*
*x

* IDC Efi Arazi School
HERZLIYA | of Computer Science
o

The Interdisciplinary Center, Herzlia

Efi Arazi School of Computer Science
M.Sc. program - Research Track

Efficient Dynamic Approximate
Distance Oracles for Vertex-
Labeled Planar Graphs

Submitted by Itay Laish
Under the supervision of Dr. Shay Mozes.

M.Sc. dissertation, submitted in partial fulfillment of the requirements
for the M.Sc. degree, research track, School of Computer Science
The Interdisciplinary Center, Herzliya

July 2017

Acknowledgements

First of all, 1 would like to thank my advisor Dr. Shay Mozes, for providing me much
needed directions, especially, when | was sure I'm facing a dead end, and for introducing
me to the world of research, and investing exponential amount of time, teaching and
tutoring me. His way of thinking and passion to find efficient, yet elegant solutions inspired
me, and gave me the drive to look deeper and wider, and to seek for ideas in different
places.

Second, | would like to thank Pawet Gawrychowski and Oren Weimann for fruitful
discussions, and for well appreciated tips, that found their way into this research.

Abstract

Let G be a graph where each vertex is associated with a label. An Approximate Vertex-
Labeled Distance Oracle is a data structure that, given a vertex v and a label A, returns a
(1 + &)-approximation of the distance from v to the closest vertex with label A in G. Such
an oracle is dynamic if it also supports label changes. In this thesis we present three
different dynamic approximate vertex-labeled distance oracles for planar graphs, all with
polylogarithmic query and update times, and nearly linear space requirements. No
previously known approximate vertex-labeled distance oracle supported both queries and
updates in sublinear time.

Contents

5

6

Introduction

1.1 Related Work
1.2 Our Results and Techniques

Preliminaries

2.1 Existing techniques

Undirected Graphs With Faster Query

3.1 Warm Up: The Static Case
3.2 The Dynamic Case

Directed Graphs

4.1 Query ...
4.2 Update.

Undirected Graphs With Faster Update

Concluding remarks

Bibliography

Appendix

10
12

16
17
20

23
26
28

32

38

40

43

1 Introduction

Consider the following scenario. A 911 dispatcher receives a call about a
fire and needs to dispatch the closest fire truck. There are two difficulties
with locating the appropriate vehicle to dispatch. First, the vehicles are
on a constant move. Second, there are different types of emergency vehi-
cles, whereas the dispatcher specifically needs a fire truck. Locating the
closest unit of certain type under these assumptions is the dynamic vertez-
labeled distance query problem on the road network graph. Each vertex in
this graph can be annotated with a label that represents the type of the
emergency vehicle currently located at that vertex. An alternative scenario
where this problem is relevant is when one wishes to find a service provider
(e.g., gas station, coffee shop), but different locations are open at different
times of the day.

A data structure that answers distance queries between a vertex and a
label, and supports label updates is called a dynamic vertez-labeled distance
oracle. We model the road map as a planar graph, and extend previous
results for the static case (where labels are fixed). We present oracles with
polylogarithmic update and query times (in the number of vertices) that
require nearly linear space.

We focus on approximate vertex-labeled distance oracles for fixed pa-
rameter ¢ > 0. When queried, such an oracle returns at least the true
distance, but not more than (1 + ¢) times the true distance. These are also
known as stretch-(1 4 €) distance oracles. Note that, in our context, the
graph is fixed, and only the vertex labels change.

1. INTRODUCTION 6

1.1 Related Work

Approximate vertex-to-vertex distance oracles

We outline related results, and refer the reader to an extensive survey due
to Sommer [Soml4]|. For general graphs, Thorup and Zwick [TZ01] pre-
sented for every k > 2 a stretch-(2k — 1) vertex-to-vertex distance oracle
for undirected graphs with O(kn'*%) space, and O(k) query time. Their
oracle can be constructed in O(kmn**) time. Wulfi-Nilsen [Wul12] gave
an oracle with similar space and query time, and O(an%) construction
time. Here c is some universal constant.

For planar graphs, Thorup [Tho04] presented a stretch-(1 +) distance
oracle for directed planar graphs, for any 0 < ¢ < 1. His oracle requires
O(e7'nlognlog(nN)) space and answers queries in O(loglog (nN) + &~ !)
time. Here N denotes the ratio of the largest to smallest arc length. For
undirected planar graphs Thorup presented an oracle that can be stored us-
ing O(¢~'nlog n) space, and can answer queries in O(e~!) time. Klein [Kle02,
Kle05] independently described a stretch-(1 + ¢) distance oracle for undi-
rected graphs with the same bounds, but faster preprocessing time. Kawarabayashi,
Klein and Sommer [KKS11], extended Thorup’s result to other families of
restricted graphs (e.g. minor free, bounded genus) and improved its space
requirements to O(n) in the cost of increasing the query time by a factor
of e~ 'log?n. Kawarabayashi, Sommer and Thorup [KST13] reduced the
space dependency by a factor of e7!logn, while keeping the query time of
O(e71). They also show an oracle for unweighted graphs that can be stored
using O(n) space, and has O(s7!) query time. Abraham, Chechik and
Gavoille [ACG12] presented a stretch-(1 4 ¢) distance oracle that supports
both query and edge length updates in O(n'/?) time worst case. Abra-
ham et al. [ACD"16] later provided an oracle with polylogarithmic update
and query time for planar graphs, when the edge lengths can only change
within a predetermined ratio. In this work, we consider a different setting of
updates, where the edge lengths are fixed, and only the vertex label change.

Approximate vertex-to-label distance oracles

The vertex-to-label query problem was introduced at ICALP’11 by Her-
melin, Levy, Weimann and Yuster [HLWY11]. For any k > 2, They pre-
sented a stretch-(4k — 5) distance oracle for undirected general (i.e. not

1. INTRODUCTION 7

necessarily planar) graphs with O(kan%) space and query time O(k). In
a second result, they gave a dynamic label-to-vertex distance oracle that
can handle label changes in sub-linear time, but with exponential stretch in
terms of k, (23" 4+ 1). Chechik [Chel2] later improved their results,
and presented a stretch-(4k — 5) distance oracle that requires O(n't#)
expected space, and supports queries in O(k) time, and label changes in
O(nk log"~* nlog log n) time. Her oracle can be constructed using O(kmn#)
time.

The first result for the static vertex-to-label query problem for undirected
planar graphs is due to Li, Ma and Ning [LMN13]. They described a stretch-
(1 +¢) distance oracle that is based on Klein’s results [Kle02]. Their oracle
requires O(e~'nlogn) space, and answers queries in O(e~! lognlog A) time.
Here A is the hop-diameter of the graph, which can be ©(n). Mozes and
Skop [MS15], building on Thorup’s oracle, described a stretch-(1 + ¢) dis-
tance oracle for directed planar graphs that can be stored using O(e 'nlognlog(nN))
space, and has O(loglognloglognN + & !) query time.

Li Ma and Ning [LMN13] considered the dynamic case, but their update
method was trivial and takes O(nlogn) time in the worst case. FLacki et
al. [aOP"15] presented a different dynamic vertex-to-label oracle for undi-
rected planar graphs, in the context of computing Steiner trees. Their
orcale requires O(y/nlog®nlog De~') amortized time per update or query
(in expectation), where D is the stretch of the metric of the graph (could be
nN). Their oracle however does not support changing the label of a specific
vertex. Instead, they represent the labels in a forest, and support merging
two labels by connecting two trees in the forest. Likewise, they support
splitting labels by removing an edge from the forest, dividing a single tree
into two trees.

To the best of our knowledge, our distance oracles are the first stretch
(14 &) vertex-to-label distance oracles with polylogarithmic query and up-
date times, and the first that support directed planar graphs.

1.2 Our Results and Techniques

We present three approximate vertex-labeled distance oracles with polylog-
arithmic query and update times and nearly linear space and preprocessing
times. Our update and construction times are expected amortized due to

1. INTRODUCTION 8

the use of dynamic hashing.! Our solutions differ in the tradeoff between
query and update times. One solution works for directed planar graphs,
whereas the other two only work for undirected planar graphs.

We obtain our results by building on and combining existing techniques
for the static case. All of our oracles rely on recursively decomposing the
graph using shortest paths separators. Our first oracle for undirected graphs
(Section 3) uses uniformly spaced connections, and efficiently handles them
using fast predecessor data structures. The upshot of this approach is that
there are relatively few connections. The caveat is that this approach only
works when working with bounded distances, so a scaling technique [Tho04]
is required.

Our second oracle for undirected graphs (Section 5) uses the approach
taken by Li, Ma and Ning |[LMN13] in the static case. Each vertex has a
different set of connections, which are handled efficiently using a dynamic
prefix minimum query data structure. Such a data structure can be ob-
tained using a data structure for reporting points in a rectangular region of
the plane [Will4].

Our oracle for directed planar graphs (Section 4) is based on the static
vertex-labeled distance oracle of [MS15], which uses connections for sets of
vertices (i.e., a label) rather than connections for individual vertices. We
show how to efficiently maintain the connections for a dynamically changing
set of vertices using a bottom-up approach along the decomposition of the
graph.

Our data structures support both queries and updates in polylogarith-
mic time. No previously known data structure supported both queries and
updates in sublinear time. The following table summarizes the comparison
between our oracles and the relevant previously known ones.

'We assume that a single comparison or addition of two numbers takes constant
time.

1. INTRODUCTION

Table 1.1: Vertex-to-Label Distance Oracles Time Bound Comparison

D/U | Query time Update time
Li, Ma and Ning [LMN13] | U O(e7tlognlog A) O(nlogn)
Lacki at el. [aOP 7 15] U O(e~'y/nlog”*nlog D) O(e~1y/nlog*nlog D)
Section 3 (faster query) U O(e 1lognloglognN) O(e1lognlogloge™tlognN)
Section 5 (faster update) | U O(e_lbl;glzgf%) O(e7'log"® (7 'n))
Mozes and Skop [MS15] D O(e7! +loglognloglognN) | N/A
Section 4 D O(e71lognloglognN) O(s'log’ nlognN)

In the table above, D/U stands for Directed and Undirected graphs.

2 Preliminaries

An undirected (respectively directed) graph G is a tuple consisting of a
finite set of objects named vertices, denoted by V(G), and a set of edges
(resp, arcs) denoted by F(G). An undirected (resp. directed) edge (resp.
arc), is an unordered (resp. ordered) pair of vertices. Given an edge e = uv,
we say that u and v are the endpoints of e. If e is an arc (in a directed
graph), we say that the orientation of e is from u to v. An undirected (resp.
directed) u-to-v path P is a sequence of vertices in V(G), that starts with
u, ends with v, and for every pair (x,y) € P there exists an edge (resp. an
arc) xy € E(G). A path P is called a simple path if every vertex in V(G)
appears at most once in P. A cycle C' is a path that begins and ends in the
same vertex. Analogously, a simple cycle is a cycle such that every vertex
in C appears at most once, except from the first vertex, that is also the
last.

For a directed graph G, we let G’ be the underlying undirected graph
whose vertices V(G') = V(G), and for every u,v € V(G), E(G’) contains
an edge uv if and only if F(G) contains the arc uv or the arc vu. We say
that the graph G is connected if for every u,v € V(G) there exists an u-to-v
path in G'.

An undirected tree T is an undirected connected graph that contains no
cycles. Le. for every pair of vertices u,v there exists a unique path from
u to v. A vertex v € V(T) is called a leaf of T if it is adjacent to at
most one other vertex. A rooted undirected tree is a tree T equipped with
a vertex r € V(T) referred to as root. A spanning tree T of a graph G
is a subgraph of G (respectively, if G is directed, T is a subgraph of the
underlying undirected graph G’) consisting of |V (G) — 1| edges from E(G)
(resp. E(G")), that forms a tree, such that for every v € V(G) there exists
a r-to-v path in T'.

Let T be an undirected rooted tree. Let A(-) be a boolean property that

10

2. PRELIMINARIES 11

is defined over the vertices of T'. For every v € V(T'), we say that a vertex
u is the root-most vertex on the v-to-root path P in T that fulfills A, if u
is the closest vertex to the root of 7" on the v-to-root path that fulfills A.

Given an undirected graph GG with a spanning tree 7" rooted at r and
an edge uv not in T, the fundamental cycle of uv (with respect to T') is the
cycle composed of the r-to-u and r-to-v paths in 7', and the edge uv.

Let ¢ : E(G) — RT be a non-negative length function. Let N be the
ratio of the maximum and minimum values of /(-). Let P be a path from u-
to-v. The length of P is ¥.cpl(e). The shortest u-to-v path is a path that
minimizes that distance. We define the distance form u-to-v denoted by
dc(u,v), as the length of a shortest u-to-v path. We assume, only for ease
of presentation, that shortest paths are unique. This assumption is only
used when we present our algorithms and refer the shortest path between
two vertices. Our data structures do not require this assumption. For a
simple path @ and a vertex set U C V(Q) with |U| > 2, we define Qp, the
reduction of () to U as a path whose vertices are U. Consider the vertices
of U in the order in which they appear in (). For every two consecutive
vertices uy, us of U in this order, there is an arc ujus in)y whose length
is the length of the u;-to-us sub-path of Q.

Let £ be a set of labels. We say that a graph G is vertex-labeled if every
vertex is assigned a single label from £. For a label A € £, let S} denote
the set of vertices in G with label \. We define the distance from a vertex
u € V(G) to the label A by d¢(u,A) = min,egr dc(u,v). If G does not
contain the label A\, or A is unreachable from u, we say that dg(u, \) = occ.

Definition 1. For a fized parameter € > 0, a stretch-(1+¢) vertex-labeled
distance oracle is a data structure that, given a vertex u € V(G) and a label
X € L, returns a distance d satisfying 0g(u, A) < d < (1 +¢€)dg(u, N).

Definition 2. For fized parameters a,e > 0, a scale-(a, €) vertex-labeled
distance oracle is a data structure that, given a vertex u € V(G) and a label
X € L, such that 6c(u, \) < «, returns a distance d satisfying oc(u, A) <
d <éc(u,\) +ea. If dg(u, A) > «a, the oracle returns oo.

The only properties of planar graphs that we use in this paper are the
existence of shortest path separators (see below), and the fact that single
source shortest paths can be computed in O(n) time in a planar graph with
n vertices [HKRS97].

2. PRELIMINARIES 12

Definition 3. Let G be a directed graph. Let G' be the undirected graph
induced by G. Let P be a path in G'. Let S be a set of vertex disjoint directed
shortest paths in G. We say that P is composed of S if (the undirected path
corresponding to) each shortest path in S is a subpath of P and each vertex
of P is in some shortest path in S.

Definition 4. Let G be a directed embedded planar graph. An undirected
cycle C' is a balanced cycle separator of G if each of the strict interior and
the strict exterior of C' contains at most 2|V (G)|/3 vertices. If, additionally,
C' is composed of a constant number of directed shortest paths, then C' is
called a shortest path separator.

Let G be a planar graph. We assume that G is triangulated since we can
triangulate G with infinite length edges, so that distances are not affected.
It is well known [LT79, ThoO4] that for any spanning tree of G, there exists
a fundamental cycle C' that is a balanced cycle separator. The cycle C' can
be found in linear time. Note that, if T" is chosen to be a shortest path
tree, or if any root-to-leaf path of T" is composed of a constant number of
shortest paths, then the fundamental cycle C' is a shortest path separator.

2.1 Existing Techniques for Approximate
Distance Oracles for Planar Graphs

Thorup shows that to obtain a stretch-(1 + ¢) distance oracle, it suffices to
show scale-(a, €) oracles for so-called a-layered graphs. An a-layered graph
is one equipped with a spanning tree T" such that each root-to-leaf path in
T is composed of O(1) shortest paths, each of length at most «. This is
summarized in the following lemma:

Lemma 1. [Tho0j, Lemma 3.9] For any planar graph G and fized param-
eter e, a stretch-(1+¢) distance oracle can be constructed using O(lognN)
scale-(av, €") distance oracles for a-layered graphs, where a = 2', i = 0,...[lognN|
and €' € {1/2,e/4}. If the scale-(c,€') has query time t(€') independent of

«a, the stretch-(1 + €) distance oracle can answer queries in O(t(1/2)e™! +
t(e/4)loglog (nN)).

All of our distance oracles are based on a recursive decomposition of GG
using shortest path separators. If G is undirected (but not necessarily a-
layered), we can use any shortest path tree to find a shortest path separator

2. PRELIMINARIES 13

in linear time. Similarly, if G is a-layered, we can use the spanning tree G
is equipped with to find a shortest path separator in linear time.

We recursively decompose G into subgraphs using shortest path separa-
tors until each subgraph has a constant number of vertices. We represent
this decomposition by a binary tree 75. To distinguish the vertices of Tg
from the vertices of G we refer the former as nodes.

Each node r of 7 is associated with a subgraph G,. The root of 7
is associated with the entire graph G. We sometimes abuse notation and
equate nodes of 75 with their associated subgraphs. For each non-leaf node
r € Tg, let C,. be the shortest path separator of GG,.. Let Sep, be the set of
shortest paths C) is composed of. The subgraphs G,, and G,, associated
with the two children of r in T are the interior and exterior of C, (w.r.t.
G,), respectively. Note that C, belongs to both G,, and G,,. For a vertex
v € V(G), we denote by 7, the leaf node of 7 that contains v. See Fig. 2.1
for an illustration.

We now describe the basic building block used in our (and in many
previous) distance oracle. Let u,v be vertices in G. Let () be a path on
the root-most separator (i.e., the separator in the node of 7¢ closest to its
root) that is intersected by the shortest u-to-v path P. Let ¢ be a vertex in
QN P. Note that d¢(u,v) = dg(u,t) +0¢(t,v). Therefore, if we stored for u
the distance to every vertex on (), and for v the distance from every vertex
on @, we would be able to find ¢ (u,v) by iterating over the vertices of @,
and finding the one minimizing the distance above. This, however, is not
efficient since the number of vertices on () might be 6(|V(G)|). Instead, we
store the distances for a subset of). This set is called an (o, ¢)-covering
connections Set.

Definition 5 ((«, €)-covering connections set). [Tho(/, Section 3.2.1] Let
g, > 0 be fized constants. Let G be a directed graph. Let Q) be a shortest
path in G of length at most . For u € V(G) we say that Ce(u, Q) C V(Q)
is an («,e)-covering connections set from u to Q if and only if for every
verter t on Q s.t. 0q(u,t) < a, there exists a verter q € Cg(u, Q) such that
da(u,q) +0c(q,t) < da(u,t) + ea.

One defines (a, €)-covering connections sets C (@, u) from @ to u sym-
metrically. Thorup proves that there always exists an (a, £)-covering con-
nections set of size O(e7!):

2. PRELIMINARIES 14

@ @
®®

Figure 2.1: An illustration of (part of) the recursive decomposition of a
graph G using cycle separators, and the corresponding decomposition tree
Ta. The graph G is decomposed using a cycle separator into Gy, and Gj.
Similarly, GG is decomposed into G19 and G11, and G4y is decomposed into
G110 and G111. The node r is the root of 74 and is associated with G, = G.
Similarly, r; is associated with G1, etc. The nodes r, and r, are the leaf
nodes that contain u and v, respectively. The node r; is the root-most node
whose separator is intersected by the shortest u-to-v path in G (indicated
in blue). Hence, this path is fully contained in G,, = G;.

Lemma 2. [Tho(), Lemma 3.4 Let G,Q, e, a and u be as in definition 5.
There exists an (o, €)-covering connections set Ca(u, Q) of size at most
[2e71]. This set can be found in O(|Q]) if the distances from u to every
vertex on @) are given.

We will use the term e-covering connections set whenever « is obvious
from the context. Thorup shows that (a,e)-covering connections sets can
be computed efficiently.

Lemma 3. [Tho(/, Lemma 3.15] Let H be an a-layered graph. In O(s~*nlog® n)
time and O(e~'nlogn) space one can compute and store a decomposition Ty
of H using shortest path separators, along with (c, €)-covering connections

2. PRELIMINARIES 15

sets Oy (u, Q) and Cy(Q,u) for every vertexrw € V(H), every ancestor node
r of ry in Ty, and every) € Sep,.

3 An Oracle for Undirected
Graphs With Faster Query

Let H be an undirected a-layered graph,' and let T be the associated span-
ning tree of H. For any fixed parameter &’ we set ¢ = % We decompose
H using shortest path separators w.r.t. T. Let Ty be the resulting decom-
position tree. For every node r € Ty and every shortest path Q) € Sep,,
we select a set Cg C V(Q) of e~ connections evenly spread intervals along
Q.> Thus, for every vertex ¢ € V(Q) there is a vertex ¢ € Cg such that
ou(t,q) < ea.

For each r € Ty, for each shortest path Q € Sep,, for each ¢ € Cg,
we compute in O(|H,|) time a shortest path tree in H, rooted at ¢ us-
ing [HIKRS97]. This computes the connection lengths dp, (u,q), for all
uweV(H,).

Lemma 4. Let u € V(H). For every ancestor node v € Ty of r,, and
every @ € Sep,, Cq is a 2¢-covering connections set from u to Q.

Proof. Let t € Q. We need to show that there exist ¢ € Cg such that
om, (u,t) < m, (u,q)+0m,.(q,t) < 0m,(u,t)+&'a. Since t € Q, there exists a
vertex g € Cg such that 6y (¢, t) < ea. Since H is undirected, the triangle
inequality for shortest path lengths holds for any three vertices in V(H).

I The discussion of a-layered graphs in Section 2 refers to directed graphs, and hence
also applies to undirected graphs.

2We assume that the endpoints of the intervals are vertices on @, since otherwise
once can add artificial vertices on @ without asymptotically changing the size of the
graph.

16

3. UNDIRECTED GRAPHS WITH FASTER QUERY 17

We start with the triangle inequality between wu, t and ¢ in H as follows.

5H7- (U, Q) + 5H7- (tv Q) < 5H7' (u7 t) + 2e (33)

From the triangle inequality, 0y, (u,t) < dy.(u,q) + du,.(q,t), and the
lemma follows. O

Figure 3.1: Tllustration of Lemma 4. () is a shortest path in some separator,
the connections of Cg are marked by triangles. The solid v-to-g path reflects
the shortest path from v to the connection ¢, and the dashed v-to-t path
reflects the shortest path from v to t.

3.1 Warm Up: The Static Case

We start by describing our data structure for the static case with a single
fixed label A (i.e., each vertex either has label A or no label at all). For
every node r € Ty, let S? be the set of M\-labeled vertices in H,.. For every
separator Q € Sep,, every vertex ¢ € Cg, and every vertex v € S) let

3. UNDIRECTED GRAPHS WITH FASTER QUERY 18

SHT (¢,v) = kea where k is the smallest value such that dy,(q,v) < kea.
Thus, 64, (q,v) < 5Hr(q,v) < du.(q,v) +ea. Let L,.(q,\) be the list of the
distances 5Hr(q,v) for all v € S}. We sort each list in ascending order.
Thus, the first element of L,(q, \) denoted by first(L.(¢q,\)) is at most e«
more than the distance from ¢ to the closest A-labeled vertex in H,.. We note
that each vertex u € V(H) may contribute its distance to O(s~!logn) lists.
Hence, we have O(¢ 'nlogn) elements in total. Since H is an a-layered
graph, the length of each @) is bounded by «. Hence, the universe of these
lists can be regarded as non-negative integers bounded by = = e~1. Thus,
these lists can be sorted in total O(e~'nlogn) time.

Query(u,\)

Given u € H. We wish to find the closest A-labeled vertex v to w in H. For
each ancestor r of r,, for each () € Sep,, we perform the following search.
We inspect for every q € Cq, the distance ég, (u, q) + first(L.(¢, \)). We
also inspect the A-labeled vertices in H, explicitly. We return the minimum
distance inspected. See Fig. 3.2 for an illustration.

Lemma 5. The query algorithm runs in O(e~'logn) time, and returns a
distance d such that 6y (u, \) < d < dg(u, \) + 3ea.

Proof. Let v be the closest A-labeled to w in H. It is trivial that if the
shortest path P form u-to-v does not leave r, = r, the query algorithm is
correct, since the distances in r, are computed explicitly. Otherwise, let r
be the root-most node in Tz such that P intersects some) € Sep,.. Thus,
P is fully contained in H,. Let ¢ be a vertex in QN P. Since v is the closest
A-labeled vertex to u, it follows that it is also the closest A-labeled vertex
to t.

Since t € @, there exists ¢ € Cg such that 0p, (v,q) + dm,(q,t) <
om, (v,t) + €'a. By the triangle, oy, (v,q) < 0m,(q,t) + 0, (v,t). Hence,
first(L,(q,\)) < 0m,(q,t) + 6, (v, t) < 0p,(q,v) + ca.

First(Le(q,\) < u,(q,v) < 6p.(q,v) + e (3.4)
< 0g,(q,t) + 0m, (t,v) + ex (3.5)
< 0y, (t,v) + 2ex (3.6)

Where inequality (3.4) follows from the definition of L, (g,), (3.5) follows
from the triangle inequality, and (3.6) follows from the fact that oy, (q,t) <

3. UNDIRECTED GRAPHS WITH FASTER QUERY 19

Figure 3.2: Illustration of the query algorithm. The solid quarter-circles
are shortest paths of separators in G. The vertices x, y and v have label
A, and v is the closest A-labeled vertex to u. The path) belongs to the
root-most node r whose separator is intersected by the shortest u-to-A path
(solid blue). The vertices ¢ and ¢ on) are as in the proof of Lemma 5.
The connection ¢ minimizes 6y (u,q) + first(L,(g,\)). The distances in
L.(g, \) are the lengths of the dashed paths.

e
Query(u, A) <dm, (u,q) + first(L.(g, A)) (3.7)

<6y, (u,q) + o, (t,v) + 2e (3.8)

<6p, (u,t) + 0m, (t,q) + 0m, (t,v) + 2ea (3.9)

<b0g, (u,v) + e (3.10)

)

<0p(u,\) + 3ea (3.11

Here, inequality (3.9) follows from the triangle ineqaulity, and (3.11) follows
from the fact that P is fully contained in H,., and our assumption that v is
the closest A-labeled vertex to v.

Since 0g, (u, q) + first(L,(q, A)) underlines a real path in the H,, from
our assumption that v is the closest A-labeled vertex to wu, it follows that
Query(u, \) > dp, (u,v), and the lemma follows.

3. UNDIRECTED GRAPHS WITH FASTER QUERY 20

To prove the query time, observe that the height of Ty is O(logn). At
any level of the decomposition we inspect the first element in O(e7!) lists,
that is O(¢~'logn) time. We also inspect constant number of distances in
r, 1n constant time.]

We now generalize to multiple labels. Let £ be the set of labels in H.
For r € Ty, let L, be the restriction of L to labels that appear in H,. For
every label A € £,, every () € Sep, and every g € Cg, we store the list
L.(q,\). This does not affect the total size of our structure, since each
vertex has one label, so it still contributes its distances to O(e~!log n) lists.
The proof of Lemma 5 remains the same since each list contains distances
to a single label.

Naively, we could store for every node r, every vertex ¢, and every label
A € L the list L,(q,\) in a fixed array of size |£|. This allows O(1)-time
access to each list, but increases the space by a factor of |£] w.r.t. the
single label case. Instead, we use hashing. Each vertex ¢ holds a hash table
of the labels that contributed distances to ¢q. For the static case, one can
use perfect hashing [FIKS84] with expected construction time and constant
query time. In the dynamic case, we will use a dynamic hashing scheme,
e.g., [PRO1|, which provides query and deletions in O(1) worst case, and
insertions in O(1) expected amortized time.

3.2 The Dynamic Case

We now turn our attention to the dynamic case. We wish to use the follow-
ing method for updating our structure. When a node v changes its label
from A\; to Ao, we would like to iterate over all ancestors r of r, in Ty.
For every () € Sep, and every ¢ € Cg, we wish to remove the value con-
tributed by v from L,(q, A1), and insert it to L,(q, A2). We must maintain
the lists sorted, but do not wish to pay O(logn) time per insertion to do
so. We will be able to pay O(logloge™!) per insertion/deletion by using a
successor/predecessor data structure as follows.

For every r € Ty, Q € Sep,, and ¢ € Cy, let L,.(q) be the list containing
all distances from all vertices in V(H,) to ¢ sorted in ascending order. We
note that since the distance for each specific vertex to ¢ does not depend on
its label, the list L,(q, A) is a restriction of L,.(q) to the A-labeled vertices
in H,.

3. UNDIRECTED GRAPHS WITH FASTER QUERY 21

During the construction of our structure we build L,(q), and, for every
vertex v in H,, we store for v its corresponding index in L,(q). We denote
this index as ID,(v). We also store for ¢ a single lookup table from the
IDs to the corresponding distances. We note that v has O(¢~!logn) such
identifiers, and in total we need O(¢~'nlogn) space to store them.

Now, instead of using linked list as before, we implement L, (g, A) using a
successor/predecessor structure over the universe [1,..., |V (H,)|] of the IDs.
For example, we can use y-fast tries [Wil83| that support operations in
O(logloge™1!) expected amortized time and minimum query in O(1) worst
case.

Query(u, A)

The query algorithm remains the same as in the static case. For every
ancestor r of r, in Ty, every () € Sep,, and every connection ¢ € Cg, we
retrieve the minimal ID from L,(gq, \) , and use the lookup table to get the
actual distance between ¢ and the vertex with that ID.

Update

Assume that the vertex v changes its label from A; to As. For every ancestor
rof r, in Ty, every @ € Sep,, and every ¢ € Cp, we remove [D,(v) from
L,.(q, A1) and insert it to L,.(g, A2).

Lemma 6. The update time is O(e ' logn-logloge™!) expected amortized.

Proof. Tn each one of the O(logn) levels in Ty, we perform O(e™!) inser-
tions and deletions from successor /predecessor structures in O(logloge™)
expected amortized time per operation. Therefore the total update time
is O(e 'lognloglogn). If the set £, changes for some r € Ty as a result
of the update, we must also update the hash table that handles the labels.
This might cost an additional O(1) expected amortized time per node, and
is bounded by O(logn) expected amortized time in total. O

Lemma 7. The data structure can be constructed in O(e 'nlogn-logloge™)
expected amortized time, and stored using O(e nlogn) space.

Proof. We decompose H into Ty, and compute the connection length in
O(e7'nlogn) time. We than build the lists L,.(q) for every node r € Ty

3. UNDIRECTED GRAPHS WITH FASTER QUERY 22

and q on any ¢ € Sep,. These lists contains O(¢7'nlogn) elements in the
range [1,...,¢71] that is independent of both n and . Hence we sort the lists
in O(e 'nlogn) time. We than use our update process on each v € V(H)
and each ancestor r of r, in O(e 'logn - logloge™!) expected amortized
time for v. Hence, our construction time is O(e 'nlgnlogloge™!) expected
amortized. To see our space bound, we note that every v contributes a dis-
tance O(e!) lists at every ancestor r of r,. Hence, there are O('nlogn)
elements in total. Our successor/predecessor structures, and the hash ta-
bles has linear space in the number of elements stored. Thus, O(s~'nlogn)
space. [

We plug in this structure to Lemma 1 and obtain the following theorem:?

Theorem 1. Let G be an undirected planar graph. There exists a stretch-
(1+¢) Approzimate Dynamic Vertex-Labeled Distance Oracle that supports
query in O(e 'lognloglognN) worst case and updates in O(c 1 logn -
loglogetlognN) ezpected amortized. The construction time of that or-
acle s

O(e7'nlogn-logloge~'lognN) and it can be stored in O(s'nlognlognN)
space.

3Formally, one needs to show that Lemma 1 holds for vertex-labeled oracles as well.
See Appendix A

4 Oracle for Directed Graphs

For simplicity we only describe an oracle that supports queries from a given
label to a vertex. Vertex to label queries can be handled symmetrically. To
describe our data structure for directed graphs, we first need to introduce
the concept of e-covering set from a set of vertices to a directed shortest
path.

Definition 6. Let S be a set of vertices in a directed graph H. Let) be
a shortest path in H of length at most a. Cy(S,Q) C V(Q) x RT is an
e-covering set from S to Q in H if for every t € Q s.t. du(S,t) < «, there
exists (¢,0) € Cy(S,Q) s.t. £+ 0(q,t) <p(S,t)+ea, and £ > du(S,q).

In the definition above we use ¢ instead of 6(S,q) (compare to Defini-
tion 5) because we cannot afford to recompute exact distances as S changes.
Instead, we store and use approximate distances £.

Lemma 8. Let H be a directed planar graph. Let () be a shortest path in
H of length at most o. For every set of vertices S C V(H) there is an
e-covering set Cy(S,Q) of size O(e™1).

Proof. We introduce a new apex vertex in H denoted by x. For every vertex
v in S, we add an arc xv with length 0. Since the indegree of = is 0, @)
remains a shortest path, with length bounded by . We apply Lemma 2 on
r w.r.t Q, to get an e-cover set Cy(xz, Q) of size O(e™!). Clearly, Cy(z, Q)
is an e-covering set from S to @), and the Lemma follows. [

Our construction relies on the following lemma.

Lemma 9 (Thinning Lemma). Let H, S and Q be as in Lemma 8. Let
{Si}e_, be sets such that S = Ui, S;. For 1 < i < k, let Dy(S;,Q) be

an €'-covering set from S; to Q, ordered by the order of the vertices on Q.

23

4. DIRECTED GRAPHS 24

Then for every € > 0, an (e +¢€’)-covering set Cy(S, Q) from S to Q of size
[2e1] can be found in O™ + | UL, Du(S:, Q)|) time.

Proof. Let qg be the first vertex on (). Let Q be the reduction of to the
vertices in |Ji_, Do(S;) and qo. Let H be the auxiliary graph consisting
of Q and an apex vertex x connected to every ¢ € Q with an arc xq of
length 05(S;,q), where S; is the set originally containing ¢q. Note that
Ou(Si,q) > 0u(S,q). Also note that H is planar, with diameter bounded
by «, and since the indegree of x is 0, () is a shortest path in H. Let
m = | Ule Dy (S;,Q)|. We compute the shortest distance from z to every
other ¢ in H explicitly by relaxing all arcs adjacent to x, and than relaxing
the arcs of @ by order. Constructing H and computing these distances can
be done in O(m) time, since |V (H)| = |E(H)| = O(m).

We apply Lemma 2 to x with € and get an e-covering set C'y(x, Q) of size
[2e71] from to Q. Tt remains to prove that C;(z, Q) is an (e+&’)-covering
set Cy (S, Q) set from S to @ in H.

Let t € Q. We show that there exists (¢,¢) € Cpx(z,Q) such that
C+0p(q,t) < om(S,t) + (¢' +e)a. We assume without loss of generality,
that 0y (S,t) = 05 (S1,t). Since Dg(S1) is an &’-covering set from S; to @
in H, there exists (¢, ') € Dg(S1) such that:

U +0p(q,t) <0u(Si,t) +&a (4.1)

Also, since ¢ € Dg(S;), it is also on (). Therefore there exists (¢,0) €
Cy(z,Q) such that:

(+05(q,q) <dg(z,q) +ea <l +ea (4.2)

Where the last inequality follows the fact that for every (¢*, ¢*) € Dg(S1),
dg(x,q*) < £, and hence, d4(x,q’) is at most ¢

O (S1USo,t) +e'a+ea=0y(S1,t) +&a+ea (4.3)

>0 +6u(d,t) +ea (4.4)

>0+ 65(q,4) +0u(d,t) (4.5)

=0 +0u(q,q) +0n(d,t) (4.6)

=0+ 6u(q,t) (4.7)

Here, (4.4) follows from inequality (4.1), (4.5) follows from inequality (4.2).

]

4. DIRECTED GRAPHS 25

Oy

Figure 4.1: Illustration of he auxiliary graph H in the proof of Lemma 9,
when applied to the sets S; = v and Sy = v (Le. k =2). The connection
sets of S; and Sy are indicated by the triangles and squares, respectively.
The connections in the output set are indicated by a solid fill. The vertex ¢
is a vertex on) (not on Q) that is closer to v than it is to u. Although ¢ is
covered by both ¢ and ¢/, its distance from x is better approximated via ¢'.
The vertex q e-covers ¢’ w.r.t. the distances in H hence ¢’ is not included
in the output set. Since ¢q e-covers ¢', and ¢’ ¢’-covers t, it follows that ¢ is
(e + €’)-covered by q.

Let H be a directed planar a-layered graph, equipped with a spanning
tree T. For every fixed parameter ¢, let é = @, and ¢* = 5. We apply
Lemma 3 with ¢ to H and obtain a decomposition tree Ty, and é-covering
sets Cy, (v, Q) and Cy, (Q,v) for every v € V(H), every ancestor 7 of 7, in
Ta and every Q € Sep,. For every 1 <i <logn, let ¢; = mfﬂ%.

For every r € Ty, for every A € L., and for every () € Sep,, we apply
Lemma 9 to the é-covering connections sets Cy, (v, Q) for all v € S, with
¢’ = ¢ and ¢ set to 5. Thus, we obtain an e*-covering set C}; (S}, Q). Let
i be the level of r in Ty, we also store for r a set of g;-covering sets as
follows. For every ancestor node t of r in Ty and every () € Sep;, we store

C, (S}, Q). We assume for the moment that these sets are given. We defer

4. DIRECTED GRAPHS

1

G Iy

@ Q rv

Vertex connections Query connections Update connections
€-covering sets £'-covering sets £j-covering sets
From SZ to
r N/A 4
/ 0 € Sep, From S¢ to Q € Sep,
N/A From Sﬂ] =5, From Sﬂl =S, US,, to
U S, toQ € Sepy, Qe {Sep,l,Sep,}
N/A From Sél =uto From ST’L =uto
Q € Sepy, Q € {Sepr,, Sep;,,Sep:}
N/A From S}, = vto From S}, =vto

Q € Sepy, Q € {Sepy,, Sepy,,Sep,}
u v From u to every
u | Q€ ({Sep,, Sep,, Sep.}, N/A N/A
and from every such Q to u.
From v to every
v | Q€ ({Sep,,Sep,, Sep.}, N/A N/A
and from every such Q to v.
Figure 4.2: A summary of the connections-sets stored by the directed

oracle. On the left, part of a decomposition tree of a graph is shown. The
vertices u and v are the only A labeled vertices. On the right, a table listing
all the covering sets that are stored for the label .

the description of their construction (see the update procedure and the proof
of Lemma 12). We will use the *-covering sets for efficient queries, and the
more accurate g;-covering sets to be able to perform efficient updates. See
Fig. 4.2.

4.1 Query(\, u)

The query algorithm is straightforward. For every ancestor r of r, we
find (¢,¢) € Cy (S}, Q) and t € Cp, (Q,u) that minimize the distance
(+0g,(q,)+, (t,u). We also inspect the distance to the A-labeled vertices
in r, explicitly. We return the minimum distance inspected. To see that the
query time is O(e 'logn), we note that for every one of the O(logn) an-
cestors of r,, we inspect O(e~1) distances on constant number of separators.
Inspecting the distances in 7, itself takes constant time.

4. DIRECTED GRAPHS 27

Figure 4.3: The solid quarter-circles are shortest paths of separators in G.
The vertex v is the closest A-labeled vertex to u. The path) belongs to the
root-most node r whose separator is intersected by the shortest A\-to-u path
(solid blue). The connections of S? on @Q are indicated by black triangles,
the connections of u are indicated by black squares. The vertices ¢ and ¢
on () are as in the proof of Lemma 10. The blue and black dashed lines are
the shortest paths from v to ¢, and from ¢ to u, respectively. These paths
are used to generate the distance reported by the query algorithm.

Lemma 10. Query(\,u) < dg(\ u) + ca.

Proof. Let r be the root-most node in Ty such that the shortest A-to-u path
P in H intersects some () € Sep,. Let k be a vertex in Q N P. By the
definition of the connection set C}; (S}, @), there exists (¢, () such that

L+ 61, (g, k) < 00, (S),) + €% (4.8)
Also there exists t € Cy, (Q,u) such that

Om, (kyt) + 6, (t,u) < 6p, (k,u) + éa < 0p, (k,u) + " (4.9)

4. DIRECTED GRAPHS 28

We add the two to get
L+ 6, (q, k) (K, t) + 6m, (t,u) < 0, (SN, k) + 0, (k,u) + e*a + e

(4.10)

L+ 01, (q,t) + 0m(t,u) < 6m, (SN k) + 0, (k,u) + 2e*a (4.11)
L4651, (q,t) + 0, (t,u) < 8p, (SN, u) + ea (4.12)

Clearly, [+ 6x(q,t) + 0 (t,u) > 55 (S}, u). And since P is fully contained
in H,, 05, (S)u) = 05(S?, u), and the Lemma follows. O

4.2 Update

Assume that some vertex u changes its label from A; to As. For every
ancestor r of r, and every) € Sep,, we would like to remove Cy, (u, Q) from
Cx, (S, Q), and combine Cy, (u, Q) into Cg, (S22, Q). While the latter is
straightforward using Lemma 9, removing Cy, (u, Q) from Cg, (SN, Q) is
more difficult. For example, if u was the closest A\; labeled vertex to every
vertex on @, it is possible that Cy (u,Q) = Cy (SM,Q). In that case,
we will have to rebuild Cy, (S, Q) from the other O(|V (H,)|) vertices of
SM. Instead of removing the connections of u, we will rebuild Cy, (S, Q)
bottom-up starting from the leaf node 7.

We therefore start by describing how to update r,. There is a constant
number of vertices in r,, and hence |S)'| = O(1). Let vy, va,...v4 be the
vertices in S?ul. We stress that for every 1 < j <k, v; has an é-covering set
Chu,(v;,Q) of size O(e71) from v; to Q, for every ancestor t of r, in Ty, and
for every @ € Sep;. We apply the Thinning Lemma (Lemma 9) for each
such ¢ and Q on {Cy, (vj,Q)}s_; with & = € and € set to €. Lemma 9 yields
a 2é-covering set C', (S, Q).

We next handle the ancestors r of r, in Ty in bottom up order. Let x
and y be the children of r € Ty. We first note that H, = H,UH, and hence,
S} = SyuUS)t. Therefore, by Lemma 9, for every ancestor ¢ of r, and every
Q € Sepy, Cp, (S}, Q) can be obtained from C, (53", Q)UCH, (S, Q). Let
i by the level of r in Ty, and hence the level of x and y is ¢+ 1. Since ¢ is an
ancestor of r, it is also an ancestor of = and y. Hence, = (y) stores an ;-
covering set C, (53", Q) (Cp,(S,*,Q)). We apply Lemma 9 on Cp,(S;", Q)
and Cp,(S,", Q) with &’ = £;4, and e = 2¢ to get an (g,41 + 2€)-covering set
Ch,(SM, Q). The following lemma shows that Cp, (SN, Q) is an g;-covering
set.

4. DIRECTED GRAPHS 29

Lemma 11. Let r be a node in level i in Ty. For every ancestor t of r,
and every Q € Sep;, Cy, (SM, Q) is an g;-covering set from SM to Q.

Proof. We first recall that ¢; = mfﬁ)’% for every 1 < i < logn. We prove
the lemma by induction on the level of 7 in Ty. The base case is i = logn,
so r is a leaf. The connection sets of the leaf nodes are computed explicitly
using Lemma 9, with € and ¢’ set to €. Hence the product of the lemma is
2é-covering sets.

% =2 c

8logn 4logn Flogn (4.13)

For the inductive step, if r is a leaf, then the arguments from the base
case applies. Otherwise, let x and y be the children of . By the induction
hypothesis, both z and y have ;,,-covering set from S and S;\l to @,
respectively. The update procedure applies Lemma 9 on CHm(S;\I(, Q) and
C’Hy(Sgl, Q) with ¢’ = ;41 and € = 2¢, so we get an (g,41 + 2¢)-covering set
Crn (S, Q).

logn —(i+1)+1 2 logn—i—Fl:ei (1.14)

; 2¢ = —
Sirrtoc=¢ 4logn +6810gn c 4dlogn

O

To finish the update process, we need to update the e*-covering sets
that we use for queries. Let r be an ancestor node of r, in level i on Ty.
By Lemma 11, for every Q € Sep,, we have an g;-covering set Cr, (SN, Q).
Since g; < ¢* , Cg,(SM,Q) is also an e*-covering set. However, it is too
large. We apply Lemma 9 on Cp, (SM, Q) with ¢ = ¢, and ¢ set to g to
get (g; 4 7)-covering set. We note that since g; < § for every 1 < i <logn,
we get that e, + 7 < 27 < 5 = ¢*. Hence the output of Lemma 9 is the

2
desired e*-covering set Cj; (S}, Q). We repeat the entire process for A,.

Lemma 12. There ezists a scale-(a, €) distance oracle for directed a-layered
planar graph, with query time O(c~*logn) worst case, and update time of
O(e7'log® n) expected amortized. The oracle can be constructed in O(s~>nlog® n)
time and stored using O(s 'nlog®n) space.

Proof. Since our update process only uses Lemma 9, we bound the up-
date time by the running time of that Lemma. Since the running time of
Lemma 9 is linear in sizes of the input connection sets we get the bound

4. DIRECTED GRAPHS 30

by the number of connection stored for r, and its ancestors. We store for
T @—connection set for constant number of separators for every one of
the O(logn) ancestors of r,. Hence, the number of connections stores for
ry is O(logn(g55)7") = O(e™ log?n). Since the number of connections
stored for r, dominates the number of connection stored for any other strict
ancestor of r,, we get the total number of connections stored of O(log® n).

We note that the connections of the vertices in r, are only used when
updating 7., and for any other non-leaf node r, we only use the connection of
its children. Thus, any connection is used at most twice. Once for updating
a connection set of its parent, and the second time, is when updating the
e*-covering sets of r (r,). Hence the total input size of Lemma 9 is at most
twice the number of the connections stored for the ancestors of r,, that is
O(log®n), and the update time follows.

Since we store for every r € Ty and every @ € Sep, a connection set for
every A € L,, we use dynamic hashing as in Section 3. Hence, our update
time is expected amortized.

Our query time is trivial and follows from the fact that we process
O(logn) levels in Ty, and in each we inspect O(¢*!) connections. That is
O(e7'logn) time worst case.

By Lemma 3 with € set to €, all connection sets for all leaves of Ty
can be computed in O(s ?nlog’n) and it requires O(e 'nlog®n) space.
We construct the connection sets Cp, (S2, Q) for all 7 € Ty, Q € Sep, and
A € H, by applying the update process for each vertex v € V(H). This takes
O(c'log®n) expected amortized time per operation, and O(s'nlog® n)
expected amortized time in total. This is dominated by the construction of
Thorup’s oracle.

To get the space requirements of our data structure, we need to count
the number of connections stored. If every vertex u € V(H) has unique
label, it follows that the connection sets stored for u are not useful for
any other vertex. We therefore count the number of w’s connections and
multiple by O(n). Let A be the label of u. To support queries and updates
for A\, we store for every ancestor r of r, connection sets from S to O(logn)
separators for the ancestors of r. Since the size of these connection sets is
only bounded by O(¢7'), we get that r requires O(¢~!log®n) connections.
Since 7, has O(logn) ancestors, we store for u (and by that for \) O(log® n)
connections. Thus, the total space required is O(n log® n). O

We can now apply Lemma 1 to get the following theorem:

4. DIRECTED GRAPHS 31

Theorem 2. For any directed planar graph and fized parameter e, there ex-
ists a (1+¢) approximate vertex-labeled distance oracle that support queries
in O(e~"lognloglognN) worst case and updates in O(c~'log® nlognN) ez-
pected amortized time. This oracle can be constructed in O(e ?nlog® nlognN)
expected amortized time, and stored using O(s'nlog® nlognN) space.

5 Oracle for Undirected Graphs
with Faster Update

Both Thorup [Tho04, Lemma 3.19] and Klein |[Kle02| independently pre-
sented efficient vertex-vertex distance oracles for undirected planar graph
that use connections sets. Klein later improved the construction time [Kle05].
They show that, in undirected planar graph, one can avoid the scaling ap-
proach that uses a-layered graphs. Instead, there exist connections sets
that approximate distance with (1+ ¢) multiplicative factor rather than e«
additive factor. We use the term portals [Kle05] to distinguish this type of
connections from the previous one.

Definition 7. Let G be an undirected planar graph, and let () be a shortest
path in G. For every vertex v € V(G) we say that a set Ce(v,Q) is an
e-covering set of portals if and only if, for every vertex t on Q) there exist
a vertex q on Q) such that: dg(v,q) + da(q,t) < (1 +¢)dg(v,t)

We use a recursive decomposition 7 with shortest path separators, and
use Klein’s algorithm [IKIe05] to select all the portal sets Cg, (u, Q) effi-
ciently.We cannot use the lists of Section 3 because there may be too many
portals, and we cannot use the thinning lemma (Lemma 9) of Section 4 be-
cause its proof uses a directed construction, and hence, cannot be applied
in undirected graphs. Instead, we take the approach used by Li, Ma and
Ning for the static vertex-labeled case [LMN13]. We work with all portals of
vertices with the appropriate label, and find the closest one using dynamic
Prefix/Suffix Minimum Queries.

Definition 8 (Dynamic Prefix Minimum Data Structure). A Dynamic Pre-
fix Minimum Data Structure is a data structure that maintains a set A of n
pairs in [1,n] xR, under insertions, deletions, and Prefix Minimum Queries

32

5. UNDIRECTED GRAPHS WITH FASTER UPDATE 33

[EA—— w

Figure 5.1: Illustration of the reduction to unique portals. Above, the path
@ with the portal x that is used by vy, v1, and ve. Below, x was replaced by
vy, V1, and xve, inner connected with zero length edges. Here, xvg, xvy,
v are the portals of vy, vy, and vy respectively. Note that this reduction
does not introduce new paths in the graph, nor changes the distance along

0.

(PMQ) of the following form: given | € [1,n] return a pair (z,y) € A s.t.
x € [1,1], and for every other pair (z',y") with ' € [1,1], y <y’

Suffix minimum queries (SMQ) are defined analogously. Let PMQ(A, 1)
and SMQ(A,1) denote the result of the corresponding queries on the set A
and [.

We assume that for every u,v € V(G,), Cq,.(u,Q) N Cg,(v,Q) = 0.
This is without loss of generality, since if z is a portal of a set of vertices
0, ---, Uk, We can split = to k copies. This does not increase |G| by more
than a factor of e7!. See Fig. 5.1. (see figure 5.1).

To describe our data structure, we first need the following definitions.
Let Q € Sep, for some r € Tg. Let qo,...,qx be the vertices on) by
their order along (). G is undirected, hence the direction of @) is chosen
arbitrarily. For every 0 < j <k, let h(g;) denote the distance from ¢ to ¢;
on (). We note that since () is a shortest path in G, h(g;) = d¢(qo, ¢;)- For

5. UNDIRECTED GRAPHS WITH FASTER UPDATE 34

every A € £, we maintain a dynamic prefix minimum data structure Preg
over {(j, —h(g;) + d¢, (g5,) }j—o. We similarly maintain a a dynamic sufix
minimum data structure Sufq x over {(j, h(g;) + dc, (¢;, X))}z

Query(u, \)

For every ancestor r of r, in Tg, every @ € Sep,, and every ¢; € Cg, (u, Q)

we wish to find the index ¢ that minimizes dg, (u, ¢;) +90c, (45, ¢;) +0a, (g, A)-
Observe that for i < j, é¢, (g5, ¢;) = h(j)—h(i), while for i > j, é¢, (¢;,¢:) =

h(i) — h(j). We therefore find the optimal ¢ < j and i > j separately.

Note that mini<;(dc, (u, ¢;) + 0c, (45, 4:) + 0c, (@, A)) = 6c, (u, ;) + h(j) +
PMQ(Preg.y, j). Similarly, we handle the case where i > j using SMQ(Sufg.», j).
Thus, we have two queries for each portal of u. We also compute the dis-

tance from u to A in r, explicitly. We return the minimum distance com-
puted.

Lemma 13. The query algorithm returns a distance d such that 6g(u, \) <
d < (1+¢)da(u, A)

Proof. The proof of correctness of our algorithm is essentially the same
as in |[LMNI13, Lemma 1|. We adapt it to fit our construction. Let v
be the closest A-labeled vertex to w in G. If the shortest u-to-v path P
does not leave r, = r, the algorithm is correct, since the distance in r, is
computed expilicitly. Otherwise, let r be the root-most node in 7 such
that P intersects some () € Sep,. Let t be a vertex on PN (). There exists
¢; € Cg,(u,Q) and ¢; € Cg, (v, Q) such that:

Oc, (u,q;) + 0, (g5, 1) < (1 +¢€)(d¢, (u,1)) (5.1)
5G7‘ (U7 qz) + 6G'r (qla t) S (1 + 8) (6G7‘ (U? t))
We add the two inequalities to get the following:

S (,05) + B (05000 + B, (0,0) < (14)0, (w) (53)
If i <j, then PMQ(Prefonx,j) < da, (g, \) —h(q:) < i, (v, ¢:) — h(q).
Thus,
Query(u, A) < dg, (v, ¢i) — h(ai) + h(j) + 0c, (u, ;)
= b, (v, 4) + d¢, (4, 4) + dc, (u, ¢;)
< (1 +¢)(dc, (u, v))
< (1 +¢)(da(u, A))

NN N S
N o ot
~— e e

5. UNDIRECTED GRAPHS WITH FASTER UPDATE 35

Here, inequality (5.6) follows from (5.3), and (5.7) follows from that fact
that P is fully contained in r, and our assumption that v is the closest
A-labeled vertex to u.

The proof for the case that ¢ > 7 is similar. O]

Update

Assume that the label of u changes from A; to Ay. For every ancestor
rof r, € Tg, and Q € Sep,, and for ¢; € Cg,(u,q), we remove from
Preg , and Sufg), the element (x,y) with = ¢, and insert the element
(i, —h(i) + ¢, (u,q;)) into Preg.,, and (i, h(i) + ¢, (u, q;)) into Sufg,-
We note that since we assume that every vertex ¢; is a portal of at most
one vertex, the removals are well defined, and the insertions are safe.

The time and space bounds for the oracle described above are given in
the following lemma.

Lemma 14. Assume there exists a dynamic prefiz/suffic minimum data
structure in the word RAM model, that for a set of size m, supports PMQ)/SMQ
in O(Tg(m)) time, and updates in O(Ty(m)) time, can be constructed in
O(Tc(m)) time, where To(m) > m, and can be stored in O(S(m)) space.
Then there exist a dynamic vertex-labeled stretch-(1 + €) distance oracle
for planar graphs with worst case query time O(e~log(n)To(e7'n)), and
expected amortized update time O(e log(n)Ty(e7'n)). The oracle can be
constructed using O(c~'nlog®n +log(n)T.(7'n)) ewpected amortized time,

and stored in O(log(n)S(e7'n)) space.

Proof. Let G be an undirected planar graph. We first decompose G to ob-
tain 7, and compute all the portals and the distances to portals. Klein [Kle05]
shows that this can be done using O(nlog(n)(e~ +logn)) time. Then, for
every r € Tg, for every Q € Sep, and every A € L,, we construct a pre-
fix /suffix minimum query data structures for Preg \ and Sufg ».

Recall that Preg y is defined over the set of pairs {(j, —h(q;)+0c, (¢, A)) Moo,

where g; is the j’th portal on Q). For each element (z,y) in Preg y, the first
coordinate is specified by the order of the corresponding portal on (). Hence,
r < 7n is an integer that fits in a single word. The second coordinate can
be treated similarly; We sort the list {—h(g;) + dg, (g;, \)}; for all portals
g; on . Then, we can specify y by its ordinal number in the sorted list.
The same argument holds for Sufg .

5. UNDIRECTED GRAPHS WITH FASTER UPDATE 36

Constructing Preg » and Sufg y takes O(logn(e 'nlog(e'n)+Tc(e71n))
time, since at every level of 7 the total number of portals is O(¢~'n), and
since T¢(+) is superlinear. The number of portals we store is O(s 'nlogn)
since every vertex v has O(e™!) portals for every one of its O(logn) ances-
tors in Tg. Hence our space is O(log(n)S(e~'n)), and the construction time
is O(e 'nlog®n +log(n)T.(c"'n)).

To analyze the query and update time, we note that we process O(logn)
nodes in 75 and in each we perform O(e™1) queries or updates to the pre-
fix /suffix minimum query structures. The size of our prefix/suffix struc-
tures is bounded by the size of V(Q) which is O(e7'n). The 7! fac-
tor is due to the assumption of distinct portals. Thus, the query time
is O(elog(n)Tg(e7'n)) and the update time is O(e~!log(n)Ty(e7'n)).

Since every) € Sep, holds a prefix/suffix minimum data structure for
every label A € L., we use dynamic hashing to avoid space dependency
in |£], as in Section 5. Hence, our construction time and update time are
expected amortized.]

It remains to describe a fast prefix/suffix minimum query structure.
We use a result due to Wilkinson [Will4] for solving the 2-sided reporting
problem in R? in the word RAM model. In this problem, we maintain a set
A of n points in R? under an online sequence of insertions, deletions and
queries of the following form. Given a rectangle B = [ly, h] X [l2, ho] such
that exactly one of l1,ls and one of hq, hy is 0o or —oo, we report AN B.
Here, [l1, h1] X [l2, ho] represents the rectangle {(z,y) : 3 < x < Iy, hy <
y < hg}. Since Wilkinson assumes the word RAM model, it is assumed
that the coordinates of the points in A are integers that fit in a single word.
Wilkinson’s data structure is captured by the following theorem.

Theorem 3. [Will/, Theorem 5] For any f € [2,logn/loglogn], there ex-

ists a data structure for 2-sided reporting with update time O((f log nloglogn)'/?),
query time O((flognloglogn)'/? +log;(n) + k) where k is the number of
points reported. The structure requires linear space.

In fact, Wilkinson’s structure first finds the point with the minimum
y-coordinate in the query region, and then reports the other points. Using
this fact, and setting f = log” n for some arbitrary small constant v. We
get the following lemma, in which we also state Wilkinson’s construction
time explicitly.

5. UNDIRECTED GRAPHS WITH FASTER UPDATE 37

Lemma 15. There exists a linear space data structure for 2-sided reporting
on n points, with update time O(logl/QJr7 n) and query time O(lci;%)' This
data structure can be constructed in O(nlogl/2+7 n) time. Moreover, upon
query the data structure returns the minimum y-coordinate of a point in the

query region.

The prefix/suffix queries required by Lemma 16 correspond to one-sided
range reporting in the plane, which can be solved using 2-sided queries, by
setting the upper limit of the query rectangle to nN.

Lemma 16. For any constant v > 0, there exists a linear space dynamic

prefix/suffic minimum data structure over n elements with update time

O(log"** n), and query time O(ll%). This data structure can be con-
oglogn

structed in

O(nlog"*™ n) time.

Proof. We use Wilkinson’s structure. A prefix minimum query for ¢ cor-
responds to finding the point with minimum y-coordinate in the rectangle
(—00, —00,1,00). This is 1-sided rectangle. To be able to specify a boundry
for the y-axis, we maintain an upper bound ¥,,., on the y-coordinates of
points in A. The bound can be easily updated in constant time when an
insertion occurs. (There is no need to update the bound when a dele-
tion occurs). We replace the 1-sided rectangle with the 2-sided rectan-
gle (—00, —00, %, Ymaz). Similarly, our suffix minimum query is the 1-sided
rectangle (i, —00, 00, 00) or the 2-sided (i, —00, 00, Ymaz). The lemma now
follows by applying Lemma 15. [

We therefore obtain the following theorem.

Theorem 4. For any undirected planar graph and fized parameters €,,
there exists a stretch-(1+¢) vertez-labeled distance oracle that approximates
—1lognlog(e~1n)
N loglog (e~ 1n)
O(e tlognlogz*"(c7n)) expected amortized time. This data structure can
1

distances in O(e) time worst case, and supports updates in

be constructed using O(nlog*n + &~ nlognlog%JW (e7'n)) expected amor-
tized time and stored using O(e 'nlogn) space.

6 Concluding remarks

In this work we presented approximate vertex-labeled distance oracles for
directed and undirected, planar graphs with polylogarithmic query and
update times and nearly linear space. All of our oracles have Q(logn)
query and updates, since we handle root-to-leaf paths in the decomposi-
tion tree. The logarithmic factor can be avoided in the vertex-to-vertex
case where approximate distance oracles with faster query times exist (see
e.g., [Tho04, Wull6, GX15] and references therein). This is also the case
for the static vertex-to-label case. For example, Mozes and Skop [MS15]
presented an oracle with constant query time. Their oracle uses label con-
nections that store the shortest distance to a labeled vertex in the entire
graph. This is in contrast to our connections that only consider labeled
vertices in a subgraph. Hence, their query algorithm only accesses a single
node in the decomposition tree. The downside of storing distances in the
entire graph is that labels changes are less contained (may affect O(n) sep-
arators). It would be interesting to study whether an approximate distance
oracle with logarithmic update time and o(logn) query time exists.

Another bottleneck for our directed data structure is the use of O(logn)
connection sets in every node of the decomposition tree. Those sets are
only used by our bottom-up update approach, which is mainly needed for
removal of labeled vertices. We tried to avoid storing these sets, with no
success. It remains an open question whether this costly update procedure
can be avoided.

For our undirected oracle with the faster update (Section 5), we use
Wilkinson’s 2-sided reporting [Will4] as a dynamic prefix/suffix minimum
data structure. During our research, we tried to develop a faster dynamic
prefix minimum data structure but with no success. Another interesting
question that arises is whether other approaches may be used to obtain a
faster prefix/suffix minimum data structure, that will lower the time bounds

38

6. CONCLUDING REMARKS

of our oracle.

39

Bibliography

[ACD*16]

[ACG12]

[aOPT15]

|Chel2]

[FKS84]

[GX15]

[HKRS97]

Ittai Abraham, Shiri Chechik, Daniel Delling, Andrew V. Gold-
berg, and Renato F. Werneck. On dynamic approximate short-

est paths for planar graphs with worst-case costs. In SODA,
pages 740-753. STAM, 2016.

Ittai Abraham, Shiri Chechik, and Cyril Gavoille. Fully dynamic
approximate distance oracles for planar graphs via forbidden-set
distance labels. In STOC, pages 1199-1218. ACM, 2012.

Jakub bLacki, Jakub Ocwieja, Marcin Pilipczuk, Piotr
Sankowski, and Anna Zych. The power of dynamic distance

oracles: Efficient dynamic algorithms for the steiner tree. In
STOC, pages 11-20, 2015.

Shiri Chechik. Improved distance oracles and spanners for
vertex-labeled graphs. In ESA, volume 7501 of Lecture Notes
in Computer Science, pages 325-336. Springer, 2012.

Michael L. Fredman, Janos Komlos, and Endre Szemerédi. Stor-
ing a sparse table with O(1) worst case access time. J. ACM,
31(3):538-544, 1984.

Qian-Ping Gu and Gengchun Xu. Constant query time (1 + ¢€)-
approximate distance oracle for planar graphs. In ISAAC, pages
625-636, 2015.

Monika Rauch Henzinger, Philip N. Klein, Satish Rao, and
Sairam Subramanian. Faster shortest-path algorithms for pla-
nar graphs. J. Comput. Syst. Sci., 55(1):3-23, 1997.

40

BIBLIOGRAPHY 41

[HLWY11] Danny Hermelin, Avivit Levy, Oren Weimann, and Raphael

IKKS11]

[K1e02)

[Kle05)

[KST13]

[LMN13|

[LT79)

[MS15]

[PRO1]

[Som14]

[ThoO04]

Yuster. Distance oracles for vertex-labeled graphs. In ICALP
(2), volume 6756 of Lecture Notes in Computer Science, pages
490-501. Springer, 2011.

Ken-ichi Kawarabayashi, Philip N. Klein, and Christian Som-
mer. Linear-space approximate distance oracles for planar,
bounded-genus and minor-free graphs. In ICALP (1), volume
6755 of Lecture Notes in Computer Science, pages 135-146.
Springer, 2011.

Philip N. Klein. Preprocessing an undirected planar network
to enable fast approximate distance queries. In SODA, pages
820-827, 2002.

Philip N. Klein. Multiple-source shortest paths in planar graphs.
In SODA, pages 146-155, 2005.

Ken-ichi Kawarabayashi, Christian Sommer, and Mikkel Tho-
rup. More compact oracles for approximate distances in undi-
rected planar graphs. In SODA, pages 550-563. SIAM, 2013.

Mingfei Li, Chu Chung Christopher Ma, and Li Ning. (1 +
e)-distance oracles for vertex-labeled planar graphs. In TAMC,
pages 42-51, 2013.

Richard J Lipton and Robert Endre Tarjan. A separator theo-
rem for planar graphs. SIAM Journal on Applied Mathematics,
36(2):177-189, 1979.

Shay Mozes and Eyal E. Skop. Efficient vertex-label distance
oracles for planar graphs. In WAQOA, pages 97-109, 2015.

Rasmus Pagh and Flemming Friche Rodler. Cuckoo hashing.
In ESA, pages 121-133, 2001.

Christian Sommer. Shortest-path queries in static networks.
ACM Comput. Surv., 46(4):45:1-45:31, 2014.

Mikkel Thorup. Compact oracles for reachability and approx-
imate distances in planar digraphs. J. ACM, 51(6):993-1024,
2004.

BIBLIOGRAPHY 42

|TZ01] Mikkel Thorup and Uri Zwick. Approximate distance oracles.
In STOC, pages 183-192. ACM, 2001.

[Wil83| Dan E. Willard. Log-logarithmic worst-case range queries are
possible in space theta(n). Inf. Process. Lett., 17(2):81-84, 1983.

[Will4| Bryan T. Wilkinson. Amortized bounds for dynamic orthogonal
range reporting. In FSA, pages 842-856, 2014.

u ristian Wulil-Nilsen. Approximate distance oracles with 1m-

[Wull2] Christian Wulff-Nil A i di | ith i
proved preprocessing time. In SODA, pages 202-208. SIAM,
2012.

[Wul1l6] Christian Wulff-Nilsen. Approximate distance oracles for pla-
nar graphs with improved query time-space tradeoff. In SODA,
pages 351-362, 2016.

Appendix

43

A Reduction from stretch-(1 + ¢)
vertex-labeled distance oracle to
scale-(a, £) distance oracle.

We now describe how to use a scale-(e, o) vertex-labeled distance oracle to
obtain a stretch-(1 + ¢) distance oracle. For vertex-vertex distance oracles,
this reduction was proven by Thorup as captured in Lemma 1.

For the static vertex-labeled case, a similar reduction was presented by
Mozes and Skop, and is as follows: The proof of Lemma 1 relies on two
reductions [Tho04, Lemmas 3.2,3.8]. The first shows that from any graph
G and for any o > 0, one can construct a family of a-layered graphs {G%},
whose total size is linear in the size of GG, and such that:

1. ¥|G¢| = O(|G)), where |G| = |[V(G)| + |E(G)].

2. Each v € V(G) has an index j(v) s.t. any w € V(G) has d =
dg(v,w) < aiff d =min{dge (v,w),dge (v, w), 5G?<U> (v, w)}.

j(v)—2 J(v)—1

3. Each G is aminor of G. Le., it can be obtained from G by contraction
ad deletion of arcs and vertices. In particular, if G is planar, so is GY'.

Item (2.) means that any shortest path of length at most « in G is repre-
sented in at least one of three fixed graphs G¢. Thus, one can use scale-(«, €)
distance oracles for the a-layered graphs {G%} to implement a scale-(«,€)
oracle of G.

The second reduction [ThoO4, Lemmas 3.8] is a scaling argument that
shows how to construct a stretch-(1 + ¢) distance oracle for G using scale-
(o, ') distance oracles for o € {2'}icqi fognny- The reduction does not
rely on planarity. Now consider the vertex-labeled case. Let G* be the

44

A. REDUCTION FROM STRETCH-(1 + ¢) TO SCALE-(a, ¢)
DISTANCE ORACLE 45

graph obtained from G by adding apices representing the labels. A vertex-
to-vertex distance oracle for G* is a vertex-labeled distance oracle for G,
and vice versa. By Thorup’s second reduction, it suffices to show how
to construct a scale-(a,e) vertex-vertex distance oracle for G* for any «a,
e, or, equivalently a vertex-labeled scale-(«,) distance oracle for G and
every «, €. Let @ € RT. Given u € V(G) and A € L with dg(u, \) < a,
let w € V(G) be the closest A labeled vertex to u. By the properties of
Thorup’s first reduction, there is a graph G¢ in whitch the u-to-w distance
is 0g(u,w). Thus, a vertex-labeled distance oracle for G¢ will report a
distance of at most dg(u, \) +ca. Therefore we have the following Lemma:

Lemma 17. For any planar graph G and fized parameter €, a stretch-
(1 +) wvertez-labeled distance oracle can be constructed using O(lognN)
scale-(av, ') vertex-labeled distance oracles where o = 2', i = 0, ...[lognN|
and e € 1/2,¢/4. Assume that the scale-(a, €) vertez-labeled distance oracle
supports queries in O(Tg(n, €)) and updates in O(Ty(n,€)) time, and it can
be constructed in O(Tc(n,€)) time and uses O(S(n,¢)) space. There exists
a S(n,e)lognN space stretch-(1+ ¢) vertex-labeled distance oracle that an-
swers queries in O(Tp(n, e)loglog (nN)) and updated in O(Ty(n,) lognN)
time can be constructed in O(T¢(n,e)lognN) time.

Proof. Given a planar graph G, we decompose G to O(lognN) a-layered
graphs, and for each we construct a scale-(«, €) distance oracle. We get the
space requirements, and the construction and query times by using Lemma
1. Since we must keep all O(lognN) scale oracles up to date, we perform
each update operation O(lognN) times, and the lemma follows. O

9PN

7127 K17 ,2°TIPTIP NYOAX DY 9737 27PR 2%prn IR LYY DY PTIpTIPN TR 9 WK 973 G o
YI2XT N2 2100 TIRTIPD v 12 prn? 217°p-(1 + €) n LA AR v TIipTIp Inn2 WK L,00n)
DOTIPTIPA NYPAX 1WA TN K17 A0 OR MMRIT RIP 510 2R .G 7732 A vaxa

1T °9Y2 0710, 20 TIPTIP NYPAY DY NWON HI37 DONR1T D33P D°PRIN IR AWIPW X1 T Ipnna
TWRIT MRITT 2P DOPAAT IR 1T OIRDHY 2170 2IPR MWSITY,2%NINPO10 10T INDRY
OPIRIY-NN 079w INDRWT AT 0N 10TV AT O3 WR

“+x
*x

AN AN A0 N *IMINNIYAN
awnnawtay | MYININ

-

Rl

TI9X2 NN 10N

2WNAN SYTN? TR OR 150-N°2
Mprn 71901 - (M.SC.) 1w RN N°1on0

N7 SARIYT 2P RN 2IN
QOTIPTIP NY°2X YV NN

M.SC. 7101 RN NP WS MW TN PYRD NWAMT ATN NTIAY
9T NN T ,AWNN W TAR TR TOR 190 N°22 PR 70N

WIS NN 970 DY AN
0TI M "' NI

2017 vomR

	Introduction
	Related Work
	Approximate vertex-to-vertex distance oracles
	Approximate vertex-to-label distance oracles

	Our Results and Techniques

	Preliminaries
	Existing techniques

	Undirected Graphs With Faster Query
	Warm Up: The Static Case
	Query(u,)

	The Dynamic Case
	Query(u,)
	Update

	Directed Graphs
	Query
	Update

	Undirected Graphs With Faster Update
	Query(u,)
	Update

	Concluding remarks
	Bibliography
	Appendix
	Reduction from stretch-(1+) to scale-(,) distance oracle

