

The Interdisciplinary Center, Herzlia
Efi Arazi School of Computer Science

M.Sc. program - Research Track

Efficient Dynamic Approximate

Distance Oracles for Vertex-

Labeled Planar Graphs

Submitted by Itay Laish

Under the supervision of Dr. Shay Mozes.

M.Sc. dissertation, submitted in partial fulfillment of the requirements

for the M.Sc. degree, research track, School of Computer Science

 The Interdisciplinary Center, Herzliya

July 2017

Acknowledgements

First of all, I would like to thank my advisor Dr. Shay Mozes, for providing me much

needed directions, especially, when I was sure I'm facing a dead end, and for introducing

me to the world of research, and investing exponential amount of time, teaching and

tutoring me. His way of thinking and passion to find efficient, yet elegant solutions inspired

me, and gave me the drive to look deeper and wider, and to seek for ideas in different

places.

Second, I would like to thank Paweł Gawrychowski and Oren Weimann for fruitful

discussions, and for well appreciated tips, that found their way into this research.

Abstract

Let 𝐺 be a graph where each vertex is associated with a label. An Approximate Vertex-

Labeled Distance Oracle is a data structure that, given a vertex 𝑣 and a label 𝜆, returns a

(1 + 𝜀)-approximation of the distance from 𝑣 to the closest vertex with label 𝜆 in 𝐺. Such

an oracle is dynamic if it also supports label changes. In this thesis we present three

different dynamic approximate vertex-labeled distance oracles for planar graphs, all with

polylogarithmic query and update times, and nearly linear space requirements. No

previously known approximate vertex-labeled distance oracle supported both queries and

updates in sublinear time.

Contents

1 Introduction 5

1.1 Related Work . 6
1.2 Our Results and Techniques 7

2 Preliminaries 10

2.1 Existing techniques . 12

3 Undirected Graphs With Faster Query 16

3.1 Warm Up: The Static Case 17
3.2 The Dynamic Case . 20

4 Directed Graphs 23

4.1 Query . 26
4.2 Update . 28

5 Undirected Graphs With Faster Update 32

6 Concluding remarks 38

Bibliography 40

Appendix 43

4

1 Introduction

Consider the following scenario. A 911 dispatcher receives a call about a
�re and needs to dispatch the closest �re truck. There are two di�culties
with locating the appropriate vehicle to dispatch. First, the vehicles are
on a constant move. Second, there are di�erent types of emergency vehi-
cles, whereas the dispatcher speci�cally needs a �re truck. Locating the
closest unit of certain type under these assumptions is the dynamic vertex-
labeled distance query problem on the road network graph. Each vertex in
this graph can be annotated with a label that represents the type of the
emergency vehicle currently located at that vertex. An alternative scenario
where this problem is relevant is when one wishes to �nd a service provider
(e.g., gas station, co�ee shop), but di�erent locations are open at di�erent
times of the day.

A data structure that answers distance queries between a vertex and a
label, and supports label updates is called a dynamic vertex-labeled distance
oracle. We model the road map as a planar graph, and extend previous
results for the static case (where labels are �xed). We present oracles with
polylogarithmic update and query times (in the number of vertices) that
require nearly linear space.

We focus on approximate vertex-labeled distance oracles for �xed pa-
rameter ε ≥ 0. When queried, such an oracle returns at least the true
distance, but not more than (1 + ε) times the true distance. These are also
known as stretch-(1 + ε) distance oracles. Note that, in our context, the
graph is �xed, and only the vertex labels change.

5

1. INTRODUCTION 6

1.1 Related Work

Approximate vertex-to-vertex distance oracles

We outline related results, and refer the reader to an extensive survey due
to Sommer [Som14]. For general graphs, Thorup and Zwick [TZ01] pre-
sented for every k ≥ 2 a stretch-(2k − 1) vertex-to-vertex distance oracle

for undirected graphs with O(kn1+ 1
k) space, and O(k) query time. Their

oracle can be constructed in O(kmn1+ 1
k) time. Wul�-Nilsen [Wul12] gave

an oracle with similar space and query time, and O(kn1+ c
k) construction

time. Here c is some universal constant.
For planar graphs, Thorup [Tho04] presented a stretch-(1 + ε) distance

oracle for directed planar graphs, for any 0 < ε < 1. His oracle requires
O(ε−1n log n log(nN)) space and answers queries in O(log log (nN) + ε−1)
time. Here N denotes the ratio of the largest to smallest arc length. For
undirected planar graphs Thorup presented an oracle that can be stored us-
ingO(ε−1n log n) space, and can answer queries inO(ε−1) time. Klein [Kle02,
Kle05] independently described a stretch-(1 + ε) distance oracle for undi-
rected graphs with the same bounds, but faster preprocessing time. Kawarabayashi,
Klein and Sommer [KKS11], extended Thorup's result to other families of
restricted graphs (e.g. minor free, bounded genus) and improved its space
requirements to O(n) in the cost of increasing the query time by a factor
of ε−1 log2 n. Kawarabayashi, Sommer and Thorup [KST13] reduced the
space dependency by a factor of ε−1 log n, while keeping the query time of
O(ε−1). They also show an oracle for unweighted graphs that can be stored
using O(n) space, and has O(ε−1) query time. Abraham, Chechik and
Gavoille [ACG12] presented a stretch-(1 + ε) distance oracle that supports
both query and edge length updates in Õ(n1/2) time worst case. Abra-
ham et al. [ACD+16] later provided an oracle with polylogarithmic update
and query time for planar graphs, when the edge lengths can only change
within a predetermined ratio. In this work, we consider a di�erent setting of
updates, where the edge lengths are �xed, and only the vertex label change.

Approximate vertex-to-label distance oracles

The vertex-to-label query problem was introduced at ICALP'11 by Her-
melin, Levy, Weimann and Yuster [HLWY11]. For any k ≥ 2, They pre-
sented a stretch-(4k − 5) distance oracle for undirected general (i.e. not

1. INTRODUCTION 7

necessarily planar) graphs with O(kn1+ 1
k) space and query time O(k). In

a second result, they gave a dynamic label-to-vertex distance oracle that
can handle label changes in sub-linear time, but with exponential stretch in
terms of k, (2 · 3k−1 + 1). Chechik [Che12] later improved their results,

and presented a stretch-(4k − 5) distance oracle that requires Õ(n1+ 1
k)

expected space, and supports queries in O(k) time, and label changes in

O(n
1
k log1− 1

k n log log n) time. Her oracle can be constructed usingO(kmn
1
k)

time.
The �rst result for the static vertex-to-label query problem for undirected

planar graphs is due to Li, Ma and Ning [LMN13]. They described a stretch-
(1 + ε) distance oracle that is based on Klein's results [Kle02]. Their oracle
requires O(ε−1n log n) space, and answers queries in O(ε−1 log n log ∆) time.
Here ∆ is the hop-diameter of the graph, which can be Θ(n). Mozes and
Skop [MS15], building on Thorup's oracle, described a stretch-(1 + ε) dis-
tance oracle for directed planar graphs that can be stored usingO(ε−1n log n log(nN))
space, and has O(log log n log log nN + ε−1) query time.

Li Ma and Ning [LMN13] considered the dynamic case, but their update
method was trivial and takes Θ(n log n) time in the worst case. �¡cki et
al. [aOP+15] presented a di�erent dynamic vertex-to-label oracle for undi-
rected planar graphs, in the context of computing Steiner trees. Their
orcale requires O(

√
n log2 n logDε−1) amortized time per update or query

(in expectation), where D is the stretch of the metric of the graph (could be
nN). Their oracle however does not support changing the label of a speci�c
vertex. Instead, they represent the labels in a forest, and support merging
two labels by connecting two trees in the forest. Likewise, they support
splitting labels by removing an edge from the forest, dividing a single tree
into two trees.

To the best of our knowledge, our distance oracles are the �rst stretch
(1 + ε) vertex-to-label distance oracles with polylogarithmic query and up-
date times, and the �rst that support directed planar graphs.

1.2 Our Results and Techniques

We present three approximate vertex-labeled distance oracles with polylog-
arithmic query and update times and nearly linear space and preprocessing
times. Our update and construction times are expected amortized due to

1. INTRODUCTION 8

the use of dynamic hashing.1 Our solutions di�er in the tradeo� between
query and update times. One solution works for directed planar graphs,
whereas the other two only work for undirected planar graphs.

We obtain our results by building on and combining existing techniques
for the static case. All of our oracles rely on recursively decomposing the
graph using shortest paths separators. Our �rst oracle for undirected graphs
(Section 3) uses uniformly spaced connections, and e�ciently handles them
using fast predecessor data structures. The upshot of this approach is that
there are relatively few connections. The caveat is that this approach only
works when working with bounded distances, so a scaling technique [Tho04]
is required.

Our second oracle for undirected graphs (Section 5) uses the approach
taken by Li, Ma and Ning [LMN13] in the static case. Each vertex has a
di�erent set of connections, which are handled e�ciently using a dynamic
pre�x minimum query data structure. Such a data structure can be ob-
tained using a data structure for reporting points in a rectangular region of
the plane [Wil14].

Our oracle for directed planar graphs (Section 4) is based on the static
vertex-labeled distance oracle of [MS15], which uses connections for sets of
vertices (i.e., a label) rather than connections for individual vertices. We
show how to e�ciently maintain the connections for a dynamically changing
set of vertices using a bottom-up approach along the decomposition of the
graph.

Our data structures support both queries and updates in polylogarith-
mic time. No previously known data structure supported both queries and
updates in sublinear time. The following table summarizes the comparison
between our oracles and the relevant previously known ones.

1We assume that a single comparison or addition of two numbers takes constant

time.

1. INTRODUCTION 9

Table 1.1: Vertex-to-Label Distance Oracles Time Bound Comparison

D/U Query time Update time

Li, Ma and Ning [LMN13] U O(ε−1 log n log ∆) O(n log n)

�¡cki at el. [aOP+15] U O(ε−1
√
n log2 n logD) O(ε−1

√
n log2 n logD)

Section 3 (faster query) U O(ε−1 log n log log nN) O(ε−1 log n log log ε−1 log nN)

Section 5 (faster update) U O(ε−1 log2 (ε−1n)
log log (ε−1n)

) O(ε−1 log1.51(ε−1n))

Mozes and Skop [MS15] D O(ε−1 + log log n log log nN) N/A

Section 4 D O(ε−1 log n log log nN) O(ε−1 log3 n log nN)
In the table above, D/U stands for Directed and Undirected graphs.

2 Preliminaries

An undirected (respectively directed) graph G is a tuple consisting of a
�nite set of objects named vertices, denoted by V (G), and a set of edges
(resp, arcs) denoted by E(G). An undirected (resp. directed) edge (resp.
arc), is an unordered (resp. ordered) pair of vertices. Given an edge e = uv,
we say that u and v are the endpoints of e. If e is an arc (in a directed
graph), we say that the orientation of e is from u to v. An undirected (resp.
directed) u-to-v path P is a sequence of vertices in V (G), that starts with
u, ends with v, and for every pair (x, y) ∈ P there exists an edge (resp. an
arc) xy ∈ E(G). A path P is called a simple path if every vertex in V (G)
appears at most once in P . A cycle C is a path that begins and ends in the
same vertex. Analogously, a simple cycle is a cycle such that every vertex
in C appears at most once, except from the �rst vertex, that is also the
last.

For a directed graph G, we let G′ be the underlying undirected graph
whose vertices V (G′) = V (G), and for every u, v ∈ V (G), E(G′) contains
an edge uv if and only if E(G) contains the arc uv or the arc vu. We say
that the graph G is connected if for every u, v ∈ V (G) there exists an u-to-v
path in G′.

An undirected tree T is an undirected connected graph that contains no
cycles. I.e. for every pair of vertices u, v there exists a unique path from
u to v. A vertex v ∈ V (T) is called a leaf of T if it is adjacent to at
most one other vertex. A rooted undirected tree is a tree T equipped with
a vertex r ∈ V (T) referred to as root. A spanning tree T of a graph G
is a subgraph of G (respectively, if G is directed, T is a subgraph of the
underlying undirected graph G′) consisting of |V (G)− 1| edges from E(G)
(resp. E(G′)), that forms a tree, such that for every v ∈ V (G) there exists
a r-to-v path in T .

Let T be an undirected rooted tree. Let A(·) be a boolean property that

10

2. PRELIMINARIES 11

is de�ned over the vertices of T . For every v ∈ V (T), we say that a vertex
u is the root-most vertex on the v-to-root path P in T that ful�lls A, if u
is the closest vertex to the root of T on the v-to-root path that ful�lls A.

Given an undirected graph G with a spanning tree T rooted at r and
an edge uv not in T , the fundamental cycle of uv (with respect to T) is the
cycle composed of the r-to-u and r-to-v paths in T , and the edge uv.

Let ` : E(G) → R+ be a non-negative length function. Let N be the
ratio of the maximum and minimum values of `(·). Let P be a path from u-
to-v. The length of P is Σe∈P `(e). The shortest u-to-v path is a path that
minimizes that distance. We de�ne the distance form u-to-v denoted by
δG(u, v), as the length of a shortest u-to-v path. We assume, only for ease
of presentation, that shortest paths are unique. This assumption is only
used when we present our algorithms and refer the shortest path between
two vertices. Our data structures do not require this assumption. For a
simple path Q and a vertex set U ⊆ V (Q) with |U | ≥ 2, we de�ne QU , the
reduction of Q to U as a path whose vertices are U . Consider the vertices
of U in the order in which they appear in Q. For every two consecutive
vertices u1, u2 of U in this order, there is an arc u1u2 in QU whose length
is the length of the u1-to-u2 sub-path of Q.

Let L be a set of labels. We say that a graph G is vertex-labeled if every
vertex is assigned a single label from L. For a label λ ∈ L, let SλG denote
the set of vertices in G with label λ. We de�ne the distance from a vertex
u ∈ V (G) to the label λ by δG(u, λ) = minv∈SλG δG(u, v). If G does not

contain the label λ, or λ is unreachable from u, we say that δG(u, λ) =∞.

De�nition 1. For a �xed parameter ε ≥ 0, a stretch-(1 + ε) vertex-labeled
distance oracle is a data structure that, given a vertex u ∈ V (G) and a label
λ ∈ L, returns a distance d satisfying δG(u, λ) ≤ d ≤ (1 + ε)δG(u, λ).

De�nition 2. For �xed parameters α, ε ≥ 0, a scale-(α, ε) vertex-labeled
distance oracle is a data structure that, given a vertex u ∈ V (G) and a label
λ ∈ L, such that δG(u, λ) ≤ α, returns a distance d satisfying δG(u, λ) ≤
d ≤ δG(u, λ) + εα. If δG(u, λ) > α, the oracle returns ∞.

The only properties of planar graphs that we use in this paper are the
existence of shortest path separators (see below), and the fact that single
source shortest paths can be computed in O(n) time in a planar graph with
n vertices [HKRS97].

2. PRELIMINARIES 12

De�nition 3. Let G be a directed graph. Let G′ be the undirected graph
induced by G. Let P be a path in G′. Let S be a set of vertex disjoint directed
shortest paths in G. We say that P is composed of S if (the undirected path
corresponding to) each shortest path in S is a subpath of P and each vertex
of P is in some shortest path in S.

De�nition 4. Let G be a directed embedded planar graph. An undirected
cycle C is a balanced cycle separator of G if each of the strict interior and
the strict exterior of C contains at most 2|V (G)|/3 vertices. If, additionally,
C is composed of a constant number of directed shortest paths, then C is
called a shortest path separator.

Let G be a planar graph. We assume that G is triangulated since we can
triangulate G with in�nite length edges, so that distances are not a�ected.
It is well known [LT79, Tho04] that for any spanning tree of G, there exists
a fundamental cycle C that is a balanced cycle separator. The cycle C can
be found in linear time. Note that, if T is chosen to be a shortest path
tree, or if any root-to-leaf path of T is composed of a constant number of
shortest paths, then the fundamental cycle C is a shortest path separator.

2.1 Existing Techniques for Approximate

Distance Oracles for Planar Graphs

Thorup shows that to obtain a stretch-(1 + ε) distance oracle, it su�ces to
show scale-(α, ε) oracles for so-called α-layered graphs. An α-layered graph
is one equipped with a spanning tree T such that each root-to-leaf path in
T is composed of O(1) shortest paths, each of length at most α. This is
summarized in the following lemma:

Lemma 1. [Tho04, Lemma 3.9] For any planar graph G and �xed param-
eter ε, a stretch-(1 + ε) distance oracle can be constructed using O(log nN)
scale-(α, ε′) distance oracles for α-layered graphs, where α = 2i, i = 0, ...dlog nNe
and ε′ ∈ {1/2, ε/4}. If the scale-(α, ε′) has query time t(ε′) independent of
α, the stretch-(1 + ε) distance oracle can answer queries in O(t(1/2)ε−1 +
t(ε/4) log log (nN)).

All of our distance oracles are based on a recursive decomposition of G
using shortest path separators. If G is undirected (but not necessarily α-
layered), we can use any shortest path tree to �nd a shortest path separator

2. PRELIMINARIES 13

in linear time. Similarly, if G is α-layered, we can use the spanning tree G
is equipped with to �nd a shortest path separator in linear time.

We recursively decompose G into subgraphs using shortest path separa-
tors until each subgraph has a constant number of vertices. We represent
this decomposition by a binary tree TG. To distinguish the vertices of TG
from the vertices of G we refer the former as nodes.

Each node r of TG is associated with a subgraph Gr. The root of TG
is associated with the entire graph G. We sometimes abuse notation and
equate nodes of TG with their associated subgraphs. For each non-leaf node
r ∈ TG, let Cr be the shortest path separator of Gr. Let Sepr be the set of
shortest paths Cr is composed of. The subgraphs Gr1 and Gr2 associated
with the two children of r in TG are the interior and exterior of Cr (w.r.t.
Gr), respectively. Note that Cr belongs to both Gr1 and Gr2 . For a vertex
v ∈ V (G), we denote by rv the leaf node of TG that contains v. See Fig. 2.1
for an illustration.

We now describe the basic building block used in our (and in many
previous) distance oracle. Let u, v be vertices in G. Let Q be a path on
the root-most separator (i.e., the separator in the node of TG closest to its
root) that is intersected by the shortest u-to-v path P . Let t be a vertex in
Q∩P . Note that δG(u, v) = δG(u, t)+δG(t, v). Therefore, if we stored for u
the distance to every vertex on Q, and for v the distance from every vertex
on Q, we would be able to �nd δG(u, v) by iterating over the vertices of Q,
and �nding the one minimizing the distance above. This, however, is not
e�cient since the number of vertices on Q might be θ(|V (G)|). Instead, we
store the distances for a subset of Q. This set is called an (α, ε)-covering
connections set.

De�nition 5 ((α, ε)-covering connections set). [Tho04, Section 3.2.1] Let
ε, α ≥ 0 be �xed constants. Let G be a directed graph. Let Q be a shortest
path in G of length at most α. For u ∈ V (G) we say that CG(u,Q) ⊆ V (Q)
is an (α, ε)-covering connections set from u to Q if and only if for every
vertex t on Q s.t. δG(u, t) ≤ α, there exists a vertex q ∈ CG(u,Q) such that
δG(u, q) + δG(q, t) ≤ δG(u, t) + εα.

One de�nes (α, ε)-covering connections sets CG(Q, u) from Q to u sym-
metrically. Thorup proves that there always exists an (α, ε)-covering con-
nections set of size O(ε−1):

2. PRELIMINARIES 14

𝑢

𝑮

𝐺0 𝐺1

𝐺10

𝐺11

𝑟1

𝒓

𝑟0

𝑟11 𝑟10

𝑟𝑢

…

𝓣𝑮

𝐺111

𝐺110 𝑟111 𝑟110

𝑣

𝑟𝑣

…

Figure 2.1: An illustration of (part of) the recursive decomposition of a
graph G using cycle separators, and the corresponding decomposition tree
TG. The graph G is decomposed using a cycle separator into G0, and G1.
Similarly, G1 is decomposed into G10 and G11, and G11 is decomposed into
G110 and G111. The node r is the root of TG and is associated with Gr = G.
Similarly, r1 is associated with G1, etc. The nodes ru and rv are the leaf
nodes that contain u and v, respectively. The node r1 is the root-most node
whose separator is intersected by the shortest u-to-v path in G (indicated
in blue). Hence, this path is fully contained in Gr1 = G1.

Lemma 2. [Tho04, Lemma 3.4] Let G,Q, ε, α and u be as in de�nition 5.
There exists an (α, ε)-covering connections set CG(u,Q) of size at most
d2ε−1e. This set can be found in O(|Q|) if the distances from u to every
vertex on Q are given.

We will use the term ε-covering connections set whenever α is obvious
from the context. Thorup shows that (α, ε)-covering connections sets can
be computed e�ciently.

Lemma 3. [Tho04, Lemma 3.15] Let H be an α-layered graph. In O(ε−2n log3 n)
time and O(ε−1n log n) space one can compute and store a decomposition TH
of H using shortest path separators, along with (α, ε)-covering connections

2. PRELIMINARIES 15

sets CH(u,Q) and CH(Q, u) for every vertex u ∈ V (H), every ancestor node
r of ru in TH , and every Q ∈ Sepr.

3 An Oracle for Undirected

Graphs With Faster Query

Let H be an undirected α-layered graph,1 and let T be the associated span-
ning tree of H. For any �xed parameter ε′ we set ε = ε′

3
. We decompose

H using shortest path separators w.r.t. T . Let TH be the resulting decom-
position tree. For every node r ∈ TH and every shortest path Q ∈ Sepr,
we select a set CQ ⊆ V (Q) of ε−1 connections evenly spread intervals along
Q.2 Thus, for every vertex t ∈ V (Q) there is a vertex q ∈ CQ such that
δH(t, q) ≤ εα.

For each r ∈ TH , for each shortest path Q ∈ Sepr, for each q ∈ CQ,
we compute in O(|Hr|) time a shortest path tree in Hr rooted at q us-
ing [HKRS97]. This computes the connection lengths δHr(u, q), for all
u ∈ V (Hr).

Lemma 4. Let u ∈ V (H). For every ancestor node r ∈ TH of ru, and
every Q ∈ Sepr, CQ is a 2ε-covering connections set from u to Q.

Proof. Let t ∈ Q. We need to show that there exist q ∈ CQ such that
δHr(u, t) ≤ δHr(u, q) + δHr(q, t) ≤ δHr(u, t) + ε′α. Since t ∈ Q, there exists a
vertex q ∈ CQ such that δH(q, t) ≤ εα. Since H is undirected, the triangle
inequality for shortest path lengths holds for any three vertices in V (H).

1 The discussion of α-layered graphs in Section 2 refers to directed graphs, and hence

also applies to undirected graphs.
2We assume that the endpoints of the intervals are vertices on Q, since otherwise

once can add arti�cial vertices on Q without asymptotically changing the size of the

graph.

16

3. UNDIRECTED GRAPHS WITH FASTER QUERY 17

We start with the triangle inequality between u, t and q in H as follows.

δHr(u, q) ≤ δHr(u, t) + δHr(t, q) (3.1)

δHr(u, q) + δHr(t, q) ≤ δHr(u, t) + δHr(t, q) + δHr(t, q) (3.2)

δHr(u, q) + δHr(t, q) ≤ δHr(u, t) + 2εα (3.3)

From the triangle inequality, δHr(u, t) ≤ δHr(u, q) + δHr(q, t), and the
lemma follows.

𝜀𝛼
𝜀𝛼

𝜀𝛼
𝜀𝛼

𝜀𝛼

𝒒

𝑄

𝑣

 𝑡

Figure 3.1: Illustration of Lemma 4. Q is a shortest path in some separator,
the connections of CQ are marked by triangles. The solid v-to-q path re�ects
the shortest path from v to the connection q, and the dashed v-to-t path
re�ects the shortest path from v to t.

3.1 Warm Up: The Static Case

We start by describing our data structure for the static case with a single
�xed label λ (i.e., each vertex either has label λ or no label at all). For
every node r ∈ TH , let Sλr be the set of λ-labeled vertices in Hr. For every
separator Q ∈ Sepr, every vertex q ∈ CQ, and every vertex v ∈ Sλr let

3. UNDIRECTED GRAPHS WITH FASTER QUERY 18

δ̂Hr(q, v) = kεα where k is the smallest value such that δHr(q, v) ≤ kεα.
Thus, δHr(q, v) ≤ δ̂Hr(q, v) ≤ δHr(q, v) + εα. Let Lr(q, λ) be the list of the
distances δ̂Hr(q, v) for all v ∈ Sλr . We sort each list in ascending order.
Thus, the �rst element of Lr(q, λ) denoted by first(Lr(q, λ)) is at most εα
more than the distance from q to the closest λ-labeled vertex inHr. We note
that each vertex u ∈ V (H) may contribute its distance to O(ε−1 log n) lists.
Hence, we have O(ε−1n log n) elements in total. Since H is an α-layered
graph, the length of each Q is bounded by α. Hence, the universe of these
lists can be regarded as non-negative integers bounded by α

εα
= ε−1. Thus,

these lists can be sorted in total O(ε−1n log n) time.

Query(u,λ)

Given u ∈ H. We wish to �nd the closest λ-labeled vertex v to u in H. For
each ancestor r of ru, for each Q ∈ Sepr, we perform the following search.
We inspect for every q ∈ CQ, the distance δHr(u, q) + first(Lr(q, λ)). We
also inspect the λ-labeled vertices inHru explicitly. We return the minimum
distance inspected. See Fig. 3.2 for an illustration.

Lemma 5. The query algorithm runs in O(ε−1 log n) time, and returns a
distance d such that δH(u, λ) ≤ d ≤ δH(u, λ) + 3εα.

Proof. Let v be the closest λ-labeled to u in H. It is trivial that if the
shortest path P form u-to-v does not leave ru = rv the query algorithm is
correct, since the distances in ru are computed explicitly. Otherwise, let r
be the root-most node in TH such that P intersects some Q ∈ Sepr. Thus,
P is fully contained in Hr. Let t be a vertex in Q∩P . Since v is the closest
λ-labeled vertex to u, it follows that it is also the closest λ-labeled vertex
to t.

Since t ∈ Q, there exists q ∈ CQ such that δHr(v, q) + δHr(q, t) ≤
δHr(v, t) + ε′α. By the triangle, δHr(v, q) ≤ δHr(q, t) + δHr(v, t). Hence,
first(Lr(q, λ)) ≤ δHr(q, t) + δHr(v, t) ≤ δHr(q, v) + εα.

first(Lr(q, λ) ≤ δ̂Hr(q, v) ≤ δHr(q, v) + εα (3.4)

≤ δHr(q, t) + δHr(t, v) + εα (3.5)

≤ δHr(t, v) + 2εα (3.6)

Where inequality (3.4) follows from the de�nition of Lr(q, λ), (3.5) follows
from the triangle inequality, and (3.6) follows from the fact that δHr(q, t) ≤

3. UNDIRECTED GRAPHS WITH FASTER QUERY 19

𝑄

𝒒

𝑢

𝑥

𝑣

𝑦

𝑡

Figure 3.2: Illustration of the query algorithm. The solid quarter-circles
are shortest paths of separators in G. The vertices x, y and v have label
λ, and v is the closest λ-labeled vertex to u. The path Q belongs to the
root-most node r whose separator is intersected by the shortest u-to-λ path
(solid blue). The vertices q and t on Q are as in the proof of Lemma 5.
The connection q minimizes δH(u, q) + first(Lr(q, λ)). The distances in
Lr(q, λ) are the lengths of the dashed paths.

εα.

Query(u, λ) ≤δHr(u, q) + first(Lr(q, λ)) (3.7)

≤δHr(u, q) + δHr(t, v) + 2εα (3.8)

≤δHr(u, t) + δHr(t, q) + δHr(t, v) + 2εα (3.9)

≤δHr(u, v) + 3εα (3.10)

≤δH(u, λ) + 3εα (3.11)

Here, inequality (3.9) follows from the triangle ineqaulity, and (3.11) follows
from the fact that P is fully contained in Hr, and our assumption that v is
the closest λ-labeled vertex to v.

Since δHr(u, q) + first(Lr(q, λ)) underlines a real path in the Hr, from
our assumption that v is the closest λ-labeled vertex to u, it follows that
Query(u, λ) ≥ δHr(u, v), and the lemma follows.

3. UNDIRECTED GRAPHS WITH FASTER QUERY 20

To prove the query time, observe that the height of TH is O(log n). At
any level of the decomposition we inspect the �rst element in O(ε−1) lists,
that is O(ε−1 log n) time. We also inspect constant number of distances in
ru in constant time.

We now generalize to multiple labels. Let L be the set of labels in H.
For r ∈ TH , let Lr be the restriction of L to labels that appear in Hr. For
every label λ ∈ Lr, every Q ∈ Sepr and every q ∈ CQ, we store the list
Lr(q, λ). This does not a�ect the total size of our structure, since each
vertex has one label, so it still contributes its distances to O(ε−1 log n) lists.
The proof of Lemma 5 remains the same since each list contains distances
to a single label.

Naively, we could store for every node r, every vertex q, and every label
λ ∈ L the list Lr(q, λ) in a �xed array of size |L|. This allows O(1)-time
access to each list, but increases the space by a factor of |L| w.r.t. the
single label case. Instead, we use hashing. Each vertex q holds a hash table
of the labels that contributed distances to q. For the static case, one can
use perfect hashing [FKS84] with expected construction time and constant
query time. In the dynamic case, we will use a dynamic hashing scheme,
e.g., [PR01], which provides query and deletions in O(1) worst case, and
insertions in O(1) expected amortized time.

3.2 The Dynamic Case

We now turn our attention to the dynamic case. We wish to use the follow-
ing method for updating our structure. When a node v changes its label
from λ1 to λ2, we would like to iterate over all ancestors r of rv in TH .
For every Q ∈ Sepr and every q ∈ CQ, we wish to remove the value con-
tributed by v from Lr(q, λ1), and insert it to Lr(q, λ2). We must maintain
the lists sorted, but do not wish to pay O(log n) time per insertion to do
so. We will be able to pay O(log log ε−1) per insertion/deletion by using a
successor/predecessor data structure as follows.

For every r ∈ TH , Q ∈ Sepr, and q ∈ CQ, let Lr(q) be the list containing
all distances from all vertices in V (Hr) to q sorted in ascending order. We
note that since the distance for each speci�c vertex to q does not depend on
its label, the list Lr(q, λ) is a restriction of Lr(q) to the λ-labeled vertices
in Hr.

3. UNDIRECTED GRAPHS WITH FASTER QUERY 21

During the construction of our structure we build Lr(q), and, for every
vertex v in Hr, we store for v its corresponding index in Lr(q). We denote
this index as IDq(v). We also store for q a single lookup table from the
IDs to the corresponding distances. We note that v has O(ε−1 log n) such
identi�ers, and in total we need O(ε−1n log n) space to store them.

Now, instead of using linked list as before, we implement Lr(q, λ) using a
successor/predecessor structure over the universe [1, ..., |V (Hr)|] of the IDs.
For example, we can use y-fast tries [Wil83] that support operations in
O(log log ε−1) expected amortized time and minimum query in O(1) worst
case.

Query(u, λ)

The query algorithm remains the same as in the static case. For every
ancestor r of ru in TH , every Q ∈ Sepr, and every connection q ∈ CQ, we
retrieve the minimal ID from Lr(q, λ) , and use the lookup table to get the
actual distance between q and the vertex with that ID.

Update

Assume that the vertex v changes its label from λ1 to λ2. For every ancestor
r of rv in TH , every Q ∈ Sepr, and every q ∈ CQ, we remove IDq(v) from
Lr(q, λ1) and insert it to Lr(q, λ2).

Lemma 6. The update time is O(ε−1 log n · log log ε−1) expected amortized.

Proof. In each one of the O(log n) levels in TH , we perform O(ε−1) inser-
tions and deletions from successor/predecessor structures in O(log log ε−1)
expected amortized time per operation. Therefore the total update time
is O(ε−1 log n log log n). If the set Lr changes for some r ∈ TH as a result
of the update, we must also update the hash table that handles the labels.
This might cost an additional O(1) expected amortized time per node, and
is bounded by O(log n) expected amortized time in total.

Lemma 7. The data structure can be constructed in O(ε−1n log n·log log ε−1)
expected amortized time, and stored using O(ε−1n log n) space.

Proof. We decompose H into TH , and compute the connection length in
O(ε−1n log n) time. We than build the lists Lr(q) for every node r ∈ TH

3. UNDIRECTED GRAPHS WITH FASTER QUERY 22

and q on any q ∈ Sepr. These lists contains O(ε−1n log n) elements in the
range [1, ..., ε−1] that is independent of both n and α. Hence we sort the lists
in O(ε−1n log n) time. We than use our update process on each v ∈ V (H)
and each ancestor r of rv in O(ε−1 log n · log log ε−1) expected amortized
time for v. Hence, our construction time is O(ε−1n lg n log log ε−1) expected
amortized. To see our space bound, we note that every v contributes a dis-
tance O(ε−1) lists at every ancestor r of rv. Hence, there are O(ε−1n log n)
elements in total. Our successor/predecessor structures, and the hash ta-
bles has linear space in the number of elements stored. Thus, O(ε−1n log n)
space.

We plug in this structure to Lemma 1 and obtain the following theorem:3

Theorem 1. Let G be an undirected planar graph. There exists a stretch-
(1 + ε) Approximate Dynamic Vertex-Labeled Distance Oracle that supports
query in O(ε−1 log n log log nN) worst case and updates in O(ε−1 log n ·
log log ε−1 log nN) expected amortized. The construction time of that or-
acle is
O(ε−1n log n·log log ε−1 log nN) and it can be stored in O(ε−1n log n log nN)
space.

3Formally, one needs to show that Lemma 1 holds for vertex-labeled oracles as well.

See Appendix A

4 Oracle for Directed Graphs

For simplicity we only describe an oracle that supports queries from a given
label to a vertex. Vertex to label queries can be handled symmetrically. To
describe our data structure for directed graphs, we �rst need to introduce
the concept of ε-covering set from a set of vertices to a directed shortest
path.

De�nition 6. Let S be a set of vertices in a directed graph H. Let Q be
a shortest path in H of length at most α. CH(S,Q) ⊆ V (Q) × R+ is an
ε-covering set from S to Q in H if for every t ∈ Q s.t. δH(S, t) ≤ α, there
exists (q, `) ∈ CH(S,Q) s.t. `+ δ(q, t) ≤ δH(S, t) + εα, and ` ≥ δH(S, q).

In the de�nition above we use ` instead of δ(S, q) (compare to De�ni-
tion 5) because we cannot a�ord to recompute exact distances as S changes.
Instead, we store and use approximate distances `.

Lemma 8. Let H be a directed planar graph. Let Q be a shortest path in
H of length at most α. For every set of vertices S ⊆ V (H) there is an
ε-covering set CH(S,Q) of size O(ε−1).

Proof. We introduce a new apex vertex in H denoted by x. For every vertex
v in S, we add an arc xv with length 0. Since the indegree of x is 0, Q
remains a shortest path, with length bounded by α. We apply Lemma 2 on
x w.r.t Q, to get an ε-cover set CH(x,Q) of size O(ε−1). Clearly, CH(x,Q)
is an ε-covering set from S to Q, and the Lemma follows.

Our construction relies on the following lemma.

Lemma 9 (Thinning Lemma). Let H, S and Q be as in Lemma 8. Let
{Si}ki=1 be sets such that S =

⋃k
i=1 Si. For 1 ≤ i ≤ k, let DH(Si, Q) be

an ε′-covering set from Si to Q, ordered by the order of the vertices on Q.

23

4. DIRECTED GRAPHS 24

Then for every ε > 0, an (ε+ ε′)-covering set CH(S,Q) from S to Q of size
d2ε−1e can be found in O(ε−1 + |

⋃k
i=1DH(Si, Q)|) time.

Proof. Let q0 be the �rst vertex on Q. Let Q̂ be the reduction of Q to the
vertices in

⋃k
i=1DQ(Si) and q0. Let Ĥ be the auxiliary graph consisting

of Q̂ and an apex vertex x connected to every q ∈ Q̂ with an arc xq of
length δH(Si, q), where Si is the set originally containing q. Note that
δH(Si, q) ≥ δH(S, q). Also note that Ĥ is planar, with diameter bounded
by α, and since the indegree of x is 0, Q is a shortest path in Ĥ. Let
m = |

⋃k
i=1DH(Si, Q)|. We compute the shortest distance from x to every

other q in Ĥ explicitly by relaxing all arcs adjacent to x, and than relaxing
the arcs of Q by order. Constructing Ĥ and computing these distances can
be done in O(m) time, since |V (Ĥ)| = |E(Ĥ)| = O(m).

We apply Lemma 2 to x with ε and get an ε-covering set CĤ(x,Q) of size

d2ε−1e from x to Q̂. It remains to prove that CĤ(x,Q) is an (ε+ε′)-covering
set CH(S,Q) set from S to Q in H.

Let t ∈ Q. We show that there exists (q, `) ∈ CĤ(x,Q) such that
` + δH(q, t) ≤ δH(S, t) + (ε′ + ε)α. We assume without loss of generality,
that δH(S, t) = δH(S1, t). Since DQ(S1) is an ε

′-covering set from S1 to Q
in H, there exists (q′, `′) ∈ DQ(S1) such that:

`′ + δH(q′, t) ≤ δH(S1, t) + ε′α (4.1)

Also, since q′ ∈ DQ(S1), it is also on Q̂. Therefore there exists (q, `) ∈
CĤ(x,Q) such that:

`+ δĤ(q, q′) ≤ δĤ(x, q′) + εα ≤ `′ + εα (4.2)

Where the last inequality follows the fact that for every (q∗, `∗) ∈ DQ(S1),
δĤ(x, q∗) ≤ `∗, and hence, δĤ(x, q′) is at most `′.

δH(S1 ∪ S2, t) + ε′α + εα = δH(S1, t) + ε′α + εα (4.3)

≥ `′ + δH(q′, t) + εα (4.4)

≥ `+ δĤ(q, q′) + δH(q′, t) (4.5)

= `+ δH(q, q′) + δH(q′, t) (4.6)

= `+ δH(q, t) (4.7)

Here, (4.4) follows from inequality (4.1), (4.5) follows from inequality (4.2).

4. DIRECTED GRAPHS 25

𝒒

𝑄

𝒒′

𝑥

𝑡

Figure 4.1: Illustration of he auxiliary graph Ĥ in the proof of Lemma 9,
when applied to the sets S1 = u and S2 = v (I.e. k = 2). The connection
sets of S1 and S2 are indicated by the triangles and squares, respectively.
The connections in the output set are indicated by a solid �ll. The vertex t
is a vertex on Q (not on Q̂) that is closer to v than it is to u. Although t is
covered by both q and q′, its distance from x is better approximated via q′.
The vertex q ε-covers q′ w.r.t. the distances in Ĥ hence q′ is not included
in the output set. Since q ε-covers q′, and q′ ε′-covers t, it follows that t is
(ε+ ε′)-covered by q.

Let H be a directed planar α-layered graph, equipped with a spanning
tree T . For every �xed parameter ε, let ε̂ = ε

8 logn
, and ε∗ = ε

2
. We apply

Lemma 3 with ε̂ to H and obtain a decomposition tree TH , and ε̂-covering
sets CHr(v,Q) and CHr(Q, v) for every v ∈ V (H), every ancestor r of rv in
TH and every Q ∈ Sepr. For every 1 ≤ i ≤ log n, let εi = ε logn−i+1

4 logn
.

For every r ∈ TH , for every λ ∈ Lr, and for every Q ∈ Sepr, we apply
Lemma 9 to the ε̂-covering connections sets CHr(v,Q) for all v ∈ Sλr , with
ε′ = ε̂ and ε set to ε

4
. Thus, we obtain an ε∗-covering set C∗Hr(S

λ
r , Q). Let

i be the level of r in TH , we also store for r a set of εi-covering sets as
follows. For every ancestor node t of r in TH and every Q ∈ Sept, we store
CHt(S

λ
r , Q). We assume for the moment that these sets are given. We defer

4. DIRECTED GRAPHS 26

𝑟1

𝒓

𝑟𝑢 𝑟𝑣

Update connections
𝜺𝒊-covering sets

Query connections
𝜺∗-covering sets

Vertex connections
𝝐 -covering sets

From 𝑆𝐺
𝜆 to 𝑄 ∈ 𝑆𝑒𝑝𝑟

From 𝑆𝐺
𝜆 to

𝑄 ∈ 𝑆𝑒𝑝𝑟
𝑁/𝐴 𝐫

From 𝑆𝑟1
𝜆 = 𝑆𝑟𝑢 ∪ 𝑆𝑟𝑣 to

𝑄 ∈ 𝑆𝑒𝑝𝑟1, 𝑆𝑒𝑝𝑟
From 𝑆𝑟1

𝜆 = 𝑆𝑟𝑢
∪ 𝑆𝑟𝑣 to 𝑄 ∈ 𝑆𝑒𝑝𝑟1

𝑁/𝐴
 𝐫𝟏

From 𝑆𝑟𝑢
𝜆 = 𝑢 to

𝑄 ∈ 𝑆𝑒𝑝𝑟𝑢, 𝑆𝑒𝑝𝑟1, 𝑆𝑒𝑝𝑟
From 𝑆𝑟𝑢

𝜆 = 𝑢 to
𝑄 ∈ 𝑆𝑒𝑝𝑟𝑢

𝑁/𝐴
 𝐫𝐮

From 𝑆𝑟𝑣
𝜆 = 𝑣 to

𝑄 ∈ 𝑆𝑒𝑝𝑟𝑣, 𝑆𝑒𝑝𝑟1, 𝑆𝑒𝑝𝑟
From 𝑆𝑟𝑣

𝜆 = 𝑣 to
𝑄 ∈ 𝑆𝑒𝑝𝑟𝑣

𝑁/𝐴
 𝐫𝐯

𝑁/𝐴 𝑁/𝐴
From u to every

𝑄 ∈ 𝑆𝑒𝑝𝑟𝑢, 𝑆𝑒𝑝𝑟1, 𝑆𝑒𝑝𝑟 ,
and from every such Q to u.

u

𝑁/𝐴 𝑁/𝐴
From v to every

𝑄 ∈ 𝑆𝑒𝑝𝑟𝑣, 𝑆𝑒𝑝𝑟1, 𝑆𝑒𝑝𝑟 ,
and from every such Q to v.

v

𝑢 𝑣

Figure 4.2: A summary of the connections-sets stored by the directed
oracle. On the left, part of a decomposition tree of a graph is shown. The
vertices u and v are the only λ labeled vertices. On the right, a table listing
all the covering sets that are stored for the label λ.

the description of their construction (see the update procedure and the proof
of Lemma 12). We will use the ε∗-covering sets for e�cient queries, and the
more accurate εi-covering sets to be able to perform e�cient updates. See
Fig. 4.2.

4.1 Query(λ, u)

The query algorithm is straightforward. For every ancestor r of ru we
�nd (q, `) ∈ C∗Hr(S

λ
r , Q) and t ∈ CHr(Q, u) that minimize the distance

`+δHr(q, t)+δHr(t, u). We also inspect the distance to the λ-labeled vertices
in ru explicitly. We return the minimum distance inspected. To see that the
query time is O(ε−1 log n), we note that for every one of the O(log n) an-
cestors of ru we inspect O(ε−1) distances on constant number of separators.
Inspecting the distances in ru itself takes constant time.

4. DIRECTED GRAPHS 27

𝑄

𝒒

𝒕

𝑣
𝑢

Figure 4.3: The solid quarter-circles are shortest paths of separators in G.
The vertex v is the closest λ-labeled vertex to u. The path Q belongs to the
root-most node r whose separator is intersected by the shortest λ-to-u path
(solid blue). The connections of Sλr on Q are indicated by black triangles,
the connections of u are indicated by black squares. The vertices q and t
on Q are as in the proof of Lemma 10. The blue and black dashed lines are
the shortest paths from v to q, and from t to u, respectively. These paths
are used to generate the distance reported by the query algorithm.

Lemma 10. Query(λ, u) ≤ δH(λ, u) + εα.

Proof. Let r be the root-most node in TH such that the shortest λ-to-u path
P in H intersects some Q ∈ Sepr. Let k be a vertex in Q ∩ P . By the
de�nition of the connection set C∗Hr(S

λ
r , Q), there exists (q, `) such that

l + δHr(q, k) ≤ δHr(S
λ
r , k) + ε∗α (4.8)

Also there exists t ∈ CHr(Q, u) such that

δHr(k, t) + δHr(t, u) ≤ δHr(k, u) + ε̂α ≤ δHr(k, u) + ε∗α (4.9)

4. DIRECTED GRAPHS 28

We add the two to get

l + δHr(q, k)δH(k, t) + δHr(t, u) ≤ δHr(S
λ
r , k) + δHr(k, u) + ε∗α + ε∗α

(4.10)

l + δHr(q, t) + δH(t, u) ≤ δHr(S
λ
r , k) + δHr(k, u) + 2ε∗α (4.11)

l + δHr(q, t) + δHr(t, u) ≤ δHr(S
λ
r , u) + εα (4.12)

Clearly, l + δH(q, t) + δH(t, u) ≥ δH(Sλr , u). And since P is fully contained
in Hr, δHr(S

λ
r , u) = δH(Sλr , u), and the Lemma follows.

4.2 Update

Assume that some vertex u changes its label from λ1 to λ2. For every
ancestor r of ru and everyQ ∈ Sepr, we would like to remove CHr(u,Q) from
CHr(S

λ1
r , Q), and combine CHr(u,Q) into CHr(S

λ2
r , Q). While the latter is

straightforward using Lemma 9, removing CHr(u,Q) from CHr(S
λ1
r , Q) is

more di�cult. For example, if u was the closest λ1 labeled vertex to every
vertex on Q, it is possible that CHr(u,Q) = CHr(S

λ1
r , Q). In that case,

we will have to rebuild CHr(S
λ1
r , Q) from the other O(|V (Hr)|) vertices of

Sλ1r . Instead of removing the connections of u, we will rebuild CHr(S
λ1
r , Q)

bottom-up starting from the leaf node ru.
We therefore start by describing how to update ru. There is a constant

number of vertices in ru, and hence |Sλ1ru | = O(1). Let v1, v2,...vk be the
vertices in Sλ1ru . We stress that for every 1 ≤ j ≤ k, vj has an ε̂-covering set
CHt(vj, Q) of size O(ε̂−1) from vj to Q, for every ancestor t of ru in TH , and
for every Q ∈ Sept. We apply the Thinning Lemma (Lemma 9) for each
such t and Q on {CHt(vj, Q)}kj=1 with ε

′ = ε̂ and ε set to ε̂. Lemma 9 yields
a 2ε̂-covering set CHt(S

λ
ru , Q).

We next handle the ancestors r of ru in TH in bottom up order. Let x
and y be the children of r ∈ TH . We �rst note that Hr = Hx∪Hy and hence,
Sλ1r = Sλ1x ∪Sλ1y . Therefore, by Lemma 9, for every ancestor t of r, and every
Q ∈ Sept, CHt(Sλ1r , Q) can be obtained from CHt(S

λ1
x , Q)∪CHt(Sλ1y , Q). Let

i by the level of r in TH , and hence the level of x and y is i+1. Since t is an
ancestor of r, it is also an ancestor of x and y. Hence, x (y) stores an εi+1-
covering set CHt(S

λ1
x , Q) (CHt(S

λ1
y , Q)). We apply Lemma 9 on CHt(S

λ1
x , Q)

and CHt(S
λ1
y , Q) with ε′ = εi+1 and ε = 2ε̂ to get an (εi+1 + 2ε̂)-covering set

CHt(S
λ1
r , Q). The following lemma shows that CHt(S

λ1
r , Q) is an εi-covering

set.

4. DIRECTED GRAPHS 29

Lemma 11. Let r be a node in level i in TH . For every ancestor t of r,
and every Q ∈ Sept, CHt(Sλ1r , Q) is an εi-covering set from Sλ1r to Q.

Proof. We �rst recall that εi = ε logn−i+1
4 logn

for every 1 ≤ i ≤ log n. We prove
the lemma by induction on the level of r in TH . The base case is i = log n,
so r is a leaf. The connection sets of the leaf nodes are computed explicitly
using Lemma 9, with ε and ε′ set to ε̂. Hence the product of the lemma is
2ε̂-covering sets.

2ε̂ = 2
ε

8 log n
=

ε

4 log n
= εlogn (4.13)

For the inductive step, if r is a leaf, then the arguments from the base
case applies. Otherwise, let x and y be the children of r. By the induction
hypothesis, both x and y have εi+1-covering set from Sλ1x and Sλ1y to Q,
respectively. The update procedure applies Lemma 9 on CHx(S

λ1
x , Q) and

CHy(S
λ1
y , Q) with ε′ = εi+1 and ε = 2ε̂, so we get an (εi+1 + 2ε̂)-covering set

CHt(S
λ1
r , Q).

εi+1 + 2ε̂ = ε
log n− (i+ 1) + 1

4 log n
+ ε

2

8 log n
= ε

log n− i+ 1

4 log n
= εi (4.14)

To �nish the update process, we need to update the ε∗-covering sets
that we use for queries. Let r be an ancestor node of ru in level i on TH .
By Lemma 11, for every Q ∈ Sepr, we have an εi-covering set CHr(Sλ1r , Q).
Since εi < ε∗ , CHr(S

λ1
r , Q) is also an ε∗-covering set. However, it is too

large. We apply Lemma 9 on CHr(S
λ1
r , Q) with ε′ = εi, and ε set to

ε
4
to

get (εi + ε
4
)-covering set. We note that since εi ≤ ε

4
for every 1 ≤ i ≤ log n,

we get that εi + ε
4
≤ 2 ε

4
≤ ε

2
= ε∗. Hence the output of Lemma 9 is the

desired ε∗-covering set C∗Hr(S
λ1
r , Q). We repeat the entire process for λ2.

Lemma 12. There exists a scale-(α, ε) distance oracle for directed α-layered
planar graph, with query time O(ε−1 log n) worst case, and update time of
O(ε−1 log3 n) expected amortized. The oracle can be constructed in O(ε−2n log5 n)
time and stored using O(ε−1n log3 n) space.

Proof. Since our update process only uses Lemma 9, we bound the up-
date time by the running time of that Lemma. Since the running time of
Lemma 9 is linear in sizes of the input connection sets we get the bound

4. DIRECTED GRAPHS 30

by the number of connection stored for ru and its ancestors. We store for
ru

ε
4 logn

-connection set for constant number of separators for every one of

the O(log n) ancestors of ru. Hence, the number of connections stores for
ru is O(log n(ε

4 logn
)−1) = O(ε−1 log2 n). Since the number of connections

stored for ru dominates the number of connection stored for any other strict
ancestor of ru, we get the total number of connections stored of O(log3 n).

We note that the connections of the vertices in ru are only used when
updating ru, and for any other non-leaf node r, we only use the connection of
its children. Thus, any connection is used at most twice. Once for updating
a connection set of its parent, and the second time, is when updating the
ε∗-covering sets of r (ru). Hence the total input size of Lemma 9 is at most
twice the number of the connections stored for the ancestors of ru, that is
O(log3 n), and the update time follows.

Since we store for every r ∈ TH and every Q ∈ Sepr a connection set for
every λ ∈ Lr, we use dynamic hashing as in Section 3. Hence, our update
time is expected amortized.

Our query time is trivial and follows from the fact that we process
O(log n) levels in TH , and in each we inspect O(ε∗−1) connections. That is
O(ε−1 log n) time worst case.

By Lemma 3 with ε set to ε̂, all connection sets for all leaves of TH
can be computed in O(ε−2n log5 n) and it requires O(ε−1n log2 n) space.
We construct the connection sets CHr(S

λ
r , Q) for all r ∈ TH , Q ∈ Sepr and

λ ∈ Hr by applying the update process for each vertex v ∈ V (H). This takes
O(ε−1 log3 n) expected amortized time per operation, and O(ε−1n log3 n)
expected amortized time in total. This is dominated by the construction of
Thorup's oracle.

To get the space requirements of our data structure, we need to count
the number of connections stored. If every vertex u ∈ V (H) has unique
label, it follows that the connection sets stored for u are not useful for
any other vertex. We therefore count the number of u's connections and
multiple by O(n). Let λ be the label of u. To support queries and updates
for λ, we store for every ancestor r of ru connection sets from Sλr to O(log n)
separators for the ancestors of r. Since the size of these connection sets is
only bounded by O(ε̂−1), we get that r requires O(ε−1 log2 n) connections.
Since ru has O(log n) ancestors, we store for u (and by that for λ) O(log3 n)
connections. Thus, the total space required is O(n log3 n).

We can now apply Lemma 1 to get the following theorem:

4. DIRECTED GRAPHS 31

Theorem 2. For any directed planar graph and �xed parameter ε, there ex-
ists a (1+ε) approximate vertex-labeled distance oracle that support queries
in O(ε−1 log n log log nN) worst case and updates in O(ε−1 log3 n log nN) ex-
pected amortized time. This oracle can be constructed in O(ε−2n log5 n log nN)
expected amortized time, and stored using O(ε−1n log3 n log nN) space.

5 Oracle for Undirected Graphs

with Faster Update

Both Thorup [Tho04, Lemma 3.19] and Klein [Kle02] independently pre-
sented e�cient vertex-vertex distance oracles for undirected planar graph
that use connections sets. Klein later improved the construction time [Kle05].
They show that, in undirected planar graph, one can avoid the scaling ap-
proach that uses α-layered graphs. Instead, there exist connections sets
that approximate distance with (1 + ε) multiplicative factor rather than εα
additive factor. We use the term portals [Kle05] to distinguish this type of
connections from the previous one.

De�nition 7. Let G be an undirected planar graph, and let Q be a shortest
path in G. For every vertex v ∈ V (G) we say that a set CG(v,Q) is an
ε-covering set of portals if and only if, for every vertex t on Q there exist
a vertex q on Q such that: δG(v, q) + δG(q, t) ≤ (1 + ε)δG(v, t)

We use a recursive decomposition TG with shortest path separators, and
use Klein's algorithm [Kle05] to select all the portal sets CGr(u,Q) e�-
ciently.We cannot use the lists of Section 3 because there may be too many
portals, and we cannot use the thinning lemma (Lemma 9) of Section 4 be-
cause its proof uses a directed construction, and hence, cannot be applied
in undirected graphs. Instead, we take the approach used by Li, Ma and
Ning for the static vertex-labeled case [LMN13]. We work with all portals of
vertices with the appropriate label, and �nd the closest one using dynamic
Pre�x/Su�x Minimum Queries.

De�nition 8 (Dynamic Pre�x Minimum Data Structure). A Dynamic Pre-
�x Minimum Data Structure is a data structure that maintains a set A of n
pairs in [1, n]×R, under insertions, deletions, and Pre�x Minimum Queries

32

5. UNDIRECTED GRAPHS WITH FASTER UPDATE 33

𝑤 𝑥 𝑦

𝑣0 𝑣2

𝑣1

𝑤 𝑥𝑣0 𝑦

𝑣0 𝑣2

𝑣1

𝑥𝑣2 𝑥𝑣1
0 0 𝛾 𝛽

𝑄

𝑄
𝛾 𝛽

Figure 5.1: Illustration of the reduction to unique portals. Above, the path
Q with the portal x that is used by v0, v1, and v2. Below, x was replaced by
xv0, xv1, and xv2, inner connected with zero length edges. Here, xv0, xv1,
xv2 are the portals of v0, v1, and v2 respectively. Note that this reduction
does not introduce new paths in the graph, nor changes the distance along
Q.

(PMQ) of the following form: given l ∈ [1, n] return a pair (x, y) ∈ A s.t.
x ∈ [1, l], and for every other pair (x′, y′) with x′ ∈ [1, l], y ≤ y′.

Su�x minimum queries (SMQ) are de�ned analogously. Let PMQ(A, l)
and SMQ(A, l) denote the result of the corresponding queries on the set A
and l.

We assume that for every u, v ∈ V (Gr), CGr(u,Q) ∩ CGr(v,Q) = ∅.
This is without loss of generality, since if x is a portal of a set of vertices
v0, ..., vk, we can split x to k copies. This does not increase |G| by more
than a factor of ε−1. See Fig. 5.1. (see �gure 5.1).

To describe our data structure, we �rst need the following de�nitions.
Let Q ∈ Sepr for some r ∈ TG. Let q0, ..., qk be the vertices on Q by
their order along Q. G is undirected, hence the direction of Q is chosen
arbitrarily. For every 0 ≤ j ≤ k, let h(qj) denote the distance from q0 to qj
on Q. We note that since Q is a shortest path in G, h(qi) = δG(q0, qj). For

5. UNDIRECTED GRAPHS WITH FASTER UPDATE 34

every λ ∈ Lr we maintain a dynamic pre�x minimum data structure PreQ,λ
over {(j,−h(qj) + δGr(qj, λ))}kj=0. We similarly maintain a a dynamic su�x
minimum data structure SufQ,λ over {(j, h(qj) + δGr(qj, λ))}kj=0.

Query(u, λ)

For every ancestor r of ru in TG, every Q ∈ Sepr, and every qj ∈ CGr(u,Q)
we wish to �nd the index i that minimizes δGr(u, qj)+δGr(qj, qi)+δGr(qi, λ).
Observe that for i ≤ j, δGr(qj, qi) = h(j)−h(i), while for i ≥ j, δGr(qj, qi) =
h(i) − h(j). We therefore �nd the optimal i ≤ j and i ≥ j separately.
Note that mini≤j(δGr(u, qj) + δGr(qj, qi) + δGr(qi, λ)) = δGr(u, qj) + h(j) +
PMQ(PreQ,λ, j). Similarly, we handle the case where i ≥ j using SMQ(SufQ,λ, j).
Thus, we have two queries for each portal of u. We also compute the dis-
tance from u to λ in ru explicitly. We return the minimum distance com-
puted.

Lemma 13. The query algorithm returns a distance d such that δG(u, λ) ≤
d ≤ (1 + ε)δG(u, λ)

Proof. The proof of correctness of our algorithm is essentially the same
as in [LMN13, Lemma 1]. We adapt it to �t our construction. Let v
be the closest λ-labeled vertex to u in G. If the shortest u-to-v path P
does not leave ru = rv the algorithm is correct, since the distance in ru is
computed expilicitly. Otherwise, let r be the root-most node in TG such
that P intersects some Q ∈ Sepr. Let t be a vertex on P ∩Q. There exists
qj ∈ CGr(u,Q) and qi ∈ CGr(v,Q) such that:

δGr(u, qj) + δGr(qj, t) ≤ (1 + ε)(δGr(u, t)) (5.1)

δGr(v, qi) + δGr(qi, t) ≤ (1 + ε)(δGr(v, t)) (5.2)

We add the two inequalities to get the following:

δGr(u, qj) + δGr(qj, qi) + δGr(v, qi) ≤ (1 + ε)(δGr(u, v)) (5.3)

If i ≤ j, then PMQ(PrefQ,λ, j) ≤ δGr(qi, λ)− h(qi) ≤ δGr(v, qi)− h(qi).
Thus,

Query(u, λ) ≤ δGr(v, qi)− h(qi) + h(j) + δGr(u, qj) (5.4)

= δGr(v, qi) + δGr(qi, qj) + δGr(u, qj) (5.5)

≤ (1 + ε)(δGr(u, v)) (5.6)

≤ (1 + ε)(δG(u, λ)) (5.7)

5. UNDIRECTED GRAPHS WITH FASTER UPDATE 35

Here, inequality (5.6) follows from (5.3), and (5.7) follows from that fact
that P is fully contained in r, and our assumption that v is the closest
λ-labeled vertex to u.

The proof for the case that i ≥ j is similar.

Update

Assume that the label of u changes from λ1 to λ2. For every ancestor
r of ru ∈ TG, and Q ∈ Sepr, and for qi ∈ CGr(u, q), we remove from
PreQ,λ1 and SufQ,λ1 the element (x, y) with x = i, and insert the element
(i,−h(i) + δGr(u, qi)) into PreQ,λ2 , and (i, h(i) + δGr(u, qi)) into SufQ,λ2 .
We note that since we assume that every vertex qi is a portal of at most
one vertex, the removals are well de�ned, and the insertions are safe.

The time and space bounds for the oracle described above are given in
the following lemma.

Lemma 14. Assume there exists a dynamic pre�x/su�x minimum data
structure in the word RAM model, that for a set of sizem, supports PMQ/SMQ
in O(TQ(m)) time, and updates in O(TU(m)) time, can be constructed in
O(TC(m)) time, where TC(m) ≥ m, and can be stored in O(S(m)) space.
Then there exist a dynamic vertex-labeled stretch-(1 + ε) distance oracle
for planar graphs with worst case query time O(ε−1 log(n)TQ(ε−1n)), and
expected amortized update time O(ε−1 log(n)TU(ε−1n)). The oracle can be
constructed using O(ε−1n log2 n+ log(n)Tc(ε

−1n)) expected amortized time,
and stored in O(log(n)S(ε−1n)) space.

Proof. Let G be an undirected planar graph. We �rst decompose G to ob-
tain TG, and compute all the portals and the distances to portals. Klein [Kle05]
shows that this can be done using O(n log(n)(ε−1 + log n)) time. Then, for
every r ∈ TG, for every Q ∈ Sepr and every λ ∈ Lr, we construct a pre-
�x/su�x minimum query data structures for PreQ,λ and SufQ,λ.

Recall that PreQ,λ is de�ned over the set of pairs {(j,−h(qj)+δGr(qj, λ))}kj=0,
where qj is the j'th portal on Q. For each element (x, y) in PreQ,λ, the �rst
coordinate is speci�ed by the order of the corresponding portal onQ. Hence,
x ≤ ε−1n is an integer that �ts in a single word. The second coordinate can
be treated similarly; We sort the list {−h(qj) + δGr(qj, λ)}j for all portals
qj on Q. Then, we can specify y by its ordinal number in the sorted list.
The same argument holds for SufQ,λ.

5. UNDIRECTED GRAPHS WITH FASTER UPDATE 36

Constructing PreQ,λ and SufQ,λ takesO(log n(ε−1n log(ε−1n)+TC(ε−1n))
time, since at every level of TG the total number of portals is O(ε−1n), and
since TC(·) is superlinear. The number of portals we store is O(ε−1n log n)
since every vertex v has O(ε−1) portals for every one of its O(log n) ances-
tors in TG. Hence our space is O(log(n)S(ε−1n)), and the construction time
is O(ε−1n log2 n+ log(n)Tc(ε

−1n)).
To analyze the query and update time, we note that we process O(log n)

nodes in TG and in each we perform O(ε−1) queries or updates to the pre-
�x/su�x minimum query structures. The size of our pre�x/su�x struc-
tures is bounded by the size of V (Q) which is O(ε−1n). The ε−1 fac-
tor is due to the assumption of distinct portals. Thus, the query time
is O(ε−1 log(n)TQ(ε−1n)) and the update time is O(ε−1 log(n)TU(ε−1n)).

Since every Q ∈ Sepr holds a pre�x/su�x minimum data structure for
every label λ ∈ Lr, we use dynamic hashing to avoid space dependency
in |L|, as in Section 5. Hence, our construction time and update time are
expected amortized.

It remains to describe a fast pre�x/su�x minimum query structure.
We use a result due to Wilkinson [Wil14] for solving the 2-sided reporting
problem in R2 in the word RAM model. In this problem, we maintain a set
A of n points in R2 under an online sequence of insertions, deletions and
queries of the following form. Given a rectangle B = [l1, h1] × [l2, h2] such
that exactly one of l1, l2 and one of h1, h2 is ∞ or −∞, we report A ∩ B.
Here, [l1, h1] × [l2, h2] represents the rectangle {(x, y) : l1 ≤ x ≤ l2, h1 ≤
y ≤ h2}. Since Wilkinson assumes the word RAM model, it is assumed
that the coordinates of the points in A are integers that �t in a single word.
Wilkinson's data structure is captured by the following theorem.

Theorem 3. [Wil14, Theorem 5] For any f ∈ [2, log n/ log log n], there ex-
ists a data structure for 2-sided reporting with update time O((f log n log log n)1/2),
query time O((f log n log log n)1/2 + logf (n) + k) where k is the number of
points reported. The structure requires linear space.

In fact, Wilkinson's structure �rst �nds the point with the minimum
y-coordinate in the query region, and then reports the other points. Using
this fact, and setting f = logγ n for some arbitrary small constant γ. We
get the following lemma, in which we also state Wilkinson's construction
time explicitly.

5. UNDIRECTED GRAPHS WITH FASTER UPDATE 37

Lemma 15. There exists a linear space data structure for 2-sided reporting
on n points, with update time O(log1/2+γ n) and query time O(logn

log logn
). This

data structure can be constructed in O(n log1/2+γ n) time. Moreover, upon
query the data structure returns the minimum y-coordinate of a point in the
query region.

The pre�x/su�x queries required by Lemma 16 correspond to one-sided
range reporting in the plane, which can be solved using 2-sided queries, by
setting the upper limit of the query rectangle to nN .

Lemma 16. For any constant γ > 0, there exists a linear space dynamic
pre�x/su�x minimum data structure over n elements with update time
O(log1/2+γ n), and query time O(logn

log logn
). This data structure can be con-

structed in
O(n log1/2+γ n) time.

Proof. We use Wilkinson's structure. A pre�x minimum query for i cor-
responds to �nding the point with minimum y-coordinate in the rectangle
(−∞,−∞, i,∞). This is 1-sided rectangle. To be able to specify a boundry
for the y-axis, we maintain an upper bound ymax on the y-coordinates of
points in A. The bound can be easily updated in constant time when an
insertion occurs. (There is no need to update the bound when a dele-
tion occurs). We replace the 1-sided rectangle with the 2-sided rectan-
gle (−∞,−∞, i, ymax). Similarly, our su�x minimum query is the 1-sided
rectangle (i,−∞,∞,∞) or the 2-sided (i,−∞,∞, ymax). The lemma now
follows by applying Lemma 15.

We therefore obtain the following theorem.

Theorem 4. For any undirected planar graph and �xed parameters ε, γ,
there exists a stretch-(1+ε) vertex-labeled distance oracle that approximates

distances in O(ε−1 logn log(ε−1n)
log log (ε−1n)

) time worst case, and supports updates in

O(ε−1 log n log
1
2
+γ(ε−1n)) expected amortized time. This data structure can

be constructed using O(n log2 n + ε−1n log n log
1
2
+γ (ε−1n)) expected amor-

tized time and stored using O(ε−1n log n) space.

6 Concluding remarks

In this work we presented approximate vertex-labeled distance oracles for
directed and undirected, planar graphs with polylogarithmic query and
update times and nearly linear space. All of our oracles have Ω(log n)
query and updates, since we handle root-to-leaf paths in the decomposi-
tion tree. The logarithmic factor can be avoided in the vertex-to-vertex
case where approximate distance oracles with faster query times exist (see
e.g., [Tho04, Wul16, GX15] and references therein). This is also the case
for the static vertex-to-label case. For example, Mozes and Skop [MS15]
presented an oracle with constant query time. Their oracle uses label con-
nections that store the shortest distance to a labeled vertex in the entire
graph. This is in contrast to our connections that only consider labeled
vertices in a subgraph. Hence, their query algorithm only accesses a single
node in the decomposition tree. The downside of storing distances in the
entire graph is that labels changes are less contained (may a�ect O(n) sep-
arators). It would be interesting to study whether an approximate distance
oracle with logarithmic update time and o(log n) query time exists.

Another bottleneck for our directed data structure is the use of O(log n)
connection sets in every node of the decomposition tree. Those sets are
only used by our bottom-up update approach, which is mainly needed for
removal of labeled vertices. We tried to avoid storing these sets, with no
success. It remains an open question whether this costly update procedure
can be avoided.

For our undirected oracle with the faster update (Section 5), we use
Wilkinson's 2-sided reporting [Wil14] as a dynamic pre�x/su�x minimum
data structure. During our research, we tried to develop a faster dynamic
pre�x minimum data structure but with no success. Another interesting
question that arises is whether other approaches may be used to obtain a
faster pre�x/su�x minimum data structure, that will lower the time bounds

38

6. CONCLUDING REMARKS 39

of our oracle.

Bibliography

[ACD+16] Ittai Abraham, Shiri Chechik, Daniel Delling, Andrew V. Gold-
berg, and Renato F. Werneck. On dynamic approximate short-
est paths for planar graphs with worst-case costs. In SODA,
pages 740�753. SIAM, 2016.

[ACG12] Ittai Abraham, Shiri Chechik, and Cyril Gavoille. Fully dynamic
approximate distance oracles for planar graphs via forbidden-set
distance labels. In STOC, pages 1199�1218. ACM, 2012.

[aOP+15] Jakub �acki, Jakub Ocwieja, Marcin Pilipczuk, Piotr
Sankowski, and Anna Zych. The power of dynamic distance
oracles: E�cient dynamic algorithms for the steiner tree. In
STOC, pages 11�20, 2015.

[Che12] Shiri Chechik. Improved distance oracles and spanners for
vertex-labeled graphs. In ESA, volume 7501 of Lecture Notes
in Computer Science, pages 325�336. Springer, 2012.

[FKS84] Michael L. Fredman, János Komlós, and Endre Szemerédi. Stor-
ing a sparse table with O(1) worst case access time. J. ACM,
31(3):538�544, 1984.

[GX15] Qian-Ping Gu and Gengchun Xu. Constant query time (1 + ε)-
approximate distance oracle for planar graphs. In ISAAC, pages
625�636, 2015.

[HKRS97] Monika Rauch Henzinger, Philip N. Klein, Satish Rao, and
Sairam Subramanian. Faster shortest-path algorithms for pla-
nar graphs. J. Comput. Syst. Sci., 55(1):3�23, 1997.

40

BIBLIOGRAPHY 41

[HLWY11] Danny Hermelin, Avivit Levy, Oren Weimann, and Raphael
Yuster. Distance oracles for vertex-labeled graphs. In ICALP
(2), volume 6756 of Lecture Notes in Computer Science, pages
490�501. Springer, 2011.

[KKS11] Ken-ichi Kawarabayashi, Philip N. Klein, and Christian Som-
mer. Linear-space approximate distance oracles for planar,
bounded-genus and minor-free graphs. In ICALP (1), volume
6755 of Lecture Notes in Computer Science, pages 135�146.
Springer, 2011.

[Kle02] Philip N. Klein. Preprocessing an undirected planar network
to enable fast approximate distance queries. In SODA, pages
820�827, 2002.

[Kle05] Philip N. Klein. Multiple-source shortest paths in planar graphs.
In SODA, pages 146�155, 2005.

[KST13] Ken-ichi Kawarabayashi, Christian Sommer, and Mikkel Tho-
rup. More compact oracles for approximate distances in undi-
rected planar graphs. In SODA, pages 550�563. SIAM, 2013.

[LMN13] Mingfei Li, Chu Chung Christopher Ma, and Li Ning. (1 +
ε)-distance oracles for vertex-labeled planar graphs. In TAMC,
pages 42�51, 2013.

[LT79] Richard J Lipton and Robert Endre Tarjan. A separator theo-
rem for planar graphs. SIAM Journal on Applied Mathematics,
36(2):177�189, 1979.

[MS15] Shay Mozes and Eyal E. Skop. E�cient vertex-label distance
oracles for planar graphs. In WAOA, pages 97�109, 2015.

[PR01] Rasmus Pagh and Flemming Friche Rodler. Cuckoo hashing.
In ESA, pages 121�133, 2001.

[Som14] Christian Sommer. Shortest-path queries in static networks.
ACM Comput. Surv., 46(4):45:1�45:31, 2014.

[Tho04] Mikkel Thorup. Compact oracles for reachability and approx-
imate distances in planar digraphs. J. ACM, 51(6):993�1024,
2004.

BIBLIOGRAPHY 42

[TZ01] Mikkel Thorup and Uri Zwick. Approximate distance oracles.
In STOC, pages 183�192. ACM, 2001.

[Wil83] Dan E. Willard. Log-logarithmic worst-case range queries are
possible in space theta(n). Inf. Process. Lett., 17(2):81�84, 1983.

[Wil14] Bryan T. Wilkinson. Amortized bounds for dynamic orthogonal
range reporting. In ESA, pages 842�856, 2014.

[Wul12] Christian Wul�-Nilsen. Approximate distance oracles with im-
proved preprocessing time. In SODA, pages 202�208. SIAM,
2012.

[Wul16] Christian Wul�-Nilsen. Approximate distance oracles for pla-
nar graphs with improved query time-space tradeo�. In SODA,
pages 351�362, 2016.

Appendix

43

A Reduction from stretch-(1 + ε)
vertex-labeled distance oracle to

scale-(α, ε) distance oracle.

We now describe how to use a scale-(ε, α) vertex-labeled distance oracle to
obtain a stretch-(1 + ε) distance oracle. For vertex-vertex distance oracles,
this reduction was proven by Thorup as captured in Lemma 1.

For the static vertex-labeled case, a similar reduction was presented by
Mozes and Skop, and is as follows: The proof of Lemma 1 relies on two
reductions [Tho04, Lemmas 3.2,3.8]. The �rst shows that from any graph
G and for any α > 0, one can construct a family of α-layered graphs {Gα

i }i
whose total size is linear in the size of G, and such that:

1. Σ|Gα
i | = O(|G|), where |G| = |V (G)|+ |E(G)|.

2. Each v ∈ V (G) has an index j(v) s.t. any w ∈ V (G) has d =
δG(v, w) ≤ α i� d = min{δGα

j(v)−2
(v, w), δGα

j(v)−1
(v, w), δGα

j(v)
(v, w)}.

3. EachGα
i is a minor ofG. I.e., it can be obtained fromG by contraction

ad deletion of arcs and vertices. In particular, if G is planar, so is Gα
i .

Item (2.) means that any shortest path of length at most α in G is repre-
sented in at least one of three �xed graphsGα

i . Thus, one can use scale-(α, ε)
distance oracles for the α-layered graphs {Gα

i } to implement a scale-(α, ε)
oracle of G.

The second reduction [Tho04, Lemmas 3.8] is a scaling argument that
shows how to construct a stretch-(1 + ε) distance oracle for G using scale-
(α, ε′) distance oracles for α ∈ {2i}i∈[1,dlog(nNe]. The reduction does not
rely on planarity. Now consider the vertex-labeled case. Let G∗ be the

44

A. REDUCTION FROM STRETCH-(1 + ε) TO SCALE-(α, ε)
DISTANCE ORACLE 45

graph obtained from G by adding apices representing the labels. A vertex-
to-vertex distance oracle for G∗ is a vertex-labeled distance oracle for G,
and vice versa. By Thorup's second reduction, it su�ces to show how
to construct a scale-(α, ε) vertex-vertex distance oracle for G∗ for any α,
ε, or, equivalently a vertex-labeled scale-(α, ε) distance oracle for G and
every α, ε. Let α ∈ R+. Given u ∈ V (G) and λ ∈ L with δG(u, λ) ≤ α,
let w ∈ V (G) be the closest λ labeled vertex to u. By the properties of
Thorup's �rst reduction, there is a graph Gα

i in whitch the u-to-w distance
is δG(u,w). Thus, a vertex-labeled distance oracle for Gα

i will report a
distance of at most δG(u, λ) + εα. Therefore we have the following Lemma:

Lemma 17. For any planar graph G and �xed parameter ε, a stretch-
(1 + ε) vertex-labeled distance oracle can be constructed using O(log nN)
scale-(α, ε′) vertex-labeled distance oracles where α = 2i, i = 0, ...dlog nNe
and ε′ ∈ 1/2, ε/4. Assume that the scale-(α, ε) vertex-labeled distance oracle
supports queries in O(TQ(n, ε)) and updates in O(TU(n, ε)) time, and it can
be constructed in O(TC(n, ε)) time and uses O(S(n, ε)) space. There exists
a S(n, ε) log nN space stretch-(1 + ε) vertex-labeled distance oracle that an-
swers queries in O(TQ(n, ε) log log (nN)) and updated in O(TU(n, ε) log nN)
time can be constructed in O(TC(n, ε) log nN) time.

Proof. Given a planar graph G, we decompose G to O(log nN) α-layered
graphs, and for each we construct a scale-(α, ε) distance oracle. We get the
space requirements, and the construction and query times by using Lemma
1. Since we must keep all O(log nN) scale oracles up to date, we perform
each update operation O(log nN) times, and the lemma follows.

 תקציר

דים, הוא מבנה ודקובעל צביעת קלגרף אוב מרחקים מקורב. צבעבעל דיו ודקואשר כל אחד מקגרף Gיהי

1), מחזיר λוצבע 𝑣 דוקדונתונים, אשר בהינתן ק + 𝜀)-קירוב למרחק בין 𝑣 ד הקרוב ביותר הצבוע ודקולק

 דים.ודקואם בנוסף הוא תומך בשינוי צביעת הק דינאמיאוב כנ"ל ייקרא .G בגרף λבצבע

דים, כולם בעלי זמן ודקוקדינאמים לגרף מישורי בעל צביעת מקורבים מרחקים זה נציג שלושה אובי חקרבמ

זהו אוב המרחקים המקורב הדינאמי הראשון מקום קרוב ללינארי.דרישות לתה ועדכון פולילוגריתמים, ושאי

 לינאריים.-תתשלו הם השאילתהוגם זמן עדכון ה גם זמןאשר

 המרכז הבינתחומי בהרצליה
ספר אפי ארזי למדעי המחשב-בית

 מחקרימסלול - (.M.Scהתכנית לתואר שני)

דינאמי לגרף מקורב אוב מרחקים

 דיםודקומישורי בעל צביעת ק

 .M.Scק מהדרישות לשם קבלת תואר מוסמך כחל זה המוגשתעבודת ת

 הרצליה זי למדעי המחשב, המרכז הבינתחומיבמסלול המחקרי בבית ספר אפי אר

איתי לישמוגש על ידי

 בהנחיית ד"ר שי מוזס.

2017 סטאוגו

	Introduction
	Related Work
	Approximate vertex-to-vertex distance oracles
	Approximate vertex-to-label distance oracles

	Our Results and Techniques

	Preliminaries
	Existing techniques

	Undirected Graphs With Faster Query
	Warm Up: The Static Case
	Query(u,)

	The Dynamic Case
	Query(u,)
	Update

	Directed Graphs
	Query
	Update

	Undirected Graphs With Faster Update
	Query(u,)
	Update

	Concluding remarks
	Bibliography
	Appendix
	Reduction from stretch-(1+) to scale-(,) distance oracle

