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Abstract

Computation Tree Logic (CTL) is widely used in formal verification,
yet, unlike linear temporal logic (LTL), its connection to automata over
words and trees is not yet fully understood. Moreover, the long sought
connection between LTL and CTL is still missing; It is not known whether
their common fragment is decidable, and there are very limited necessary
conditions and sufficient conditions for checking whether an LTL formula
is definable in CTL.

Kupferman, Vardi, and Wolper showed in 2000 that every CTL formula
can be translated to a certain type of alternating tree automaton, more
precisely, to a Hesitant Alternating Linear Tree Automaton (HALT). We
show that HALT indeed characterizes CTL—We provide a translation
from HALT to CTL, and prove that (non-hesitant) alternating linear tree
automata are strictly more expressive than CTL.

Using this automaton characterization of CTL, we provide sufficient
conditions and necessary conditions for LTL formulas and ω-regular lan-
guages to be expressible in CTL. Our conditions build on the fact that
every ω-regular language that is expressible in CTL is also recognized by
a deterministic Büchi word automaton (DBW), and relate the cycles of a
given DBW to those of a potentially equivalent HALT.

Our basic necessary condition states that if a DBW D is equivalent to
a CTL formula then there is no finite word u, such that D can go along u
both within a part of some cycle C and from C to a state that accepts every
word. The main sufficient condition narrows down the necessary condition
by requiring, among other things, that the DBW leave cycles with unique
words. Its correctness proof is constructive, defining an equivalent CTL
formula.

Finally, using our necessary condition, we refute a conjecture by Clarke
and Draghicescu from 1988, regarding a condition for a CTL∗ formula to
be expressible in CTL.
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1 Introduction

Background. Temporal logic plays a key role in formal verification of reactive
systems, serving as the main formalism for defining the specifications to be
verified. There are various types of temporal logics, classified into two main
families—linear time and branching time. The most commonly used logic in the
former is Linear Temporal Logic (LTL) [30] and in the latter is Computation
Tree Logic (CTL) [6]. Since their introduction to computer science and formal
verification in the 80s, there is a long debate on which of the two is preferable,
continuing until these days. (For an overview of the debate, see for example
[35].) Obviously, each of the two has its pros and cons. Roughly (and arguably)
speaking, LTL is a more natural specification language, whereas CTL allows for
more efficient verification algorithms.

In the linear-time setting, the automata-theoretic approach is widely used.
That is, both the specification, which is given by means of an LTL formula,
and the system to be verified are translated to automata on infinite words, and
the verification questions are answered by resolving automata-theoretic ques-
tions, such as the language containment between two automata [32]. Further-
more, there are various automaton characterizations of LTL, namely automaton
classes that have exactly the same expressiveness as LTL. In particular, LTL is
equivalent to deterministic counter-free Muller automata [22], nondeterministic
counter-free Büchi automata [7], and alternating linear (also called “very-weak”
or “1-weak”) automata [7].

In the branching-time setting, the automata-theoretic approach is in place,
though less thoroughly used. Here, the specification, given by means of a CTL
or a CTL* formula, and the system to be verified are translated to automata
on infinite trees [16]. There are translations of CTL formulas to various tree-
automaton classes, among which are nondeterministic Büchi (NBT) [24], alter-
nating weak (AWT) [24], amorphous [2], and hesitant alternating linear (HALT)
automata [16].

For completing the picture, we would like to also have a translation from
automata to CTL. NBTs have the same expressiveness as the class of alternating
Büchi tree automata (ABT) [28], where the latter is known to be as expressive
as the propositional modal µ-calculus [29, 38]. Therefore both NBTs and ABTs
cannot characterize CTL, since µ-calculus is strictly more expressive. Similarly,
even a restricted class of ABTs, the class of alternating weak tree automata
(AWT) is not suitable, as it is equivalent to alternation-free µ-calculus (AFMC)
[15] which is still more expressive than CTL. The next natural candidates are the
classes of alternating linear (i.e., very weak) automata (ALT) or their restriction
to HALT.

Automaton characterization of CTL. It is stated in [36, p. 710, Theorem
5.11] that CTL is equivalent to ALT. Yet, a close look on the definition of
alternating tree automata in [36] reveals that it is different from the standard
definition, as originally given in [27].

In [36], alternating automata may use ε-transitions; That is, the automaton
may move between states without progressing on the input tree. Moreover,
while classic alternating automata have a uniform definition in the literature
[27, 26, 31, 33, 34, 16, 19, 15, 18], alternating automata with ε-transitions have
a few, slightly different, definitions; Sometimes the domain of the transition
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function is the set of states [38, 36] and sometimes the set of states together
with the alphabet [37]; In addition, sometimes the Boolean connectives and the
path quantifiers (or path directions) can be combined freely in the transition
condition [37, 12] and sometimes only in a limited way [38, 12, 36].

In general, classic alternating tree automata and the various versions of
alternating tree automata with ε-transitions are considered to be equivalent.
See, for example, [37, p. 14, Proposition 1] on the equivalence of automata
with and without ε-transitions, and [12, p. 8, Remark 9.4] for the equivalence
of defining the transition condition in a general or restricted way. Yet, it turns
out that for linear alternating tree automata, these subtle variations in the
definitions have a significant influence.

We show that alternating linear tree automata as defined in [36] are strictly
less expressive than standard alternating linear tree automata (ALT)—We prove
that HALT is equivalent to CTL, and thus also to the automata of [36], while
being strictly less expressive than ALT.

The translation of CTL to HALT is given in [16], and we provide the other
direction. Our translation of an HALT A to a CTL formula ϕ generalizes the
technique used in [19] for translating an alternating linear word automaton to
an LTL formula, by handling the subtle branching possibilities of tree automata.
For showing that HALT is strictly less expressive than ALT, we present an ALT
A that allows for unboundedly many alternations between A- and E-transitions.
Assuming toward contradiction an HALT H equivalent to A, we construct a tree
that is accepted by A and “exhausts” H, showing that H can also accept trees
not in the language of A.

LTL∩CTL. Of special interest is the translation of the linear time setting,
namely of ω-regular word languages and in particular of LTL formulas, into
the branching-time setting of CTL formulas. More precisely, given an ω-regular
word language L, the question is whether there exists a CTL formula ϕ, such
that ϕ accepts a tree T iff all paths in T belong to L. (When such a formula ϕ
exists, we say that it accepts the derived language of L [13].)

This connection between the linear and branching time logics is interesting
not only from the theoretical point of view, but also from the practical one;
An algorithm for translating an LTL formula into an equivalent CTL formula,
when possible, may allow to use the more efficient verification algorithms of CTL
formulas. Although an exponential lower bound is known for such a translation
[37], it might be that in practice most of the used LTL formulas can be translated
succinctly. Moreover, as claimed by Eisner and Fisman [9]: “the vast majority
of properties used in practice belong to the overlap between CTL and LTL”. In
addition, a characterization of this class can be useful for synthesis. A related
example can be found in [8], where Ehlers used an automaton characterization of
LTL∩ACTL [20] to improve synthesis procedures. One may hope that a similar
characterization for LTL∩CTL would help to achieve new results in that field.

Nevertheless, this highly sought connection between LTL and CTL is still
missing; There is no algorithm to decide whether a given LTL formula can be
translated to CTL, and it is not even known whether it is decidable. Moreover,
there are currently very limited necessary conditions and sufficient conditions
for an LTL formula to be expressible in CTL.

We use the HALT characterization of CTL for providing sufficient condi-
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tions and necessary conditions for LTL formulas and ω-regular languages to be
expressible in CTL. Our conditions are decidable. Note, however, that there is
still a gap between our necessary conditions and the sufficient conditions. Be-
fore we elaborate on it, we give a short overview on what is currently known in
the area.

Expressibility comparison between LTL and CTL was first made by Lamport
in 1980, showing that they are incomparable [17]. In 1983, Emerson and Halpern
presented CTL* [10], which subsumes both CTL and LTL and simplifies the
technical difficulties in the comparison between the linear-time and branching-
time settings. In the CTL* formalism, an LTL formula ϕ is interpreted as the
branching-time formula Aϕ, meaning that ϕ holds in all possible paths. They
further studied in this paper the expressive power of different temporal logics,
and in particular showed that the LTL formula F (p ∧ Xp), stating that there
are eventually two consequent p’s in all paths, is not expressible in CTL.

In 1988, Clarke and Draghicescu (now, Browne) presented an algorithm to
determine, given a CTL formula, whether it has an equivalent LTL formula
[5]. They left the other direction open, while providing a necessary condition
for an LTL formula to have an equivalent CTL formula; The equivalence in
this condition, however, is not the standard one. Rather then defining it with
respect to standard Kripke structures, as is usually done, they defined it with
respect to Kripke structures with fairness constraints. They conjectured that
this necessary condition is also sufficient, leaving it as another open question.

In 1994, Grumberg and Kurshan showed that if a CTL* formula defines a
property over all paths then it is definable in LTL [11]. Hence, an ω-regular
language is expressible in CTL (over all paths) iff it is in LTL∩CTL.

In 1996, Kupferman, Safra, and Vardi showed that for every ω-regular lan-
guage L, if its derived language is recognized by a nondeterministic Büchi tree
automaton (NBT), then L is recognized by a deterministic Büchi word automa-
ton (DBW) [13]. Hence, as CTL can be translated to an NBT [24], it follows
that LTL ∩ CTL ⊆ DBW.

In 2000, Maidl provided a necessary and sufficient condition for an LTL
formula to have an equivalent ACTL formula, namely a formula in the universal
fragment of CTL: An LTL formula is ACTL-definable iff it has an equivalent
nondeterministic linear word automaton [20]. Yet, there was no algorithm to
decide whether a given LTL formula satisfies the condition. Moreover, it was
not clear whether LTL∩ACTL is equivalent to LTL∩CTL.

In 2008, Bojańczyk provided an algorithm to decide Maidl’s condition, namely
to decide whether a given LTL formula has an equivalent nondeterministic lin-
ear word automaton [3]. Furthermore, he proved that LTL∩ACTL is a strict
fragment of LTL∩CTL. This result is somewhat surprising, as LTL formulas
apply to all paths, while a formula in CTL\ACTL must also quantify existen-
tially over paths. In contrast, for the case of LTL∩AFMC, universality does
not limit the expressive power [15]. In other words, the intersections of LTL
with the universal fragment of AFMC (∀AFMC) and with AFMC are equal
(LTL∩AFMC = LTL∩∀AFMC).

Our conditions for LTL∩CTL. We turn to elaborate on the sufficient con-
ditions and necessary conditions that we provide for checking whether an LTL
formula is definable in CTL. As LTL ∩ CTL ⊆ DBW [13], one can concentrate
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on LTL formulas that are recognized by DBWs. Notice that this preliminary
check is indeed decidable [15].

Our approach for correlating the linear-time and branching-time formula-
tions is to relate the cycles of a given DBW to those of a potentially equivalent
HALT. If the DBW is linear, namely has only cycles of size one, then by Maidl’s
condition [20], it obviously has an equivalent CTL, and even ACTL, formula.
Intuitively, the core limitation of CTL in expressing a derived language of a
DBW D, stems from trees in which one path stays in some cycle of D while
another path leaves it. The CTL formula must “decide” at the splitting node
how to proceed, either with only one path or with all paths, and cannot properly
handle the different paths.

Our basic necessary condition states that in order for a DBW to be CTL-
recognizable, it cannot have a cycle C, such that there is a finite word u on
which D can stay in C from some state, while also being able to proceed with
u from some other state of C to a forever-accepting state qgood. Notice that
the cycle C need not be simple, and the states from which D stays in C and
proceeds from C need not, and obviously cannot, be the same. The condition
can be decided by checking for each maximal strongly connected component
X of D, whether the intersection between the following two nondeterministic
finite automata is empty: Both automata are defined over the structure of D
and have all states of X as initial states; In the first automaton, all states of X
are accepting, while in the second automaton, the forever-accepting states are
accepting.

We strengthen the necessary condition, by showing that the state qgood need
not accept every word, but can rather accept some CTL-recognizable language,
provided that it satisfies some additional constraints. The strengthened condi-
tion, combined with sufficient conditions for a DBW to be CTL-recognizable,
allows to inductively construct DBWs that can and DBWs that cannot be ex-
pressed in CTL. The construction’s might yield an exponential sized formula
w.r.t. the number of states in the DBW.

We prove the necessary condition by assuming toward contradiction that a
DBW D that does not satisfy the necessary condition has an equivalent HALT
H. Metaphorically, every state s of H can be thought of as a “guard” that
rejects subtrees not in the language. A run r of H can nondeterministically
proceed from a state s to a set of states S. Since H is linear, the set S can
only contain s and states that appear after s in the ordering of states. Now, we
define a tree T that belongs to the derived language of D, and in which there
are sufficiently many “splitting” nodes. In a splitting node, the run of D on
the tree (when D is considered as a deterministic tree automaton) stays in the
relevant cycle for some paths and leaves the cycle for other paths. We then show
that there is an accepting run r of H on T that “abandons” the so-far minimal
state on every splitting node. That is, if r assigns to a splitting node n the set
of states S, then it assigns to the next splitting node a set of states S′, such
that the minimal state of S does not appear in S′. Thus, there is eventually
some splitting node n′ that is not assigned any state. As a result, we are able
to change the tree T into a tree T ′ that is not in the language, hanging on n′ a
“bad” subtree, such that a variant of the run r will nevertheless accept it—there
are no longer “guards” in the node n′ to reject the bad subtree.

We continue with the sufficient condition for a DBW D to be expressible in
CTL. It also considers the cycles of D, narrowing down the necessary condition.
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It roughly requires that:

I. There is no finite word u and two distinct states q and q′ of D, such that:

(a) the outdegree of q is bigger than one,

(b) the run of D on u from q goes out of a simple cycle, and

(c) the run of D on u from q′ is a prefix of some accepting run.

II. There is a special “delimiting” letter that is eventually read in every ac-
cepting run, and after which D reaches a state whose residual language is
CTL-recognizable.

Observe that given a DBW D, the condition, except for constraint II, can be
decided by examining all of D’s simple cycles. Constraint II is obviously not
known to be decidable. However, it allows the inductive construction of involved
CTL-expressible DBWs—Starting with obvious languages that are known to be
in CTL, such as true, one can inductively apply the condition, as well as other
sufficient conditions, for getting a CTL-expressible DBW.

The proof of the sufficient condition is constructive, defining a CTL formula
that is equivalent to a given DBW D that satisfies the condition. The basic
idea behind its construction is the following. As long as all paths of the input
tree correspond to the same simple cycle C of D, a universal CTL formula,
denoted by Cycle(C), requires all next children to also follow C. Now, once
some path goes out of C, it must be, due to the sufficient condition, via a
unique “escaping word”. Thus an existential CTL formula can “trigger” the
relevant Cycle formulas, whenever an escaping words occurs in some path. This
triggering is done until the delimiting letter appears.

Observe that the formula constructed for a DBW that satisfies the sufficient
condition is, at least syntactically, in CTL\ACTL. Indeed, it is also semantically
in CTL\ACTL; A simple DBW for Bojańczyk’s language (see Figure 11 in
Section 5.5), which is in LTL∩CTL\ACTL, satisfies the sufficient condition.

Returning to the necessary condition, we demonstrate that it easily cap-
tures some LTL formulas that are known not to be expressible in CTL, such
as F (p ∧ Xp) (see Figure 5). Moreover, it allows us to refute a conjecture by
Clarke and Draghicescu from 1988, regarding a sufficient condition for a CTL∗

formula to be expressible in CTL. The conjecture roughly states that a CTL∗

formula is expressible in CTL (with respect to Kripke structures with fairness
constraints) if it cannot distinguish between any two Kripke structures with fair-
ness constraints that satisfy some specific properties. We refute the conjuncture
by showing that the CTL∗ formula E(p∨Xp)Uq is not expressible in CTL (al-
ready with respect to standard Kripke structures, and thus also with respect to
Kripke structures with fairness constrains), while it cannot distinguish between
any two Kripke structures with fairness constraints that satisfy the conjecture’s
conditions.

2 Preliminaries

Given a finite alphabet Σ, a word over Σ is a (possibly infinite) sequence w =
w0 · w1 · · · of letters in Σ.
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2.1 Trees

We consider a tree to be a directed unordered infinite rooted tree in the graph-
theoretic sense, that is, a triple T = 〈N,E, ε〉 where N is a set of nodes, E is a
set of node transitions (a subset of N ×N) and ε is the root node. Each node is
of indegree one (except for the root, which is of indegree zero) and of outdegree
at least one. Given a tree T , we denote its set of nodes by N(T ). For a node
n of T , we use the notation of Succ(n) to describe the set of nodes that are
transitioned to from n.

A path π in T is a finite or infinite sequence of nodes from N(T ) with
transitions from each node to its successor in the sequence. If not said otherwise,
a path always starts at the root of the tree. When we write πi we refer to the
ith member of the sequence π, starting with i = 0. Given a tree T and a node
n ∈ N(T ), we denote by T |n the subtree of T rooted at n.

Given an alphabet Σ, a Σ-labeled tree is a pair T ′ = 〈T, V 〉, where T is a tree
and V : N(T ) → Σ maps each node of T to a letter in Σ. With the notation
T ′|n we refer to 〈T |n, V 〉.

2.2 Kripke Structures

Let Σ be an alphabet. A Kripke structure over Σ is a tuple M = 〈S,R,L〉
consisting of

• a finite set S of states.

• a transition relation R ⊆ S×S such that R is left-total, i.e., ∀s ∈ S ∃s′ ∈ S
such that 〈s, s′〉 ∈ R.

• a labeling (or interpretation) function L : S → Σ.

In a way, Kripke structures are a compact method to describe sets of trees.
That is, given a state s ∈ S, the pair 〈M, s〉 stands for the computation tree of
M from s. It is defined to be a Σ-labeled tree 〈T, V 〉 with a root labeled L(s).
For a state s′ transitioned from s, namely for s′ s.t. 〈s, s′〉 ∈ R, there is a child
ns′ of the root, that is labeled L(s′). For each state s′′ transitioned from s′, the
node ns′ has a child ns′′ labeled L(s′′), etc..

A Kripke structure with fairness constraints [5, 1] over Σ is a tuple 〈S,R,L,F〉
where

• 〈S,R,L〉 is a Kripke structure over Σ.

• F ⊆ 2S is a set of fairness constraints.

Let M = 〈S,R,L,F〉 be a Kripke structure with fairness constraints and π =
s0s1 . . . a path in M . Let inf(π) denote the set of states occurring infinitely
often on π. Then π is fair iff inf(π) ∈ F .

For two sets F and F ′ of fairness constraints, we say that F ′ extends F if
F ′ = F ∪ F ′, where F ′ is a superset of some set F ∈ F .

2.3 Automata

2.3.1 Word Automata

A nondeterministic Büchi word automaton (NBW) is a tupleA = 〈Σ, Q, δ,Q0, α〉,
where Σ is the input alphabet, Q is a finite set of states, δ : Q × Σ → 2Q is a
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transition function, Q0 ⊆ Q is a set of initial states, and α ⊆ Q is the set of
accepting states. In the case where |Q0| = 1 and for every q ∈ Q and σ ∈ Σ,
we have |δ(q, σ)| ≤ 1, we say that A is a deterministic Büchi word automaton
(DBW). We then use q0 instead of Q0 to denote the single initial state, and
often refer to δ(q, σ) as a state rather than as a singleton set.

A run of A on a word w = w0 · w1 · · · ∈ Σω is an infinite sequence of states
r = r0, r1, · · · such that r0 ∈ Q0, and for every i ≥ 0, we have ri ∈ δ(ri, wi).
A run r is accepting if it visits the accepting states infinitely often. Formally,
inf (r) = {q ∈ Q | for infinitely many i ∈ N, we have ri = q}, and r is accepting
iff inf (r) ∩ α 6= ∅.

An automaton accepts a word if it has an accepting run on it. The language
of an automaton A, denoted by L(A), is the set of words that A accepts. We
also say that A recognizes the language L(A). Two automata, A and A′, are
equivalent iff L(A) = L(A′).

For a state q of A, we denote by Aq the automaton that is derived from A by
changing the set of initial states to {q}. For a subset Q′ ⊆ Q, where Q′∩Q0 6= ∅,
the restriction of A to Q′, denoted by A|Q′ , is the NBW 〈Σ, Q′, δ|Q′ , Q0∩Q′, α∩
Q′〉 where δ|Q′ is the restriction of δ on the domain Q′.

We often think of DBWs as graphs. A DBW D can be considered as a
directed graph whose vertices are the states of D, and every two vertices (states)
are connected by an edge if there is a transition from one to another over some
letter. Note that this graph may contain self loops, but no multiple edges. A
cycle in a graph is, as usual, a finite list of vertices, each connected by an edge
to its successor, where the first vertex in the list is also the last one.

Next, we give two definitions that we will use in the course of analyzing the
cycles of DBWs. Let q be a state in a DBW D = 〈Σ, Q, δ, q0, α〉, and consider a
letter σ ∈ Σ. The state that D reaches upon reading σ from q may have a path
back to q through none, one, or several simple cycles. We formally define

Cycles(q) = {C | C is a simple cycle that includes q}, and

Cycles(q, σ) = {C | C is a simple cycle that includes both q and δ(q, σ) as adjacent states}.

Finally, we bring the definition of a counter-free automaton. For two states
p, q ∈ Q of an automaton A, let Lp,q be the set of labels of finite paths from p to
q. A Büchi automaton A = 〈Σ, Q, δ,Q0, α〉 is called counter-free, if wm ∈ Lp,p
implies w ∈ Lp,p for all states p ∈ Q, words w ∈ Lp,p and m ≥ 1.

2.3.2 Alternating Tree Automata

We consider automata that in each step of the run can either ensure that all
children move to the same state or can ensure the existence of such a child. In
this regard they are symmetric, which makes sense since the trees themselves
are unordered. Such symmetric automata were presented, for example, in [15].

Formally, an alternating Büchi tree automaton (ABT) is a tuple 〈Σ, Q, q0, δ, α〉
where, as usual, Σ is a finite alphabet, Q is a finite set of states, q0 ∈ Q is the
initial state, δ is the transition function that we define below, and α ⊆ Q is a
set of accepting states.
We design the automaton to operate on trees. The transition function is δ :
Q× Σ→ B+({E,A} ×Q); Given a state q ∈ Q and a letter σ ∈ Σ, the transi-
tion function returns a positive boolean formula that defines to which states the
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automaton should send a copy of itself to, and whether it is enough to choose
only one child of the processed tree and send it there (E transition), or all of the
children are required (A transition). The output of δ, as every other positive
boolean formula over {E,A} ×Q, is called a transition condition.

A run of an ABT A over a Σ-labeled tree 〈T, V 〉 is a (N(T ) × Q)-labeled
tree R = 〈Tr, r〉. Each node of Tr stands for a node of T and a state of A.
The linkage is done by the labeling function r: a node of Tr, labeled by (n, q),
describes a new computation of A staring from its state q and operating on T |n.
A run should satisfy conditions described further below.

To explain these conditions we need some more definitions. For simplicity
in notations, for (n′, q′) in (N(T ) × Q), we will write (n′, q′)n for the node
component (n′), and (n′, q′)q for the state component (q′). For every node m
in R, we define what it means for a transition condition θ over Q to hold in m,
denoted by m � θ. This definition is by induction on the structure of θ, where
the boolean connectives, true, and false are dealt in the usual way. Further:

• m � (E, q) if the corresponded node r(m)n of m in T has a successor n′

and there exists some successor m′ of m, such that r(m′) = (n′, q).

• m � (A, q) if for every successor n of r(m)n, there is some successor m′ of
m, such that r(m′) = (n′, q).

We can now define the conditions that a run 〈Tr, r〉 with root εr over a tree
〈T, V 〉 with root ε should satisfy:

1. Initial condition. r(εr) = (ε, q0)

2. Local consistency. Let m be a node in Tr with r(m) = (n, q). Then
m � δ(q, V (n)).

Note that by definition, a run cannot encounter a false transition-condition
since there are no such trees that satisfy the local consistency condition. Fur-
thermore if δ(q, V (n)) = true for some state q and a node n, then the local
consistency condition allows the run to move to any state. We will think of
reaching a true transition condition in some path π of the run as making the
path accepting, which can be formally considered as reaching an accepting state
qtrue with a self loop over all alphabet letters.

A run is accepting if all its infinite paths satisfy the Büchi condition w.r.t.
α, namely, each run-path has infinitely many nodes which are labeled by a state
from α.

An automaton accepts a tree if and only if it has an accepting run on it.
The language of an automaton A, denoted by L(A), is the set of trees that A
accepts.

For a run 〈Tr, r〉 of an ABT A over a labeled-tree 〈T, V 〉, we say that a
state q of A is assigned to a node n of T by an E statement if there is a node
m in Tr that is labeled by (n, q), and it is assigned also by an A statement if
in addition the parent of m satisfies the (A, q) transition condition, that is, if
there are nodes m and m′ of Tr such that m ∈ Succ(m′), r(m) = (n, q), and
m′ � (A, q).

For an ABT A and a transition condition ρ, we denote by Aρ the ABT that
is obtained from A by changing the transition condition of the initial state q0

to ρ, namely setting for every σ ∈ Σ, δ(q0, σ) = ρ. For a state q of A, we denote
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by Aq the ABT that is obtained from A by setting the initial state of A to be
q.

2.3.3 Hesitant Alternating Linear Tree Automata

Hesitant alternating linear tree automata are restricted alternating linear tree
automata, which are in turn restricted alternating weak automata. We define
them below in their expressiveness order.

Definition 1. An alternating weak tree automaton (AWT) is an ABT, in which
every strongly connected component in the transition graph consists of either
only accepting states or only rejecting states.

AWTs are known to have the same expressiveness as NBTs [25, 26], ABTs
[28], and alternation-free µ-calculus (AFMC) [28].

Definition 2. An alternating linear tree automaton (ALT) is an ABT all of
whose cycles in the transition graph are of size one.

Notice that in a run of an ALT, every path eventually gets stuck in some
state. Therefore, the set of recurrent states of a path boils down to a singleton,
implying that all acceptance conditions (Büchi, parity, Muller, etc.) provide
the same expressiveness. Linear automata are also called in the literature “very
weak” and “1-weak”.

We further consider a restricted version of ALTs, in which the states are of
three specific types, along the lines of hesitant alternating automata1, presented
in [16].

Definition 3. An ALT is hesitant, denoted by HALT, if every state q is either

• transient, where for every σ ∈ Σ, q does not appear in δ(q, σ); Or

• existential, where for every σ ∈ Σ, every appearance of q in δ(q, σ) is in
the form of (E, q); Or

• universal, where for every σ ∈ Σ, every appearance of q in δ(q, σ) is in the
form of (A, q).

2.4 Temporal Logic

2.4.1 CTL∗

Formulas of CTL∗ are built from atomic propositions using the boolean con-
nectives ¬ and ∧, the linear next-time (X) and until (U) operators, and the
existential path-quantifier E. The dual of E is the universal path-quantifier
A defined by Aϕ := ¬E¬ϕ. Additional temporal-operators can be defined
using the U operator. In particular, the F (“eventually” or “finally”) , G (“al-
ways” or “globally”), R (“release”) and W (“weak until”) temporal-operators
are defined as follows: Fϕ := trueUϕ, Gϕ := ¬F¬ϕ, ϕRψ := ¬(¬ϕU¬ψ) and
ϕWψ := ϕUψ ∨Gϕ.

1A hesitant alternating automaton (HAA) [16] need not be linear, and its acceptance
condition combines the Büchi and co-Büchi conditions. Yet, restricting attention to symmetric
linear HAAs, one gets our definition of an HALT.
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The syntax of CTL∗ over a set of atomic propositions AP , defines two types
of formulas: path formulas and state formulas. A formula ϕ is called a state
formula if ϕ =

• true, false

• an atomic proposition p ∈ AP ,

• ¬ϕ′, for a state formula ϕ′,

• ϕ1 ∨ ϕ2, for two state formulas ϕ1 and ϕ2,

• Aϕ′ or Eϕ′ for a path formula ϕ′.

In addition, a formula ϕ is called a path formula if ϕ =

• ϕ′, for a state formula ϕ′,

• ¬ϕ′, for a path formula ϕ′,

• ϕ1 ∨ ϕ2, for two path formulas ϕ1 and ϕ2,

• Xϕ′, for a path formula ϕ′,

• ϕ1Uϕ2, for two path formula ϕ1 and ϕ2.

Proper CTL∗ formulas are state formulas.
The semantics of CTL∗ is defined with respect to labeled trees [10]. Consider

a 2AP -labeled tree 〈T, V 〉, and a path π of it. We say that π satisfies ϕ, denoted
by π � ϕ, when the following hold, where p stands for an atomic proposition
and ϕ, ϕ1, and ϕ2 for CTL∗ formulas.

1. π � p iff p ∈ V (π0).

2. π � ¬ϕ iff π 2 ϕ.

3. π � ϕ1 ∧ ϕ2 iff π � ϕ1 and π � ϕ2.

4. π � Xϕ iff π1 � ϕ.

5. π � ϕ1Uϕ2 iff there is i ∈ N s.t. πi � ϕ2 and for every j ∈ [0..i−1], πj � ϕ1.

6. π � Eϕ iff there is a path π′ starting from π0 s.t. π′ � ϕ.

The semantics of CTL∗ with respect to Kripke structures relates to their com-
putation trees. That is, a state s of a Kripke structure M satisfies a CTL∗

formula ϕ, denoted by 〈M, s〉 � ϕ, if their computation tree satisfies ϕ.
The semantics of CTL∗ with respect to a Kripke structure with fairness

constraints is defined using only the fair paths of the structure. Thus, the
satisfaction relation, denoted by �f , is defined inductively for all states s and
fair paths π of M using the same clauses as in the case of ordinary trees except
for replacing clause 6 by the following clause.

6’. 〈M, s〉 �f Eϕ iff there is a fair path π′ starting from s s.t. π′ � ϕ.
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2.4.2 LTL

An LTL formula ϕ is a CTL∗ path-formula that does not contain path quanti-
fiers, thus, we can specify in LTL requirements on the paths themselves without
an inner branching along the path. In the context of CTL∗, we treat ϕ as the
state formula Aϕ. For example, the LTL formula FGp is interpreted as the
CTL∗ formula AFGp and specifies that in every path, there will eventually be
p in every state.

2.4.3 CTL

A CTL formula is a CTL∗ state formula such that each path-quantifier is fol-
lowed immediately by a temporal-operator. For example, the formula AFEGp
specifies that on each path of the tree, eventually there will be a node that starts
a path of ps.

ACTL is a fragment of CTL, in which only the A path quantifier is allowed,
and negations are only allowed on atomic propositions.

2.5 Connecting Automata and Temporal Logic

In temporal logic, formulas are interpreted over a set AP of atomic propositions.
For instance, the formula ApUq is over the atomic propositions {p, q}. On the
other hand, ABTs operate on Σ-labeled trees. Since we want to relate between
ABTs and temporal-logic formulas, we take Σ to be 2AP . In other words, the
alphabet of the discussed ABT is the power set of the atomic propositions of
the discussed formula.

We say that a tree automaton A and a CTL formula ϕ are equivalent if
the set of trees accepted by A is equal to the set of trees that satisfy ϕ. In
other words, if for every Σ-labeled tree 〈T, V 〉, it holds that 〈T, V 〉 ∈ L(A) iff
〈T, V 〉 � ϕ.

2.5.1 Derived and Dual-Derived Languages

For an ω-regular language L, the derived language of L, denoted by L∆, is the
set of trees all of whose paths belong to L [14]. Analogously, we define the dual
derived language of L, denoted by L∇, to be the set of trees in which there is
at least one path in L.

It turns out that for every ω-regular language L, there is an ABT for its
dual derived language L∇. Such an ABT is achieved by “upgrading” an NBW
that accepts L, as described in the following proposition.

Proposition 4 ([16]). Let B be an NBW. Then we can extend B to an ABT
A, s.t. L(A) = L(B)∇. Further, the automaton A has the same structure as B,
only adding E over the transitions.

Note that the ABT guaranteed from Proposition 4 does not use its full
alternation power; A transition condition of a state q over a letter σ is of the
form δA(q, σ) =

∨
q′∈δB(q,σ)(E, q

′), using only ∨s and Es.
Upfront, it may seem that adding As over the transitions of an NBW B

results in an ABT for L(A)∆. This is, however, not the case. It does hold for
DBWs, as shown in [14], but not for general NBWs.
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Proposition 5 ([14]). Let D be a DBW. Then we can extend D to an ABT A,
s.t. L(A) = L(D)∆. Further, the automaton A has the same structure as D,
only adding A over the transitions.

2.5.2 ω-regular ∩CTL = LTL ∩CTL ⊆ DBW

It was shown in [11] that the language of a CTL∗ formula is derivable iff it is
expressible in LTL. Therefore, if an ω-regular language is expressible in CTL
(hence in CTL∗) it is also expressible in LTL. That is, ω-regular ∩ CTL =
LTL ∩ CTL.

Kupferman and Vardi showed in [15] that an ω-regular language L can be
characterized by a DBW iff L∆ can be characterized by an alternation-free mu-
calculus (AFMC). As CTL is subsumed by AFMC [21], we have the following.

Corollary 6 ([15]). Let ϕ be an LTL formula of a language L, equivalent to
some CTL formula. Then, there is a DBW that recognizes L.

In other words, we know that LTL ∩ CTL ⊆ DBW. Notice that the sets are
not equal. Moreover, we have LTL ∩ CTL ( LTL ∩ DBW. For example, the
LTL formula F (p∧Xp) is not expressible in CTL [10] (as well as Corollary 15),
while expressible by a DBW (Figure 5).

3 CTL is Equivalent to HALT

As elaborated on in the introduction, it is stated in [36, p. 710, Theorem 5.11]
that CTL is equivalent to ALT. Yet, a close look on the definition of alternating
tree automata in [36] reveals that it is different from the standard definition,
as originally given in [27]. We show that alternating linear tree automata as
defined in [36], are strictly less expressive than standard alternating linear tree
automata (ALT)—We prove that HALT is equivalent to CTL, and thus also to
the corresponding automata of [36], and that they are strictly less expressive
than ALT.

The translation of CTL to HALT is established in [16], and is given in Sec-
tion 3.1 for the sake of completeness. We provide in Section 3.2 the other
direction, getting their equivalence. In Section 3.3, we show that HALT in-
deed tightly characterizes CTL; Relaxing either the linearity or the hesitant
obligations of the automata results in strictly more expressive automata.

Theorem 7. CTL formulas and HALTs have the same expressiveness.

Proof. Lemmas 8 and 11 below give the two directions of the claimed equiva-
lence.

The proofs of both Lemma 8 and Lemma 11 are constructive, and generate
CTL formulas and HALTs whose size is linear in each other.

3.1 CTL to HALT

In [16], a construction was presented for translating a CTL formula ψ to an au-
tomaton that runs on ordered trees. Moreover, the construction is also suitable,
almost as is, for translating ψ to an HALT, which runs on unordered trees.
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Lemma 8 ([16]). Every CTL formula can be translated to an equivalent HALT.

First, we assume w.l.o.g. that ψ is in negation normal form. Moreover, we
can ignore the case in which ψ ∈ {true, false} because then the construction
is trivial. Let cl(ψ) be the set of all subformulas of ψ that are state-formulas.
We define the ALT Aψ = 〈2AP , cl(ψ), ψ, δ, α〉, where α is the set of all formulas
in cl(ψ) whose outermost temporal operator is AR or ER, and for every state
in cl(ψ) and letter σ ∈ 2AP , δ is defined as follows.

• δ(q, σ) = true if q ∈ σ and false otherwise.

• δ(¬q, σ) = true if q /∈ σ and false otherwise.

• δ(ϕ1 ∗ ϕ2, σ) = δ(ϕ1, σ) ∗ δ(ϕ2, σ), for ∗ ∈ {∨,∧}

• δ(EXϕ, σ) = (E,ϕ)

• δ(AXϕ, σ) = (A,ϕ)

• δ(Eϕ1Uϕ2, σ) = δ(ϕ2, σ) ∨ (δ(ϕ1, σ) ∧ (E,Eϕ1Uϕ2))

• δ(Aϕ1Uϕ2, σ) = δ(ϕ2, σ) ∨ (δ(ϕ1, σ) ∧ (A,Aϕ1Uϕ2))

• δ(Eϕ1Rϕ2, σ) = δ(ϕ2, σ) ∧ (δ(ϕ1, σ) ∨ (E,Eϕ1Rϕ2))

• δ(Aϕ1Rϕ2, σ) = δ(ϕ2, σ) ∧ (δ(ϕ1, σ) ∨ (A,Aϕ1Rϕ2))

Note that the constructed automaton is indeed an HALT.

3.2 HALT to CTL

We show that every HALT can be translated to an equivalent CTL formula,
adapting the technique used in [19] for translating a linear alternating word
automaton into an LTL formula. The challenge in the adaptation is how to
properly generalize the technique from word automata to tree automata. In-
deed, as explained in the Introduction and will be demonstrated in Section 3.3,
small variations in the definition of alternating linear tree automata determine
whether or not they are equivalent to CTL.

Construction. Consider an HALT A = 〈Σ, Q = {q0, q1, . . . , qn}, q0, δ, α〉.
Since A is linear, we can assume w.l.o.g. that the transitions are ascending,
namely that for every σ ∈ Σ and i ∈ [0..n], δ(qi, σ) includes qj only if i ≤ j,
and that qn = qtrue. For every σ ∈ Σ, we define the CTL formula ψσ =
(
∧
p∈σ p) ∧ (

∧
p/∈σ ¬p), intuitively meaning that a σ-labeled node is read.

Consider a state qi and a letter σ, and let θ = δ(qi, σ) be the transition
condition of qi on σ. Notice that since A is hesitant, qi is either transient,
existential, or universal. It is thus possible to present θ as follows, where θi,σ and
θ′i,σ are transition conditions that contain states only from {qi+1, qi+2, . . . , qn}.

θ =


θ′i,σ qi is transient
((E, qi) ∧ θi,σ) ∨ θ′i,σ qi is existential
((A, qi) ∧ θi,σ) ∨ θ′i,σ qi is universal

For every state qi, we define below the two CTL formulas ϕi,stay and ϕi,leave,
intuitively meaning that the run stays in qi or leaves it, respectively. They are
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based on the above formulas θi,σ and θ′i,σ, respectively, after their recursive
translation from transition conditions into CTL formulas (ToCTL). The latter is
formally defined afterwards.

ϕi,stay =
∨
σ∈Σ

ψσ ∧ ToCTL(θi,σ) ϕi,leave =
∨
σ∈Σ

ψσ ∧ ToCTL(θ′i,σ).

The ToCTL function, translating a transition condition θ of A into a CTL
formula, is defined in the expected way by induction on the structure of θ. The
non-trivial translation is of the atomic subformula qi, for i ∈ [0..n]. Let ρ1 and
ρ2 be subformulas of θ.

• ToCTL(true) = true.

• ToCTL(false) = false.

• ToCTL(ρ1 ∨ ρ2) = ToCTL(ρ1) ∨ ToCTL(ρ2).

• ToCTL(ρ1 ∧ ρ2) = ToCTL(ρ1) ∧ ToCTL(ρ2).

• ToCTL((E, qi)) = EX ToCTL(qi).

• ToCTL((A, qi)) = AX ToCTL(qi).

• ToCTL(qi) =



true i = n
ϕi,leave qi is transient
Eϕi,stayUϕi,leave qi is existential and qi /∈ α
Eϕi,stayWϕi,leave qi is existential and qi ∈ α
Aϕi,stayUϕi,leave qi is universal and qi /∈ α
Aϕi,stayWϕi,leave qi is universal and qi ∈ α

Notice that the above definitions are circular, defining the ToCTL function on
top of the ϕi,stay and ϕi,leave formulas, and vice versa. Yet, this is exactly the
recursion in the definition, presenting no problem—The translation of a state
qi is defined via ϕi,stay and ϕi,leave on top of states qj , for j > i. The recursion
ends with qn, which is translated to true.

An Example. Consider the three-states HALTA = 〈{{p}, ∅}, {q0, q1, qtrue}, q0, δ, {qtrue}〉
with the following definition of δ: δ(q0, {p}) = (A, q0) ∨ (E, q2); δ(q1, {p}) =
(E, qtrue); and δ(qtrue, {p}) = δ(qtrue, ∅) = true. As always, any unspecified
transition is false.

We start by expressing the CTL formula for q1. Since it is transient ToCTL(q1) =
ϕ1,leave = ψ{p}∧ToCTL((E, qtrue)) = ψ{p}∧EXToCTL(qtrue) = ψ{p}∧EXtrue =
ψ{p}. We proceed to the universal non-accepting state q0, for which ToCTL(q0) =
Aϕ0,stayUϕ0,leave = Aψ{p} ∧ ToCTL(true)U (ψ{p} ∧ ToCTL((E, q2))) = Aψ{p} ∧
trueU (ψ{p} ∧ EXToCTL(q2)) = Aψ{p}U(ψ{p} ∧ EXψ{p}) .

Correctness. We continue with showing that the construction defined above
indeed produces for every HALT A an equivalent CTL formula. For i ∈ [0..n],
let Qi = {qi, qi+1, . . . , qn} and let Ai denote the ALT that is derived from A by
changing the initial state to qi. We will show by induction on i, starting with
i = n and proceeding toward i = 0, that Ai is equivalent to ToCTL(qi). The
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induction step, going from i to i − 1, will be shown by induction on structure
of the transition condition θ of the state qi. We start with a lemma on the
correctness of this structural induction.

Lemma 9. Let i ∈ [0..n−1], and assume that for every k > i, the HALT Ak is
equivalent to ToCTL(qk). Then, for every transition condition ρ ∈ B+({A,E}×
Qi+1) and labeled tree T , we have that Aρi accepts T iff T � ρ.

Proof. By induction on the structure of ρ.
Base cases:

• ρ = true: By definition, T satisfies true, and Atrue
i accepts every tree.

• ρ = false: By definition, T does not satisfy false, and Afalse
i does not

accept any tree.

• ρ = (A, qk), for k > i: Then ToCTL(ρ) = AXToCTL(qk).

Assume T � AXToCTL(qk). We will build an accepting run R = 〈Tr, r〉
of Aρi on T . Let ε be the root of T and εr the root of R. We define
the labeling of εr to be the root of T and the initial state of Ai, namely
r(εr) = (ε, qi), and the successors of εr to be a copy of the successors of ε,
namely Succ(εr) = {ml|l ∈ Succ(ε)}.
We label every successor of εr with its corresponded node in T , along with
the state qk, namely r(ml) = (l, qk). Trivially, the ρ-local consistency is
achieved, namely εr � (A, qk). By the assumption that T � AXToCTL(qk)
and the CTL semantics, we conclude that every successor of ε satisfies
ToCTL(qk). Hence, by the assumption that Ak is equivalent to ToCTL(qk),
for every successor l of ε, Ak accepts T |l. Therefore, for each such l there
is an accepting run Rl of Ak on T |l. Recall that for each such l, there is
a corresponded ml in the run. We concatenate Rl under ml, and get an
accepting run of Aρi on T , as required.

For the other direction, suppose the existence of an accepting run R of
Aρi on T . Let ε be the root of T , l a successor of ε, and εr the root of R.
By the local consistency of εr, we have εr � (A, qk), implying that there
is a successor ml of εr such that r(ml) = (l, qk). As before, we denote
by Rl the run induced by ml. Notice that Rl is an accepting run of Ak
on T |l. Hence, by the assumption that Ak is equivalent to ToCTL(qk), we
have T |l � ToCTL(qk). Therefore, T � AXToCTL(qk), as required.

• ρ = (E, qk): Analogous to the previous case.

Induction step:

• ρ = ρ1 ∨ ρ2:
T � ToCTL(ρ1 ∨ ρ2) iff
T � ToCTL(ρ1) ∨ ToCTL(ρ2) iff
T � ToCTL(ρ1) or T � ToCTL(ρ2) iff, by the induction assumption,
Aρ1i accepts T or Aρ2i accepts T iff
Aρ1∨ρ2i accepts T .

• ρ = ρ1 ∧ ρ2:
It is analogous to the previous case, yet the last implication, namely the
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claim that (Aρ1i accepts T and Aρ2i accepts T ) iff (Aρ1∧ρ2i accepts T ),
deserves an explanation.

The right-to-left implication is straightforward, as the accepting run R of
Aρ1∧ρ2i is also an accepting run of Aρ1i and of Aρ2i .

As for the left-to-right implication, let R1 and R2 be accepting runs of Aρ1i
and Aρ2i , respectively. We assume that R1 and R2 do not contain common
nodes, as otherwise we can duplicate them. We define an accepting run R
of Aρ1∧ρ2i by merging R1 and R2: the root of R has as successors all the
successors of R1’s root and of R2’s root.

We continue with the main correctness lemma.

Lemma 10. For every i ∈ [0..n], the CTL formula ToCTL(qi) is equivalent to
Ai.

Proof. We prove the lemma by induction on i, starting with i = n, and pro-
ceeding toward i = 0.

The base case is trivial: L(ToCTL(qn)) = L(true) = L(An).
In the induction step, we assume the claimed equivalence for every j ∈

[i+1..n], and prove it for i. There are five cases to consider:

• qi is universal and qi ∈ α.

• qi is universal and qi /∈ α.

• qi is existential and qi ∈ α.

• qi is existential and qi /∈ α.

• qi is transient.

We show only the first case, where qi is a universal accepting state. The other
cases are proven analogously.

Recall that ToCTL(qi) = Aϕi,stayWϕi,leave.

I. L(Ai) ⊆ L(ToCTL(qi)): Let T be a Σ-labeled tree s.t. Ai accepts T via
a run R = 〈Tr, r〉 with root εr, and let π be an infinite path in T . We
need to show that either i) there is k ∈ N such that T |πk � ϕi,leave and
for every j < k, T |πj � ϕi,stay, or ii) for every k ∈ N, T |πk � ϕi,stay.

Let σ be the labeling of T ’s root, namely of π0. Notice that T � ψσ, while
for every σ′ 6= σ, T 6� ψσ′ . By the local consistency of R in its root, we
have εr � δ(qi, σ) = ((A, qi) ∧ θi,σ) ∨ θ′i,σ. In the case that εr � θ′i,σ, R is

also an accepting run of Aθ
′
i,σ

i on T . Then, by Lemma 9, T � ToCTL(θ′i,σ),
implying that T � ϕi,leave, and we are done.

Otherwise, εr � (A, qi) ∧ θi,σ. Similarly, since εr � θi,σ it holds that
T � ϕi,stay. Moreover, since εr � (A, qi), we learn that there is some m
in Succ(εr) such that r(m) = (π1, qi). Note that R|m is an accepting run
of Ai on T |π1

, so we can repeat using the above argument and learn that
ϕi,stay always holds along π, unless “interrupted” by ϕi,leave, as required.
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II. L(ToCTL(qi)) ⊆ L(Ai): Let T be a Σ-labeled tree s.t. T � ToCTL(qi). We
will present an accepting run of Ai on T . As T � ToCTL(qi), in particular
T � ϕi,stay ∨ ϕi,leave. That is, there is σ ∈ Σ s.t. T � ψσ, and either
T � ToCTL(θi,σ) or T � ToCTL(θ′i,σ).

If T � ToCTL(θ′i,σ) then by Lemma 9, Aθ
′
i,σ

i accepts T by some run R. By
the definition of δ(qi, σ), which is ((A, qi) ∧ θi,σ) ∨ θ′i,σ, we have that R is
also an accepting run of Ai on T , and we are done.

Otherwise, T � ToCTL(θi,σ), and by Lemma 9, Aθi,σi accepts T via some
run Rε. We will extend Rε to an accepting run R of Ai on T . To do so,
we hang additional successors under the root of Rε for satisfying (A, qi).

Let l be a successor of the root of T . Recall that T satisfies the weak until
condition for all paths, and ϕi,leave has not been fulfilled yet. Therefore,

T |l � ϕi,stay ∨ ϕi,leave. Using again the above argument, we have Aθi,σi

accepts T |l via some run Rl. We hang Rl as a successor of the root of
Rε. We proceed in this way, handling every successor l of T ’s root, then
handling the successors of each such node l, etc.. For every path of T , the
procedure continues indefinitely or until a node satisfies the ToCTL(θ′i,σ)
condition.

We claim that R is an accepting run of Ai on T . Let πr be a path of R.
Then πr either eventually becomes a path of an accepting run, in the case
that the above procedure reached a node of T that satisfies ToCTL(θ′i,σ),
or it remains for ever in qi. As qi is an accepting state, in both cases πr
satisfies the Büchi condition, and therefore R is accepting.

As a special case of Lemma 10, considering the initial state q0, we get the
correction of our construction.

Lemma 11. Every HALT can be translated to an equivalent CTL formula.

3.3 Tightness

We show that both the linearity and the hesitant properties of an HALT are
indeed essential for the equivalence with CTL. That is, we prove that non-
linear hesitant AWT (HAWT) and non-hesitant ALT are more expressive than
CTL. (In Section 2.3.3, we only defined the hesitant property w.r.t. an ALT. Its
definition w.r.t an AWT is the same.)

The inequality HALT<HAWT is straightforward. Consider the DBW D,
presented in Figure 5. By Proposition 5, adding As to the transitions on the
D, one gets an hesitant AWT accepting the derived language of D. As shown
in Corollary 15, the derived language of D has no equivalent CTL formula, and
thus by Lemma 11, has no equivalent HALT.

For showing that HALT<ALT, we provide an ALT A, as depicted in Fig-
ure 1, and prove that it does not have an equivalent HALT. Intuitively, an HALT
cannot follow the unboundedly many alternations between A- and E-transitions
that A allows. Assuming toward contradiction an equivalent HALT H, we de-
fine a tree T in the language of A that “exhausts” H, in the sense that we can
change some subtree of T and get a tree T ′ that is not in the language of A,
while it is nevertheless accepted by H.
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Figure 1: An ALT A that has no equivalent HALT.

Theorem 12. Hesitant alternating linear tree automata (HALT) are strictly
less expressive than alternating linear tree automata (ALT).

Proof. Consider the ALT A appearing in Figure 1, and let L = L(A). Assume
toward contradiction that there exists an HALT H that recognizes L. Let
Q = {s0, s1, . . . , sm} be the set of H’s states. We build a tree T that is accepted
by A, and then show how an accepting run of H on T can be changed into an
accepting run of H on some tree T ′ that is not accepted by A.

We assume w.l.o.g. that the last state with respect to the linear order of
H, namely sm, accepts every tree, and that it is the only state that accepts
every tree. Thus, for a state s ∈ Q \ {sm}, it holds that L(Hs) 6= ∅. There
are two options, either L(Hs) ∩ L = ∅ or L(Hs) ∩ L 6= ∅. We define the set
X (respectively, Y ) to contain all the states in Q that satisfy the first option
(respectively, the second option). Then, for every state s ∈ X, there exists a tree
T xs ∈ L(Hs) ∩ L, and for every state s ∈ Y , there exists a tree T ys ∈ L(Hs) ∩ L.

The tree T (see Figure 2): T starts with a node denoted by n0 that is
labeled x. For every state s in X, there is under n0 the subtree T xs . There are
also two additional identical subtrees of n0, denoted by nl0 and nr0. Since they
are identical, it is sufficient to describe the former. nl0 is labeled y and has for
every s ∈ Y , the subtree T ys . In addition, it has another subtree, starting with
a node denoted by n1 that is labeled x. The subtrees of n1 are similar to those
of n0—for every state s in X, there is under n1 a subtree T xs , and two identical
subtrees, denoted by nl1 and nr1. nl1 is labeled y etc... there are m such similar
levels of T , until having the node nm, which is labeled x. Then, under nm there
is a singled-path tree labeled x in all its nodes.

Notice that T is indeed in L—It can be shown that T |ni ∈ L using induction
on i, staring from m towards 0. Obviously, T |nm is in L. For the induction
step, suppose T |ni+1

is in L. Therefore T |nli is also in L, since it is labeled y and

has a subtree in L. Recall that by definition, T |nri is identical to T |nli , therefore
also in L. It is left to show that the rest of the children of ni are in L. Namely,
that T xs is in L for every s ∈ X, which indeed holds by the definition of T xs .
Therefore, T ∈ L.

The tree T ′: T ′ is identical to T , except for having in nm the single path
zω as a subtree. Notice that T ′ is not in L—We use induction again, showing
that T |ni /∈ L for i staring from m towards 0. Obviously, T |nm /∈ L. Assume
that T |ni+1

is not in L. Note that all of its siblings are T ys for s ∈ Y , which
by definition are not in L. Therefore nli has no child in L, and thus T |nli /∈ L.
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Then, ni is labeled x but has a child that is not in L, implying that T |ni /∈ L.
Hence, T ′ /∈ L.

From an accepting run of H on T to an accepting run of H on T ′:
Consider a run r of H that accepts T , and let S′ be the set of states that r
assigns to nl0. For each state s in S′, we check whether it is assigned to nl0 by
an E or by an A statement. If s is assigned to nl0 only by an E statement,
there is another accepting run r′ of H on T that is identical to r, except for not
assigning s to nl0, while assigning s to nr0. This is indeed the case, since nl0 and
nr0 start identical subtrees. Thus, we may assume that in r, all states that are
assigned to nl0 are assigned by an A statement.

Consider a state s that is assigned to nl0 by an A statement. Then by
definition, s is assigned to all other siblings of nl0. Hence, s /∈ X, as otherwise,
there would have been a sibling of nl0 that is the root of a tree T xs that is rejected
by Hs, which would have implied that the run r is rejecting.

By the same argument, we get that if a state s is assigned to n1 by an A
statement, it implies that s /∈ Y .

Let s be the minimal state assigned by r to n0. Since H is hesitant, s is
either transient, existential or universal. As we assumed that s is assigned to
nl0 by an A statement it implies, by the above argument, that s /∈ X. Further,
it also implies that s is universal, since only s has a transition to s (H is linear
and s is the minimal state assigned to n0). Therefore, if s is assigned to n1,
it is assigned by an A statement (by a transition from s, which is the minimal
state assigned to nl0), implying that s /∈ Y . Hence, since Q = X ∪Y ∪{sm} and
s 6∈ X ∪ Y , it follows that s = sm. In other words, the minimal state of n0 is
not assigned to n1.

Applying the above argument by induction on i, we get an accepting run r
of H on T , such that for every i ∈ [0..m− 1], the node ni+1 is not assigned any
of the states in {s0, s1, . . . , si}. In particular, the node nm is not assigned any
of Q \ {sm}.

Thus, since Hsm accepts every tree, we arrived to an accepting run of H on
T ′, which does not belong to L.
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In T ′, the labeling of these
nodes is changed to z, and the
tree is accepted by H, though
not in L.

X := {q1, . . . , qk}
Y := {q′1, . . . , q′l}

Figure 2: The tree T used in Theorem 12
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4 Necessary Conditions for LTL ∩ CTL

There are currently very limited techniques for showing that an LTL formula
cannot be expressed in CTL. Emerson and Halpern showed in [10] that the
LTL formula F (p∧Xp) is not expressible in CTL. Their proof is quite long and
tedious and uses a complicated inductive argument that required about 2 journal
pages to present. Furthermore, the used technique is not easily generalized to
other examples [4].

Later on in [5], Clarke and Dragahicescu (now Browne) presented some nec-
essary condition for an LTL formula to be expressible in CTL, yet not with
respect to standard Kripke structures, but with respect to Kripke structure
with fairness constraints. (We cite their condition as Theorem 29). They con-
jectured that their necessary condition is also sufficient, however we refute it in
Section 6.

We provide in this section general techniques for showing that an LTL for-
mula is not expressible in CTL, using the HALT characterization of CTL. The
techniques can be used for easily showing that the LTL formula F (p ∧ Xp) is
not expressible in CTL, as well as for refuting the aforementioned conjecture of
Clarke and Dragahicescu.

We start with a basic necessary condition, which we will strengthen in Sec-
tion 4.2. Recall that LTL ∩ CTL ⊆ DBW [24, 13]. Hence, it is enough to check
the CTL-expressibility of a given DBW.

4.1 The Basic Condition

Our basic necessary condition states that in order for a DBW D to be CTL-
recognizable, it cannot have a cycle C, such that there is a finite word u on
which D can stay in C from a state q1 and also proceed to a forever-accepting
state from some other state q2 of C.

Theorem 13. Let D be a DBW, and L the derived language of D. If there is
a state q of D s.t. the following hold, then L is not expressible in CTL.

• There is a finite word y ∈ Σ+ that is an infix of the labels on the path
from q back to itself (see Figure 3).

• Dq accepts every word that starts with y.

• L(Dq) ( Σω.

Proof. Assume toward contradiction that L is expressible in CTL. Then by
Theorem 7, there is an HALT A that recognizes L.

We shall describe a tree T that belongs to L, as depicted in Figure 4, and
via which we will show that A also accepts some tree T ′ not in L, reaching
a contradiction. We will do that by analyzing an accepting run of A on T ,
and show how it can be altered to be an accepting run of A on T ′. Intuitively
speaking, an HALT has a hard time following simultaneously two paths where
one stays in a cycle while the other leaves it, especially when the paths share a
word y, which “confuses” the HALT.

Let v ∈ Σ∗ be the finite word s.t. D reaches q upon reading it. Let x and
z be two finite words such that when reading xyz, D completes a cycle from q
back to itself , and let w ∈ Σω a word rejected by Dq (See Figure 3 for a sketch
of D).
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Figure 3: A schematic drawing of DBWs that cannot be expressed in CTL.

The tree T (see Figure 4): We define Y to be the set of tress whose |y|
first labels along all paths form the word y. Let Q be the set of states of A and
let m = |Q|. Let B ⊆ Q be the states of A that reject some tree in Y . That is,
B = {s ∈ Q | there exists a tree Ts ∈ Y \ L(As)} . Note that B is not empty,
as otherwise A would have accepted the singled-path tree vxyzw, which is not
in L. An accepting run can be accomplished by changing an accepting run on a
word that starts with vx; the prefix of such a run can be easily continued since
every state should accept trees that start with y along all of their paths.

T starts with a path labeled vxyz. We denote by n0 the last node of that
path. For every state s in B, there is under n0 a subtree Ts that starts with
y along all of its paths and is rejected by As. There are also two additional
identical subtrees of n0, denoted by nl0 and nr0. Since they are identical, it is
sufficient to describe the former. nl0 starts with a path labeled xyz that ends in
a node denoted by n1. The subtrees of n1 are similar to those of n0—for every
state s in B, there is under n1 a subtree Ts that starts with y and is rejected
by As, and two identical subtrees, denoted by nl1 and nr1. nl1 starts with a path
labeled xyz that ends at n2 etc... there are m such similar levels of T , until
having the node nm. Then, under nm there is a member of Y as a subtree, for
example the single path that begins with y. Notice that T is indeed in L.

The tree T ′: T ′ is identical to T , except for having in nm the single path w
as a subtree. Notice that T ′ is not in L, since it has a path labeled v(xyz)m+1w,
which is not accepted by D.

Analyzing accepting runs of A on T : Consider a run r of A that accepts
T , and let S′ be the set of states that r assigns to nl0. For every state s in S′,
we check whether it is assigned to nl0 by an E or by an A statement. If s is
assigned to nl0 only by an E statement, there is another accepting run r′ of A
on T that is identical to r, except for not assigning s to nl0, while assigning s to
nr0. This is indeed the case, since nl0 and nr0 start identical subtrees. Thus, we
may assume that in r, all states that are assigned to nl0 are assigned by an A
statement.

Consider a state s that is assigned to nl0 by an A statement. Then by
definition, s is assigned to all other siblings of nl0. Hence, s /∈ B, as otherwise,
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there would have been a sibling of nl0 that is the root of a tree Ts that is
rejected by As, which would have implied that the run r is rejecting. Thus,
As accepts every tree in Y . Therefore we can assume that after reading y, a
run of As can accept every tree (otherwise, we change A to an HALT A′ that
extends A with |y|−1 new states, namely {s′1, . . . , s′|y|−1}, having the transitions

s
y1−→
A

s′1
y2−→
A

. . .
y|y|−1−−−−→
A

s′|y|−1

y|y|−−→
A

true. Notice that A and A′ recognize the

same language).

Deducing an accepting run of A on T ′: We now describe how to change
the accepting run r of A on T to an accepting run of A on T ′. Let s0 be the
minimal state assigned by r to n0. We claim that there is an accepting run r′

of A on T that is identical to r, except for not assigning s0 to nl0. Indeed, if r
does not assign s0 to nl0 then r′ is simply r. If r assigns s0 to nl0 only by an
E statement, r′ assigns s0 to nr0 instead. Otherwise, by the above argument,
s0 does not belong to B and has a transition to true after reading the word
y. Hence, the run r′ can lead s0 to true when reading y, before reaching n0,
implying that no state that is assigned to n0 can assign s0 to nl0. (Recall that
the automaton is linear and s0 is the minimal state.)

Applying the above argument by induction on i, we get an accepting run r
of A on T , such that for every i ∈ [1..m− 1], the node nli is not assigned any of
the states in {s0, s1, . . . , si}. In particular, the node nlm−1, and therefore also
the node nm, is not assigned any state!

Thus, we can have an accepting run of A on T ′, which does not belong to
L.

Notice that the condition provided in Theorem 13 can be decided by check-
ing for each maximal strongly connected component X of the given DBW D,
whether the intersection between the following two nondeterministic finite au-
tomata is empty: Both automata are defined over the structure of D and have all
states of X as initial states; In the first automaton, all states of X are accepting,
while in the second automaton, the forever-accepting states are accepting.

4.2 A Stronger Condition

We narrow down the necessary condition, by extending the families of DBWs
that are shown not to be expressible in CTL. Recall that the basic condition,
as defined in Theorem 13, handled DBWs in which some finite word y appears
both in a cycle that includes a state q, and as a path from q to a state q′, s.t Dq′

accepts every word.
We strengthen Theorem 13, by allowing Dq′ to recognize a richer variety

of languages. In particular, Dq′ can recognize any CTL-recognizable language,
provided that it satisfies some constraints, as defined in the following theorem.

The motivation for considering states whose residual language is CTL-expressible,
is to allow the combination of the necessary condition and sufficient conditions,
such as the ones described in Section 5. Then, one can inductively construct
DBWs that cannot be expressed in CTL. See, for example, Corollary 18.

Theorem 14 (Theorem 13 Extended). Let D be a DBW and L the derived
language of D. If there is a state q of D s.t. the following hold, then L is not
expressible in CTL.
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In T ′, the labeling of these
nodes is changed to w, and the
tree is accepted by A, though
not in L.

Figure 4: The tree T used in Theorem 13
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• There is a cycle from q back to itself labeled xyz, for finite words x, z ∈ Σ∗

and y ∈ Σ+.

• The run of Dq on y reaches a state q′, s.t. Dq′ has an equivalent CTL
formula.

• There exists a word w 6∈ L(Dq), such that for every i ∈ N, z(xyz)iw ∈
L(Dq′).

• For every word y′ ∈ L(Dq′) and every i ∈ N, z(xyz)iyy′ ∈ L(Dq′).

Notice that Theorem 13 is a special case of Theorem 14, taking q′ to accept
every word in Σω. Then, Dq′ is equivalent to the CTL formula true, the third
condition falls back to be L(Dq) ( Σω, and the fourth condition obviously holds.

Proof. We explain below how the proof of Theorem 13 is changed in order to
suit Theorem 14.

Similarly to the proof of Theorem 13, we assume toward contradiction that
L is expressible in CTL, and therefore there is an HALT A recognizing it. We
describe a tree T that belongs to L, and via which we will show that A also
accepts some tree T ′ not in L, reaching a contradiction.

Recall the construction of the tree T in the original proof. It used a set B
of A’s states and a set Y of trees. We denoted by m the number states in A.
Further, we hanged under the nodes ni (i ∈ [0..m − 1]) trees denoted by Ts,
where s is a state in the set B, and Ts ∈ Y \ L(As). Under the node nm we
hanged a tree in Y . The tree T ′ resulted by replacing the subtree hanged under
nm with the singled-path tree labeled w.

We keep this construction, but redefine Y to be the set of trees in which all
paths satisfy the following two conditions: i) the first |y| labels form the word y,
and ii) the labels of the suffix from the (|y|+1)’s position form a word in L(Dq′).

Note that T is in L. Indeed, each path has the form of v(xyz)iyy′ for some
y′ ∈ L(Dq′) and i ∈ N, which is in L (see Figure 3, and recall that though
L(Dq′) is no longer Σω, y′ ∈ L(Dq′)). Moreover, note that T ′ is not in L.

Analyzing accepting runs of A on T : Consider a run r of A that accepts
T . As mentioned in the original proof, we can assume that in r, all states that
are assigned to nl0 are assigned by an A statement.

By the same argument that was used in the original proof, we get that a
state s that is assigned to nl0 by an A statement must not be in B. Thus,
As accepts every tree in Y . Therefore, conceptually, a run of As can accept
every tree in L(Dq′)∆ after reading y. If, technically, it is not the case, we can
change A to an equivalent HALT A′, as described below, such that the above
conceptual claim holds also technically.

Recall that Dq′ has an equivalent CTL formula, therefore by Theorem 7
there is an HALT Aq′ equivalent to Dq′ . We denote its initial state by s′.
We change A to an HALT A′ that extends A with |y| − 1 new states, namely

{s′1, . . . , s′|y|−1}, having the transitions s
y1−→
A

s′1
y2−→
A

. . .
y|y|−1−−−−→
A

s′|y|−1

y|y|−−→
A

s′.

Notice that A and A′ recognize the same language.
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Figure 5: A DBW accepting the language of F (p∧Xp), not expressible in CTL.

Deducing an accepting run of A′ on T ′: Analogously to the arguments
in the original proof, the node nlm−1 and therefore also the node nm, is not
assigned any state of A. Note that for i ∈ [0..m− 1] we prove that the node nli
is not assigned to any of the states {s0, s1, . . . , si} by changing the run of A on
T in a way that it goes to the state s′ when reading y, before reaching nli. We
should explain how the run continues from there and why it is still accepting.
To this end, note that in each iteration s′ is assigned to a subtree all of whose
paths are of the form z(xyz)jyy′ for some y′ ∈ L(Dq′) or of the form z(xyz)jw,
for j ∈ N. Either way, we assumed it to be in L(Dq′) = L(As′). In particular,
there is an accepting run of As′ on that subtree. Therefore, we can have an
accepting run of A on T ′, which does not belong to L.

4.3 Examples

We present below some examples of using the basic and stronger necessary
conditions, for showing that ω-regular languages cannot be expressed in CTL.

The first example deals with the language of the LTL formula F (p∧Xp). It
was already proven to be out of CTL in [10], but with much effort. We get it
as a simple corollary of Theorem 13.

Corollary 15 ([10]). The LTL formula F (p ∧Xp) is not expressible in CTL.

Proof. Consider the DBW D, presented in Figure 5. Note that it satisfies the
necessary condition set by Theorem 13, since:

• Dq1 rejects some word (¬pω).

• Dq1 accepts every tree that starts with p. Furthermore, p also occurs on
a cycle from q1 back to itself.

Therefore, it is not expressible in CTL.

Note that in Theorem 13, it does not matter whether the states in the cycle
are accepting or not. In the following corollary, for example, all of the states
are accepting. Moreover, this corollary will be used in Section 6 for refuting an
open conjuncture presented in [5].

Corollary 16. The LTL formula (p ∧Xp)Rq is not expressible in CTL.

Proof. Proven similarly to Corollary 15. Consider the DBW, D, presented in
Figure 6. The word {¬p,¬q} is rejected by D. In addition, Dq1 accepts every
word that starts with {p, q}, while {p, q} can also be found on the cycle q1 →
q0 → q1.
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Figure 6: A DBW accepting the language of (p ∧ Xp)Rq, not expressible in
CTL.
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Σc

a
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Figure 7: A DBW accepting the language (abc)∗bc∗aΣω, not expressible in CTL.

Observe that in Theorem 13, the required cycle from q back to itself need
not be simple. An example for such a case is demonstrated in the following
corollary.

Corollary 17. The language L = “all paths belong to (abc)∗bc∗aΣω” is not
definable in CTL.

Proof. Consider the DBW D in Figure 7. The word bca appears on a cycle from
q back to itself (the cycle abcabc). In addition, Dq = D accepts every word that
starts with bca, and rejects the word aω.

The added value of the stronger condition (Theorem 14) is demonstrated
by the following example, not covered by the basic condition. It also demon-
strates how one can inductively use the stronger necessary condition together
with sufficient conditions—The language of Dq′ is in CTL by the sufficient con-
dition presented in Section 5.4, and therefore, due to Theorem 14, the following
language L is not in CTL.

Corollary 18. The language L = “all paths belong to (abc)∗b((b + c)∗a)ω” is
not definable in CTL.

Proof. Consider the DBW D in Figure 8 and the states q and q′ of D. Denote
x = a, y = b and z = c. Then y appears on a cycle from q back to itself and
also is the path from q to q′.

Note that by the sufficient condition of Section 5.4, Dq′ is almost linear and
thus has an equivalent CTL formula. The rest of the stronger conditions hold
as well, therefore by Theorem 14, there is no equivalent CTL formula for D.
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Figure 8: A DBW accepting the language (abc)∗b((b + c)∗a)ω, not expressible
in CTL.

Analogously, it can be shown that the formula F (p ∧ Xp) ∧ GFp is not
expressible in CTL.

5 Sufficient Conditions for LTL ∩ CTL

The main sufficient condition narrows down the necessary condition by requir-
ing, among other things, that the DBW leaves cycles with unique words. Its cor-
rectness proof is constructive, defining an equivalent CTL formula. The result-
ing formula contains both universal and existential path quantification, and in-
deed, the sufficient condition is shown to capture languages in LTL∩(CTL\ACTL).

In Section 5.4, we provide another, simpler, sufficient condition that can be
combined with the main condition, for allowing the inductive construction of
more involved CTL-expressible DBWs. See, for example, Corollary 28. More-
over, by combining the sufficient conditions and the necessary condition, one can
define more involved DBWs that cannot be expressed in CTL. See, for example,
Corollary 18.

5.1 The Main Condition

DBWs that satisfy the condition are required to have some special segment,
which we dub the “decisive part”, containing the initial state and no accepting
states. A run of the DBW can leave the decisive part only upon reading a
special delimiting letter e, going to a state that has an equivalent CTL formula.
In addition, in the decisive part, the way out of every cycle should be unique.

We start by defining formally what we mean by a “way out of a cycle”.
Notice that we distinguish between two variants of going out of a cycle; Before
and after completing a full cycle.

Definition 19 (Escaping Words). Consider a DBW D = 〈Σ, Q, δ, q0, α〉, a
simple cycle C of D, and a finite word w = w1 . . . wl.

1. We say that D leaves C from a state q of C via the word w if the following
hold:

• The outdegree of q is greater than one;
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• The run of Dq on w1 . . . wl−1 visits states only in C, and does not
visit any state more than once; and

• The run of Dq on w reaches a state not in C.

2. We say that D leaves C early from a state q of C via the word w if in
addition to the requirements presented in (1), for every j ∈ [1..l−1], the
outdegree of the state δ(q, w1 . . . wj) is one. In this case, we call the word
w an early escaping word.

3. We say that D leaves C cyclically from a state qi of C via the word w
if in addition to the requirements presented in (1), the word w1 . . . wl−1

completes C, namely δ(q, w1 . . . wl−1) = q. In this case, we call the word
w a cyclic escaping word.

Note that an escaping word can be both early and cyclic, in the case that
the cycle contains a single state with outdegree above 1.

Given a DBW D, a cycle C of D, and a state q of C, we define the following
sets of escaping words.

EarlyEscape(C, q) = {w ∈ Σ∗ | D leaves C early from q via w},

EarlyEscape(C) =
⋃
q∈C

EarlyEscape(C, q),

EarlyEscape(q) =
⋃

{C | C∈Cycles(q)}

EarlyEscape(C, q),

Similarly, we define the sets CyclicEscape(C, q), CyclicEscape(C), and CyclicEscape(q).
We continue with the formal definition of the sufficient condition. We define

the constraints that a DBW should satisfy in order to be “decisive”, and then
show that every decisive DBW can be translated to CTL.

Definition 20. A DBW D = 〈Σ, Q, δ, q0, α〉 is decisive if there is a subset
Q′ ⊆ Q that contains the initial state of D, such that D|Q′ satisfies the following:

1. It is counter-free.

2. There is a letter e ∈ Σ s.t. for every state q ∈ Q′, the automaton Dδ(q,e)
has an equivalent CTL formula.

3. For every letter σ 6= e and a state q ∈ Q′ it holds that δ(q, σ) ∈ Q′.

4. Q′ contains no accepting states.

5. If D leaves a simple cycle C ⊆ Q′ early from a state q via a finite word w
then for every state q′ 6= q of Q′, we have δ(q′, w) = ∅.

The subset Q′ is dubbed the decisive part of D.

Observe that except for the second constraint, it is decidable to check whether
a given DBW satisfies the constraints. Regarding the second constraint, we ob-
viously do not know to decide it, as such a decision procedure will solve the
question of whether a DBW is CTL-expressible. The idea behind it is to allow
the inductive construction of involved CTL-expressible DBWs—Starting with
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obvious languages that are known to be in CTL, such as true, one can induc-
tively apply the above condition, as well as other sufficient conditions, such as
the one of Section 5.4, for getting a CTL-expressible DBW. (See, for example,
Corollary 28.)

We briefly explain the intuitive reason for requiring each of the other con-
straints. The counter-free constraint follows the known equivalence of LTL and
counter-free NBWs [7] and non-counting languages [23]. The uniqueness of the
escaping words allows the equivalent CTL formula to “synchronize” whenever
some path of the input tree leaves a simple cycle. The delimiting letter e allows
the formula to constantly wait for an escaping word w until e occurs; With-
out it, the escaping word would have been awaited even after going out of the
decisive part. Regarding the limitation of not having accepting states in the
decisive part, we believe that it can be relaxed, and we partially address it in
the additional condition, provided in Section 5.4.

The formal claim on the correctness of the main sufficient condition is the
following.

Theorem 21. Every decisive DBW has an equivalent CTL formula.

We start the proof of Theorem 21 with defining the CTL formula that cor-
responds to a given decisive DBW, and afterwards prove that it is indeed equiv-
alent to the DBW. For better readability, we use the typographical convention
of word when using a word that refers to a CTL formula.

5.2 The Equivalent CTL Formula

Consider a decisive DBW D = 〈Σ, Q, δ, q0, α〉 over an alphabet Σ with a decisive
part Q′ ⊆ Q. We define below a corresponding CTL formula ψ, which we will
show to be equivalent to D.

For every state p in Q′, we have a formula State(p) that “describes” it,
based on the simple cycles to which p belongs. We also define such formulas
for the states in δ(Q′, e). In addition, we have the formula Orientation that
occasionally “synchronizes” a node of the input tree with the corresponding
state of Q′.

A formula for each state in Q′ ∪ δ(Q′, e): We define below the formula of
a state p, using some subformulas that will be defined afterwards.

We begin with the states in δ(Q′, e). Let p be a state in Q′. We know that
every state transitioned by e from p has an equivalent CTL formula. In other
words, Dδ(p,e) is equivalent to ϕp, for some CTL formula ϕp. We simply define
State(δ(p, e)) := ϕp.

We continue with a state p ∈ Q′. It consists of three different parts explained
below. In general, the first part ensures local validity, the second deals with
letters that do not appear on cycles of p, and the last handles cycles.

State(p) := LookAhead(p)

∧
∨

{σ | Cycles(p,σ)=∅}

σ ∧AX State(δ(p, σ))

∧
∨

{σ | Cycles(p,σ)6=∅}

σ ∧ (
∨

C∈Cycles(p,σ)

EarlyLeave(C, p) ∨ Cycle(C))
)
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LookAhead(p): This formula guarantees that the labels of the next nodes of
each path in the input tree match D, by “looking ahead” a fixed number of
steps. This fixed number is defined to be the length of the longest cycle in Q′

plus one, and is denoted by l.

For example, consider a state p that has the following direct paths: p
a→ · a,c→

· b→ ·; p a→ · b→ · a→ ·; and p
b→ · a→ · a,b→ ·. Then LookAhead(p) = (a ∨ b) ∧ (a→

AX((a∨b∨c)∧AX((a∨c)→ AX(b)∧b→ AX(a))∧(b→ AX(a→ AX(a∨b))).

EarlyLeave(p, C): Consider a state p that belongs to a cycle C ⊆ Q′. We
define a formula that checks if there is a path of the tree on which D leaves C
early from p. For ease of notations, for a word w ∈ Σ∗, we define

PathExists(w) = EX (w1 ∧ EX (w2 · · · ∧ EX w|w|)),

and use it to define

EarlyLeave(C, p) =
∨

w∈EarlyEscape(C,p)

PathExists(w).

Cycle(C): This formula deals with trees all of whose paths start with a com-
plete cycle of C. Basically, the formula validates that every path stays in the
cycle, until encountering some cyclic-escaping path. Consider a cycle C =
Σ0Σ1 · · ·Σk−1 that starts and ends in a state p, where Σi ⊆ Σ, for every
i ∈ [0..k − 1]. For defining the formula Cycle(C), we first define the follow-
ing formulas.

• For every i ∈ [0..k − 1], a formula that corresponds to Σi, namely

ϕΣi =
∨
σ∈Σi

σ.

• For every x ∈ [0..k − 1] and CTL formula ξ, a formula that promises
for every path that if it completes the cycle C starting from the x-th
position of C, then its k-step descendants, in all paths, satisfy the formula
ξ. Formally,

IfThen(C, ξ)x = ϕΣx → AX(ϕΣx+1 mod k
→ · · ·AX(ϕΣx+k−1 mod k

→ AXξ)).

• We use the IfThen formula for defining a formula stating that if all paths
complete a cycle along C, starting from the x-th position of C, then they
also take one more step on C.

Stay(C)x = IfThen(C,Σx)x,

• Next, we gather the instances of the above formula for all positions of
the cycle C, such that the resulting formula is indifferent to the starting
position.

Stay(C) =

k−1∧
x=0

Stay(C)x,
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• A formula stating that some path takes its way out of C after completing
a cycle.

CyclicLeave(C) =
∨

w∈CyclicEscape(C)

PathExists(w),

Then,
Cycle(C) = A Stay(C) U CyclicLeave(C).

Orientation: The formula allows to synchronize the current node of the read
tree with the corresponding state of D. Due to the uniqueness of the escaping
words, it can trigger the synchronization whenever an escaping word occurs at
some path of the read tree.

Once detecting an escaping word, Orientation triggers the formula of the
state on which the paths diverge. It is done as long as the letter e is not read,
meaning that the run of the DBW on the tree is still in a state in Q′.

If an early escaping word wσ is detected, we can be sure that the |w| up-
coming positions in the tree share the same future, reaching together the same
state. Therefore, we trigger the formula of that state. On the other hand, that
property cannot be guaranteed in case of a cyclic escaping word, as D may
leave earlier on some paths without completing a cycle. Therefore we enforce
the formula only on paths that complete the cycle, using IfThen.

Note that for every cyclic escaping word wσ of a cycle C, there is a unique
state of C from which the word is escaping. Therefore, we can use the notation
IfThen(C, ·)wσ to describe IfThen(C, ·)x.

Orientation = A(GoodEarlyEscapes ∧ GoodCyclicEscapes)Ue,

where

GoodEarlyEscapes =
∧
q∈Q′

∧
wσ∈EarlyEscape(q)

PathExists(wσ)→ (AX)|w|State(δ(q, w)),

and

GoodCyclicEscapes =
∧
q∈Q′

∧
C∈Cycles(q)

∧
wσ∈CyclicEscape(C,q)

PathExists(wσ)→ IfThen(C, State(δ(q, w)))wσ.

The overall formula: for a decisive DBW D with an initial state q0, the
corresponding CTL formula is

ψ = State(q0) ∧ Orientation

5.3 Correctness

In this subsection we prove the correctness of our construction. We start with
some propositions on the structure of decisive DBWs.

We first observe that due to the counter-free property, cyclic words along
the same cycle are unique.
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Proposition 22. For every cycle C of a counter-free DBW D and states q and
q′ in C, let u and u′ be finite words on which D goes from q and q′ back to
themselves along C, respectively. Then u 6= u′.

Next, we use the second constraint in the definition of decisive automata, for
assuming without loss of generality that the delimiting letter e does not appear
along a cycle of the decisive part.

Proposition 23. For every decisive DBW D, there is an equivalent decisive
DBW with a decisive part Q′′, such that e does not appear on any cycle of Q′′.

Proof. Let Q′ be a decisive part of D. If e does not appear in any cycle of
Q′ we are done; If it does, we may change D to achieve such a form without
altering its language. First, we create a copy D̄ of D, which will not be in the
decisive part. If D moves from a state q ∈ Q′ to a state s ∈ Q′ when reading
e, we refer q instead to its corresponding state in D̄. Note that we haven’t
changed the language of D by doing so. Moreover, there is still an equivalent
CTL formula to the state transitioned by e, as a copy of a state that already
has an equivalent CTL. We do so for each transition that includes e, getting the
requested form.

In addition, we assume the uniqueness of cyclic escaping words, as it can be
deduced from the uniqueness of early escaping words:

Proposition 24. If D leaves a cycle C ⊆ Q′ cyclically from a state q via a
finite word w then for every state q′ 6= q of Q′, we have δ(q′, w) = ∅.

Proof. Assume that D leaves a cycle C ⊆ Q′ cyclically from a state q via a finite
word w, and there is a state q′ of Q′ s.t. δ(q′, w) 6= ∅. We will prove that q = q′

by “zipping” the paths from those states on the word w.
First, note that w must not be an early escaping word, as otherwise Defi-

nition 20.5 would not hold. Therefore, there is an inner state q1 on the cycle
with outdegree greater than 1. Thus, w can be rewritten as w = w1w

′
1σ for

two finite words w1 ∈ Σ∗, w′1 ∈ Σ+ and a letter σ ∈ Σ, s.t. D leaves C early
from the state q1 = δ(q, w1) via w′1σ. We use again Definition 20.5, this time
on the early escaping word w′1σ, and learn that this word is legal only from q1.
Therefore, δ(q′, w1) = δ(q, w1) = q1.

We apply similar argument on the word w1. As mentioned above, q1’s out-
degree is greater than 1, therefore it leaves C with some letter σ1 ∈ Σ. It implies
w1 can be rewritten as w2w

′
2 such that D leaves C early from q2 := δ(q, w2) via

w′2σ1. We infer that δ(q′, w2) = δ(q, w2) = q2.
We continue iteratively on i ∈ N, as long as there is a state between q and

qi on C with outdegree greater than 1, getting the state qi+1. Finally, we get a
state qk, for some k ∈ N, such that every state between q and qk has outdegree of
1. Moreover, D leaves C early from q with wkσk. It must imply that q = q′.

We now turn to show the equivalence of the given decisive DBW and the
corresponding CTL formula.

Proof of Theorem 21. Consider a decisive DBW D, and let ψ be the correspond-
ing CTL formula, as per Section 5.5.2. We need to show that L(ψ) = L(D)∆.
Namely, we should prove that for every Σ-labeled tree 〈T, V 〉, it holds that
〈T, V 〉 � ψ iff for every path π of T , the word V (π) is accepted by D.
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Left To Right (L(ψ) ⊆ L(D)∆). We show that D accepts all paths of a tree
T that satisfies ψ, by proving the following “local” lemma, which roughly states
that once ψ holds in a node of the tree T , then D has a corresponding run prefix
on every path prefix of some length k, and that all nodes that are k-levels ahead
also satisfy ψ.

The “local” lemma guarantees also the “global” requirement, since its iter-
ative repetition is finite—Due to the satisfaction of ψ, e must eventually occur
in every path, and therefore D accepts the path.

Lemma 25. Let q ∈ Q′ be a state of D and 〈T, V 〉 a Σ-labeled tree, such that
〈T, V 〉 � State(q) ∧ Orientation. Then:

1. Either T ’s root is labeled with e (satisfying Orientation), and every sub-
tree in depth 1 satisfies State(δ(q, e)) (due to State(q)); Or

2. For every path π of T , there exists an integer k ≥ 1 and a state q′ ∈ Q′
s.t. the run of D on the first k positions of π is legal and leads to a
state q′, namely δ(q, V (π0 . . . πk−1)) = q′ and the subtree 〈T |πk , V 〉 sat-
isfies both State(q′) and Orientation, namely 〈T |πk , V 〉 � State(q′) ∧
Orientation.

Proof. Suppose 〈T, V 〉 � State(q)∧ Orientation. By definition of the formula
State, the transition from q upon reading the label of the root of T , denoted by
σ, is either on some cycles containing q or leads q to a state q′ that has no way
back to q. If the latter holds then the required containment is easily shown: by
the definition of State, we have 〈T, V 〉 � σ∧AX State(q′). For every path π it
holds that 〈T |π1 , V 〉 � State(q′). If σ = e then case (1) is satisfied. Otherwise,
〈T |π1 , V 〉 � Orientation holds since 〈T, V 〉 satisfies Orientation and the Until
condition of Orientation has not been satisfied by the root of T .

We turn to the interesting case, where the transition from q upon reading
σ is on some cycles containing q. Recall that we assumed e does not appear in
cycles of Q′, therefore σ 6= e. In addition, the definition of State dictates that
there exists a cycle C that contains q, such that one of the following cases:

I. 〈T, V 〉 � EarlyLeave(C, q), or

II. 〈T, V 〉 � Cycle(C)

Case I: We learn about the existence of a path in T such that its labels form
a word w ∈ Σ∗ on which D leaves C early from q. By Definition 19.2, the
outdegrees of D’s states in the path defined by w from q are all 1.

Recall that 〈T, V 〉 � LookAhead(q) and therefore the next l levels of the tree
indeed respect D. Note that w has no more than l letters, since as every other
word in EarlyEscape(q), it follows some cycle, up to its last letter, and cannot
use the same edge twice. We conclude that all of the k := |w| − 1 first levels of
the tree follow the same path in D.

Furthermore, since 〈T, V 〉 � Orientation, the fact that there is a path
labeled w that is an early escaping word “triggers” Orientation to guarantee
that 〈T, V 〉 � (AX)kState(q′) where q′ = δ(q, w1 . . . wk). In other words, every
subtree in the k-th level of T satisfies State(q′).

Note that e does not appear in these k levels, since these levels correspond
to a cycle of D. Therefore, Orientation’s Until condition has not been fulfilled
yet so Orientation still holds at the k-th level, and we are done.
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Notice that we presented a single integer k with respect to which the lemma
holds for all paths. In the second case below, the situation will be different,
having a possibly different k for each path.

Case II: 〈T, V 〉 � Cycle(C) = A Stay(C) U CyclicLeave(C). Notice first
that since LookAhead(q) holds in the root of T , the first l levels of the input
tree indeed correspond to a legal run of D. In addition, we can assume that no
path of T starts with an escaping word on which D leaves C early from q, as
we dealt with this case before. Therefore, D completes the cycle C along every
path prefix of T .

Recall that when D completes the cycle C along every path prefix of T ,
Stay(C) promises (if holds) another step on C. That is, as long as Stay(C)
holds in π, we know that the labels on the next |C| levels correspond to a
proper continuation of D’s run on C.

Eventually on every path π of T it holds that 〈T |πj , V 〉 � CyclicLeave(C),
for some j ≥ 0. In addition, for every path starting from πj we know that the
next |C| − 1 levels correspond to C; This is the case, since either j = 0 and
LookAhead(q) guarantees it or j ≥ 1 and Stay(C) guarantees it.

We claim that the requested k is j + |C| − 1 . We have already shown that
the labels of the nodes of π respect D up to πk (including). It is left to show
that 〈T |πk , V 〉 � State(q′) ∧ Orientation for q′ = δ(q, V (π0 . . . πk)).

Since CyclicLeave(C) holds at the subtree of πj , we know that there is
a path starting at πj that starts with a word wσ′ for w ∈ Σ∗ and a letter
σ′, on which D leaves C cyclically from some state q′′. It must follow that

q′′ =

{
q j = 0

δ(q, V (π0 . . . πj−1)) j ≥ 1
because otherwise w is a valid word from

two different states on C, contradicting Proposition 22.
The formula Orientation still holds at 〈T |πk , V 〉, for the same reason pre-

sented in the first case.
Therefore, similarly to the first case, we infer that the cyclic escaping word

wσ′ “triggers” Orientation to guarantee that the subtree 〈T |πk , V 〉 satisfies
State(δ(q′′, w)). Now, we claim that δ(q′′, w) = q′, implying that 〈T |πk , V 〉 �
State(q′), as required. Indeed, δ(q′′, w) = δ(q′′, V (πj . . . πk)), since we saw that
all k − j + 1 = |C| steps from πj (including) properly correspond to D’s run on
C, and δ(q′′, V (πj . . . πk)) = δ(q, V (π0 . . . πk)) = q′.

Right to Left (L(ψ) ⊇ L(D)∆). Let 〈T, V 〉 be a Σ-labeled tree all of whose
paths are accepted by D. Without loss of generality, we assume that for every
alphabet letter σ, D remains in the same strongly connected component upon
reading σ in q0; Otherwise, the proof proceeds by induction on the strongly
connected components of D. Note that the base case of the induction is covered
since states transitioned by e have an equivalent CTL formula (Definition 20.2).

The outline of the proof consists of two main claims. The first concerns
the formula State and is more local, saying that if a labeled tree belongs to
the language of Dq, for some state q of D, then it also satisfies State(q). The
second is more global, claiming that 〈T, V 〉 satisfies Orientation.

The first claim is captured by the following lemma.

Lemma 26. Let T ′ be a subtree of T . If 〈T ′, V 〉 ∈ L(Dq) for some state q ∈ Q′
of D, then 〈T ′, V 〉 � State(q).
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Proof. Let T ′ be a subtree of T such that 〈T ′, V 〉 ∈ L(Dq), for some state q ∈ Q′
of D, and let σ be the label of T ′’s root.

First, by the construction of LookAhead, it is easy to see that 〈T ′, V 〉 �
LookAhead(q).

We assumed w.l.o.g. that Cycles(q, σ) 6= ∅, thus we should prove that there
is a cycle C ∈ Cycles(q, σ), such that 〈T ′, V 〉 satisfies either EarlyLeave(C, q)
or Cycle(C). In fact, we will prove it for every cycle C ∈ Cycles(q, σ).

Indeed, if there is a path of T ′ labeled with an early-escaping word from
EarlyEscape(C, q), then EarlyLeave(C, q) is satisfied. Otherwise, on every
path prefix of T ′, the run ofD remains in the cycle C, meaning all paths complete
C. Consider a path π of T ′. If CyclicLeave(C, p) doesn’t hold on the subtrees
〈T |π0

, V 〉, we can infer that the run of D remain on C for one more step along
each path, therefore Stay(C) holds. We can repeat this process concluding that
as long as CyclicLeave(C, p) doesn’t hold on the subtree 〈T |πi , V 〉 it implies
that Stay(C) does, meaning 〈T ′, V 〉 � Cycle(C).

For showing that 〈T, V 〉 � Orientation, let π be a path of T . We should
show that every escaping-word “trigger” is handled correctly until encountering
the letter e. Recall that by definition Q′ does not contain accepting states and
can be leaved only with the letter e, therefore e occurs at some position j in
V (π).

Consider some node πi of T for i < j. Note that 〈T |πi , V 〉 � Dq for q =
δ(q0, V (π0 . . . πi−1)). If there is no cyclic- or early-escaping word that starts
at πi, no trigger is raised, and the Orientation formula is vacuously satisfied.
Otherwise, there is a cyclic- or early-escaping word wσ that starts at πi. We
consider blow the two cases.

Early-escaping word: We need to show that all nodes on the |w|-th level
of T |πi satisfy State(δ(q, w)). Consider such a node and the subtree T ′ that
it induces. By definition of early-escaping words, the path that D makes when
reading w from the state q only visits states with outdegree one, until the last
visited state. Therefore, since 〈T |πi , V 〉 � Dq, when D runs on the paths of
T |πi , it necessarily goes along the states on the path from q to δ(q, w). Thus,
〈T ′, V 〉 � Dδ(q,w) and by Lemma 26, we get that 〈T ′, V 〉 � State(δ(q, w)), as
required.

Cyclic-escaping word: We should show that 〈T |πi , V 〉 � IfThen(C, State(δ(q, w)))wσ.
Namely, to show that if a path completes C from the state in which wσ is legal,
then the subtree on that path in the |w|-th level satisfies State(δ(q, w)).

Indeed, consider such a path π′, and let T ′ be the labeled subtree in its |w|-th
level. By Proposition 24, the only state from which wσ is legal is q. Therefore,
T ′ ∈ L(Dδ(q,w)). Thus, by Lemma 26, we get that T ′ satisfies State(δ(q, w)),
as required.

Observe that the length of the constructed formula might be exponentially
longer than the number of states in the translated DBW. The reason for the
blowup comes from the fact that we examine each simple cycle of the automaton,
and there might be exponentially many simple cycles even in decisive DBWs.
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5.4 An Additional Sufficient Condition

A future direction of extending the main condition is to handle DBWs in which
the decisive part can contain accepting states. A simple case where a DBW with
a cycle that contains accepting states can be translated to CTL is as follows.
We say that a DBW D = 〈Σ, Q, δ, q0, α〉 is almost linear if I) There is a letter
e that after reading it, D always moves to a specific state. That is, there is a
letter e ∈ Σ and a state qe ∈ Q, s.t. for every state q′ ∈ Q, either δ(q′, e) = qe
or δ(q′, e) = ∅; and II) qe is an accepting state (qe ∈ α) III) If removing all
the transitions on the letter e, the automaton becomes linear. See, for example,
Figure 10.

We show that an almost linear DBW D has an equivalent CTL formula by
translating it to an equivalent HALT H = 〈Σ, QH = Q ∪ {h0, q

′
e}, δH, h0, α ∪

{q′e}〉. The translation transforms D into H through the following steps:

• All the transitions of D become A-transitions of H. That is, for every
σ ∈ Σ and q ∈ Q, we have δH(q, σ) = (A, δ(q, σ)).

• Changing all the transitions that enter qe to lead to true. That is, for
every q′ ∈ Q such that δ(q′, e) = qe, we have δH(q′, e) = true.

• Adding a new universal state q′e that is also an accepting state. It goes
to itself on every letter, except for e, on which it also goes to qe. That is,
δH(q′e, e) = (A, qe) ∧ (A, q′e), and for every σ 6= e, δH(q′e, σ) = (A, q′e).

• Adding a new transient state h0 that is also the new initial state. It
imitates q0 on the first read letter and universally also goes to q′e. That
is, for every σ ∈ Σ, δH(h0, σ) = (A, δ(q0, σ)) ∧ (A, q′e).

Notice that the second change makes H linear, and the next two changes keep it
linear, having h0 and q′e the first and second states of H, respectively. Observe
also that H only uses universality, having no nondeterminism.

Correctness. We show that the languages of D and H are equal by proving
mutual containment. For showing that L(D) ⊆ L(H), consider an accepting
run of D on a given tree. We claim that every path in the run-tree is accepting;
It is clear for the path labeled with q′e since it is an accepting state. It is true
also for paths with e label, as they were “released” by H by sending each one
of them to true. The rest of the paths can be found within the run-tree of D
on that tree, and therefore are also accepting.

For the other direction, consider a tree that is rejected by D. It must contain
a path that is not in L(D). Observe that a finite word is rejected by D iff it is
rejected by H. Hence, it is left to consider the case where the run of D on that
path reaches only finitely many times an accepting state. In particular to qe. It
implies that at some point H is forced to imitate D, therefore to reject the tree.

A known simple example of an almost linear DBW is given in Figure 9. Its
language is captured by the LTL formula GFp. Indeed, the derived language is
expressible in CTL by the formula AGAFp. Another, more involved example,
is given in Figure 10. As described above, the HALT in the figure simulates the
DBW, by initializing a new copy of the “linearized” DBW on every occurrence
of e.
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q0start qp

¬p

p

¬p

p

Figure 9: A DBW accepting the language of GFp, expressible in CTL.
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Σ

a

e

e

Σ

Figure 10: An almost-linear DBW and its equivalent HALT. In the HALT, all
transitions are A-transitions, and whenever going on some letter to more than
one state, it is done universally.
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c

Figure 11: A DBW accepting the language of (ab)∗a(ab)∗cω, expressible in CTL.

5.5 Examples

In [3], Bojańczyk proved that there is a language L expressible in both LTL
and CTL, but not in ACTL. The following corollary of Theorem 14 provides an
alternative proof to the expressibility of L in CTL.

Corollary 27 ([3]). The language L = “all paths belong to (ab)∗a(ab)∗cω” is
definable in CTL.

Proof. The DBW presented in Figure 11 is a decisive DBW. The letter c plays
to role of e (using the lemma’s notation). Indeed, the derived language accepted
by q4 is equivalent to AGc. Note that the other requirements hold, allowing to
apply Theorem 14.

The following corollary demonstrates how both the main sufficient condition,
concerning decisive DBWs, and the additional sufficient condition, concerning
almost-linear DBWs, can be combined.

Corollary 28. The language L = “all paths belong to (ab+ ba)∗c(ac+ bc)ω” is
definable in CTL.

Proof. Consider the DBW D, presented in Figure 12. First, note that Dq3 is an
almost linear DBW; the only letter on which a run of Dq3 can move to q3 is c,
which does not appear anywhere else on Dq3 . In addition, when removing the
c-transitions out of Dq3 , it becomes linear. Therefore it has an equivalent CTL.

Now, note that D is decisive; Its decisive part consists of q0, q1, and q2. As a
delimiting letter we have c, on which D moves to a state that has an equivalent
CTL formula, as shown above. Therefore, by Theorem 21, D is expressible in
CTL.
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Figure 12: A DBW accepting the language (ab+ ba)∗c(ac+ bc)ω, expressible in
CTL.

6 On CTL∗ Formulas Expressible in CTL

Clarke and Draghicescu (now Browne) give in [5] a necessary condition for a
CTL∗ formula to be expressible in CTL over Kripke structures with fairness
constraints.

Theorem 29 ([5]). Let M = 〈S,R,L,F〉 be a Kripke Structure with Fairness
Constraints, and let M ′ = 〈S,R,L,F ′〉 where the set of constraints F ′ extends
F . Then for all CTL formulas ϕ and all states s ∈ S, M, s � ϕ if and only if
M ′, s � ϕ

They were unable to prove that this condition is also sufficient, leaving it as
a conjuncture.

Conjecture 30 ([5]). Let ϕ be a CTL∗ formula. If ϕ is not expressible in
CTL, then it is possible to find two Kripke structures with fairness constraints
M = 〈S,R,L,F〉 and M ′ = 〈S,R,L,F ′〉 with F ′ an extension of F such that
for some state s ∈ S either M, s � ϕ and M ′, s 2 ϕ, or M, s 2 ϕ and M ′, s � ϕ.

We refute Conjuncture 30 by showing that the CTL∗ formula E(p∨Xp)Uq
is not expressible in CTL (already with respect to Kripke structures without
fairness constrains), while no two Kripke structures with fairness constraints
satisfy the conjecture’s condition.

Corollary 31. The formula E(p ∨Xp)Uq is not expressible in CTL.

Proof. As a negation of the formula A(¬p∧X¬p)R¬q, which is not expressible
in CTL by Corollary 16.

For showing that the condition of Conjecture 30 does not hold for the formula
E(p ∨Xp)Uq, we will use the following lemma from [5], regarding the prefixes
of computations in Kripke structures with fairness constraints. Given a Kripke
structure M = 〈S,R,L,F〉 with fairness constraints and a state s ∈ S, we
denote by Prefix(M, s) the set of finite prefixes of fair computations of M that
start at s.
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Lemma 32 ([5]). Let M = 〈S,R,L,F〉 be a Kripke structure with fairness
constraints, and let M ′ = 〈S,R,L,F ′〉 where the set of constraints F ′ extends
F . Let s be a state of M . Then, Prefix(M, s) = Prefix(M ′, s).

We are now in place to refute Conjecture 30.

Theorem 33. Conjecture 30 of [5] is false.

Proof. We claim that the formula ϕ = E(p ∨ Xp)Uq is a counter example for
Conjecture 30. By Corollary 31, ϕ is not expressible in CTL. We will show that
the condition of Conjecture 30 does not hold for ϕ, that is, for every Kripke
structure with fairness constraints M , an extension of it M ′ and a state s of M ,
the following holds, M, s � ϕ iff M ′, s � ϕ.

Let ϕd stand for the LTL formula (p ∧ Xp)Uq. Note that ϕd defines a co-
safety language: a word satisfies ϕd iff it has a finite prefix that “approves”
the word. Thus, M, s � ϕ iff there is a finite prefix of a fair computation that
satisfies ϕd. Hence, we get the following by Lemma 32:
M, s � ϕ iff
there is a finite computation prefix π ∈ Prefix(M, s) such that π � ϕd iff
there is a finite computation prefix π′ ∈ Prefix(M ′, s) such that π′ � ϕd iff
M ′, s � ϕ.

7 Conclusions and Future Work

We clarified the automaton characterization of CTL, showing that CTL is equiv-
alent to hesitant alternating linear tree automata (HALT) and strictly less ex-
pressive than alternating linear tree automata. Using the HALT characteriza-
tion of CTL, we provided some necessary conditions and some sufficient con-
ditions for an LTL formula to be expressible in CTL. The conditions simplify
the (non) membership proofs of some LTL formulas that are known (not) to be
in CTL, and provide means for deducing the (non) membership of many other
LTL formulas.

There is still a big gap between our necessary conditions and sufficient con-
ditions. We believe that the automaton approach we have taken can be further
pursued toward generalizing the conditions, and maybe even toward resolving
the longstanding open problem of the common fragment of LTL and CTL. In
particular, one can look into generalizing the sufficient condition, by allowing
the decisive part of the considered DBW to have accepting states.

The HALT characterization of CTL is useful also for conditions on the mem-
bership of tree languages in CTL. We used it for showing that alternating linear
tree automata are strictly more expressive than CTL, and for refuting a con-
jecture by Clarke and Draghicescu from 1988, regarding a sufficient condition
for a CTL∗ formula to be expressible in CTL. The automaton approach may
be further studied toward resolving the more general open problem of deciding
whether a given CTL∗ formula is in CTL.

Lastly, the constructive technique that we used in the sufficient condition, for
translating a certain kind of DBWs into CTL formulas, might be useful also for
translating certain kinds of counter-free NBWs into LTL formulas. Counter-free
NBWs are known to be equivalent to LTL, yet the current equivalence proofs
are complicated and indirect.
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 תקציר

 
בשימוש נרחב בתחום האימות הפורמלי. למרות זאת,  תנמצא CTLהזמן המתפצל לוגיקת 

 עדיין מובן, הקשר שלה לאוטומטים מעל מילים ועצים לא LTLהקווי זמן הבשונה מלוגיקת 

, האם היא LTLמעבר לכך, לא ידוע האם קיים אלגוריתם המכריע, בהנתן נוסחת  .במלואו

 והתנאים המספיקים או ההכרחיים הידועים לבעיה מאוד מוגבלים. ,CTL-ניתנת להבעה ב

 

אוטומט מתחלף ל CTLשניתן לתרגם כל נוסחת  2000לפר הראו בשנת וקופרמן, ורדי וו

. (hesitant alternating linear tree automaton – HALT) מעל עציםלינארי הססן 

 מוכיחיםאנחנו : CTLמאפיינים את  HALTו מראים שאוטומטי בהמשך לעבודתם, אנ

התרגום או דרישת הלינאריות, ההססנות  דרישתלא , וכן שלCTL-ל HALTשניתן לתרגם 

 איננו אפשרי.

 

 יםהכרחי ם מספיקים ותנאיםבכדי להציג תנאי CTLשל  HALTאנו עושים שימוש באיפיון 

מתבססים על  התנאים שלנורגולריות. -ωושפות  LTLעבור נוסחאות  CTL-לשייכות ל

 , יש אוטומט בּוּכי דטרמיניטיCTL-רגולריות הניתנת להבעה ב-ωהעובדה שלכל שפה 

(DBW) .מעגלים של ההאנו מנתחים את  המקבל אותה-DBW  ואת הקשר שלהם למעגלים

 העשוי להיות שקול לו. HALTבאוטומט 

 

הוא חוסר  ,CTL-הניתן להבעה ב  DBWשאנחנו מספקים עבור הבסיסי התנאי ההכרחי 

יכול לקבל כל   ,-Cשלאחר קריאתה ממצב ב עליו ניתן למצוא מילה ,Cשל מעגל  קיום

יעזוב  DBW-מילה. התנאי המספיק מצמצם את התנאי ההכרחי ודורש בין היתר שאוטומט ה

 CTLמגדירה נוסחת , וטרוקטיביתסמעגלים עם מילים ייחודיות. ההוכחה הניתנת הינה קונ

 שקולה.

 

סקו יצ'ק ודרגרע"י קלא ניתנההשערה שלבסוף, תוך שימוש בתנאי ההכרחי, אנחנו מפריכים 

 .CTLלהיות ניתנות להבעה גם על ידי  *CTLעבור נוסחאות לגבי תנאי  1988בשנת 



עבודה זו בוצעה בהדרכתו של דר' אודי בוקר מבי"ס אפי ארזי למדעי המחשב, המרכז 

 הבינתחומי, הרצליה.
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