TV genres. Each genre

is reflected in a different knowledge base, and the resulting

camera behavior is different. We show that even in the

idiomatic genre of telenovela the reasoning can be complex.

We have performed a preliminary evaluation of the results

by showing the results to both experienced filmmakers and

naive viewers.
2. Background

A virtual camera has at least seven degrees of freedom

per frame: three for position, three for orientation, and one

for field of view. Movies typically include 24–30 frames per

second, so the search space for solutions is very large. Many

types of considerations are involved: cognitive, aesthetic,

and cultural. While the problem has been addressed by

several researchers, we believe most would agree that it is

far from solved.

Previous research into automated camera control can be

classified into two methodologies: constraint satisfaction

and an idiom-based approach. Constraint satisfaction

methods (Drucker & Zeltzer, 1994; Drucker & Zeltzer,

1995; Bares & Lester, 1999; Halper & Olivier, 2000)

typically work at the level of a single frame. Given a set of

constraints about the objects to appear in the frame, they try

to find the camera parameters that best satisfy the

constraints. When such research is extended beyond a

single frame, it no longer benefits from constraint

optimizations (such as Drucker’s camera modules (Drucker

& Zeltzer, 1994)).

Idiom-based approaches (Karp & Feiner, 1993; Butz,

1997; Christianson, Anderson, He, Salesin, Weld, & Cohen,

1996; He, Cohen, & Salesin, 1996; Tomlinson, Blumberg,

& Nain 2000) try to capture cinematic principles and let

them dictate camera behavior. Cinematic principles may

serve to reduce the large search space induced by the many

degrees of freedom for a camera per frame. Several

researchers have attempted some formalization of cinematic

principles, and the abstraction of the space allows the use of

symbolic algorithms rather than numeric methods.
2 To view example animation files created by Mario follow the

instructions in http://www.cs.ucl.ac.uk/staff/d.friedman/kbc.html.
The first to attempt some automatic cinematography

were Karp and Feiner (1993); their ESPLANADE system

used planning with communicative goals. Butz (1997)

proposed that the rules of cinematic expression are

analogous to grammar in natural language, and this was

the basis for his CATHI system. Christianson et al.

(Christianson et al., 1996) defined Declarative Camera

Control Language (DCCL) and attempted a more systematic

analysis of cinematography. They describe several cine-

matic principles and show how they can be formalized in a

declarative language. They encode 16 idioms, at a level of

abstraction similar to the way they would be described in a

film textbook.

Real-time camera behavior was addressed by several

projects. The Virtual Cinematographer (He et al., 1996)

formulates some idioms as finite-state machines, which may

then be used to make real-time decisions in 3D chat

environments on the Web. Bares et al. investigated user

modeling (Bares & Lester, 1997) and task sensitive camera

behavior (Bares, Zettlemoyer, Rodriguez, & Lester, 1998).

Tomlinson et al. (2000) used a behavior-based approach; the

camera is modeled as an autonomous agent, and its behavior

is based on a reactive behavior system, with sensors,

emotions, motivations, and action–selection mechanisms.

Constraint-based approaches are more flexible and can

be used to cover a wide range of situations. Idiom-based

methods, on the other hand, have the advantages of

abstraction and exploitation of domain knowledge.

Our approach is knowledge-based, and is thus more

similar to the idiom-based approaches. However, we claim

that idioms are the wrong granularity, being too coarse to

formalize cinematic knowledge. Using idioms, it is

necessary to code a specific idiom for every possible

situation. This method results in a repetitive and predictable

output, which impedes user engagement. For the same

reasons, using idioms does not scale to cover a large variety

of complex situations. Our analysis reveals a lower level of

rules. Such rules may sometimes be combined together to

form idioms, but the range of phenomena they cover is

much larger due to their interaction. Another problem with

idiom-based approaches is that they assume that an editing

algorithm is known. We believe this view is too optimistic

for a domain as complex as cinematography, and have thus

opted for an automated reasoning approach.
3. Zooming in on Mario

3.1. Architecture and representation

Mario’s architecture is shown in Fig. 1. The inputs to

Mario are a screenplay and a floor plan. The screenplay is

given in a formal language. The reasoning engine applies

cinematic principles, taken from the cinematic knowledge

base, to the inputs. The output is a list of the camera

http://www.cs.ucl.ac.uk/staff/d.friedman/kbc.html


Fig. 1. Mario system diagram.

Fig. 2. Mother displayed from a frontal medium shot, i.e. with an angle of

308.

D. Friedman, Y.A. Feldman / Expert Systems with Applications 30 (2006) 694–704696
parameter values, as determined by the reasoning process.

The reasoning engine also produces a log of its reasoning

process. The system can create a synthetic 3D movie

corresponding to the screenplay and the camera decisions, if

3D models and animations for the objects and actions

mentioned in the screenplay are available.

The data representations typically used for computer

graphics are not adequate for our needs; we need a scene

description on a higher level of abstraction. We represent a

scene as a collection of actions placed on a time line. The

time line is annotated with spatial information: the position

and gaze direction of each object is given in the beginning of

the scene and in every point in time in which it changes. We

split the time line into a list of intervals. For every beginning

or ending of an action we insert an interval boundary on the

time line. This allows us to avoid continuous time, and use a

discrete representation in the form of a list of time intervals.

The automated reasoning portion of Mario is

implemented in Common Lisp, based on top of Cake

(Rich & Feldman, 1992). Cake is a multi-layered reasoning

system developed at MIT’s Artificial Intelligence Labora-

tory in the late 1980s. Cake’s architecture includes seven

layers; the bottom six layers provide the following generic

knowledge representation and automated reasoning facili-

ties: truth maintenance (TMS), equality, pattern-directed

invocation, types, algebra, and frames. In addition to these

generic reasoning layers, Cake also has a top layer for

reasoning about the plan calculus, which is a specialized

formalism for software development. We have replaced this

layer with Mario, which is a specialized layer for reasoning

about cinematography.

We refer to the camera parameters in a single frame as a

viewpoint. Viewpoints are generally associated with

numeric values for position, direction, and field of view.

Theoretically, there is an infinite number of possibilities

with seven degrees of freedom per frame. Our approach is

different, and it assumes that viewpoints are best determined

in story space. Thus, the geometric space is abstracted to

include a finite number of possible viewpoints, based on
the physical arrangement of the scene and on several

cinematic attributes.

To describe a viewpoint, it is often enough to refer to the

target objects or actors, the angle in which they are

displayed, and the frame (image) composition. Viewpoints

are implemented as frames, and so we refer to their

attributes as slots. Thus, our formalization includes three

main slots that are enough to specify a virtual camera, and

additional slots that may be used to specify less

conventional viewpoints. The three major slots are:

† Target: an actor or an object appearing in the scene;

† Shot type: close up (CU), medium shot (MS), or long

shot (LS); and

† Profile angle: front-L, front-R, 3/4L, 3/4R, or back.

Shot types and profile angles are cinematic concepts. A

frontal shot means that the camera faces the actor. Actors

gazing directly at the camera look unnatural, so actors are

trained to look a little to the left or to the right of the camera.

The result is front-L and front-R, which refer to the case

where the camera is oriented 308 from the target’s gaze

vector, either to the left or to the right, respectively (see

Fig. 2). By a 3/4 profile angle we refer to 3/4 of a right angle



D. Friedman, Y.A. Feldman / Expert Systems with Applications 30 (2006) 694–704 697
(or 67.58), either to the left or to the right of the target’s gaze

vector (see Fig. 3).

Using discrete values makes it possible to apply

symbolic reasoning, allowing the computation to be simpler

and more efficient. To support less conventional frame

compositions, viewpoints have three additional slots: pitch,

tilt, and zoom. It is also possible to add more discrete values

to the three main slots; for example, cinematographers also

define extreme close ups, extreme long shots, and other

basic shot types; these can be easily introduced into Mario.
3.2. Cinematic rules

For the sake of the explanation, we will use a small scene

fragment from the Latin telenovela Dulce Anna. We will

illustrate how the non-monotonic interaction among low

level cinematic rules gives rise to higher level cinematic

idioms as well as to cinematic decisions that are valid yet

were not preconceived by the domain expert. The rules and

their formalization will be simplified; more details appear in

the first author’s PhD thesis (Friedman, 2003).

Recall that the time line is divided into intervals. Every

interval has two viewpoints, one at the beginning of the

interval and the other at the end; these viewpoints are

accessed by the functions first-vp and last-vp, respectively.

This formalization allows introducing additional viewpoints

in the middle of intervals, but this was not utilized so far.

Assume that only the following rules in our knowledge

base affect the situation (these are taken from the rules our

domain expert formulated for the telenovela genre):

(1) If an actor is speaking, she is displayed in a frontal (308)

medium shot.

(2) If an actor is walking, she is displayed in a long shot,

from a 3/4 angle.

(3) Cameras do not cross the line of interest with a cut

(Every scene has a line of interest; for example, if there

are two actors in the scene, the line of interest is the line

that connects their two-dimensional positions. When a

camera crosses the line of interest, the relative positions
Fig. 3. Mother displayed from a long shot, 3/4 profile angle.
of the actors change, which is confusing if done

abruptly. Crossing the line during camera motion is

not prohibited, because viewers see the change as it

occurs).

(4) There are no jump cuts; specifically, the angle between

two consecutive shots is at least 608.3

Note that these rules have lower granularity then cinematic

idioms. For example, the first, third, and fourth rules given

above, together, constitute the dialog idiom as it is mentioned

in cinematic texts, and as it is used by idiom-based approaches

such as the virtual cinematographer (He et al., 1996). In the

sequel, we will see that these rules can also cover situations for

which there is no consensual cinematic idiom.

The way we formalize the first rule is as follows: Mario

checks for each interval I whether actor a speaks in that

interval. If so, it adds the following axioms into Cake:

Note that these axioms are not quantified. They may

appear many times in a scene, once for each interval in

which an actor is speaking. Also note that one formula in the

rule definition above is marked to be a preference. This is an

example of a retractable formula; these will be explained in

Section 3.3.

The formalization of the second rule is similar to the first.

In this case, the formula assigning the value to the profile-

angle is a retractable preference.

Next, we want to formulate the rule that states that the

camera does not cross the line of interest with a cut. Note

that until the basic slot values of the viewpoints are

determined the viewpoint position is undetermined, and it is

impossible to detect that the line is crossed. Cake allows this

type of reasoning with the pattern-directed invocation

mechanism, by installing demons that are triggered upon

the creation of a new term.

As a first step, we install an axiom for every candidate cut

point. Recall that only interval edges are candidates for cuts.

For every interval I followed by an interval J, we install the

following axiom, which requires the camera in the end of

interval I and the camera in the beginning of interval J to be

on the same side:

(same-side (last-vp I) (first-vp J))
3 While cinematographers often cite 308 as the right number, in

telenovela, being more conservative, differences smaller than 608 are rare.



D. Friedman, Y.A. Feldman / Expert Systems with Applications 30 (2006) 694–704698
We install a demon that is triggered whenever the pattern

for the same-side function appears in a new term. This demon

installs the following axiom:
Next, line-side is assigned meaning, by another demon. It

tests that all viewpoint values are initialized, and if so it

computes the side of the line of interest on which the

viewpoint is positioned. The geometric computation is thus

carried out only when it is needed, and geometry can be kept

out of the symbolic non-monotonic reasoning.

If the viewpoint is indeed determined, then this demon

installs the following axiom:

(Z(line-side shot target profile) side-x)

where side-x is one of the symbols side1 or side2, denoting

either one side of the line of interest or the other.

The last rule in our example is the rule that requires at

least a 608 angle difference between consecutive shots. The

formalization of this rule in Cake is similar to that of the

line-of-interest rule. For every interval I followed by an

interval J, we install the following axiom:
where angle is a function that returns the 2D angle for a

given viewpoint. The angle values in our computations are

always between 0 and 2p, so this rule states that either the

two viewpoints are the same, or that they have an angle

difference greater than 608 (p/3). We assume a 2D

representation and that the viewpoint direction is parallel

to the !x, zO plane.

Note the use of equality, which is supported by Cake. In

this case, the equality is tested for two frame objects. So in

fact, we are using the following equation, automatically

provided by Cake:
A demon is triggered when an angle term is detected. As

in the case of the line-side computation, there is no point in

trying to compute the angle before the relevant slots are

assigned values. In this case, only the viewpoint direction

is necessary, so we only need the target and the profile

angle to be determined. When they are determined, the

demon computes the rotation angle dictated by the slot

values.

This concludes the formalization of the four rules. Next,

we turn to describe the reasoning process. We will illustrate

the process with a very simple example, in which the actions

do not overlap. There are two actors, the teenage Mario and

his mother. The input description of the scene is:

0 3 Mother walk-to point-1

3 6 Mother speak ‘Have you eaten the sandwich I prepared

for you?’

6 8 Mario speak ‘I wasn’t hungry.’

Even in this simple example, we can see an interaction

between the rules, which yields an editing solution that may

not have been anticipated by the domain expert.

This scene fragment includes three intervals: [0,3], [3,6],

and [6,8]. Since Mario speaks in the third interval, he should

be shown in a frontal medium shot (first rule). Because he is

not looking at his mother, but towards the center of the

living room, both directions (front-left or front-right) are on

the same side of the line of interest. Therefore, when Mother

speaks in the second interval, she should be shown with a

frontal medium shot (rule 1), from the same side of the line

(rule 3). In the first interval, Mother walks, and so should be

shown with a long shot from a 3/4 angle (rule 2), still from

the same side of the line (rule 3).

This, however, is impossible, since it results in a ‘jump-

cut’ between the first and the second intervals, which is a

violation of the fourth rule that requires at least a 608

difference between consecutive shots. The reason is that the

difference between a 3/4 angle and a frontal shot (308) is

371⁄28, less than the required minimum of 608.

Now the system needs to resolve this conflict, and it is

able to do so, since some of the constraints were formulated

as preferences. In this example, the rules required a simple

shot, i.e. that both viewpoints for the same interval will be

equal. There is only one way to satisfy all constraints,

which is by unifying the first two intervals into one shot, in

which all viewpoints will display a frontal long shot of

Mother. This is a new kind of shot, which was not explicitly



D. Friedman, Y.A. Feldman / Expert Systems with Applications 30 (2006) 694–704 699
mentioned in any of the rules, and was not anticipated by

the domain expert. This demonstrates a type of emergent

behavior, which is highly desirable in entertainment and

artistic contexts: the expert specified rules with one scenario

in mind, and the rules interacted in a meaningful way, to

generate an unexpected result for a new scenario. If the

rules were formulated correctly, this would form an

acceptable solution. This interaction of rules allows for

the kind of scalability that does not exist in the idiom-based

approach.
4 Mario retracts assumptions automatically, even though this is not the

case in Cake.
3.3. Non-monotonic reasoning

Cake provides different kinds of retractable premises,

with different behaviors. In our implementation of

Mario, we have used two of the premise types provided

by Cake: defaults and assumptions, and have added a

third mechanism into Cake, which we call preferences.

The differences between these different types of premises

are as follows. Defaults are assumed to be true, and they are

the first to be retracted in the case of a contradiction. If,

during the reasoning process, the reason for retracting a

default is by itself retracted, the default would automatically

pop back and be assumed true. For example, in a telenovela,

we would probably use a default to specify that the camera

is stationary. Assumptions are assumed true, but unlike

defaults, they do not get retracted or popped back

automatically by Cake. We typically use assumptions to

represent arbitrary choices that result from disjunctive

clauses. For example, the decision about side of the line-of-

interest would be formalized with an assumption, since

using either side is arbitrary. If it turns out that the original,

arbitrary, choice leads to a contradiction; it is automatically

retracted and replaced by the alternative choice.

During the development of Mario, it turned out that these

two mechanisms were not enough. We have introduced

preferences: these are similar to defaults in that they are

automatically popped back if the reason for their discarding

is retracted. However, unlike defaults, they are the last to be

retracted. As an example for the need for preferences,

consider a situation in which we want one of the actors to be

displayed in a close up, if possible. Such a premise can

interact non-monotonically with other premises, and we

would like it to hold whenever possible.

The following algorithm for resolving contradictions

uses the function m(a)Zmin{intervals(a)}, where inter-

vals(a) is the set of indexes of intervals referred to in the

premise a.

C) set of premises involved in contradiction

if C is empty

then fail ‘cannot resolve contradiction’

let DZ{d2Cjd is a default}

AZ{a2Cja is an assumption}

PZ{p2Cjp is a preference}
if D is non-empty then retract d s.t. m(d) is maximal in D

else if A is non-empty then retract a s.t. m(a) is maximal

in A

else if P is non-empty then retract p s.t. m(p) is maximal

in P

As explained above, we see that in case of contradictions,

Mario first tries to retract defaults. If no defaults are

involved it tries to retract an assumption.4 A preference will

only be retracted if the contradiction includes neither

defaults nor assumptions.

In the first author’s PhD thesis (Friedman, 2003) we

show that the algorithm terminates, although it is potentially

exponential. Choosing the premise that refers to the

intervals with the greatest indexes is a heuristic that

dramatically improves the performance of the algorithm.

Most rules refer to a single interval, or to two adjacent

intervals. The latter cause dependencies between intervals,

which can propagate along the whole timeline. For example,

the arbitrary choice of which side of the line-of-interest to

use could propagate from the first interval until the last.

Reasoning usually proceeds from the first interval forwards.

If a contradiction is found in the last interval, and we choose

to retract a premise that refers to the first one, the retraction

is likely to propagate along all intervals, causing many

retractions and necessitating many forward deductions to

replace them. If, however, we retract a premise that only

refers to the last two intervals, the effects are likely to be

significantly smaller. The introduction of this heuristic

reduced the run time for one example from several hours to

less than two minutes.
4. Results

We have run Mario and evaluated the results for over a

hundred scenes. Most of the scenes only involved two

actors, and some included three actors. Due to limitations in

animation generation, most of our examples only included a

restricted set of actions: walking, speaking, jumping, and

running. The largest example we analyzed was the complete

Dulce Anna scene, which included 41 actions over 45

intervals, resulting in an animation sequence of 2 min

and 20 s.

The telenovela example was tested with a variety of rule

sets. The version of the knowledge base that produced the

best results, according to our domain expert, includes eight

rules, each including several formulae. During the proces-

sing of the full scene, the TMS was loaded with over 10,000

terms.

Running Mario with the whole telenovela scene takes

approximately 10 s on a PC with 2 GHz Pentium 4



D. Friedman, Y.A. Feldman / Expert Systems with Applications 30 (2006) 694–704700
processor, 1 GB of RAM, running GNU Common Lisp.

This is acceptable for an off-line tool, which may be used

interactively through iterative refinement of results.

In the rest of this section, we discuss some of the

interesting issues that came up during the formalization.
4.1. Shots and establishing shots

Shots pose an interesting problem: they are a central

concept in cinematic language, and thus rules need to refer

to them. A shot is a consecutive set of intervals, but where

shots start and end is not known in advance; part of the goal

of the rules is to define them. Thus, we are faced with rules

that refer to entities whose parameters are unknown. This is

one of the main reasons for using non-monotonic reasoning.

Our solution is to define shots using a function, shot-

number, which maps an interval to the index of the shot it is

part of. The values of this function can change non-

monotonically throughout the reasoning process.

Establishing shots are used by filmmakers to make their

viewers familiar with the location of the scene. This is

typically a long shot, a very long shot, or even an extreme

long shot, which displays the whole location for a duration

that is long enough for viewers to absorb the spatial

relationships between all significant objects in the scene.

Naturally, it appears in the beginning of the scene, but it

does not need to be the first shot. Also, if the spatial relations

among the main actors and objects change significantly

during the scene, such a shot is required again, and is called

a re-establishing shot. A re-establishing shot may be

different from an establishing shot; for example, it may be

enough to provide a long shot of the objects that changed

their position, rather than display the whole space again.

However, in the presentation below we treat them in the

same way.

Our domain expert provided two sets of rules: one for

specifying when an establishing shot or a re-establishing

shot is required, and another that defines the camera

behavior for such shots. The problem introduced by this

concept is that it applies to a shot, rather than to actions or

intervals, so rules relying solely on intervals will not be

adequate.

We can define establishing shots as a predicate, called

ES, over shots. Whenever an expression such as (shot-

number i) is created, we add (using a demon) a default that

states that the shot is not an establishing shot, or:

(not (ES (shot-number i)))

This is the required infrastructure. Next we need a set of

rules that specify a shot to be an establishing shot. First, we

have the following rule stated by the domain expert: ‘The

first or the second shot of a scene must be an establishing

shot’. This is formalized using the following axiom:

(or (ES 0) (ES 1))
Another rule specifies a re-establishing shot: if the spatial

configuration of the scene changes significantly at time t,

and the interval that starts with t has index i, we add the

formula:

(or (ES i) (ES (Ci 1)))

In addition to the rules specifying which shots are to be

establishing shots, we need rules to specify the camera

behavior in such shots: for example, that they should be

long shots. This needs to be installed for every interval,

since whether a shot will be an establishing shot or not

may change non-monotonically throughout the reasoning

process. For every interval I we install the following

formula:

The mechanism described here guarantees that there is a

long shot in at least one of the first two shots after a spatial

change in the scene. Note that the shots themselves may

change non-monotonically throughout the reasoning

process.
4.2. Manual intervention

In Section 3.3, it was explained how Mario automatically

resolves contradictions involving retractable formulae. User

intervention in such cases is also possible; Cake allows

querying the user which premise to retract. Cake also allows

the user to trace the reasoning leading to a specific formula.

The user can thus interact with Mario, follow Mario’s

reasoning, and decide which premise to remove.

User intervention is not limited to the selection of

premises to retract in the face of a contradiction. The user

may view the results, and may decide to add a piece of

information. For example, say that the user is unhappy with

the solution that was derived automatically for the example

described above. Perhaps the user knows something that the

system could not deduce from the screenplay, which

requires Mario to be displayed in close up in interval I. In

such a case, it is possible to add rules expressing this new

information, into the system, such as the following

preferences:

This new information is then propagated in the TMS,

and it may interact with other premises or rules. The

user can determine the effects of her preferences, and be

alerted if it violates any cinematic principle. Note that

this does not require the user to change the cinematic

knowledge base; it is enough to add a specific piece of



Fig. 4. If a character is perceived to be threatening, a rule can specify that

the character be displayed from a low angle.

D. Friedman, Y.A. Feldman / Expert Systems with Applications 30 (2006) 694–704 701
information that is only relevant in the context of the

given screenplay.
4.3. Additional genres

In addition to Latin telenovela, we have analyzed scenes

from other genres, mainly a more dramatic genre (from the

TV science-fiction series The X-Files). This introduced new

challenges; mainly, it includes a much richer set of

situations, locations, and shot types compared to telenovela.

For example, low-angle shots (Fig. 4) are sometimes used to

portray an actor in a threatening attitude.

As we refined the knowledge base and introduced new

rules, we frequently confronted the problem of contradic-

tions between rules. It is possible to keep the problem under-

constrained by using preferences and defaults rather than

axioms, but this might result in too many arbitrary choices.

Conflicting defaults is a well-known problem in non-

monotonic reasoning, but there does not seem to be a

general solution. We have examined a domain-dependent

solution to the problem of contradicting defaults: classifying

rules by the high-level goals they are meant to achieve. We

have identified several categories of such high-level goals:

spatial orientation, conveying the information explicit in the

script, conveying the information that may be implicitly

deduced by a viewer from the script, aesthetic consider-

ations, and parsimony: using the minimum number of shots

and cameras. In cases of conflicts, the system can try to

satisfy all the goals, rather than choose preferences

arbitrarily. The goals component has not been

implemented yet.
5 This film from 1968 was given no name, and is usually referred to as

‘Back and Forth’.
4.4. Experimental cinematography

The formalization may help the filmmaker organize the

cinematic knowledge in her mind. This is useful not only for

gaining new insight into cinematic expression; by abstract-

ing and formalizing the domain space, the filmmaker may

become aware of new options.
We can illustrate this by examining two examples of

movies created by Mario, by using simple and deliberate

violation of rules. These examples would have clearly been

impossible using the idiom-based approach. In the first, we

asked Mario to prefer complex shots over simple shots, by

requiring, for every interval, that the first viewpoint will be

different from the last. Note that our method is fully

deterministic, which means that even if there are arbitrary

choices, we expect a high degree of consistency. In the case

described above, Mario preferred modifying the profile

angle from 3/4 to frontal, and also preferred zooming in.

The result was of a very consistent style including repeated

camera rotations, which several viewers called the

‘Matrix’ style.

An additional small modification produced a completely

different style. Instead of requiring, for each interval, that

the first viewpoint will be different from the last one, we

required that for each interval, all the three basic slots of the

first viewpoint be different from the corresponding slots in

the last viewpoint. We expected a very dynamic camera

behavior, but watching the resulting movie was still

surprising. The consequence of the new rules was that in

almost all of the shots, the camera rotated between the two

actors. This turned out to be a very consistent style, called

by some viewers the ‘Ping Pong’ style. Some film students

mentioned that this style reminded them of the Dogma 95

cinematic genre, which is characterized by unstable and

rapidly changing camera positions. Filmmaker Yigal

Burstein remarked that this style reminded him of an

experimental film by filmmaker Michael Snow.5 Snow used

repetitive camera rotations in this experimental film in order

to accentuate a sudden dramatic event. Thus, we see that, on

the one hand, experimenting with the rules can lead to

surprising effects. But on the other hand, we are far from a

tool that would deliberately select such a style to emphasize

an event, as done by Snow.

4.5. Empirical evaluation

We have conducted an informal evaluation of Mario, by

presenting several output movies to an audience, and having

the audience fill in a questionnaire. The experimental setting

had several limitations, and the results need to be interpreted

with caution, or verified by a systematic experiment.

The main idea was to conduct a kind of a Turing test, that

is, to see if viewers, and especially filmmakers, could tell

the difference between Mario’s editing and expert human

editing. We have tested two groups. Group A was composed

of 12 graduate film and TV students, who are assumed to be

‘native speakers’ of the cinematic language. Group B

was composed of 10 people who had no background in film

and TV.



Table 1

The percentage of people who correctly passed the ‘Turing test’ by group,

for the first three versions

Telenovela No-line Domain

expert

All three

% Correct in group A 67 67 50 33

% Correct in group B 60 70 60 40

% Correct in both

groups

64 68 54 36

The last column shows the percentage of people who gave the correct

results for all three versions.

Table 2

Grading movies edited by Mario and by the domain expert

Rating by group A Rating by group B Combined

rating

Telenovela 2.25 3 2.59

No-line 2.83 3 2.91

Domain expert 3.75 3.8 3.77

‘Matrix’ 1.5 1.42 1.59

‘Ping Pong’ 1.42 1.17 1.41

D. Friedman, Y.A. Feldman / Expert Systems with Applications 30 (2006) 694–704702
Both groups were given a simple questionnaire. In

addition to the questionnaire, the subjects were provided

with an oral explanation of what we mean by ‘human

version’, i.e. the fact that the film expert made the editing

decisions, and that the animation was generated automati-

cally. Group A answered the questionnaire in class, while

group B went through the experiment individually.

We used five versions of the telenovela scene in 3D

animation:

(1) the best version generated by Mario, according to the

telenovela knowledge-base;

(2) a version generated by Mario, with all the telenovela

rules except the line-of-interest rule, which was

removed;

(3) a version generated manually by our domain expert;

(4) a version generated by Mario, specifically generated to

cause moderately dynamic camera behavior (the

‘Matrix’ style), as described in Section 4.4; and

(5) a version generated by Mario, specifically generated to

cause extremely dynamic camera behavior (the ‘Ping

Pong’ style), as described in Section 4.4.

We wanted to use another version similar to the one in

the original TV series. However, due to limitations in

animation generation, the animated scene is quite different

from the original one, so this was not possible.

Mario’s editing was based on the principles formulated

by the same domain expert who edited the manual version.

So, in principle, the two versions should have been exactly

identical. However, it turned out that there were some

differences. When we interviewed the domain expert about

his version, he admitted that he used additional rules and

considerations, which he did not provide to Mario. One of

these is a ‘voice over’ editing technique. For example, in

part of the scene Mario speaks for 5 s, and then his mother

provides a reply, which lasts for a significant duration.

Instead of cutting after 5 s, our editor left the camera on

Mario for 7 or 8 s, thus showing Mario while his mother was

already speaking.

We could have further extended the Mario system to

incorporate all the new principles, until its version was

identical to the one generated by the domain expert. We

decided to carry out the experiment in the way we did, because

we thought it still reflects the difference between a knowledge-

based system and a human expert; a knowledge-based system

will always be some approximation of an expert.

After watching the movies, both groups of viewers were

asked two questions:

(1) Do you think the editing decisions in the version you

saw were made by a person or by a machine?

(2) How much did you like this version (on a scale of 1–5)?

For the first question, we only asked about the first three

versions of the edited scene. The results are summarized in
Table 1. The results of the rating tests are summarized in

Table 2.

In addition, the subjects were explicitly encouraged to

comment on cinematic problems. All the film students

provided comments, but only two (16%) noted the line-of-

interest violations.

The following points can be made about the results. First,

only 8 out of 22 (36%) of the viewers recognized who made

all three movies correctly. Due to the limitations of the

experiment, we only see this as a first indication that

Mario’s result are comparable to human expert; this needs to

be further investigated.

Group A was less successful in the ‘Turing test’: only

33% recognized all three movies correctly, compared to

40% of group B. Since data were not normally distributed, a

Kruskal-Wallis two-way ANOVA test was performed on

the two groups. No significant group differences have been

found.

The overall rating results are interesting. First, we note

that in both groups the rating for the human-made version

was highest. This was statistically significant in related T-

tests comparing the rating for the first and the third movie

versions (tZ3.954, pZ0.01), and comparing the rating for

the second and for the third movie versions (tZ3.356, pZ
0.03). This is true even though, in general, the viewers were

not aware that this version was created by a human. It seems

that the question whether the movie was done by human or

machine is very confusing, but that viewers do sense a

difference, and prefer the human version.

An even more surprising result is that the rating of

Mario’s correct telenovela version (first movie) was lower

than the rating of the erroneous version (second movie).

However, this was not statistically significant. Also, because

the experiment was conducted in a classroom, we could not



Fig. 5. Mother is partially occluded by Mario, during a shot with camera

motion.

D. Friedman, Y.A. Feldman / Expert Systems with Applications 30 (2006) 694–704 703
control the order in which the movies were displayed; this

could have affected the results.

Almost all subjects rated the two ‘experimental movies’

very low. Perhaps there was a misunderstanding and they

thought these were supposed to conform to the telenovela

genre, and perhaps they were biased because they knew they

were computer-made. One film student really liked the ‘Ping

Pong’ version (graded it 5). Another film student liked the

‘Matrix’ version (graded it 4). We note that none of the film-

illiterate group liked any of these versions. Both of the

experimental versions (‘Matrix’ and ‘Ping Pong’) made an

excessive use of one unique effect each. Viewers indeed

comment that their was ‘too much motion’. It would be

interesting to have Mario generate versions that make a more

subtle use of the effects, and see how viewers react to these.
5. Discussion and future work

Automated virtual camera is still an open problem,

despite this research and others. Cinematic expression is a

complex domain with a very large body of knowledge, and

we do not claim to have covered it completely. In this

section, we state some of the limitations of this work, and

some of the ways in which we expect they can be overcome.

We believe that this domain is a challenge that provides an

opportunity for much more research in the future,

specifically within the knowledge-based approach.

5.1. Limitations of the Mario implementation

Mario is now able to deal with a large number of

cinematic concepts, and is able to perform high-quality

decision-making about camera behavior. However, cine-

matic expression is a wide, possibly infinite domain. For

example, Mario’s frame compositions are based on a finite

set of possibilities that are common in cinematography.

Mario’s frame decisions can thus be considered idiomatic,

and thus have the disadvantages that we have associated

with idiom-based approaches: it is not flexible enough to

cover less typical situations, and does not allow evolution of

new frame compositions. Numeric optimization

approaches, such as Drucker’s (Drucker & Zeltzer, 1994;

Drucker & Zeltzer, 1995), are successful and appropriate for

solving frame compositions based on constraints. It would

have been interesting to integrate both methods; this is a

candidate integration point.

In the lack of frame considerations, Mario also runs into

the problem of occlusions. Since Mario relies on idiomatic

frame compositions this would not be a problem in

beginnings or ends of shots, but occlusion might occur

during a shot if the actor positioning is non-conventional or if

the actors are moving. There was one such occlusion in

Mario’s editing of the telenovela scene (Fig. 5). In this case,

the domain expert mentioned that he liked the resulting

effect, but stated that it would have probably been avoided in

a telenovela.
If occlusion computation is supported, this has another

interesting implication: occlusions can be utilized to achieve

interesting cinematic effects, as is done in advanced

cinematic genres. One example is partially occluding a

target for aesthetic reasons; this is also related to frame

composition. Another example would be gradually exposing

a surprising target to the viewer, by moving the camera to

reveal it from behind an occluding object.
5.2. Manipulation of time

The conversion of a story or a screenplay into a movie

typically includes temporal transformations. There are at

least two relevant time lines: story time, and presentation

time. An automated tool for creating visual movies from

textual scene descriptions may want to apply various

transformations to the story events: shorten, stretch, omit,

add, or change the order of events.

Mario only makes camera-related decisions, but in a

follow-up research (Friedman, Feldman, Shamir, & Dagan,

2004) we have experimented with a tool that creates

automated summaries out of virtual environment sessions.

This tool included manipulation of time: in order to generate

summaries it had to automatically remove events from the

story.

It is clear that we cannot just remove subsets of the story;

continuity must be preserved. While we have only

experimented with one simple type of temporal transform-

ation, we have learned a few lessons. First, we were careful

in deciding what points to cut. If a certain sub-scene is

interesting, we may want to include a few events earlier that

illustrate how the spatial situation was constructed. Also, if

significant changes took place during a sub-scene we decide

to remove, some of these changes need to be displayed. For

example, if the actors in the scene significantly change their

position, they need to be displayed walking in to their new

positions. This may include displaying subsets of actions, or

in extreme cases make up actions that did not really take

place. Further research into temporal manipulation is

required.



D. Friedman, Y.A. Feldman / Expert Systems with Applications 30 (2006) 694–704704
5.3. Automation

There is frequently a tension between human authoring

and automation. Human authoring still offers maximum

control and highest quality, and automation is used for

minimizing labor. Recently, however, animators are learning

that automation does not only save time, but can also allow

them to focus on the important details, or even create

animations that would have been impossible to create

manually. We observe that the balance is shifting towards

increasing automation, while allowing the humans to

maintain control by intervening in certain points throughout

the process.

Complete automation is difficult, especially when

human-level AI is required; it does not seem that such AI

will be around anytime soon. Reverting to semi-automated

processes is therefore necessary, but this comes with a price;

if some user intervention is required, the tool needs to

provide facilities for man-machine collaboration, such as

explanation capabilities.

With Mario we have taken the knowledge-based

approach, which allows human users into the process in

several stages: formalizing the principles, understanding the

results generated automatically, and having the possibility

to intervene in specific points. We believe such an approach

is necessary in such a difficult domain, at least until

automation procedures become widely accepted.
6. Conclusion

While our goal was to come up with a generic method for

automated camera control, we have only looked at a few TV

genres. We expect our method to extend to other domains,

but this needs to be investigated. We have started to apply

‘automated cinematography’ in the context of manufactur-

ing simulations. It now seems that the method could be very

similar to the one described in this paper, with the main

differences being the ‘cinematic language’ used in

manufacturing simulations: occlusion plays a much more

important role, special views, such as wire frame and cross-

section cuts, are occasionally used, and events often take

place in parallel.

We conclude by noting that recent advances in computer

graphics, together with the growth of available processing

power, stress the need for automation in animation

generation, and allow the generation of more sophisticated

virtual environments. It may be worthwhile to revisit old
artificial intelligence techniques, as well as new ones, and see

how they can allow us to achieve these goals.
Acknowledgements

We would like to thank Noam Knoller, our domain

expert, and Amiram Yehudai for his support throughout the

project.
References

Bares, W. H., & Lester, J. C. (1997). Cinematographic user models for

automated realtime camera control in dynamic 3D environments. In A.

Jameson, C. Paris, & C. Tasso (Eds.), Proceedings of Sixth Int’l

Conference User Modeling (UM97), Sardinia, Italy, 215–226.

Bares, W. H., & Lester, J. C. (1999). Intelligent multi-shot 3D visualization

interfaces. Knowledge-Based Systems, 12(8), 403–412.

Bares W. H., Zettlemoyer L. S., Rodriguez D., & Lester J. (1998). Task-

sensitive cinematography interfaces for interactive 3D learning

environments. In Proceedings of 1998 International Conference

on Intelligent User Interfaces (IUI-98), San Francisco, California

(pp. 81–88).

Butz, A. (1997). Animation with CATHI. In Ninth Innovative Applications

of Artificial Intelligence (IAAI-97), Providence, Rhode Island (pp. 957–

962).

Christianson, D., Anderson, S., He, L., Salesin, D., Weld, D., & Cohen, M.

(1996). Declarative camera control for automatic cinematography. In

Proceedings of the Thirteenth National Conference on Artificial

Intelligence, Portland, Oregon (pp. 148–155).

Drucker, S. M., & Zeltzer, D. (1994). Intelligent camera control in a virtual

environment. In Proceedings of Graphics Interface ’94.

Drucker, S. M., & Zeltzer, D. (1995). Camdroid: A system for intelligent

camera control. In SIGGRAPH Symposium on Interactive 3D Graphics.

Friedman, D. (Oct. 2003). Knowledge-based cinematography and its

application to animation, PhD thesis, Tel Aviv University.

Friedman, D., Feldman, Y., Shamir, A., & Dagan, T. (2004). Automated

creation of movie summaries in interactive virtual environments. In

Proceedings of IEEE Virtual Reality 2004, Chicago, IL (pp. 191–198).

Halper, N., & Olivier, P. (2000). CAMPLAN: A camera planning agent. In

AAAI 2000 Spring Symposium on Smart Graphics, Stanford (pp. 92–

100).

He, L., Cohen, M. F., & Salesin, D. H. (1996). The virtual cinematographer:

A paradigm for automatic real-time camera control and directing.

Computer Graphics, 30, 217–224.

Karp, P., & Feiner, S. (1993). Automated presentation planning of animation

using task decomposition with heuristic reasoning. In Proceedings of

Graphics Interface ’93, Toronto, Canada (pp. 118–127).

Rich, C., & Feldman, Y. A. (1992). Seven layers of knowledge

representation and reasoning in support of software development.

IEEE Transactions on Software Engineering, 18(6), 451–469.

Tomlinson, B., Blumberg, B., & Nain, D. (2000). Expressive autonomous

cinematography for interactive virtual environments. In Proceedings of

Fourth International Conference Autonomous Agents, Barcelona,

Spain (pp. 317–324).


	Automated cinematic reasoning about camera behavior
	Introduction
	Background
	Zooming in on Mario
	Architecture and representation
	Cinematic rules
	Non-monotonic reasoning

	Results
	Shots and establishing shots
	Manual intervention
	Additional genres
	Experimental cinematography
	Empirical evaluation

	Discussion and future work
	Limitations of the Mario implementation
	Manipulation of time
	Automation

	Conclusion
	Acknowledgements
	References


