

The Interdisciplinary Center, Herzlia
Efi Arazi School of Computer Science

M.Sc. program - Research Track

Joint Morpho-Syntactic

Processing of Morphologically

Rich Languages in a

Transition-Based Framework

by

Amir More

M.Sc. dissertation, submitted in partial fulfillment of the

requirements for the M.Sc. degree, research track, School of

Computer Science

 The Interdisciplinary Center, Herzliya

September 2016

This work was carried out under the supervision of Dr. Reut Tsarfaty of

The Open University of Israel and Prof. Ariel Shamir from the Efi Arazi

School of Computer Science, The Interdisciplinary Center, Herzliya.

IDC HERZLIYA

Joint Morpho-Syntactic Processing of

Morphologically Rich Languages in a

Transition-Based Framework

by

Amir More

A thesis submitted in partial fulfillment for the

degree of Master of Science

in the

IDC Herzliya

Efi Arazi School of Computer Science

February 6, 2017

University Web Site URL Here (include http://)
habeanf@gmail.com
Faculty Web Site URL Here (include http://)
Department or School Web Site URL Here (include http://)

“Nature is full of infinite causes that have never occurred in experience.”

Leonardo Da Vinci

IDC HERZLIYA

Abstract

IDC Herzliya

Efi Arazi School of Computer Science

Master of Science

by Amir More

State-of-the-art results for morph-syntactic analysis of Morphologically Rich Languages

(MRLs) such as Hebrew are currently too low to enable real-world applications that

are successfully implemented for heavily-studied languages like English. This is because

existing frameworks for (morpho)syntactic analysis rely on fundamental structuralists’

assumptions, and in particular, assume a strict separation between morphological and

syntactic processing. This assumption breaks down in the context of MRLs.

In this work we present a general-purpose transition-based framework that implements

standalone lexicon-based and data-driven morphological analyzers, a standalone mor-

phological disambiguator, a standalone dependency parser, and a joint morpho-syntactic

dependency parser for MRLs. Each of these tasks is defined via a transition system, a

cross-linguistic feature model, and a global scoring function. The learning problem is

solved using the structured perceptron, and efficient decoding is achieved via beam-

search. We present state-of-the-art results for each of the tasks in isolation, and present

the first joint transition-based system for morphological segmentation and dependency

parsing for Modern Hebrew.

We illustrate the utility and multilingual coverage of the data-driven morphological an-

alyzer and disambiguator by morphologically analyzing and disambiguating a large set of

48 languages in the Universal Dependency treebanks (http://universaldependencies.

org).

University Web Site URL Here (include http://)
Faculty Web Site URL Here (include http://)
Department or School Web Site URL Here (include http://)
habeanf@gmail.com
http://universaldependencies.org
http://universaldependencies.org

Acknowledgements
I would like to express my deep appreciation for my advisor, Dr. Reut Tsarfaty, for

sparking my interest in the field of NLP and accompanying me on this journey of curios-

ity. I am grateful for her dedication to this research and her invaluable insight, advice

and support. I thank her and her family for the countless hours and sleepless nights

working with me on submissions and presentations.

I would like to thank the organizations that enabled my work. I am grateful for my

alma mater IDC Herzliya; for the scholarships I received for my B.A. and M.Sc. in

Computer Science, their patience in the pursuit of my thesis, and the supportive faculty

who taught me the building blocks. I thank the Weizmann Institute of Science and the

Open University for their facilities. I would like to acknowledge the professors of the

well thought out online courses I attended, with a special thanks to Michael Collins,

whose clarity helped me grasp essential concepts. I extend my gratitude to the countless

programmers and engineers of open source projects whose work empowers mine.

I would like to acknowledge the community of researchers who enabled my work; the

giants on whose shoulders I stand. I am grateful to the Knowledge Center for Processing

Hebrew (MILA) at the Technion who originally developed the Hebrew resources for my

work, and the numerous researchers who processed and maintained these resources since.

I would like to acknowledge the researchers whose work I have studied in awe, Joakim

Nivre and Yue Zhang; for their research that laid the groundwork for mine. I would like

to especially thank Yoav Goldberg, whose brilliant insight aided various stages of this

work.

I thank the anonymous reviewers of my submissions for their time and thoughtful re-

views. Every rejected submission lead to insight and new discoveries that resulted in

better performance. In hind sight, I would expect nothing less than the unrelenting

demand for perfection from the top echelon of science.

I would like to thank the Public Knowledge Workshop and Karine Nahorn, who caused

me to ask the question whose answer resulted in this thesis.

Finally, I would like to express my love and appreciation for all those who supported me

throughout this endeavour: my close friends, for enduring me as I worked on this thesis;

my parents, whose unwavering love and support are the reason I have come so far; my

sister, for being the indomitable cookie-monster with whom I am genetically entwined;

my brothers, in-laws, and their families for their support; and for Love.

iii

Contents

Abstract ii

Acknowledgements iii

List of Figures vii

List of Tables viii

List of Algorithms ix

1 Introduction 1
1.1 Syntactic Parsing of Natural Language . 1
1.2 Morphological Ambiguity . 3
1.3 The Joint Hypothesis . 6

2 Related Work 8
2.1 Morphological Disambiguation . 9
2.2 Dependency Parsing . 9
2.3 Morphological and Syntactic Processing 11

2.3.1 Pipeline Approaches . 11
2.3.2 Joint Approaches . 12

3 Approach and Formal Preliminaries 13
3.1 Morphological Analysis and Disambiguation 13
3.2 Labeled Dependency Trees . 14
3.3 The Framework . 15

3.3.1 Transition Systems . 15
3.3.2 Transition Prediction with the Generalized Perceptron 15
3.3.3 Beam-Search Decoding . 17

3.4 Research Objectives . 18

4 Experimental Setup 19
4.1 Data . 19

4.1.1 Modern Hebrew . 19
4.1.2 Universal Dependencies . 20

4.2 Implementation . 20
4.3 Evaluation . 21

4.3.1 The Morphological Model . 21

iv

Contents v

4.3.2 The Syntactic Model . 21
4.3.3 The Joint Model . 22

5 Transition-Based Morphological Disambiguation 23
5.1 Introduction . 23
5.2 Parameterizing Transitions . 24
5.3 Word-Based Transitions . 25

5.3.1 Transition System . 25
5.3.2 Learning . 25

5.4 Morpheme-Based Transitions . 26
5.4.1 Transition System . 26
5.4.2 Learning . 26
5.4.3 Decoding . 27
5.4.4 ENDTOKEN vs IDLE . 28

5.5 Empirical Comparison . 28
5.6 Results for Modern Hebrew . 29
5.7 Results for Universal Dependencies . 30
5.8 Discussion . 35

6 Transition-Based Dependency Parsing 37
6.1 Introduction . 37
6.2 Arc Standard . 38
6.3 Arc Eager . 40
6.4 Arc ZEager . 41

6.4.1 Configuration and Root Node . 43
6.4.2 End of Sequence . 43
6.4.3 SHIFT . 43
6.4.4 ARCLEFT . 43
6.4.5 ARCRIGHT . 44
6.4.6 Discussion . 44

6.5 Dependency Parsing of Modern Hebrew 44
6.5.1 Rich Linguistic Features . 45

6.6 Experiments . 46
6.7 Results . 47

7 Transition-Based Joint Processing 49
7.1 A Joint Morpho-Syntactic Configuration 49
7.2 Joint Strategies . 50

7.2.1 MDFirst . 50
7.2.2 ArcGreedy . 51

7.3 Experiments . 52
7.4 Results . 52

8 Discussion and Conclusion 54
8.1 Discussion . 54

8.1.1 Morphological Disambiguation . 54
8.1.2 Dependency Parsing . 55
8.1.3 Joint Morpho-Syntactic Processing 55

8.2 Conclusion . 57

Contents vi

A Word-Based MD Feature Model 58
A.1 Feature Properties . 58
A.2 Features . 58

B Morpheme-based MD Feature Model 60
B.1 Feature Properties . 60
B.2 Features . 61

C Rich Linguistic Features for Dependency Parsing of Hebrew 62
C.1 Feature Addresses . 62
C.2 Rich Non-Local Addresses and Feature Types 62
C.3 Rich Linguistic Feature Types . 63
C.4 Morphological Augmentation . 63
C.5 Features . 64

Bibliography 68

List of Figures

1.1 A Constituency Tree . 2
1.2 A Dependency Tree . 2
1.3 A Dependency Tree of a Hebrew Sentence 4
1.4 Morphological Analysis of “BCLM HNEIM” 4
1.5 Visualization of the Relationship between Morphology and Syntax for

“BCLM HNEIM” . 5
1.6 Morphological Disambiguation of “BCLM HNEIM” 5
1.7 Pipeline Processing . 6
1.8 Joint Processing . 6

6.1 A reference dependency tree for a parsing sequence 39

vii

List of Tables

2.1 Impact of Predicted Morphology on Dependency Parsing of Modern Hebrew 12

5.1 Word-based vs Morpheme-based MD in a Transition-Based Framework . . 29
5.2 MA&D for Non-MRLs in the Universal Dependencies Corpora (a) 32
5.3 MA&D for Non-MRLs in the Universal Dependencies Corpora (b) 33
5.4 MA&D of MRLs in the Universal Dependency Corpora 34

6.1 Example Parsing Sequence with Arc Standard 40
6.2 Example Parsing Sequence with Arc Eager 42
6.3 Comparison of Dependency Parsing Variants for Modern Hebrew 46
6.4 Impact of Gold vs Predicted Morphology on Dependency Parsers 48

7.1 Joint Morpho-Syntactic Processing Results 52

C.1 Rich Non-Local and Linguistic Features Table 1/2 65
C.2 Rich Non-Local and Linguistic Features Table 2/2 66
C.3 Morphological Augmentation of Rich Linguistic Feature Groups 67

viii

List of Algorithms

1 Example Transition System . 15

2 Generalized Perceptron Training Algorithm 16

3 Beam Search . 18

4 Word-Based MD Transition System . 25

5 Morpheme-Based MD Transition System 26

6 Arc Standard Transition System for Dependency Parsing 39

7 Arc Standard Oracle . 39

8 Arc Eager Transition System for Dependency Parsing 41

9 MDFirst Joint Strategy . 50

10 ArcGreedyk Set of Joint Strategies . 51

ix

For my close friends, family, and Love

x

Chapter 1

Introduction

“One morning I shot an elephant in

my pajamas. How he got into my

pajamas, I’ll never know.”

Groucho Marx

1.1 Syntactic Parsing of Natural Language

Natural Language Processing (NLP) is a field of Computer Science concerned with the

study of automated analysis and processing of natural language. Automatic analysis

allows for a range of applications such as translation, information extraction and infor-

mation retrieval. Parsing is the task of automatically analyzing the syntactic structure

of a sentence. A parser receives as input a phrase or a sentence in natural language and

returns its underlying structure, as conformed to a syntactic theory such as dependency

grammar (Kübler, McDonald, and J. Nivre, 2009) or phrase-structure grammar (Chom-

sky, 1965).

For example, figures 1.1 and 1.2 show two types of trees that represent the syntactic

analysis of the sentence “I shot an elephant in my pajamas”. The two trees show

representations of the sentence under different syntactic theories; tree 1.1 conforms to

phrase-structure grammar and tree 1.2 conforms to dependency grammar.

In a dependency grammar, a sentence is represented as a directed tree, where a node

is a word and an arc is a (labeled) dependency relation between words. A dependency

relation is a directed arc from the head to the dependent (or modifier), and the label

indicates the type of relation between them.

1

Introduction

S

NP

I

VP

V

shot

NP

Det

an

N

elephant

PP

P

in

NP

Det

my

N

pajamas

Figure 1.1: A constituency tree for the sentence “I shot an elephant in my pajamas”

I shot an elephant in my pajamas

nsubj

dobj

det

prep

pobj

det

Figure 1.2: A dependency tree for the sentence “I shot an elephant in my pajamas”

Dependency parsing is the task of predicting the dependency tree of a given sentence.

The approaches to this task can be clustered into (at least) two groups:

• Rule-based - The rules of a formal grammar are used to generate trees.

• Data-driven - A sample set of parsed sentences (corpus) is used to generate a

feature model, which is used to predict the tree structure of unseen sentences.

A prevalent challenge in analyzing natural language is ambiguity. In particular,

there can be more than one interpretation for a sentence in natural language. For

instance, there exist two plausible interpretations of the sentence “I shot an elephant in

my pajamas”:

• I shot an elephant, and I did the shooting in my pajamas (i.e. wearing pajamas)

• I shot an elephant, and the elephant is literally in my pajamas

The trees of figures 1.1 and 1.2 represent the syntactic structure of option (1). A

key task of any parser is to disambiguate the analysis, i.e., pick out the most plausible

interpretation as perceived by humans.

Introduction

Since there may be more than one grammatically correct tree for a sentence, a de-

pendency parser must deal with ambiguities and choose a single tree that represents the

most plausible human interpretation (disambiguation).

In data-driven approaches disambiguation is supported by a corpus, which helps to

discriminate which of the many alternatives is more likely to be correct under human

interpretation. In figure 1.2, we can see the ambiguity of the phrase “.. in my pajamas”

which may be modifying the phrase “an elephant” or the phrase “I”, since both options

are grammatically correct, therefore automatic analysis must disambiguate and choose

one. A data-driven approach can discriminate between them, given examples in the

corpus that would indicate that “I” is a noun more likely to be in its pajamas, than an

elephant being in them.

State-of-the-art dependency parsing results reported for English present high accu-

racy on community-accepted metrics (Labeled Attachment Score - LAS) (Andor et al.,

2016), high enough to enable a variety of applications; e.g. machine translation and

information retrieval. However, for many Semitic languages, state-of-the-art results are

significantly lower (Seddah, Kübler, and Tsarfaty, 2014), enough so that building ap-

plications on current results is not feasible.

Furthermore, parsing models are often customized per language. Developing a cross-

linguistic model — that is, achieving language independence — would enable a one-

size-fits-all solution, but the various different properties of languages prove to be a

formidable barrier because they require the addition of new dimensions to the linguistic

model (Tsarfaty, Seddah, et al., 2010), some of which we review in turn.

1.2 Morphological Ambiguity

To demonstrate how the structure of a language relates to its model, let us compare En-

glish and Hebrew analyses in the context of dependency grammar. Dependency grammar

assumes that each word in a sentence maps to a node in the dependency tree, as de-

fined by Kübler, McDonald, and J. Nivre (2009, Chapter 2, p. 12). This assumption is

violated in morphologically rich languages (MRL) such as Modern Hebrew, where each

sentence is a series of tokens, and each token is a composition of morphemes (Tsarfaty,

Seddah, et al., 2010).

For a sentence in an MRL, the nodes of its dependency tree are morphemes. For

example, in figure 1.3 we see the dependency tree for the sentence HLKTI LIM1 (“I

1We use the transliteration scheme of Sima’an et al. (2001)

Introduction

HLKTI (ANI) L (H) IM

nsubj

prep

det

pobj

Figure 1.3: A dependency tree for the sentence “HLTKI LIM” (“I walked to the sea”)

Figure 1.4: An example of an MA lattice of the phrase “BCLM HNEIM” (“in their
pleasant shadow”) in transliterated Hebrew. Edges mark syntactic words, and double

circles mark white spaces. Figure taken from Tsarfaty and Goldberg (2008)

walked to the sea”), whose morphemes are HLKTI-(ANI) L-(H)-IM (Walked-(I) to-

(the)-sea). The composition rules dictate that ANI (the noun “I”) is dissolved into

HLKTI, whereas L-(H)-IM (to-(the)-sea) is a complex composition in which H (the) is

implicit. The arc (HLKTI, prep, L) ((Walked, prep, to)) requires that the morpheme L

(to) be distinct from the token LIM (to-(the)-sea).

Unfortunately, the task of mapping tokens to morphemes is non-trivial. While the

composition of a sequence of morphemes is relatively straightforward, the decomposition

(henceforth, spell-out, the spelling out of the token into morphemes) has numerous

possibilities, leaving ambiguity as to which decomposition is the correct one for the

dependency tree. This ambiguity may be represented as a lattice structure, as seen

in figure 1.4. The task of choosing which spellout is correct is called morphological

disambiguation (MD).

There are three separate sub-tasks of morphological disambiguation. First, segmen-

tation is the task of decomposing the token into a series of forms. For example, in

figure 1.4, the paths “b/IN-clm/NN” and “b/IN-clm/VB” have the same segmentation:

“b-clm”. Second, tagging is the task of choosing a part-of-speech tag for each form, i.e.

given the segmentation “b-clm”, setting “b”’s tag to “IN”, and choosing (tagging) ei-

ther “NN” or “VB” for “clm”. Also, each form/tag pair may have a set of morphological

features. A morphological feature is usually a binary indicator, such as gender (m/f),

person (first/second/third), tense (past/present/future) etc. that represent inflection2.

Full morphological disambiguation requires correct segmentation, tagging, and choosing

2We omit morphological features in the morphological analysis lattice of “BCLM HNEIM” for brevity

Introduction

Figure 1.5: A visualization of the relationship between morphology and syntax for
the phrase “BCLM HNEIM“.

This figure is copyrighted to tsarfatybook ; it is presented here with permission from
the author.

Do not reproduce or distribute without written permission.

Figure 1.6: The morphological disambiguation of “BCLM HNEIM“.
This figure is copyrighted to tsarfatybook ; it is presented here with permission from

the author.
Do not reproduce or distribute without written permission.

Introduction

Figure 1.7: Pipeline processing - separate stages

Figure 1.8: Joint processing - a single step

the correct set of morphological features. The form, tag, and morphological features,

taken together, form the elements of a morpheme — the formal unit represented by an

arc in a morphologically ambiguous lattice (3.1).

Figure 1.4 shows a lattice visualizing morphological ambiguity for the phrase BCLM

HNEIM.

By itself, the token BCLM is morphologically ambiguous. Its selected path in the

lattice (spellout) should depend on the context in which it is used. Figure 1.5 shows

different dependency trees, depending on the morphological disambiguation of BCLM

HNEIM. In context, the correct spellout is B-CL-FL-HM (“in their shadow”, as in

Figure 1.6.

To summarize, the complex word structure of MRLs pose numerous problems for

dependency parsing, notably:

• A token is not a node in the dependency tree but a composition of morphemes

• A token has multiple possible spellouts, each one admits different sets of trees

• The correct spellout depends on context

• Morphemes can have inflectional properties, which can be the only differentiating

feature between ambiguous dependencies

1.3 The Joint Hypothesis

The overall goal of this MSc thesis is to investigate parsing methods in the context of

MRLs and to develop an effective and efficient dependency parser for Modern Hebrew

texts and for other languages with similar properties.

In principle, in order to solve the problems introduced by MRLs, morphological

disambiguation is used to map the tokens of sentences onto their morphemes. In the

context of Modern Hebrew, the first approach attempted in Goldberg and Elhadad

Introduction

(2010) is a pipeline model as shown in Figure 1.7, where morphological disambiguation

is separated from syntactic analysis. However, their results indicate that a pipeline model

significantly impacts results of dependency parsing. While adequate results are achieved

for correctly disambiguated data (gold-standard morphology and segmentation), parsing

performance using automatically disambiguated data is low.

A second approach is joint morphological disambiguation and syntactic processing,

as shown by Figure 1.8. In this approach, morphological and syntactic disambiguation

decisions are interwoven, such that dependency information is made available for mor-

phological disambiguation (choosing a spellout from the lattice), and vice versa. This

was shown to be effective for constituency parsing for Semitic languages by Goldberg

and Tsarfaty (2008); the purpose of this work is to show that this holds for dependency

parsing as well.

We propose to use joint morphological disambiguation and syntactic processing in or-

der to correctly generate a dependency tree for a sentence consisting of morphologically

ambiguous tokens. We hypothesize that using joint processing will provide mutual ben-

efits between morphological disambiguation and syntactic decisions: syntactic context

made available during morphological disambiguation will result in better disambiguation

decisions; in turn, better disambiguation will provide the opportunity of better syntactic

decisions, in the form of tokens’ correct spellouts in the context of a sentence.

To this end, we introduce a new morphological disambiguator in a framework of

dependency parsers for non-MRLs. For dependency parsing, we reproduce an English

dependency parser in the same framework and experiment with variations that may

better apply to MRLs.

We then test the hypothesis using a novel joint processing system, and compare it

to the pipeline approach for Modern Hebrew. We verify our results for morphological

disambiguation on 48 languages of the Universal Dependencies (Nivre, Agić, et al., 2016),

showcasing the cross-linguistic applicability of the model.

Our results prove the hypothesis in one direction. We show that joint processing

results in better morphological disambiguation. However, end-to-end dependency pars-

ing performance of our pipeline-based baseline remain better than those of our joint

processing setup.

Chapter 2

Related Work

“We are like dwarfs sitting on the

shoulders of giants. We see more, and

things that are more distant, than

they did, not because our sight is

superior or because we are taller than

they, but because they raise us up,

and by their great stature add to

ours.”

John of Salisbury, Metalogicon

We present a survey of related work for the morphological disambiguation and de-

pendency parsing tasks, in standalone and end-to-end settings.

We first showcase existing approaches to the standalone task of morphological dis-

ambiguation (2.1), in both Hebrew-specific and cross-linguistic MRL settings. We then

present a short background and summary of approaches in the literature for standalone

dependency parsing, present the latest work for state-of-the-art dependency parsing of

English, and discuss its applicability to Modern Hebrew (2.2).

Next, we cover two approaches for the collective task of both morphological disam-

biguation and dependency parsing: pipeline and joint processing. We present current

results for the pipeline approach (2.3.1), and survey recent work advocating for the joint

approach in Hebrew in a generative setting, as well as similar tasks in other languages

(2.3.2).

8

Related Work

2.1 Morphological Disambiguation

Language-specific morphological analysis and disambiguation of Modern Hebrew has

been addressed in previous work using Hidden Markov Models (HMM). Bar-haim,

Sima’an, and Winter (2008) use standard HMMs, while Adler (2007) offers an unsu-

pervised approach together with HMMs, currently considered the state-of-the-art on

the MILA Hebrew Treebank (Itai and Wintner, 2008). Adler bootstraps his model with

some pre-set data and an initial supervised corpus, after which learning is achieved

through expectation-maximization over a large corpus. While Adler’s results are ad-

equate for some downstream applications that require morphological disambiguation,

they significantly impede other applications that require higher accuracy. Indeed, using

the output of Adler’s morphological disambiguator for dependency parsing significantly

impacts results, to the extent that dependency parsers’ output is rendered sub-par and

unusable for practical applications (Goldberg and Elhadad, 2010).

While multilingual/cross-linguistic models exist for morphological tagging and fea-

ture disambiguation (Mueller, Schmid, and Schütze, 2013), they all require morpho-

logical segmentation before they can be applied. However, in Modern Hebrew, mor-

phological segmentation is virtually inseparable from morphological tagging and feature

disambiguation, since segmentation may induce a specific tag and set of morphological

features. For example, in the morphological analysis of “BCLM HNEIM” as shown in

figure 1.4, note that the segment “BCLM/NNP” of the first token uniquely determines

the segment’s tag. This exemplifies the reason: requiring pre-segmented Hebrew input

just shifts the focus of morphological disambiguation to the segmenter.

For generic morphological segmentation, Morfessor (Smit et al., 2014) uses a max-

likelihood in semi-supervised settings, but it cannot handle the rich labeling of morpho-

logical segments.

2.2 Dependency Parsing

Automated parsing of natural language into a dependency grammar is an extensively

and widely studied subject, with many approaches and subtle variations. We present

a short summary of this large body of work, narrowing down to seminal concepts that

are relevant to this work. We regard only data-driven approaches. Note that all current

approaches assume gold-standard input, pre-segmented and tagged, including morpho-

logical features where relevant.

Related Work

There are two major approaches in recent literature for data-driven dependency

parsing: graph-based and transition-based. In graph-based processing, the words of

a sentence are represented as nodes in a graph, with weighted edges between them as

potential dependency arcs. A search algorithm like Maximum Spanning Tree is used to

find a tree thus computing a dependency parse of the input. In contrast, in transition-

based processing (to be formalized in chapter 3), a sequence of transitions incrementally

generates a dependency tree, simulating a “left-to-right” reading of a sentence, like a

human reader.

A third approach to parsing, called Easy-First, introduced by Goldberg and Elhadad

(2010), is a parsing method where syntactic decisions are not made left-to-right, but in

“easy-first” order, wherein obvious (easy) dependencies are processed first, and possible

dependencies can span the entire length of a sentence. This allows for early consideration

of dependencies between far placed words, usually attributed to graph-based approaches,

while admitting an O(nlogn) run time. This approach was evaluated on gold-standard

and predicted, morphologically disambiguated, Modern Hebrew; we report their results

and use them as a baseline.

Graph-based systems originally achieved higher accuracy than their transition-based

counterparts, albeit at the price of run-time. Graph-based parsing explicitly parametrizes

models over substructures of a dependency tree, while early transition-based systems

relied on local, indirect parametrization over transitions to construct a tree (Kübler,

McDonald, and J. Nivre, 2009, Chapter 4, p. 41). However, when inquiring into the use

of high-order features, embodying the value of deep and complex linguistic relationships,

into graph-based systems, McDonald and Pereira (2006) and Mcdonald (2007) found

that the resulting complexity would be NP-hard.

Zhang and Clark (2011) introduced a transition-based framework wherein a global

scoring function and beam-search decoding algorithm mitigates the inherent limitations

of transition-based processing. Building on their work, the seminal paper of Zhang and

Nivre (2011) introduced a set of features that capture similar high-order relationships,

such that transition-based parsing achieved results equal to state-of-the-art graph-based

approaches at the time. The transition-based approach runs in linear time, such that

with these new features, accuracy and speed need not be a tradeoff.

Since then, much work has gone towards advancing transition-based processing. The

concept of word embedding introduced by the seminal work of Mikolov et al. (2013)

(a.k.a. word2vec) allowed for words to have vector representations, such that syntactic

and semantic similarities are embodied in the vector space. This representation pro-

vides a better generalization opportunity for statistical models, explicit and implicit

(Goldberg, 2015).

Related Work

In recent years, the latest approach to machine learning and structured prediction

tasks such as dependency parsing seeks to replace engineered representation models

entirely, replaced by neural networks that may learn to induce a model automati-

cally (Goldberg, 2015). Most recently, Long Short-Term Memory (LSTM), a type of

Recurrent Neural Network (RNN) originally described by Hochreiter and Schmidhuber

(1997), evolved and returned to center stage. LSTMs are a representation of context

capable of learning long-term dependencies; i.e. for the sentence “I grew up in France..

I speak fluent French”, LSTMs can help predict the word ’French’, where ’France’ can

augment the prediction after the trigram “I speak fluent”.

At the time of writing, the state-of-the-art English dependency parser uses pre-defined

word embeddings, Bi-Directional LSTMs (LSTMs run forward and backward), and a

multi-layered perceptron (Kiperwasser and Goldberg, 2016). However, these results are

currently inapplicable to Modern Hebrew due mostly to the issue of Hebrew’s mor-

phologically rich and ambiguous nature, for which word embeddings and LSTMs (and

especially Bi-LSTMs) are as yet undefined and non-trivial. Additionally, using these

models would require morphologically disambiguated input, preventing syntax from af-

fecting morphological disambiguation.

In this work, we focus on the architecture of the solution, although we may supplant

the learning model in the future.

2.3 Morphological and Syntactic Processing

2.3.1 Pipeline Approaches

The first approach to test end-to-end morphological disambiguation and dependency

parsing of Modern Hebrew using a modern corpus was presented in Goldberg and El-

hadad (2010), where they evaluated the impact of morphology predicted by Adler’s MD

compared to gold-standard on their Easy-First dependency parsing model, as well as

two other prominent models at the time. Table 2.1, as reported in Goldberg and El-

hadad (2010), shows the loss of accuracy noted for the best results of all models, with a

concluding suggestion that joint processing may alleviate this problem.

Recently, UDPipe (Straka, Hajic, and Straková, 2016) uses a toolkit with multiple

independent components for multilingual morphological analysis, segmentation, tagging,

morphological features, and dependency parsing. UDPipe underperforms Adler on He-

brew for all morphological disambiguation tasks both independently and cohesively - we

attribute this to the underlying components addressing morphological segmentation and

tagging as separate tasks and a lack of proper morphological analysis.

Related Work

Model Gold Morph. Predicted Morph.

MST1 83.6 75.6

MST2 84.4 76.4

MALT 80.7 73.4

EasyFirst 84.2 76.2

Table 2.1: Reported results in Goldberg and Elhadad (2010), showing the impact of
predicted morphology on dependency parsing of Modern Hebrew

The measure is UAS - best Unlabeled Attachment Score

In this work we aim to cover all stages of UDPipe (with the exception of tokenization),

but in a joint architecture.

2.3.2 Joint Approaches

Joint processing of Modern Hebrew has been substantially advocated for in recent

years. Tsarfaty and Goldberg (2008) introduced joint morphological and syntactic pro-

cessing in a generative (PCFG) setting, showing gains in accuracy over previous pipeline-

based approaches.

For transition-based dependency parsing in a multilingual setting, Bohnet and J.

Nivre (2012) first integrated tagging and syntactic processing improving state-of-the-art

accuracy over pipeline approaches. Andor et al. (2016) use the joint transition system

proposed in Bohnet and J. Nivre (2012), but improve the model using a globally normal-

ized neural network producing state-of-the-art results for tagging and dependency pars-

ing on untagged input; with parsing accuracy comparable to Kiperwasser and Goldberg

(2016) (who require tagged input). Bohnet, J. Nivre, et al. (2013) add morphological

feature disambiguation and lexicalization to the joint transition system of Bohnet and

J. Nivre (2012) for richly inflected languages, again improving state-of-the-art accuracy

for all languages evaluated. However, these systems do not provide a solution for joint

morphological analysis and disambiguation of morphologically rich languages such as

Modern Hebrew.

For various Chinese parsing tasks, joint systems for tagging and/or segmentation

(glyph chunking) together with syntactic parsing have been shown to outperform pipeline

settings (Z. Li, Min Zhang, Che, Liu, Chen, and H. Li, 2011; Bohnet and J. Nivre, 2012;

Z. Li, Min Zhang, Che, Liu, and Chen, 2014; Meishan Zhang et al., 2014b).

In this work, we present a joint transition system that performs well on Modern

Hebrew, yet at the same time is applicable to many other languages, including non-

MRLs.

Chapter 3

Approach and Formal

Preliminaries

“Le bon Dieu est dans le detail.”

Anonymous

We present formal definitions of morphological analysis and disambiguation (3.1),

labeled dependency trees (3.2), and the processing framework in which we develop stan-

dalone and joint processors (3.3).

We then state our research objectives and the open questions we seek to answer in

this work (3.4).

3.1 Morphological Analysis and Disambiguation

In Morphologically Rich Languages (MRLs) such as Modern Hebrew, written sentences

are sequences of space-delimited tokens rather than words. A token is a composition of

morphemes. For example, in the phrase BCLM HNEIM (In their pleasant shadow), the

token BCLM is a composition of the morpheme sequence B-CL-FL-HM (In-shadow-of-

(them)).

Formally, a morpheme m is described by its morpho-syntactic representation (MSR)

as a triple (f, t, g) with a form f, a part-of-speech tag t, and a set g of attribute:value

grammatical properties. In a word-lattice, the MSR is embedded in an edge as the tuple

(s, e, f, t, g), where s, e are start and end nodes in the lattice, respectively.

Although the morphemes compose deterministically as a token, there are multiple

morphemes sequences that when composed, result in the same token. Therefore, given

13

Approach and Formal Preliminaries

a token, its decomposition (or spellout, the spelling out of a token into morphemes) is

ambiguous and depends on the context in which it is found. To represent this ambiguity,

the possible decompositions of a token are represented as a word-lattice, as shown in

figure 1.4. The term Morphological Disambiguation (MD) refers to selecting a single

path through the morphological analysis (MA) lattice.

Let x = x1...xk be an input sentence of k tokens and L = MA(x1), ...,MA(xk) be

the morphological ambiguity lattice for x, where L is a contiguous series of word-lattices

Li = MA(xi) connected top to bottom, as illustrated in Figure 1.4. Each word lattice Li

is a set of sequences of morphemes, and each sequence is a single disambiguated analysis

for xi.

3.2 Labeled Dependency Trees

A dependency graph is a directed graph G consisting of a set of V nodes, a set of E

arcs, and a linear precedence order < on V . In MRLs, V is a set of morphemes, each

belonging to a spellout of one of a given sentence’s space-delimited tokens. V is therefore

a subset of all possible morphemes of a MRL.

A labeled dependency graph has a label function associating a label l ∈ L, a set

of dependency labels for each arc in E: (i, j) → l, which we denote as (i, l, j). Let

i → j = (i, j) ∈ E and i →∗ j = (i = j ∨ ∃k : i → k, k →∗ j) There are a few formal

conditions for Dependency Graphs:

• G is weakly connected: For every node i there exists a node j such that i→ j or

j → i

• G is acyclic: if i→ j then ¬j → i

• G has a single head: if i→ j, then not k → j for any k 6= j

A graph G is said to be projective if it maintains the following constraint: if i→ j then

i →∗ k for any k such that i < k < j or j < k < i. In words, projectivity requires that

it is possible to draw the dependency arcs above the nodes of a dependency graph such

that the arcs never intersect.

Given an arc i→ j, we may call i the head of j, and j a dependent of i.

Approach and Formal Preliminaries

3.3 The Framework

We formally define the framework employed by Zhang and Nivre (2011), as described

by Zhang and Clark (2011), for transition-based syntactic processing using the general-

ized perceptron and beam search. In the context of this framework, we shall propose a

novel transition system for morphological disambiguation of Modern Hebrew such that

it may be integrated with existing syntactic processing transitions systems.

The framework contains three relevant parts: a transition system (3.3.1), a statistical

feature model (3.3.2) and beam-search (3.3.3).

3.3.1 Transition Systems

A transition system is an abstract machine, consisting of a set of configurations (states)

and transitions between configurations. As opposed to a simple finite state automa-

ton, transition systems have complex configurations with internal structure, instead of

atomic states, and transitions that correspond to steps in the derivation of the desired

output (Kübler, McDonald, and J. Nivre, 2009, Chapter 3).

Formally, a transition system is a quadruple S = (C, T, cs, Ct), where C is a set of con-

figurations, T is a set of transitions, cs is an initialization function, and Ct ⊆ C is a set of

terminal configurations. A transition sequence y of length n, y = c0, t1(c0), ..., tn(cn−1),

starts with an initial configuration c0 = cs(x) for the input sentence x and ends with a

terminal configuration cn ∈ Ct, where ti ∈ T and cn = tn(cn−1) ∈ Ct.

Data: cs(x = x1, ..., xn) = ([0], [1, ..., n], 0)
Terminal: Ct = {c ∈ C|c = ([0], [], A)}
Transitions: (σ, [i|β], A)→ ([σ|i], β, A) (SHIFT)

([σ|i], [j|B], A)→ (σ, [j|B], A ∪ {(j, l, i)})1 (LEFT−ARCl)

([σ|i], [j|B], A)→ (σ, [i|B], A ∪ {(i, l, j)}) (RIGHT−ARCl)

Algorithm 1: The arc-standard transition system for dependency parsing (Kübler,
McDonald, and J. Nivre, 2009)

In Algorithm 1, the arc-standard transition system for dependency parsing presented

in section 6.2 is shown, where one of three transitions may be chosen given a configura-

tion.

3.3.2 Transition Prediction with the Generalized Perceptron

“Prêcher le faux pour savoir le vrai.”

French Proverb

Approach and Formal Preliminaries

In a data-driven approach, a parametric model is defined as a means of predicting

which transition to apply at each configuration. The parametric model drives the parser

by predicting the transition to be made at each step of the sequence.

The framework first defines an objective function F where x is the input sentence

and GEN(x) is the set of possible transition sequences for x:

F (x) = argmaxy∈GEN(x)Score(y) (3.1)

To compute Score(y), y ∈ GEN(x) is mapped to a global feature vector Φ(y) ∈ Nd,

where each feature is a count of occurrences of a pattern defined by a feature function φ.

The feature vector Φ(y) is defined via a set of d feature functions {φi}di=1. The way Φ is

defined effectively determines the quality of the parser, since the feature model captures

linguistic information to which the model learns to assign weights. Given this vector,

Score(y) is computed by multiplying Φ(y) with a weights vector ~ω ∈ Rd.

Score(y) = Φ(y) · ~ω =
∑
cj∈y

d∑
i=1

ωiφi(cj) (3.2)

Input: training examples (xi, yi)
Data: set ~ω = 0

for r = 1..P, i = 1..N do
calculate zi = decode(xi)
if zi 6= yi then

~ω = ~ω + Φ(yi)− Φ(zi)
Output: ~ω

Algorithm 2: Generalized perceptron training algorithm

The system learns the weight vector ~ω ∈ Rd via the generalized perceptron. The

transition system provides an oracle function which, given an expected output for a

given input, emits the correct transition for each configuration such that the complete

sequence generates the desired output. Algorithm 2 iterates through a gold-annotated

corpus, where each sentence is disambiguated (decoded) with the last known weights, and

if the decoded result differs from the gold standard, the weights are updated by adding

to weights of features of the gold standard and subtracting from weights of features of

the incorrect parse. The algorithm iterates over the corpus repeatedly, stopping when

overfitting begins to occur.

Overfitting is determined by applying the model at the end of each iteration to a

development set, a subset of the gold-annotated corpus set aside such that we may mea-

sure the system’s performance using a given measure. When the system’s performance

Approach and Formal Preliminaries

decreases twice sequentially, we cease iteration, and use the model that resulted in the

best scoring iteration.

3.3.3 Beam-Search Decoding

In a deterministic transition-based parser, only a single sequence of transitions is ex-

plored. As a consequence, any mistake made at the beginning of the sequence will

necessarily propagate. To overcome this, the framework of Zhang and Clark (2011) uti-

lizes the generic beam-search algorithm 3 for decoding. In beam search, an agenda of

B-best partial outputs (sequences) are maintained. At each step, every candidate in the

agenda is expanded upon to the next set of possible candidates. At the end of the step,

candidates’ partial global scores (as defined by Score) are incrementally updated, the

top B candidates are maintained and the search continues until a candidate with a full

tree is produced. By allowing for a number of candidates to be evaluated concurrently,

beam search mitigates error propagation as observed with a deterministic parser.

It is important to note the interplay between beam search and the generalized per-

ceptron. A deterministic setting is essentially the same as a beam of size 1. The global

score as defined by Score is neutralized because at each step, only one candidate is

expanded upon, and only one of the next possible candidates is retained. Therefore, the

scores of the next possible candidates are all relative to the current single candidate - it

is only the scoring of single transitions that determines the outcome of each step, thus

any single error in choosing a next candidate necessarily propagates.

In contrast, when maintaining multiple candidates in a beam larger than 1, it is

possible for a global score to cause an initially lower scoring candidate in the beam to

have its next candidates maintained, while the originally higher scoring candidate is

dropped altogether due to the global score of the former being higher than the latter.

The global score captures a representation of partial output, in the form of a number

that is comparable between competing candidates in the beam.

We employ the early-update variant of the globalized perceptron of Collins and Roark

(2004). During the learning process, if the gold-standard sequence (as emitted by the

oracle function) drops from the beam before the end of processing, learning ceases, and

the weights of the best partial sequence are updated.

Approach and Formal Preliminaries

function BEAM-SEARCH(problem, agenda, candidates, B)

candidates← {STARTITEM(problem)}
agenda← CLEAR(agenda)
loop do

for each candidate in candidates
agenda← INSERT (EXPAND(candidate, problem), agenda)

best← TOP (agenda)
if GOALTEST (problem, best) then

then return best
candidates← TOP -B(agenda,B)
agenda← CLEAR(agenda)

Algorithm 3: The generic beam-search algorithm

3.4 Research Objectives

In this project we use transition-based parsing methods to develop a joint morpho-

syntactic parser. This will require us to answer several open research questions:

• Current transition systems are defined for syntactic analysis. How can they be

extended to both morphological and syntactic analysis for MRLs such as Modern

Hebrew?

• How can we efficiently search through the space of joint morphological / syntactic

analyses?

• How can morphological features be used to help syntactic disambiguation and

vice-versa?

Chapter 4

Experimental Setup

“I think that in the discussion of

natural problems we ought to begin

not with the Scriptures, but with

experiments, and demonstrations. ”

Galileo Galilei

In this chapter, we describe the data sets for our experiments (4.1), the implementa-

tion of our baselines and hypotheses with a new parser (4.2), and the evaluation metrics

with which we measure the results of our experiments (4.3).

4.1 Data

4.1.1 Modern Hebrew

As a starting point, we use the Modern Hebrew treebank of the SPMRL (Statistical

Parsing of Morphologically Rich Languages) 2014 Shared Task (Seddah, Kübler, and

Tsarfaty, 2014), derived from the Unified-SD treebank of Tsarfaty (2013). Bugs and

inconsistencies in this initial data set impaired the development and experimentation of

our models. We therefore decided to homogenize the treebank and relevant tools.

For the purposes of this work, the treebank was updated with consistent theories

for treebank annotation and lexicographic resources (Itai and Wintner, 2008). We add

lemmas to the treebank and provide a new morphological analyzer whose output is

consistent with all treebank train/dev/test sets. We use the standard split, and train

on the standard train set (5,000 sentences).

19

Experimental Setup

4.1.2 Universal Dependencies

The Universal Dependencies (UD) project (Nivre, Marneffe, et al., 2016) is a NLP

community effort to create a cross-linguistically consistent treebank annotation within

a dependency-based framework.

We evaluate the cross-linguistic coverage of our MD model on the UD data set. We

parse 48 UD treebanks from the UD 1.3 release (Nivre, Agić, et al., 2016), training on

the train set and evaluating on test.1

4.2 Implementation

To test our joint hypothesis we implement yap, which stands for yet another parser.

yap is a fully integrated, transition-based, multilingual natural language processor, im-

plemented from scratch.2

It has two morphological analyzers: HEBLEX, a lexicon-based morphological ana-

lyzer backed by the BGU lexicon, and a multilingual data-driven morphological analyzer

which induces a lexicon from any treebank in the Universal Dependencies set of corpora.

In yap we implement our morphological disambiguator and dependency parser which can

run in both pipeline and joint architectures.

yap is written in the Go programming language (https://golang.org), an open-

source language developed by a team at Google. It is a compiled, statically-typed

language similar to Algol and C. Go compilers target a wide variety of platforms. The

main compiler, gc, targets Linux, Mac OS/OS X, Windows, numerous BSD and Unix

variants, and smartphones. It also has a gcc frontend, gccgo, which is part of the

standard gcc distribution.

yap is designed to be as modular as possible with the goal of being an adequate

platform for research in NLP. yap is currently very slow compared to similar parsers,

mostly due to our focus on reproducing previous work, developing the pipeline and joint

processors, and experimentation with feature models. Additionally, for some setups, yap

requires an egregiously large amount of memory, on the order of 100GB. This is due to

an inefficient implementation of the feature model, which can be eased with some of

engineering effort using common techniques in the literature.

1We do not present results for 6 languages: cs,kk,es ancora,en esl,pt br,ja ktc, as some or all required
fields are empty.

2We intend to add tokenization in the near future such that yap may be provide an end-to-end,
self-contained natural language processing pipeline for Modern Hebrew.

https://golang.org

Experimental Setup

4.3 Evaluation

4.3.1 The Morphological Model

To evaluate a morphological disambiguation, we compare the set of predicted morphemes

to the set of gold-standard morphemes.

A morpheme m = (f, t, g) of the spellout of the i-th token of a morphologically

disambiguated sentence of n tokens is uniquely identified by the quadruple (f, t, g, i),

where 0 ≤ i < n. Let Mp,Mg be sets of uniquely identified predicted and gold-standard

morphemes of a sentence, respectively. Define Pr =
|Mp∩Mg |
|Mp| and Re =

|Mp∩Mg |
|Mg | as

precision and recall, respectively.

We use the standard F1 = 2∗Pr∗Re
Pr+Re measure to evaluate morphological disambiguation

performance.

To measure the performance of morphological disambiguation tasks individually, we

report scores with partially and fully represented morphemes: for segmentation only

(F), m = (f, ,); for segmentation and tagging (F+POS), m = (f, t,); and full mor-

phological disambiguation including morphological features (ALL), m = (f, t, g).

For comparison with previous work, we also report token-level accuracy. Let Sp, Sg be

the sets of predicted and gold-standard spellouts of a sentence of n tokens. Define token-

level accuracy as
|Sp∩Sg |
|Sg | . While F1 awards partial success on word-lattices, token-level

accuracy requires an exact match of a whole path per token.

4.3.2 The Syntactic Model

To evaluate dependency parsing performance in a standalone setting, with gold morpho-

logical disambiguation, we report attachment scores.

We define the Unlabeled Attachment Score (UAS) of a predicted dependency tree

as the percentage of morphemes that have a correct head, and the Labeled Attachment

Score (LAS) as the percentage of morphemes that have a correct head and dependency

label (Kübler, McDonald, and J. Nivre, 2009, Chapter 6, p. 80).

Let Ap, Ag be the arc sets of predicted and gold-standard labeled dependency trees

for a given morphologically disambiguated sentence of n morphemes. We assert the

nodes (morphemes) of the trees are the same. The elements of Ap and Ag are triples of

the form (i, l, j), where 0 ≤ i, j < n are indexes of morphemes, and l ∈ R a dependency

label. Then, we define LAS =
|Ap∩Ag |
|Ag | .

Experimental Setup

Let A′p, A
′
g be the unlabeled predicted and gold-standard projections of Ap, Ag, re-

spectively, such that the label l of each element in Ap, Ag is discarded. Then, we define

UAS =
|A′

p∩A′
g |

|A′
g |

.

We report these results without punctuation, as this is standard practice in the

literature and is necessary for comparison to previous work.

4.3.3 The Joint Model

Comparing morphological disambiguation output and dependency graphs jointly is non-

trivial due to the possibly varying number of morphemes as a result of morphological

disambiguation. For example, consider two spellouts for the token “BCLM”: BCLM

(Betzelem — a proper noun — an Israeli organization) and B-CL-FL-HM (in-their-

shadow). How might one evaluate the dependency graphs of these spellouts relative to

one another?

To address this issue we report both the F1 scores for full morphological disambigua-

tion and the labeled/unlabeled F1 measures of graph edges and morpheme forms (taken

together).

Let S = x1, . . . , xk be an input sentence for which we want to evaluate a jointly

predicted morphological disambiguation and dependency graph. LetMp be the predicted

morphological disambiguation of S, and let Ap be the predicted dependency graph of

S with the morphemes of Mp as nodes. Likewise, let Mg, Ag be the gold-standard

morphological disambiguation and dependency tree of S, respectively.

Since the nodes of the arcs of Ap and Ag are not necessarily the same, we can’t

compare them directly. To solve this, we resolve the indexes of the arcs in Ap, Ag,

and replace them with the forms of their respective morphemes in Mp and MG. Let

Jp, Jg be the indexed-resolved arcs of a joint predicted and gold-standard morphological

disambiguation and dependency graph of S. We evaluate a joint prediction using the

standard F1 = 2∗Pr∗Re
Pr+Re , where Pr =

|Jp∩Jg |
|Jp| and Re =

|Jp∩Jg |
|Jg | . We report both labeled

and unlabeled F1 scores.

Chapter 5

Transition-Based Morphological

Disambiguation

“Something is elegant if it is two

things at once: unusually simple and

surprisingly powerful.”

Matthew E. May

In this chapter, we formally define two transition systems for morphological dis-

ambiguation. We start with a configuration definition (5.1) and a parameterization

function (5.2), shared by both transition systems. We then define two transitions sys-

tems (5.3), (5.4), and present the results of an empirical comparison (5.5).

Using a lexicon-based morphological analyzer, we apply our best model to the Modern

Hebrew treebank, and report our results (5.6).

To present the cross-linguistic applicability of the morphological disambiguator, we

use a data-driven morphological analyzer and apply our MD to 48 treebanks of the

UD 1.3 corpora (Nivre, Agić, et al., 2016). We report our results (5.7), and for non-

MRLs we present a comparison with MarMoT, a state-of-the-art multilingual CRF tag-

ger (Mueller, Schmid, and Schütze, 2013).

5.1 Introduction

A configuration for the MD transition system is a quadruple (L, n, i,M) where L =

MA(x) is the sentence-lattice, n is a node in L, i is the 0-based index of a word-

lattice in L, and M is a set of disambiguated morphemes (i.e., selected arcs). The

23

Transition-Based Morphological Disambiguation

set of terminal configurations is defined to be Ct = {(L, top(L), tokens(L),M)} for

any L,M , where tokens(L) is the number of word-lattices that form L. The initial

configuration function cs concatenates the Li lattices of the tokens into a single structure

L = MA(x1) + ...+MA(xk), and sets n = bottom(L), i = 0 and M = ∅.

There are two conceivable ways to make morphological disambiguation decisions: in a

word-based (WB), and in a morpheme-based (MB), fashion, in the terminology of Tsar-

faty and Goldberg (2008). In WB models (a.k.a token-level in the UD terminology),

the disambiguation decision determines a complete path of morphemes between token-

boundaries. In the lattice, this refers to selecting a path between two token-boundary

nodes (double circles). MB disambiguation decisions (also termed lexical-level, or word-

level in UD) occur at any node in the lattice indicating a morpheme boundary, with

more than one outgoing arc, choosing a specific arc m among them.

WB and MB strategies face contradicting, and complementary, challenges. In WB

models, disambiguation decisions are complex, and learning how to score them is ex-

pected to suffer from data sparseness. MB models, on the other hand, over-generalize in

terms of possible morphological combinations, and learning to score combinations may

fail to generalize and be prone to over-fitting. On top of that, morpheme sequences are

longer than word sequences, which, in a transition-based system, is known to be more

error prone. Finally, variable-length sequences introduce length biases which negatively

impact performance. Since MA&D is the base for the NLP pipeline, it is critical to

settle this debate empirically and establish the basis for downstream tasks.

5.2 Parameterizing Transitions

A transition system is required to distinguish between all possible decisions it can make

at a given point. At the same time, the model should be able to generalize from seen

decisions to unseen ones, and effectively learn to disambiguate open-class words and out-

of-vocabulary items. To satisfy these desiderata, we define a delexicalization projection

for a pre-defined set of parts-of-speech tags O capturing open-class categories. Simply

put, this projection neutralizes the lattice-node specific indices, and, for any tag t ∈ O,

it further neutralizes the lexical form. Formally:

DLEXO(m) =

(, , , t, g) if t ∈ O

(, , f, t, g) otherwise
(5.1)

This DLEXO(m) projection allows the transition system to distinguish between any

two arcs or paths of arcs with the same starting node, while providing an opportunity

Transition-Based Morphological Disambiguation

to generalize the in-context behavior of similar morphemes with different forms. This

is possible due to the reasonable assumption that forms of open-class parts-of-speech in

a lattice do not appear twice in a word-lattice with the same morpho-syntactic repre-

sentation (in the rare cases this happens, the two corresponding arcs are collapsed into

one). 1

5.3 Word-Based Transitions

5.3.1 Transition System

For word-based (WB) modeling, a single transition morphologically disambiguates whole

word-lattices such that the node n of a configuration is always at a word boundary (a

node that is a bottom, top, or both, of word-lattices of L). We define the transitions in

the WB system as an open set of transitions termed MDs, specifying the parameter s

as a single path:

MDs : (L, n, i,M)→ (L, q, i+ 1,M ∪ {m0, ..,mj}) (5.2)

Algorithm 4: The Word-Based Morphological Disambiguation Transition System

Here, {m0, ...,mj} ∈ L form a contiguous path of arcs, where m0 starts at node

n, and mj ends at node q (they can be the same arc), and s is the projected paths

s = DLEXO(m0), ..., DLEXO(mj). A terminal configuration will therefore contain the

union of contiguous paths of word-lattices in L, together forming a complete morpho-

logical disambiguation of the ambiguous tokens of the input sentence.

5.3.2 Learning

We define three types of word-lattice properties: o - the surface form of the token itself,

a - the DLEX-projected lattice (all MSRs projected by the delexicalization function),

and p - a chosen disambiguated path, which only exists for previously processed lattices.

Using these properties, we define baseline feature templates modeled after POS tagging:

unigram, bigram, and trigram combinations of o and a, and p-based features, which

predict the next disambiguation decision based on the previous one(s). See Appendix A

for the full word-based feature model.

1There are extremely rare cases in Modern Hebrew that violate this assumption, but we can choose
alternative linguistic interpretations that transforms these cases into distinguishable representations.

Transition-Based Morphological Disambiguation

5.4 Morpheme-Based Transitions

5.4.1 Transition System

For morpheme-based (MB) modeling, a single transition chooses an outgoing arc of the

current node n in the lattice, requiring a disambiguation decision if (and only if) there

is more than one outgoing arc. Again, we define the transitions of the MB transition

system as an open set of transitions termed MDs, now specifying s as a single arc:

Here, m is a morpheme (n, q, f, t, g) ∈ L, and s = DLEXO(m). If node q is at a word

MDs : (L, n, i,M)→ (L, q, j,M ∪ {m}) (5.3)

Algorithm 5: The Morpheme-Based Morphological Disambiguation Transition System

boundary, then j = i + 1, otherwise j = i. For a terminal configuration, each m ∈ M
is an outgoing arc of the end node of another arc in M (with the exception of the first

morpheme, starting at bottom(L)) forming a contiguous path that disambiguates x.

5.4.2 Learning

In the MB model we can access specific information concerning the current node inside

the word-lattice. We define the properties f , t and g, corresponding to arcs’ form, part-

of-speech and morphological attribute:value pairs. We use these properties in various

unigram, bigram, and trigram combinations, in parallel with the WB model.

We provide properties similar to those of MarMoT (Müller, Schmid, and Schütze,

2013), but we do not employ a hash kernel. We define the prefix/suffix properties

e/x, respectively, which generate a feature for each character of lengths 1 to 10 at the

start/end of a token. Additionally, we define the signature feature g, a set of indicator

bits defined in the morpheme-based MD feature appendix (B).2

As in the WB model we also define the property p as the path in the previously

disambiguated word-lattices. We define the property n to be the set of DLEX-projected

outgoing morphemes of the current node (this parallels the property a of WB models,

but at morpheme granularity). Similarly to the WB case, we use unigram, bigram, and

trigram combinations of these properties as well. See Appendix B for the full morpheme-

based feature model.

2These properties are not applicable to the WB model due to extreme sparsity

Transition-Based Morphological Disambiguation

5.4.3 Decoding

Since the number of arcs in lattices’ paths for x may vary, so do the number of transitions

in our morpheme-based transition system; for example, the phrase “BCLM HNEIM”

can have disambiguations with 2 to 6 morphemes. This violates a basic assumption

of standard beam search decoding — that the number of transitions is a deterministic

function of the input.

There are two inherent biases in varied-length transition sequences driven by the

general perceptron algorithm. The beam search algorithm tests the best candidate after

each step for goal fulfillment. A short sequence may temporarily be the best candidate

and fulfill the goal, while longer (and possibly correct) sequences are incomplete and

may be lost. This can be easily mitigated by verifying that all beam candidates fulfill

the goal before returning the best one.

On the other hand, long sequences have more features, therefore their score may be

arbitrarily inflated. So the score may be higher for longer paths, even though a shorter

one may be correct and may fall off the beam.

To address these challenges we introduce a special transition we call ENDTOKEN (ET),

that explicitly increments i, instead of implicitly in MDs. So, in equation (4) we set

j = i and apply:

ET : (L, n, i,M)→ (L, n, i+ 1,M) (5.4)

ET is required to occur exactly once at the end of a word-lattice, when n is the top of

some word-lattice in L. Set aside from other transitions, ET has its own set of features.

Other than incrementing i, ET has no effect on configurations, but it does cause a re-

ordering of candidates in the beam during decoding, at each token boundary. Note that

ET kicks in only for variable length lattices. On same-length lattices, ET is skipped

and equation (4) remains as is — the process essentially falls back on the standard,

same-length decoding.

An MD transition sequence thus becomes the union of disjoint sets of configurations

y = ymd ∪ yet, and changes Score in Equation (3.2), where |yet| is the # of tokens in L

with variable length paths. :

d∑
i=1

ωmdi φmdi (ymd) +
d∑
j=1

ωetj φ
et
j (yet) =

∑
ck∈ymd

d∑
i=1

ωmdi φmdi (ck) +
∑
cl∈yet

d′∑
j=1

ωetj φ
et
j (cl) (5.5)

While the number of morphemes, and therefore |ymd|, can vary, |yet| is deterministic

per lattice — the number of ET transitions is the number of word-lattices with spellouts

of more than one length (variable length). Using this anchor, the features of the ET

Transition-Based Morphological Disambiguation

transition provide a counter-balance to the effects of varied-length sequences by scoring

fully disambiguated paths of each word-lattice individually, occuring a fixed amount of

times for all paths.

5.4.4 ENDTOKEN vs IDLE

Variable-length sequences in beam search also exist in the structured prediction of con-

stituency trees. Zhu et al. (2013) introduced an IDLE transition (also adopted in Hon-

nibal and Johnson (2014) and Meishan Zhang et al. (2014a)) that, like ET, has no effect

on the configuration, but unlike ET, occurs only at the end of the parsing sequence, an

arbitrary number of times, until all parsing sequences are complete. While IDLE tran-

sitions make sense when applied after a complete hierarchical structure is predicted —

where they may learn to rerank candidates based on features that are visible at the top

of the structure (the root) — it is futile to use last-seen features that arbitrarily exist at

the end of a morphological disambiguation (linear) sequence, to rerank candidates again

and again. This is because at the end of the sequence, we can no longer save candidates

that were lost earlier on due to length discrepancies.

To mitigate this, one might try to create IDLE padding with global features spanning

the entire disambiguated path. Even then, the learned model parameters would not

generalize well, since these features will be applied an arbitrary number of times —

the maximal length of an occasional word-lattice we are at — which has no linguistic

significance, and may arbitrarily inflate certain scores. ET transitions, in contrast,

occur right when they are needed — at the boundary of a word-lattice, following a

disambiguated token. This position enables the reordering of candidates right after a

length discrepancy may have been introduced. Moreover, ET scores are counted against

the global score a fixed number of times per lattice, for all, and any length, candidates.

This enables a fair comparison of all paths per lattice.

5.5 Empirical Comparison

We empirically evaluate the proposed models, and investigate their strengths, weak-

nesses, and bounds.

We start with a detailed investigation of MA&D in the Semitic language Modern

Hebrew, which is known for its rich morphology and significant ambiguity. We then

verify the cross-linguistic coverage of the models on the set of UD treebanks (Nivre,

Agić, et al., 2016), to validate their efficacy in MRL and non-MRL settings. Here we

provide results and in-depth analysis on dev and confirm our findings on test.

Transition-Based Morphological Disambiguation

(a)

Word-Based

unigram +bigram +trigram +next unigram +next with bigram

85.73 (86.72) 86.9 (87.88) 86.7 (87.66) 92.19 (92.76) 91.98 (92.59)

+ET 89.09 (89.81) 89.93 (90.71) 90 (90.85) 93.39 (93.94) 92.84 (93.46)

(b)

Morpheme-Based

unigram +bigram +trigram +next unigram +next with bigram

90.67 (91.41) 91.12 (91.88) 90.09 (91.82) 93.56 (94.16) 93.89 (94.49)

+ET 92.68 (93.36) 92.74 (93.55) 92.64 (93.47) 94.27 (94.92) 94.33 (94.9)

Table 5.1: Dev. set results for Word-Based (a) and Morpheme-based (b) MD: F1 for
full morphological disambiguation (form, part of speech, morphological properties). (n
parenthesis: F1 for form and POS only. The +ET lines indicate a variant that employs

the ENDTOKEN transition at token boundaries.

A pre-condition for the execution of our MD models is an MA(x) function that

generates word-lattices for x. We start off with a morphological analyzer that we im-

plemented, called HEBLEX, which relies on the Ben-Gurion Hebrew Lexicon used by

Adler and Elhadad (2006). The lexicon contains full analyses for 567,483 words and 102

prefixes. HEBLEX uses the lexicon to determine the various combinations of prefixes

and words that form valid tokens. This process is far from trivial due to morphological

fusion, as some morphemes are implicit.

Although the lexicon is quite large, there are still tokens which are out-of-vocabulary

(OOV). OOV tokens may be of two types: it may be that an entire string is out of the

lexicon (mostly proper nouns) or that the affixes and the open class items are seen, but

their combination has not yet been encountered. We address OOV by assigning proper

noun analyses to entire tokens, as well as to all arcs combined with seen affixes. This

adds ambiguity to the lattices, but gives the MD the chance to select a correct path. In

our experiments we aim to quantify exactly the effect of lexical coverage of the MA on

MD accuracy. To this end, we add an option to infuse missing gold analyses into the

MA lattices provided by HEBLEX and present two sets of results: once disambiguating

lattices with infused gold analyses (ideal MA), and once without infusing gold analyses

(realistic MA).

5.6 Results for Modern Hebrew

Tables (5.1a), (5.1b) present our investigation of the WB and MB models on the dev

test, respectively, with different feature templates.

Our results show that the MB disambiguation consistently outperforms our WB vari-

ant, in the various feature template settings. Moreover, the ET transition consistently

improves performance, with best results for Hebrew at F1 scores of 94.3 (94.9) for full

MD (F+POS only). The token-level accuracy for our best results are 93.07 (93.9) for

Transition-Based Morphological Disambiguation

full MD (F+POS). These results were obtained on infused lattices, that include the

gold path as one of the alternatives. In order to gauge the effect of incomplete lexical

coverage, we disable infusion of the gold analyses into the HEBLEX lattices. We then

observe a drop to F1 scores of 89.62 (92.06) and token accuracy of 87.72(90.85). To set

our results in context, we applied our best model in “English-like” settings for tagging,

with gold pre-segmented text. F1 then increases to 96.82 (97.44). That is, in “English-

like” settings, our tagging accuracy (97.44) is as high as state-of-the-art English tagging

(Manning, 2011). MarMoT (Müller, Schmid, and Schütze, 2013), a state of the art

CRF tagger, obtains F1 93.38 on full MD on this set. Next we aim to verify that ET

transitions indeed act as intended.

We classify a sequence length error as either an overshoot (predicted morphological

disambiguation sequence is longer than gold) or undershoot (predicted shorter than

gold). Without ET, in the infused setting, 36.8% of sentences have incorrect length and

the overshoot:undershoot ratio is 6.6:1. Adding ET transitions results in 31.8% length

errors, correcting 20.62% of the overshoot errors, resulting in ratio of 4:1.

In the un-infused setting, 41.4% of the sentences have incorrect length with a ratio

of 6.39:1. Adding ET results in 36% length errors, correcting 20.67% of the overshoot

errors, resulting in ratio of 3.7:1. Hebrew previous results are non-trivial to compare to

due to significant changes of the treebank along the way and unavailable code of previous

work. The most relevant results to ours are by Adler (2007), who reports state-of-the-

art results for Modern Hebrew in the realistic (non-infused) setting, with self-reported

token accuracy of 90% (93%) on a different evaluation set. For his prediction on our

dev set, F1 evaluation yields 85.74 (87.95), much lower than ours. Segmentation F1 for

Adler is 96.35, while ours is 97.6. We confirm our findings on the test set, for which

Adler F1 yields 82.91 (85.56). Our best model now yields 86.23 (88.85) and 92.9 (93.73)

in realistic and infused settings, respectively.

5.7 Results for Universal Dependencies

The MD requires a lattice structure to describe the ambiguous MSRs of input tokens.

The input, as supplied by the UD data set, are tokens with unambiguous gold or pre-

dicted MSRs. To generate the required input lattices for MD, we implement a data-

driven Morphological Analyzer (MA), that can be trained out-of-the-box along with our

MD models for any treebank in the CoNLL-U format.

We generate a dictionary for each language from its train set by collecting all seen

analyses of each token in the training data, where an analysis is composed of MSRs that

Transition-Based Morphological Disambiguation

contain a lemma, POS, and the full set of morphological features. The dictionary maps

each token to a set of MSR sequences, which then compose their ambiguous MA lattices.

For out-of-vocabulary (OOV) tokens, the MA pre-computes the cardinality of each

coarse POS — the number of unique tokens per coarse POS — and consider the top 5

POS as “open-class”. For these top 5 POS, the MA computes the 50 highest-frequency

MSRs (POS + morph. properties) to be used as the OOV lattice of an OOV token.

When applying MA to the training set, we add the OOV lattice to tokens whose

known analysis contains an open-class POS. The model thus encounters during training

a larger space of states than the observed one, and learns to accurately apply transitions

in OOV circumstances at test time.

Transition-Based Morphological Disambiguation

Lang.
sents 5k Sent. Trainset Full Trainset
words inf. no inf. MM inf. no inf. MM

bg 8907 0.933 0.914 (0.959) 0.937 (0.964) 0.946 0.926 0.948
124474 0.969 0.96 (0.983) 0.976 (0.987) 0.979 0.969 0.982

cu 5077 0.901 0.853 (0.911) 0.893 (0.927) 0.908 0.851 0.897
46025 0.964 0.931 (0.977) 0.959 (0.978) 0.965 0.929 0.962

da 4868 0.932 0.88 (0.944) 0.943 (0.966) 0.934 0.894 0.943
88979 0.953 0.91 (0.954) 0.961 (0.972) 0.954 0.922 0.961

el 1929 0.912 0.876 (0.918) 0.921 (0.944) 0.914 0.876 0.921
47449 0.977 0.965 (0.989) 0.979 (0.99) 0.978 0.965 0.979

en 12543 0.904 0.887 (0.927) 0.904 (0.937) 0.927 0.914 0.93
204586 0.923 0.911 (0.951) 0.923 (0.954) 0.942 0.932 0.945

en 3650 0.95 0.944 (0.955) 0.96 (0.969) 0.95 0.944 0.96
lines 66374 0.95 0.944 (0.955) 0.96 (0.969) 0.95 0.944 0.96

et 14510 0.866 0.821 (0.911) 0.883 (0.933) 0.913 0.884 0.928
187814 0.923 0.895 (0.953) 0.933 (0.961) 0.951 0.932 0.959

eu 5396 0.877 0.79 (0.895) 0.874 (0.93) 0.88 0.797 0.877
72974 0.948 0.904 (0.964) 0.944 (0.971) 0.948 0.908 0.946

fi 12217 0.884 0.756 (0.942) 0.889 (0.961) 0.925 0.864 0.932
162721 0.915 0.863 (0.96) 0.928 (0.973) 0.95 0.909 0.958

ga 720 0.781 0.743 (0.87) 0.819 (0.909) 0.791 0.747 0.819
16701 0.896 0.873 (0.946) 0.924 (0.961) 0.9 0.882 0.924

gl 2276 0.971 0.968 (0.985) 0.971 (0.984) 0.971 0.968 0.971
79329 0.971 0.968 (0.985) 0.971 (0.984) 0.971 0.968 0.971

got 4360 0.874 0.824 (0.873) 0.877 (0.901) 0.871 0.83 0.877
44722 0.955 0.927 (0.964) 0.961 (0.972) 0.953 0.924 0.961

grc 13185 0.862 0.762 (0.867) 0.844 (0.883) 0.862 0.776 0.859
196083 0.926 0.853 (0.937) 0.935 (0.946) 0.92 0.861 0.941

grc 13306 0.829 0.719 (0.89) 0.774 (0.887) 0.909 0.853 0.9
proiel 166061 0.911 0.827 (0.972) 0.893 (0.966) 0.973 0.939 0.971

hi 13304 0.82 0.799 (0.823) 0.867 (0.891) 0.846 0.832 0.891
281057 0.944 0.934 (0.955) 0.947 (0.964) 0.953 0.948 0.963

hr 3557 0.86 0.812 (0.877) 0.87 (0.913) 0.86 0.813 0.87
78817 0.951 0.936 (0.974) 0.954 (0.973) 0.951 0.933 0.954

hu 1433 0.763 0.701 (0.831) 0.751 (0.862) 0.758 0.697 0.751
33016 0.92 0.895 (0.951) 0.945 (0.973) 0.915 0.896 0.945

id 4477 0.932 0.926 (0.934) 0.937 (0.945) 0.932 0.926 0.937
97531 0.932 0.926 (0.934) 0.937 (0.945) 0.932 0.926 0.937

Table 5.2: MA&D for non-MRLs : F1 scores of the languages in UD that do not
require morphological segmentation, the upper line indicates full MD, the lower line

indicates segmentation and POS only.

Transition-Based Morphological Disambiguation

Lang.
sents 5k Sent. Trainset Full Trainset
words inf. no inf. MM inf. no inf. MM

la 2660 0.797 0.696 (0.814) 0.797 (0.876) 0.787 0.709 0.797
37819 0.904 0.847 (0.927) 0.935 (0.967) 0.897 0.854 0.935

la 16258 0.916 0.895 (0.922) 0.922 (0.938) 0.935 0.914 0.945
ittb 276941 0.978 0.965 (0.985) 0.979 (0.986) 0.986 0.977 0.988

la 11986 0.857 0.773 (0.859) 0.841 (0.886) 0.892 0.843 0.892
proiel 132376 0.949 0.896 (0.959) 0.943 (0.967) 0.969 0.943 0.97

lv 673 0.797 0.745 (0.927) 0.817 (0.931) 0.801 0.739 0.817
12629 0.876 0.841 (0.971) 0.898 (0.971) 0.88 0.835 0.898

nl 13000 0.836 0.797 (0.889) 0.823 (0.911) 0.88 0.863 0.872
197134 0.866 0.841 (0.923) 0.861 (0.928) 0.902 0.891 0.897

nl 6641 0.939 0.934 (0.967) 0.95 (0.971) 0.943 0.94 0.952
lassysmall 88929 0.954 0.95 (0.973) 0.961 (0.974) 0.956 0.953 0.963

no 15696 0.926 0.887 (0.952) 0.93 (0.963) 0.947 0.917 0.952
244776 0.959 0.944 (0.97) 0.964 (0.976) 0.971 0.958 0.975

pl 6800 0.858 0.772 (0.882) 0.854 (0.916) 0.87 0.778 0.866
69499 0.955 0.915 (0.976) 0.961 (0.978) 0.961 0.922 0.967

pt 8800 0.913 0.881 (0.919) 0.916 (0.938) 0.927 0.906 0.93
214812 0.96 0.947 (0.965) 0.967 (0.977) 0.967 0.958 0.972

ro 4759 0.915 0.894 (0.917) 0.927 (0.939) 0.916 0.895 0.927
108618 0.962 0.946 (0.967) 0.962 (0.973) 0.961 0.947 0.962

ru 4029 0.869 0.791 (0.895) 0.861 (0.925) 0.872 0.791 0.861
79772 0.957 0.925 (0.976) 0.956 (0.979) 0.956 0.925 0.956

ru 46750 0.896 0.818 (0.919) 0.89 (0.944) n/a n/a n/a
syntagrus 815485 0.965 0.935 (0.977) 0.968 (0.98) n/a n/a n/a

sl 6471 0.874 0.791 (0.876) 0.884 (0.927) 0.882 0.804 0.892
112334 0.954 0.923 (0.967) 0.963 (0.976) 0.958 0.927 0.967

sl 2472 0.83 0.796 (0.86) 0.857 (0.902) 0.832 0.793 0.857
sst 23575 0.896 0.88 (0.92) 0.919 (0.947) 0.895 0.878 0.919

sv 4303 0.928 0.921 (0.951) 0.946 (0.966) 0.931 0.921 0.946
66645 0.952 0.947 (0.965) 0.966 (0.975) 0.954 0.947 0.966

sv 3650 0.955 0.952 (0.964) 0.957 (0.966) 0.955 0.952 0.957
lines 63949 0.955 0.952 (0.964) 0.957 (0.966) 0.955 0.952 0.957

zh 3997 0.903 0.889 (0.918) 0.913 (0.932) 0.903 0.889 0.913
98608 0.914 0.903 (0.933) 0.923 (0.943) 0.914 0.903 0.923

Table 5.3: MA&D for non-MRLs : F1 scores of the languages in UD that do not
require morphological segmentation, the upper line indicates full MD, the lower line

indicates segmentation and POS only.

T
ra

n
sition

-B
a
sed

M
orp

h
o
lo

g
ica

l
D

isam
b

igu
ation

Lang.
sents Gold Segmented 5k Train. Set (non-OOV accuracy) Gold Segmented Full Trainset Un-Segmented Full Trainset
words inf. +ET no inf. +ET MM inf. +ET no inf. +ET MM inf. +ET no inf. +ET

ar 6174 0.887 0.887 0.853 0.853 (0.87) 0.903 (0.924) 0.892 0.892 0.86 0.86 0.907 0.867 0.871 0.8 0.799
225853 0.956 0.956 0.948 0.948 (0.956) 0.956 (0.972) 0.959 0.959 0.951 0.951 0.959 0.929 0.933 0.882 0.882

ca 13123 0.953 0.953 0.919 0.919 (0.958) 0.957 (0.965) 0.963 0.963 0.939 0.939 0.968 0.961 0.961 0.938 0.937
429157 0.969 0.969 0.936 0.936 (0.972) 0.973 (0.977) 0.977 0.977 0.954 0.954 0.98 0.975 0.975 0.952 0.951

cs 23478 0.865 0.857 0.758 0.758 (0.862) 0.86 (0.921) 0.901 0.901 0.831 0.831 0.904 0.897 0.899 0.827 0.827
cac 472608 0.973 0.969 0.93 0.928 (0.984) 0.975 (0.988) 0.983 0.983 0.961 0.961 0.987 0.983 0.983 0.961 0.961

cs 860 0.845 0.844 0.812 0.801 (0.871) 0.887 (0.922) 0.848 0.847 0.816 0.812 0.887 0.832 0.822 0.804 0.8
cltt 26234 0.956 0.959 0.942 0.938 (0.988) 0.98 (0.991) 0.958 0.957 0.94 0.942 0.98 0.953 0.951 0.937 0.938

de 14118 0.928 0.928 0.921 0.921 (0.936) 0.927 (0.941) 0.929 0.929 0.921 0.921 0.927 0.93 0.928 0.921 0.92
269626 0.928 0.928 0.921 0.921 (0.936) 0.927 (0.941) 0.929 0.929 0.921 0.921 0.927 0.93 0.928 0.921 0.92

es 14187 0.929 0.928 0.888 0.888 (0.943) 0.927 (0.956) 0.939 0.939 0.908 0.908 0.936 0.93 0.933 0.9 0.903
382436 0.947 0.947 0.931 0.931 (0.959) 0.945 (0.967) 0.955 0.955 0.943 0.943 0.953 0.948 0.951 0.935 0.938

fa 4798 0.953 0.961 0.958 0.958 (0.972) 0.963 (0.978) 0.954 0.953 0.956 0.957 0.963 0.957 0.956 0.947 0.949
121020 0.96 0.968 0.964 0.964 (0.974) 0.969 (0.98) 0.96 0.959 0.962 0.963 0.969 0.962 0.962 0.954 0.955

fi 14981 0.876 0.88 0.794 0.793 (0.921) 0.858 (0.944) 0.856 0.847 0.811 0.809 0.915 0.916 0.929 0.814 0.856
ftb 127602 0.914 0.917 0.856 0.855 (0.953) 0.904 (0.957) 0.883 0.869 0.843 0.844 0.943 0.939 0.95 0.849 0.899

fr 14554 0.931 0.93 0.921 0.918 (0.935) 0.939 (0.954) 0.943 0.951 0.925 0.925 0.949 0.944 0.942 0.92 0.921
356216 0.949 0.947 0.941 0.939 (0.952) 0.955 (0.967) 0.959 0.965 0.942 0.942 0.964 0.958 0.957 0.937 0.938

he 5241 0.934 0.933 0.888 0.888 (0.907) 0.921 (0.953) 0.934 0.93 0.891 0.886 0.922 0.914 0.917 0.724 0.724
135496 0.968 0.968 0.937 0.938 (0.947) 0.955 (0.974) 0.967 0.966 0.939 0.937 0.957 0.945 0.947 0.768 0.769

it 11699 0.945 0.946 0.91 0.911 (0.953) 0.943 (0.962) 0.96 0.958 0.945 0.945 0.97 0.953 0.957 0.935 0.937
249330 0.959 0.96 0.924 0.925 (0.961) 0.958 (0.972) 0.97 0.967 0.956 0.955 0.978 0.961 0.965 0.946 0.947

ta 400 0.761 0.793 0.761 0.732 (0.912) 0.82 (0.929) 0.794 0.797 0.757 0.756 0.82 0.72 0.722 0.659 0.664
6329 0.835 0.859 0.825 0.813 (0.927) 0.877 (0.938) 0.856 0.861 0.827 0.821 0.877 0.765 0.772 0.714 0.717

tr 3947 0.781 0.873 0.765 0.806 (0.935) 0.855 (0.933) 0.794 0.787 0.768 0.805 0.855 0.84 0.781 0.742 0.78
40609 0.884 0.938 0.87 0.897 (0.968) 0.934 (0.964) 0.893 0.885 0.879 0.899 0.934 0.907 0.87 0.846 0.871

Table 5.4: MA&D in MRLs: F1 scores of the languages in UD which require morphological segmentation. The upper line indicate full MD, the
lower line indicates segmentation and POS only. The left hand side shows results for GOLD segmentation, the right hand side for input lattices.

Transition-Based Morphological Disambiguation

Tables 5.2 and 5.3 report F1 accuracy for full MD and seg/POS for UD languages that

do not require segmentation. For most large train sets (> 200k tokens), we observe 2-3

points absolute drop from infused (ideal) to uninfused (realistic) setting. This suggests

that when large train sets exist, our data-driven MA is a viable economic alternative to

costly hand-crafted monolingual lexical resources.

To scrutinize our realistic results we also report non-OOV-only F1 for 5k limited

uninfused setting. Here we see that for 80% of languages, our results are on a par with

a state-of-the-art tagger, MarMot (Müller, Schmid, and Schütze, 2013), retrained on

these data, within 0.035 (or less) points gap. This demonstrates that our disambiguation

capacity is on-par with MarMot, where performance gaps come mostly from our OOV

strategy (which is intentionally restrained, to allow handling of MRL segmentation that

is handled by MarMot).

Table 5.4 shows results for UD MRLs that require segmentation, contrasting results

on gold pre-segmented input and un-segmented raw data. For raw data we see a mi-

nor, 0.02, drop in F1, compared to gold-segmented settings. That is, our model still

retains the competitive MA&D performance, in a single, universal, trainable model —

we attribute this to our joint segmentation and tagging strategy, which overcomes error

propagation.

Shortly before submitting this thesis, UDPipe (Straka, Hajic, and Straková, 2016),

a tool for tokenization, morphological analysis, tagging and parsing, had been released.

As its name suggests, UDPipe is a pipeline implementation packaging together separate

tools for different tasks. Our approaches and ultimate goals are rather different. We

present joint morphological segmentation and tagging, as opposed to a pipeline. More-

over, our framework can be extended into a single transition-based system performing

all tasks jointly, overcoming overheads and error propagation, as we intend to address

next.

5.8 Discussion

In this chapter, we defined two transitions systems for morphological disambiguation:

word-based (5.3) and morpheme-based (5.4). For the morpheme-based transition, we

introduce a novel mitigation of the variable-length transition sequence problem (ET),

and argue its advantage over the commonly used variable-length solution, IDLE, for

our use-case (5.4.4).

We report the results of an empirical comparison (5.5), and conclude that the morpheme-

based transition-system out performs the word-based transition-system.

Transition-Based Morphological Disambiguation

We evaluate the performance of our best model against the Modern Hebrew treebank,

in ideal (infused) and realistic (uninfused) settings. We present state-of-the-art results

in both settings (5.6).

To showcase the cross-linguistic applicability of our model, we present results for 48

treebanks of the UD 1.3 corpora (5.7).

We present an in-depth discussion of our results, conclusions, and new research ques-

tions for future work in Discussion and Conclusion (8.1.1).

Chapter 6

Transition-Based Dependency

Parsing

“Never mistake a clear view for a

short distance.”

Paul Saffo

6.1 Introduction

We first define a general configuration for dependency parsing, followed by major vari-

ants of transition systems for dependency parsing found in the literature and in practice.

Transition systems designed for dependency parsing are also called Arc Systems (as they

aspire to generate the arcs of a dependency tree); we shall use these terms interchange-

ably.

Originally, transition systems for dependency parsing were defined for non-MRL lan-

guages. In non-MRLs, sentences are sequences of words that also serve as the nodes

of their respective dependency trees. In contrast, sentences in MRLs are composed

of tokens while their respective dependency trees have morphemes for nodes. We de-

scribe transition systems given a generic sequence of morphemes rather than words; the

reader shall accommodate the discrepancy by considering a word of a non-MRL to be a

morpheme.

Let R be a set of dependency types and S = m1...mn be a sentence of n morphemes.

We denote a dependency graph of S as GS = (VS , AS), where VS is a set of elements

corresponding to the morphemes of S, and AS ⊆ VS × R × VS as a set of labeled arcs

between the elements of VS .

37

Transition-Based Dependency Parsing

Define a configuration of an arc system for a sentence S = m1...mn of n morphemes

as a triple c = (σ, β,A), where:

• σ is a stack of morphemes mi ∈ VS

• β is a buffer of morphemes mi ∈ VS

• A is a set of labeled dependency arcs (mi, r,mj) ∈ VS ×R× VS

A configuration represents a partial analysis of the input sentence, where the morphemes

on the stack S are partially processed morphemes, the morphemes in the buffer β are

the remaining morphemes, and the arc set A represents a partially built dependency

tree (Kübler, McDonald, and J. Nivre, 2009, Chapter 3).

There are two aspects for subtle variations on a given arc system: the existence of a

root node and projectivity.

A transition system can introduce an artificial so-called “root” node - a morpheme

that does not exist in the input sentence made available as the head of any morpheme

(and therefore, any partial tree) in the sentence. A root node allows for multiple partial

dependency trees (forest) of an input sentence to be unrelated, except through the root

node. This facilitates grammatically incorrect sentences or pathological cases. We call

transition systems with and without a root node root-full and root-less, respectively.

A projective arc system can only output projective dependency graphs; it is guar-

anteed to fail given a non-projective input sentence because no transition sequence ex-

ists such that the resulting set of arcs represents a non-projective dependency graph.

Likewise, a non-projective arc system can result in both projective and non-projective

dependency graphs. Although non-projective arc systems exist in the literature, we limit

our scope to that of projective arc systems. However, there are no inhibiting properties

of our work preventing the applicability to non-projective arc systems.

Unless otherwise specified, the set of terminal configurations is Ct = {(σ, []β, A)} for

any A and |σ| = 1.1

6.2 Arc Standard

Given an input sentence S = m1...mn, the Arc Standard root-full transition system

defines the initial configuration function as c0(S) = ([m0]σ, [m1, ..., .mn]β, ∅) , where m0

is the root node. For the root-less variation, let σ = []. This transition system’s name

1In the literature, σ = [m0] is the formal requirement for root-full variations, however |σ| = 1 is a
generalization that applies to both root-full and root-less variations.

Transition-Based Dependency Parsing

ROOT Economic news had little effect on financial markets .

ATT SBJ ATT ATT

PC

ATT

OBJ

PU

PRED

Figure 6.1: A dependency tree for the sentence “Economic news had little effect on
financial markets.”

alludes to it’s straightforward, standard method of bottom-up left-to-right incremental

parsing (J. Nivre, 2004).

We use the formal definition of the Arc Standard transition system by Kübler, Mc-

Donald, and J. Nivre (2009):

Data: cs(x = x1, ..., xn) = ([0], [1, ..., n], ∅)
Terminal: Ct = {c ∈ C|c = ([0], [], A)}
Transitions: (σ, [i|β], A)→ ([σ|i], β, A) (SHIFT)

([σ|i], [j|β], A)→ (σ, [j|β], A ∪ {(j, l, i)}) if i 6= 0 (ArcLeftl)

([σ|i], [j|β], A)→ (σ, [i|β], A ∪ {(i, l, j)}) (ArcRightl)

Algorithm 6: The arc-standard transition system for dependency parsing (Kübler,
McDonald, and J. Nivre, 2009, Chapter 3)

The correct (gold) transition sequence for a transition system, given an input sentence

and it’s respective dependency graph, is produced by an oracle function. The gold

transition sequence is used in training by comparing it to the predicted sequence, and

may be referenced by the parametric model to learn correct transitions.

In table 6.1 an example of a correct transition sequence with the root-full variant is

shown for the English sentence “Economic news had little effect on financial markets.”,

resulting in its dependency tree as in figure 6.1.

Formally, the oracle is a function that is given a configuration and a reference depen-

dency graph Gd = (Vd, Ad), and it returns a transition. The oracle for Arc Standard is

as follows:

o(c = (σ, β,A)) =

ArcLeftl if (β[0], l, σ[0]) ∈ Ad
ArcRightl if (σ[0], l, β[0]) ∈ Ad and ∀m, l′

if (β[0], l′,m) ∈ Ad then (β[0], l′,m) ∈ A
SHIFT otherwise

(6.1)

Algorithm 7: The oracle function for the Arc Standard Transition System for Depen-
dency Parsing (Kübler, McDonald, and J. Nivre, 2009, Chapter 3)

Transition-Based Dependency Parsing

Transition Stack σ Buffer β Arcs A

c0 = ([R], [Economic,...,.], ∅)
SH → ([R,Economic], [news,...,.], ∅)

LAATT → ([R], [news,...,.], A1 ={(news,ATT,Economic)})
SH → ([R,news], [had,...,.], A1)

LASBJ → ([R], [had,...,.], A2 = A1∪{(had,SBJ,news)})
SH → ([R,had], [little,...,.], A2)

SH → ([R,had,little], [effect,...,.], A2)

LAATT → ([R,had], [effect,...,.], A3 = A2∪{(effect,ATT,little)})
SH → ([R,had,effect], [on,...,.], A3)

SH → ([R,...,on], [financial,...,.], A3)

SH → ([R,...,financial], [markets,.], A3)

LAATT → ([R,...,on], [markets,.], A4 = A3∪{(markets,ATT,financial)})
RAPC → ([R,had,effect], [on,.], A5 = A4∪{(on,PC,markets)})
RAATT → ([R,had], [effect,.], A6 = A5∪{(effect,ATT,on)})
RAOBJ → ([R], [had,.], A7 = A6∪{(had,OBJ,effect)})

SH → ([R, had], [.], A7)

RAPU → ([R], [had], A8 = A7∪{(had,PU,.)})
RAPRED → ([], [R], A9 = A8∪{(R,PRED,had)})

SH → ([R], [], A9)

Table 6.1: Example Parsing Sequence with Arc Standard; SH - SHIFT, RA/LA -
ArcRight/ArcLeft, R - ROOT (Kübler, McDonald, and J. Nivre, 2009, Chapter 3)

6.3 Arc Eager

In Arc Standard, right dependents can’t be attached to their head (i.e. RightArc-ed)

until all their dependents have been attached. This constraint is due to dependents of

right arcs (head being on the “left” of the dependent) being removed from the buffer as a

result of a RightArc transition. Therefore, if a RightArc transition is applied prematurely

to a node n, it follows that an eventual error in the transition sequence will arise as an

incorrect attachment of a true dependent of n to some incorrect node, m 6= n. The

parametric model predicting the next transition must take this into account, required to

foresee that a RightArc should be delayed due to possible dependents appearing after it

in the buffer β.

The RightArc constraint in Arc Standard has the additional effect that even though

a RightArc is certain, this information is never stored in the configuration until the

RightArc is created. In table 6.1, observe that at the fifth transition, even though “had”

is certainly a dependent of the root, it is shifted instead.

Therefore, in following transitions, the parametric model does not have access to an

indication that ROOT will be the head of “had”, eventually. This limits the depth of

inquiry available to the parametric model - perhaps it could better predict a subsequent

Transition-Based Dependency Parsing

transition knowing that “had”s head is the ROOT? This line of question begs a higher-

level question — perhaps taking the incremental approach of Arc Standard further,

we need to parse bottom-up for left-dependents but top-down for right-dependents (J.

Nivre, 2004)?

Data: cs(x = x1, ..., xn) = ([0], [1, ..., n], ∅)
Terminal: Ct = {c ∈ C|c = ([0], [], A)}
Transitions: (σ, [i|β], A)→ ([σ|i], β, A) (SHIFT)

([σ|i], [j|β], A)→ ([σ|i|j], β, A ∪ {(i, l, j)}) (ArcRightl)

if (k, l′, i) /∈ A and i 6= 0 then
([σ|i], [j|β], A)→ ([σ], [j|β], A ∪ {(j, l, i)}) (ArcLeftl)

if (k, l′, i) ∈ A then
([σ|i], β, A)→ (σ, β,A ∪ {(i, l, j)}) (REDUCE)

Algorithm 8: The arc-eager transition system for dependency parsing J. Nivre (2004)

Following the work of Abney and Johnson (1991), the Arc Eager transition system in

figure 6.2, formalized by J. Nivre (2003), is a variant of Arc Standard in which RightArc

is redefined so that the dependent is pushed onto the stack, making it possible to eagerly

attach a right-dependent to its head while allowing more dependents to attach to it. To

accommodate this, a new transition, REDUCE, makes it possible to pop the dependent

from the top of the stack at a later point on the condition that it already has a head.

In figure 6.2, the Arc Eager transition sequence, given by its oracle, for the sentence

“Economic news had little effect on financial markets.” is shown. As opposed to Arc

Standard, RightArcs are observed occurring early in the sequence, doubling as replace-

ments for many SHIFT operations and complemented by REDUCE transitions towards

the end. Note how both transition systems and their respective oracles output the same

dependency tree (figure 6.1). However, in Arc Eager, “had” is attached to its head

(ROOT) earlier in the transition sequence.

6.4 Arc ZEager

The Arc Standard and Arc Eager transition systems defined in the previous chapters

are often found with slight variations in the literature and in practice. For example, in

recent literature Hatori et al. (2011) use a version of Arc Standard where ArcLeft and

ArcRight operations (which they call ReduceLeft and ReduceRight) occur on the top

two elements of the stack, rather than on the top elements of the stack and the buffer.

This specific modification retains the nature of Arc Standard, since the functionality

of the top of the buffer is only relocated to the top of the stack; functionally these are

equivalent, but using this modification clears the way for using the SHIFT transition as

a tagger.

Transition-Based Dependency Parsing

Transition Stack σ Buffer β Arcs A

c0 = ([R], [Economic,...,.], ∅)
SH → ([R,Economic], [news,...,.], ∅)

LAATT → ([R], [news,...,.], A1 ={(news,ATT,Economic)})
SH → ([R,news], [had,...,.], A1)

LASBJ → ([R], [had,...,.], A2 = A1∪{(had,SBJ,news)})
RAPRED → ([R,had], [little,...,.], A3 = A2∪{(R,PRED,had)})

SH → ([R,had,little], [effect,...,.], A3)

LAATT → ([R,had], [effect,...,.], A4 = A3∪{(effect,ATT,little)})
RAOBJ → ([R,had,effect], [on,...,.], A5 = A4∪{(had,OBJ,effect)})
RAATT → ([R,...,on], [financial,...,.], A6 = A5∪{(effect,ATT,on)})

SH → ([R,...,financial], [markets,.], A6)

LAATT → ([R,...,on], [markets,.], A7 = A6∪{(markets,ATT,financial)})
RAPC → ([R,...,markets], [.], A8 = A7∪{(on,PC,markets)})
RE → ([R,...,on], [.], A8)

RE → ([R,...,effect], [.], A8)

RE → ([R,had], [.], A8)

RAPU → ([R,...,.], [], A9 = A8∪{(had,PU,.)})
RE → ([R,had], [], A9)

RE → ([R], [], A9)

Table 6.2: Example Parsing Sequence with Arc Eager; SH - SHIFT, RA/LA - Ar-
cRight/ArcLeft, RE - REDUCE, R - ROOT (Kübler, McDonald, and J. Nivre, 2009,

Chapter 3)

When we set out to test the joint hypothesis, we decided to first reproduce the

state-of-the-art (SOA) system for English at the time as presented by Zhang and Nivre

(2011). Reproducing SOA served multiple purposes, but first and foremost it provided

us the ability to test numerous experimental approaches to joint processing, some of

which would require significant engineering effort if we were to build upon the existing

implementation - the zpar parser.

Second, while nevertheless requiring a significant engineering effort, implementing a

new parser from scratch had the added benefit of helping us acquiring an understanding

of the minute intricacies of dependency parsing and our framework.

Third, the often undervalued but important task of reproducing scientific work can

result in unexpected insight. This may occur when previously overlooked or unreported

assertions and assumptions are brought to light. Also, exposing supposedly minor vari-

ations of theories when applied in practice may be of interest to the community.

In our reproduction of Zhang and Nivre (2011), we discovered a variant of Arc Eager

in the code that we call Arc (Z)Eager. Arc ZEager has interesting subtle variations on

the configuration structure, transition system, its oracle, computation of the parametric

model, and surprisingly even the algorithms for the BEST and TOP-B functions of beam

Transition-Based Dependency Parsing

search. One frustrating aspect of these variations is that in attempting reproduction, we

learned that deviation from any one of them (including bugs!) results in loss of accuracy.

In this work, we survey the subtle difference between the transition systems.

6.4.1 Configuration and Root Node

The configuration for Arc ZEager is very similar to Arc Eager, except it includes a

second stack called a head-stack (sic), which we shall denote as σh: (σ, σh, β, A). Arc

ZEager is root-less; the initial configuration has an empty stack and head-stack.

6.4.2 End of Sequence

The first noticeable difference is in end-of-sequence behavior; where |β| = 0, and the

only operations left to apply are REDUCEs to achieve a sequence of length exactly

2n (n=the number of words/morphemes in the input sentence). If |β| = 0, the parser

continually REDUCEs the remainder of the stack, with the exception of the last value

in the stack. For the last value, a unique transition named POPROOT (sic), is required

to occur as the last transition of the sequence, i.e. when |β| = 0 and |σ| = 1. This is

interesting because this transition necessarily has unique features, reserved only for the

word in the sentence that serves as its root.

6.4.3 SHIFT

One of the most interesting changes introduced by Arc ZEager is the added pre-condition

that a SHIFT may not occur after a REDUCE. This condition is followed by the com-

ment: “there are many ways when there are many arcrighted items on the stack and the

root need arcleft. force this.”. This is an interesting, possibly linguistically motivated,

optimization of the transition system itself. Additionally, SHIFT requires that either

|β| > 1 or |σ| = 0. We have no insight into this condition. As in Arc Eager, SHIFT

pushes the top of the buffer onto the stack, but it also pushes it onto the top of σh.

6.4.4 ARCLEFT

ArcLeft is the same as in Arc Eager, except it also pops the head-stack. ArcLeft is the

only operation to pop the head-stack, yet SHIFT is the only operation to push onto it.

This leads one to believe that the head-stack is a stack of head-less words on the stack:

Transition-Based Dependency Parsing

SHIFT-ed words are head-less, and ArcLeft results in attaching a head to head-less

words on the stack, therefore they are removed.

6.4.5 ARCRIGHT

ArcRight is the same as in Arc Eager, except it has the additional pre-condition that

either |β| > 1 or |σh|=1. This condition is perhaps the most peculiar. |β| > 0 and

|σ| > 0 are implicitly required as a pre-condition for Arc Eager, therefore the relevance

of |σh| = 1 is only when |β| = 1. Assuming we accept the plausible explanation that the

head-stack is a stack of head-less elements in |σ|, this added pre-condition means that

ArcRight will not occur if the only element in β has a head, meaning the only possible

next transitions are either a SHIFT or a REDUCE (ArcLeft is not relevant because it

attaches a head onto the head of the stack).

6.4.6 Discussion

The particular conditions of SHIFT and ARCRIGHT in Arc ZEager are important

because they result in a limitation of the search space when they apply. Where a limited

next transition would otherwise be required to be weighed against all the possible next

transitions, Arc ZEager deliberately does away with it, begging the question: Are there

some linguistic insights that motivates these limitations? Since using the vanilla Arc

Eager transition system results in a performance loss, it appears the community could

find utility for such linguistic insights.

We intend to reach out to the authors of Arc ZEager regarding these issues for further

discussion.

6.5 Dependency Parsing of Modern Hebrew

We consider the suitability of Arc Standard vs Arc ZEager in the context of Modern

Hebrew. The suitability of each can be argued; Arc Eager is legitimized by its logical

derivation from the study of Arc Standard, but its applicability may be due to the nature

of the English language. Most pointedly, English grammar requires a strict Subject-

Verb-Object (SVO) order, but Hebrew grammar allows freedom in this ordering. For

example, in English one may only say “Tom ran home” - any other ordering of the

subject, verb, or object would be considered grammatically incorrect. In contrast, the

equivalent Hebrew sentence TWM RC HBITA, exhibiting SVO order, can also be written

HBITA RC TWM, which is OVS order.

Transition-Based Dependency Parsing

An empirical study by J. Nivre (2008) compares the performance of Arc Standard

and Arc Eager for 13 languages, amongst them Arabic and Turkish, considered MRLs

and both allowing for some degree of freedom in word order. For these languages,

Arc Standard performance is observed to be slightly better than Arc Eager, although

no conclusive explanation exists for this difference as too many variables may have

contributed.

We therefore conduct an empirical evaluation for Modern Hebrew, comparing Arc

Standard to Arc ZEager.

6.5.1 Rich Linguistic Features

The foremost contribution of Zhang and Nivre (2011) is the set of Rich Non-Local

features, adding high-order feature sets previously found only in graph-based parsers.

In order to at least attempt a fair comparison of Arc Standard to Arc ZEager, we adapt

the feature set of Zhang and Nivre (2011) to Arc Standard and Modern Hebrew, to

the extent that this is possible. Recall that Arc Eager attaches the head of a right-

dependent as soon as possible, thus allowing access to a more complete picture of its

syntactic surroundings during later processing. This is not possible in Arc Standard,

and no feature set could, by itself, overcome this limitation.

However, we address the dependence of Rich Non-Local features on strict word order

to the free word order of MRLs. We call our feature set Rich Linguistic features. The

essence of the two feature sets is the same, but we replace some features relying on strict

word order with parallel features that allow for free word order.

To construct our features, we define new properties to capture linguistic information

of selectional preferences and subcategorization frames (Tesnière, 1959; Chomsky, 1965).

To capture the syntactic characterizations of the subcategorization frame, we define fp

as the multi-set of parts-of-speech of dependents of a given head. Likewise, to capture

the functional characterizations of subcategorization frames, we define the properties sf ,

referring to the multi-set of labels of all dependents in the frame of a given head. For

valency, we define the properties vf , referring to the number of dependents of a given

head.

For selectional preferences, and to accommodate free word order, we allow for the

definition of order-agnostic bi-lexical dependency features to be generated for each de-

pendent of a head, indicated as Ci.

To generalize the head-stack σh of Arc ZEager, we introduce the edge potential

property o = |σh|, and likewise update Arc Standard such that it maintains σh.

Transition-Based Dependency Parsing

Feature Set Morpheme Form Arc System
zpar yap

UAS LAS UAS LAS

Non Local (EN 40k) Form ZEager 93.1 91.8 93.1 91.8

Non Local (EN 5k) Form ZEager 90.4 88.9 90.4 88.9

Non Local (HE) Form ZEager 88.7 82.5 86.6 79.7

Non Local (HE) Lemma ZEager 88.9 82.9 86.3 79.7

Linguistic (HE) Form ZEager - - 86.1 79.3

Linguistic(HE) Lemma ZEager - - 86.2 79.7

Linguistic (HE) Form Standard - - 88.1 77.5

Linguistic (HE) Lemma Standard - - 88.5 77.7

Table 6.3: Dependency Parsing Variants for Modern Hebrew, with English for Refer-
ence

Additionally, we augment existing features with morphological properties, providing

an augmentation operator that treats features as templates. The augmentation operator

allows for creating multiple instances of the same feature with and without morpholog-

ical features. See Appendix C for a full comparison of rich non-local/linguistic feature

models.

6.6 Experiments

In our approach to empirical evaluation, we first verify that we are able to reproduce

the results of Zhang and Nivre (2011) given their setup. We therefore first compare

the outputs of zpar and yap on the Penn Treebank (PTB), using the same standard

train/dev/test split, with predicted POS tags using zpar’s implementation of the Collins

(2002) tagger.

The training set of the full PTB contains 40k projective sentences, dwarfing the

Modern Hebrew treebank of just 5k sentences, of which a handful are non-projective.

To enable a comparison of models’ performance between English and Modern Hebrew,

we also run both parsers on a set of the first 5k sentences of the English training set.

With the appropriate flags set for bug emulation, we verify our implementation’s

output is at parity with zpar. We then compare the performance with these same settings

on our updated Modern Hebrew treebank. To test our feature set, we then compare the

performance of the Rich Linguistic feature set, and alternate between surface form and

lemma representation of morphemes.

Transition-Based Dependency Parsing

6.7 Results

In table 6.3 we present the results of our experiments on the development sets of English

and Hebrew. We first verify that indeed, given the full English corpus of the Penn

Treebank, we have successfully reproduced the results of Zhang and Nivre (2011). In

addition, we isolate the effect of treebank size, and report the results of Zhang and Nivre

(2011) on the PTB when limited to just 5k sentences, resulting in an absolute drop of

2.7% and 2.9% in UAS and LAS, respectively, and enlarging the error rate by about

50% and 30%, respectively. This exemplifies the critical impact of corpus size. We must

bear in mind this significant impact on model accuracy when considering our results on

Modern Hebrew.

When applied to the Modern Hebrew treebank with lemmas replacing forms where

possible, the model of Zhang and Nivre (2011), as implemented by zpar, results in

state-of-the-art scores of 88.9 UAS and 82.9 LAS. Compared to our baseline result

of Goldberg and Elhadad (2010) of 84.2 UAS (they do not report LAS), this result

represents a significant advancement in the state-of-the-art for the dependency parsing

task of Modern Hebrew. Of note is the large difference in error rates of UAS and LAS.

Unfortunately, due to time and scope limitations, we did not investigate this further.

Bare in mind that the PTB and Hebrew treebank are not directly comparable since

their annotation directives are not equivalent - they have different sets of POS tags and

dependency labels, resulting in different syntactic theories.2

When applying the same models as implemented in yap, we see a noticeable difference

in performance: we present UAS/LAS of 86.3/79.7 in the same setting as the state-of-

the-art results of zpar. We attribute this to a possible software bug in implementation,

noticing that yap ceased the learning process after just 7 iterations, compared to zpar

which continued to 34 iterations. While we could continue to debug yap and analyze the

difference, we preferred to stop at this point due to time constraints in order to apply

our remaining time to the main hypothesis (joint processing).

We can still gain some valuable insight through comparison to our own baseline results

- we do see a noticeable performance gain of 2.2 in UAS when switching to Arc Standard

from Arc ZEager, however at the same time, we see a drop in LAS. This reversal is quite

peculiar, as one expects these two measures to change in the same direction. We did

not investigate this further.

2Of note is the minute difference that the Modern Hebrew treebank has an annotated root label,
whereas the English PTB does not. Since Arc ZEager is root-less, and the POPROOT transition does
not label the root, we disregard the root’s dependency label during evaluation.

Transition-Based Dependency Parsing

Data Experiment UAS LAS F1 (unlabeled) F1 (labeled)

Gold G & E (2010) 84.2 n/a n/a n/a

Gold yap 86.6 79.7 86.6 79.7

Gold zpar 88.9 82.9 88.9 82.9

Pred G & E (2010) 76.2 n/a n/a n/a

Pred yap (This work) 81.7 75.5 82.2 76.0

Pred zpar (This work) 79.7 73.3 80.3 73.8

Table 6.4: Impact of Gold vs Predicted morphology on performance of various stan-
dalone dependency parsers; Goldberg and Elhadad (2010) use predicted morphology
by Adler (2009), yap and zpar use the best MD setting of this work, and both use the

same setting: rich non-local features with Arc ZEager

To illustrate the impact of gold vs predicted morphology, we provide a comparison in

table 6.4. We observe a noticeable drop in UAS as reported by Goldberg and Elhadad

(2010), as well as in UAS and LAS of our own experiments. We use the form, rather

than lemma variant of the input, because the MD does not predict lemmas. UAS/LAS

scores, when applied to predicted input, correspond to precision. For a more complete

comparison, we also supply F1 scores.

Chapter 7

Transition-Based Joint Processing

“The whole is greater than the sum of

its parts.”

Aristotle

Given our morphological disambiguation and dependency parsing processors as transition-

based systems in the same framework, we seek an integration such that syntax may

affect morphological disambiguation and vice versa. We propose to literally embed the

two standalone processors presented in (5, 6), and define coherent logic, called a joint

strategy, that deterministically chooses which processor to apply given a configuration

state. We first define a joint morpho-syntactic configuration that embeds both the MD

and dependency parser configurations (7.1). We then formally define the concept of a

joint strategy (7.2), propose two such strategies (7.2.1, 7.2.2), carry out experiments to

validate our main hypothesis (7.3), and report our results (7.4).

7.1 A Joint Morpho-Syntactic Configuration

Let cm and cd be MD and dependency parser configurations as defined in chapters 5

and 6, respectively. We define a Joint Configuration as follows:

cj = (cm, cd) = ((L, n, i,M), (σ, β,A)) (7.1)

We initialize the embedded MD configuration cm with the MD transitions system’s

initialization function as in chapter 5, but leave cd empty, with σ = β = [] as an empty

stack and buffer, respectively, and as before A = ∅. cj is terminal if and only if cm and

cd are both terminal configurations of their respective transition systems.

49

Joint Processing

7.2 Joint Strategies

Our baseline approach, called the Pipeline strategy (for which we need not supply a

formal definition), first applies the morphological disambiguation processor, chooses the

best output, and then applies the syntactic processor. The Pipeline strategy does not

require a joint framework at all, and is applicable to any two frameworks for MD and

dependency parsing processing.

We seek to improve upon the Pipeline strategy/approach, but we first must adjust

the MD transition system such that its disambiguations feed into the embedded con-

figuration of the dependency parser. We modify the morpheme-based MD transition

such that it accepts a joint configuration and populates the buffer of the dependency

configuration:

MD∗s : ((L, n, i,M), (σ, β,A))→ ((L, q, j,M ∪ {m}), (σ, [m|β], A)) (7.2)

We may now define a proper joint transition system, using a joint strategy. Let

T = (T ∗m, Td) be the ordered pair of the transitions sets of the MD and dependency

parsing transition systems (respectively), let C = {cj} be the set of all possible non-

terminal joint configurations, and Ctm , Ctd be the set of terminal configurations of their

respective transition systems. A joint strategy is a deterministic function that, given

a non-terminal joint configuration and set of transition systems, chooses exactly one

transition system:

JOINT : C → T (7.3)

7.2.1 MDFirst

With two integrated processors defined in the same framework, which maintains a set

of B-best candidates, we propose the trivial improvement upon the pipeline approach of

not choosing just the top-scoring candidate of the MD processor, but passing on all B

candidates to the dependency processor. We call this strategy the MDFirst strategy:

MDFirst((cm, cd) ∈ C) =

{
T ∗m if cm /∈ Ctm
Td otherwise

(7.4)

Algorithm 9: The MDFirst Joint Strategy

While MDFirst is trivial, it offers us the opportunity of allowing the syntactic

processor to “re-rank” an initially lesser scored disambiguation if its syntactic processing

ends up resulting in a better dependency parse.

Joint Processing

7.2.2 ArcGreedy

Since both transition systems process their input left-to-right, there is no inherent con-

straint preventing the application of a syntactic transition as soon as the embedded

dependency configuration meets the minimal state required for a dependency transition

to be applied. We therefore propose a set of ArcGreedyk strategies, wherein we greed-

ily choose to apply a syntactic transition if the dependency configuration’s buffer β is

populated by at least k morphemes:

ArcGreedyk(cm, cd = (σ, β,A)) =

{
T ∗m if |β| < k

Td otherwise
(7.5)

Algorithm 10: The ArcGreedyk Set of Joint Strategies

In our model, we (currently) do not propose altering the learning models of either

processors. We require a minimum k morphemes in β so that the feature sets of the syn-

tactic processor may look k morphemes “forward” in order to predict its next syntactic

transition.

Thus, both MDFirst and ArcGreedyk are joint morpho-syntactic transition systems,

in that candidates of the framework have a joint global score:

ScoreJoint(y) = ScoreMD(y) + ScoreDep(y) (7.6)

=
d∑
i=1

ωmdi φmdi (ymd) +
d∑
j=1

ωetj φ
et
j (yet) +

d∑
r=1

ωdepr φdepr (ydep) (7.7)

=
∑

ck∈ymd

d∑
i=1

ωmdi φmdi (ck) +
∑
cl∈yet

d′∑
j=1

ωetj φ
et
j (cl) +

∑
cd∈ydep

d′′∑
r=1

ωdepr φdepr (cm) (7.8)

Where cmd
and cet are the (unique) resulting configurations of MD and ET transitions

respectively, and cdep are the (unique) resulting configurations of syntactic (arc system)

transitions.

The theoretical advantage of ArcGreedyk compared to MDFirst is that the in-

cremental update of the joint global score by the former alternates between MD and

syntactic predictions, allowing for syntax and morphological disambiguation to interact

frequently, such that syntax can affect the ordering of candidates many times in the pars-

ing sequence, correcting “local” mistakes close to when they occur in the sequence. This

is contrast to MDFirst, where syntax may only affect morphological disambiguation

once it is complete.

Joint Processing

Strategy Arc System ET Full/POS MD F1 Un/labeled F1

Pipe/Gold (Prev) G&E 2010 (MST) n/a 100/100 84.4 (UAS)

Pipe/Gold (new) ZEager n/a 100/100 89.0/82.6

Pipe/Pred (Prev) G&E 2010 (MST) n/a n/a 76.4 (UAS)

Pipe/Pred ZEager (zpar) +ET 94.3/94.9 80.3/73.8

Pipe/Pred ZEager (yap) +ET 94.3/94.9 83.5/76.6

Pipe/Pred Standard (yap) +ET 94.3/94.9 83.6/75.8

Joint/MDFirst ZEager 94.7/95.3 78.2/70.5

Joint/MDFirst ZEager +ET 94.9/95.6 80.2/72.5

Joint/ArcGreedy3 ZEager 94.4/95.1 80.3/72.5

Joint/ArcGreedy3 ZEager +ET 94.6/95.3 79.8/72.4

Joint/MDFirst Standard 94.8/95.4 80.9/73.4

Joint/MDFirst Standard +ET 94.8/95.5 80.7/73.3

Joint/ArcGreedy3 Standard 94.7/95.3 81.7/74.4

Joint/ArcGreedy3 Standard +ET 95.1/95.8 81.6/74.3

Table 7.1: Joint Morpho-Syntactic Processing Results on the development sets in an
ideal setting (infused); Pipe-Gold represents the upper bound (gold morphology), while
Pipe-Pred represents the drop incurred by pipeline processing; Prev indicates results

as reported by Goldberg and Elhadad (2010), as UAS

7.3 Experiments

To test our hypothesis, we investigate joint parsing with MDFirst and ArcGreedy3

strategies.1 We experiment with both Arc ZEager and Arc Standard transition systems

for dependency parsing. To test the applicability of the ENDTOKEN transition to

variable-length sequences in a joint environment, we also run all experiments with and

without ENDTOKEN.

7.4 Results

In Table 7.1 we present results for the various joint experiment settings. For comparison,

we include the best results with gold MD and pipeline settings.

We report the success of all joint models in surpassing standalone MD for Full and

POS MD of Modern Hebrew. We observe that ENDTOKEN generally increases MD

results by up to 0.4 absolute points, proving it’s applicability (at least to MD) in a

joint setting. We report our best Full MD result in the expected setting, ArcGreedy3

with ENDTOKEN, with Full and POS MD scores of 95.1 and 95.8, respectively, on the

development set. We verify these results on the test set, where we report 86.26/89.4

and 92.9/93.77 Full/POS MD scores in the realistic and ideal setting, respectively. For

1We set k = 3 because some features of Zhang and Nivre (2011) require three morphemes in the
buffer. See Appendix C

Joint Processing

comparison, our best results for standalone MD are 86.23/88.85 and 92.9/93.73 for

realistic and ideal settings, respectively. While Full MD scores are only marginally

better in the joint approach, we observe a noticeable improvement in segmentation and

POS disambiguation, especially in the realistic setting. Thus we prove the utility of joint

processing for morphological disambiguation.

Unfortunately, the improvement in MD appears to come at the expense of syntax,

where we observe a drop in Unlabeled and Labeled F1 scores. However, we do observe

that our best syntactic results in a joint setting are with the Arc Standard transition

system, and that ArcGreedyk mostly improves over MDFirst. This leads us to believe

that although dependency parsing results in joint settings are overall less than those of

pipeline results, we are headed in the right direction. We further discuss possible issues

and future work in Section 8.1.3.

Chapter 8

Discussion and Conclusion

“In literature and in life we

ultimately pursue, not conclusions,

but beginnings.”

Sam Tanenhaus

In this work we present a novel morphological disambiguation transition-system,

an adaptation of a transition-based dependency parser to MRLs, and a joint morpho-

syntactic parser that unifies them.

We present a discussion of the results for standalone (8.1.1,8.1.2) and joint parsers

(8.1.3), followed by our concluding remarks (8.2).

8.1 Discussion

8.1.1 Morphological Disambiguation

In order to test our joint hypothesis, we chose to implement a morphological disam-

biguator in a proven framework for dependency parsing. We chose the transition-based

framework of Zhang and Clark (2011), for which we present an instantiation of a novel,

open class morphological disambiguator. We conduct an empirical investigation of a

word-based vs. morpheme-based approach, and conclude that the latter performs better.

To mitigate the issue of variable-length sequences introduced by the morpheme-based

approach we propose a novel ENDTOKEN transition and show it has some effect as a

counter-balance to the bias of longer sequences.

Together with a new lexicon-based morphological analyzer and rectified corpus, the

performance of the transition-based MD is state-of-the-art for Modern Hebrew, both

54

Summary

in ideal and realistic settings. Using a data-driven morphological analyzer, we apply

the MD to 48 treebanks of the Universal Dependencies data set and show multilingual

applicability, especially regarding Morphologically Rich Languages.

Looking forward, the transition-based MD would likely profit from a feature model

backed by word embeddings and LSTMs on languages for which this is applicable. Un-

fortunately, to the best of our knowledge, there are no Modern Hebrew word embedding

or LSTM models for morphologically ambiguous lattices. An embedding of a morpho-

logically ambiguous lattice must represent the multitude of spellouts that derive from

it; how this may be done is an open research question.

8.1.2 Dependency Parsing

For the second part of the joint hypothesis, we start with the transition-based depen-

dency parser of Zhang and Nivre (2011), at the time the state-of-the-art syntactic parser

in English. We compare and contrast arc systems, and conclude that in an ideal set-

ting, the approach of Zhang and Nivre (2011) yields the best results on Modern Hebrew

too. Although not directly comparable, when controlling for corpus size, performance

on Modern Hebrew is less than that of English, although not by much. Given the sig-

nificant loss of performance noticeable in English when limiting the corpus, we conclude

the need for a much larger annotated corpus, but we acknowledge the enormous effort

required by such an endeavor.

We did not perform thorough analysis of our reproduced parser’s performance results

in Hebrew, although such an analysis is wanting. In the future, an immediate improve-

ment could be support for non-projective dependencies using existing methods in the

literature.

As with MD, the model could profit significantly from word embeddings and LSTMs

could assist (if not replaced entirely) the feature model, but such models do not yet exist

for MRLs such as Hebrew.

8.1.3 Joint Morpho-Syntactic Processing

We introduce the novel concept of a joint strategy, and provide a deterministic exam-

ple that integrates morphological disambiguation and syntactic processing. In doing

so, we present the first joint morphological disambiguator and dependency parser in a

transition-based framework for MRLs.

Summary

We show that syntax indeed improves morphological disambiguation, improving upon

the standalone MD. Furthermore, we show that our proposed mitigation of bias in

variable-length sequences is applicable to joint processing (at least for MD).

However, we report worse performance for dependency parsing in joint settings when

compared to a pipeline process. Also, our mitigation strategy of variable-length se-

quences appears to be detrimental to syntax. Regardless of variable-length mitigation,

the decreased performance in joint processing may be due to the affect of longer parsing

sequences resulting in higher error rates. Also, it is possible that while morphology and

syntax indeed interact implicitly, they do so with a delay. Recall that we experimented

only with ArcGreedy3, we suggest experimenting with other values of k, but advise to

provide a solution for the forward-looking features of the dependency parser that require

access to unattached disambiguated morphemes.

Due to time constraints, we did not perform analysis of our joint results, although

such analysis is necessary to understand why we only see an improvement in MD but

not syntactic performance in a joint setting.

Looking forward, we suggest possible improvements to the joint model. For example,

the deterministic joint strategy may be too rigid, perhaps a non-deterministic strategy

could allow for obvious MD sequences, such as known multi-word expressions and proper

nouns; this would require a dynamic oracle (Goldberg and J. Nivre, 2012).

Alternatively, it might be possible to somehow delay full morphological disambigua-

tion, similar to an approach advocated for in Hatori et al. (2011). This would be uniquely

complicated for an MRL with segmentation, but may be interesting to apply to tokens

that may only form a self-contained dependency tree, such that all dependents share a

common head outside the token.

Observe that the joint aspect of processing is implicit, in that syntax and MD inter-

act indirectly through the joint global score, and is afforded by the existence of a beam

search allowing multiple candidates to be considered. If the beam is limited to 1 can-

didate, syntax cannot affect morphological disambiguation. Therefore, another possible

future direction is unification of MD and syntactic transitions into a single, truly joint,

transition.

Additionally, we suggest adding features to both underlying processors such that they

may access the information in each others’ configurations.

8.2 Conclusion

We present an MD transition-based system that can effectively cope with extreme mor-

phological ambiguities in MRLs, that is also compatible with transition-based frame-

works in which state-of-the-art dependency parsers are implemented.

In the same framework, we apply a transition-based dependency parser for English

to the latest Modern Hebrew treebank, with state-of-the-art results.

With these two parsers in the same framework, we propose and implement a method

for joint morpho-syntactic parsing.

To the best of our knowledge, this is the first joint framework for MRL segmentation

and tagging in a transition-based setup. Moreover, we present the best MA&D results

for Modern Hebrew to date in both ideal and realistic settings. The transition-based

system provides a first tier for MRLs for dependency parsing in real-world scenarios,

dispensing with the need of external pre-processing.

Appendix A

Word-Based MD Feature Model

A.1 Feature Properties

Let (s, e, f, t, g) be a morpheme of a word-lattice L and c = (L, i, n,M) a configuration.

Lattice-based properties are addressed by Lj , where j references the i + j-th word-

lattice 1 of L (Lj is relative to i).

We define the following feature properties:

• o - lattice’s token

• a - lattice’s set of all possible paths/spellouts, with projected morphemes

• p - path of a lattice’s spellout with projected morphemes - exists only for disam-

biguated lattices

A.2 Features

Lattice Unigram: L0a, L0o

Lattice Bigram: L0oL−1o, L0oL−1a, L0aL−1o, L0aL−1a

Lattice Trigram:

L0oL1oL−1o, L0oL1aL−1o, L0aL1oL−1o, L0aL1aL−1o,

L0oL1oL−1a, L0oL1aL−1a, L0aL1oL−1a, L0aL1aL−1a

Previously Disambiguated Lattice Unigram: L−1p

1Negative values of j address previous word-lattices, so -1 addresses the word-lattice occurring in the
input sentence, before the i-th word-lattice in L

58

Word-based MD Feature Model

Previously Disambiguated Lattice Bigram:

L−1pL0a, L−1pL0o

L−1paL0a, L−1paL0o, L−1poL0a, L−1poL0o

Previously Disambiguated Lattice Trigram:

L−2pL−1pL0a, L−2pL−1pL0o, L−2pL−1paL0a,

L−2pL−1paL0o, L−2pL−1ptL0a, L−2pL−1ptL0o

L−2paL−1pL0a, L−2paL−1pL0o, L−2paL−1paL0a,

L−2paL−1paL0o, L−2paL−1ptL0a, L−2paL−1ptL0o

L−2poL−1pL0a, L−2poL−1pL0o, L−2poL−1paL0a,

L−2poL−1paL0o, L−2poL−1ptL0a, L−2poL−1ptL0o

ET2:L−1p, L−1po, L−1pa

2ET feature templates are restricted to fire when predicting a ET transition, all other feature tem-
plates are not applied.

Appendix B

Morpheme-based MD Feature

Model

B.1 Feature Properties

Let (s, e, f, t, g) be a morpheme of a word-lattice L and c = (L, i, n,M) a configuration.

Properties are addressed by Mk, where k indexes the k-th most recently disam-

biguated morpheme in M of c, and we define the additional feature n, the set of projected

ambiguous morphemes (outgoing edges) of the lattice node n.

Define the prefix property e as a generator property — it creates a feature for each

substring of lengths 1 to 10 of a token, starting at the beginning. Likewise, define the

suffix property x as a generator of substrings starting at the end of a token.

Define the signature property g as a set of bits, each indicating that at least one

character in a token returns true for its respective indicator function. The set of functions

is:

• IsDigit — Input is a decimal digit (0-9)

• IsGraphic — Input is a Graphic as defined by the Unicode standard (categories L,

M, N, P, S, and Z)

• IsLetter — Input is a Unicode letter (category L)

• IsLower — Input is a lower case letter

• IsMark – Input is a Unicode mark (category M)

• IsNumber — Input is a Unicode number (category N)

60

Morpheme-based MD Feature Model

• IsPunct — Input is a Unicode punctuation character (category P)

• IsSymbol — Input is a symbolic character

• IsTitle — Input is a title case letter

• IsUpper — Input is an upper case letter

All functions are defined in the Go language unicode library (https://golang.org/

pkg/unicode/).

B.2 Features

Disambiguated Morphemes Unigram: M0f,M0t,M0ft,M0g,M0fg,M0tg,M0ftg

Disambiguated Morphemes Bigram:

M0fM1f,M0fgM1f,M0fpM1f,M0ftgM1f

M0fM1ft,M0fgM1ft,M0ftM1ft,M0ftgM1ft

M0tM1t,M0tgM1tg,M0tgM1t,M0gM1t

Disambiguated Morphemes Trigram:

M0fM1fM2f,M0tM1tM2t,M0ftM1ftM2ft

M0ftgM1ftM2ft,M0ftgM1ftgM2ftg,M0gM1tM2t

Current Ambiguous Morphemes Unigram: L0n,L0na, L0nt, L0t, L0g, L0e, L0x

Next Ambiguous Morphemes with Previous Lattice Disambiguation Bigram:

L−1pL0n,L−1pL0na, L−1qL0no, L−1paL0n,L−1paL0na,

L−1paL0no, L−1poL0n,L−1poL0na, L−1poL0no

Next Ambiguous Morphemes with Previous Lattice Disambiguation Trigram:

L−2pL−1pL0n,L−2pL−1pL0na, L−2pL−1pL0no, L−2pL−1paL0n

L−2pL−1paL0na, L−2pL−1paL0no, L−2pL−1ptL0n,L−2pL−1ptL0na

L−2pL−1ptL0no, L−2paL−1pL0n,L−2paL−1pL0na, L−2paL−1pL0no

L−2paL−1paL0n,L−2paL−1paL0na, L−2paL−1paL0no, L−2paL−1ptL0n

L−2paL−1ptL0na, L−2paL−1ptL0no, L−2poL−1pL0n,L−2poL−1pL0na

L−2poL−1pL0no, L−2poL−1paL0n,L−2poL−1paL0na, L−2poL−1paL0no

L−2poL−1ptL0n,L−2poL−1ptL0na, L−2poL−1ptL0no

ET1:L−1p, L−1po, L−1pa

1ET feature templates are restricted to fire only when predicting a ET transition, all other feature
templates are not applied

https://golang.org/pkg/unicode/
https://golang.org/pkg/unicode/

Appendix C

Rich Linguistic Features for

Dependency Parsing of Hebrew

C.1 Feature Addresses

We use the feature description scheme of Zhang and Nivre (2011) for easy comparison.

Let c = (S,N,A) be a configuration where S is the stack, N is the buffer.

We define an address as the location of a node in the partial dependencies trees in S

and N of configuration c. An address has a structure name S or N , a subscript integer

to access a k-deep node, and characters to access the heads or dependents of the node

found at Sk or Nk. For example, the address S0h refers to the head (if such exists) of

the partial tree found at the top of the stack. The address N1 refers to the node that is

second in the buffer.

C.2 Rich Non-Local Addresses and Feature Types

For Rich Non-Local features, we define the special character sequences for high-order

addressing:

• h2 - the head-of-the-head

• rd/r2d/ld/l2d - the right-most, 2nd-to-right-most, left-most, and 2nd-to-left most

dependents (respectively) of a node

We define attributes of nodes found at addresses which may be strung together to

form a feature:

62

Rich Linguistic Features for Dependency Parsing of Hebrew

• w and t - surface form and part-of-speech tag

• lp/rp - the set of labels of dependents to the left/right of a node (respectively)

• l - the dependency label of the current node (as a dependent)

• vl/vr - the valency (= number) of dependents to the left/right of a node (respec-

tively)

• d - the distance (in the sentence) between the top of the stack and the top of the

buffer (regardless of address)

C.3 Rich Linguistic Feature Types

For Rich Linguistic Features, we define the attributes:

• fp - the multi-set of parts of speech of the dependents of a node

• sf - the multi-set of labels of all dependents of a node

• vf - the valency (= number) of all dependents of a node

Also, we define Ci as an address generator - it generate a feature for each dependent

of the addressed node.

C.4 Morphological Augmentation

To allow the inclusion of morphology we add the ability of specifying morphological

properties to be added to all features of a feature group. Augmentation of a feature

group does not cause a replacement of the defined features, it only creates a copy with

the addition of morphological properties.

To augment a feature group, all the features to the groups are required to have

the same number of addresses. An augmentation specifies a character, either h or x,

to specify the host or suffix morphological properties as attributes, respectively. If the

group has more than one address, the augmentation must specify an address (a 1-indexed

integer offset). Multiple augmentations may be used together.

For example, given the feature group Pairs in table C.1, the first few features are

SwtN0wt, S0wtN0w, SwN0wt, etc. All features in the Pairs group have two addresses.

An example of a morphological augmentation of the Pairs group is h1h2, resulting in

the new features S0wtmhN0wtmh, S0wtmhN0wmh, SwmhN0wtmh, etc. where mh is

Rich Linguistic Features for Dependency Parsing of Hebrew

the set of key-value pairs of properties of the respective morphemes at the top of the

stack (S0) and buffer (N0).

C.5 Features

The set of rich non-local features of Zhang and Nivre, 2011 and the new rich linguistic

features defined in this work are shown in table C.1 and table C.2. The features are

shown side by side to ease the comparison of the two feature sets, along with a column

indicating the changes made.

The feature groups are augmented with morphological properties as defined in ta-

ble C.3.

Rich Linguistic Features for Dependency Parsing of Hebrew

N-L Group N-L Feature Ling. Feature Ling. Group Change

Single S0w S0w Single
Single S0t S0t Single
Single S0wt S0wt Single
Single N0w N0w Single
Single N0t N0t Single
Single N0wt N0wt Single
Single N1w N1w Single
Single N1t N1t Single
Single N1wt N1wt Single
Single N2w N2w Single
Single N2t N2t Single
Single N2wt N2wt Single

Pairs S0wtN0wt S0wtN0wt Pairs
Pairs S0wtN0w S0wtN0w Pairs
Pairs S0wN0wt S0wN0wt Pairs
Pairs S0wtN0t S0wtN0t Pairs
Pairs S0tN0wt S0tN0wt Pairs
Pairs S0wN0w S0wN0w Pairs
Pairs S0tN0t S0tN0t Pairs
Pairs N0tN1t N0tN1t Pairs

Three Words N0tN1tN2t N0tN1tN2t Three Words (A)
Three Words S0tN0tN1t S0tN0tN1t Three Words (A)
Three Words S0htS0tN0t S0htS0tN0t Three Words (A)

Three Words S0tN0tN0ldt S0tN0tfp Three Words (B) N0ldt→ N0fp
Three Words S0tS0ldtN0t S0tfpN0t

Three Words (B)
ld/rd→ fpThree Words S0tS0rdtN0t Three Words (B)

Distance S0wd S0wd Distance
Distance S0td S0td Distance
Distance N0wd N0wd Distance
Distance N0td N0td Distance
Distance S0wN0wd S0wN0wd Distance
Distance S0tN0td S0tN0td Distance

Valency S0wvr S0wvf
Valency frames

vr/vl → vf

Valency S0wvl Valency frames
Valency S0tvr S0tvf

Valency frames
Valency S0tvl Valency frames
Valency N0wvl N0wvf Valency frames
Valency N0tvl N0tvf Valency frames

Table C.1: Rich Non-Local and Linguistic Features Table 1/2

Rich Linguistic Features for Dependency Parsing of Hebrew

N-L Group N-L Feature Ling. Feature Ling. Group Change

Unigrams S0hw S0hw Unigrams (A)
Unigrams S0ht S0ht Unigrams (A)
Unigrams S0l S0l Unigrams (A)

Unigrams S0ldw S0wS0Ciw Unigrams (B)

Switch to non-
directional bi-
lexical dependen-
cies, Ci = for
each dependent

Unigrams S0ldt S0wS0Cit Unigrams (B)
Unigrams S0ldl S0wS0Cil Unigrams (B)
Unigrams S0rdw S0tS0Ciw Unigrams (B)
Unigrams S0rdt S0tS0Cit Unigrams (B)
Unigrams S0rdl S0tS0Cil Unigrams (B)
Unigrams N0ldw N0wN0Ciw Unigrams (B)
Unigrams N0ldt N0wN0Cit Unigrams (B)
Unigrams N0ldl N0wN0Cil Unigrams (B)

Unigrams N0tN0Ciw Unigrams
NewUnigrams N0tN0Cit Unigrams

Unigrams N0tN0Cil Unigrams

Third Order S0l2dw Third Order

Removed

Third Order S0l2dt Third Order
Third Order S0l2dl Third Order
Third Order S0r2dw Third Order
Third Order S0r2dt Third Order
Third Order S0r2dl Third Order
Third Order N0l2dw Third Order
Third Order N0l2dt Third Order
Third Order N0l2dl Third Order

Third Order N0tN0ldtN0l2dt N0tfp Third Order N0l2dt→ N0fp
Third Order S0h2w S0h2w Third Order (A)
Third Order S0h2t S0h2t Third Order (A)
Third Order S0hl S0hl Third Order (A)
Third Order S0tS0ldtS0l2dt S0tfp

Third Order (B)
ld/rd/l2d/r2d→ fpThird Order S0tS0rdtS0r2dt Third Order (B)

Third Order S0h2tS0htS0t S0h2tS0htS0t Third Order (C)

LabelSet S0wlp S0wsf
Subcat. frames

lp/rp → sf

LabelSet S0wrp Subcat. frames
LabelSet S0trp S0wsf

Subcat. frames
LabelSet S0tlp Subcat. frames
LabelSet N0wlp N0wsf Subcat. frames
LabelSet N0tlp N0tsf Subcat. frames

S0wS0o Edge Potential
New
o = |σh| = edge
potential

S0tS0o Edge Potential
N0tS0o Edge Potential
N0wS0o Edge Potential

Table C.2: Rich Non-Local and Linguistic Features Table 2/2

Rich Linguistic Features for Dependency Parsing of Hebrew

Feature Group Morphological Augmentations

Single
h
x

Pairs
h1h2
h1x2
x1h2

Three Words (A)

h1h2
h1x2
x1h2
h1h3
h1x3
x1h3
h2h3
h2x3
x2h3

Three Words (B)
h1h3
h1x3
x1h3

Valency h

Unigram (A)
h
x

Bigram
h1h2
h1x2
x1h2

Third Order (A)
h
x

Third Order (B)
h
x

Third Order (C)

h1h2
h1x2
x1h2
h1h3
h1x3
x1h3
h2h3
h2x3
x2h3

Table C.3: Morphological Augmentation of Rich Linguistic Feature Groups

Bibliography

[AJ91] Steven P. Abney and Mark Johnson. “Memory requirements and local am-

biguities of parsing strategies”. In: Journal of Psycholinguistic Research

20.3 (1991), pp. 233–250. issn: 1573-6555. doi: 10.1007/BF01067217. url:

http://dx.doi.org/10.1007/BF01067217.

[Adl07] Meni Adler. “Hebrew Morphological Disambiguation: An Unsupervised Stochas-

tic Word-based Approach”. PhD thesis. Ben-Gurion University of the Negev,

Beer-Sheva, Israel, 2007.

[AE06] Meni Adler and Michael Elhadad. “An Unsupervised Morpheme-Based

HMM for Hebrew Morphological Disambiguation.” In: ACL. Ed. by Nico-

letta Calzolari, Claire Cardie, and Pierre Isabelle. The Association for Com-

puter Linguistics, 2006. url: http://dblp.uni-trier.de/db/conf/acl/

acl2006.html#AdlerE06.

[And+16] Daniel Andor et al. “Globally Normalized Transition-Based Neural Net-

works”. In: Proceedings of the 54th Annual Meeting of the Association for

Computational Linguistics, ACL 2016, August 7-12, 2016, Berlin, Ger-

many, Volume 1: Long Papers. 2016. url: http://aclweb.org/anthology/

P/P16/P16-1231.pdf.

[BSW08] Roy Bar-haim, Khalil Sima’an, and Yoad Winter. “Part-of-speech tagging

of Modern Hebrew text”. In: Natural Language Engineering 14.2 (2008),

pp. 223–251.

[BN12] Bernd Bohnet and Joakim Nivre. “A Transition-based System for Joint

Part-of-speech Tagging and Labeled Non-projective Dependency Parsing”.

In: Proceedings of the 2012 Joint Conference on Empirical Methods in Nat-

ural Language Processing and Computational Natural Language Learning.

EMNLP-CoNLL ’12. Jeju Island, Korea: Association for Computational

Linguistics, 2012, pp. 1455–1465. url: http://dl.acm.org/citation.

cfm?id=2390948.2391114.

[Boh+13] Bernd Bohnet, Joakim Nivre, et al. “Joint Morphological and Syntactic

Analysis for Richly Inflected Languages.” In: TACL 1 (2013), pp. 415–428.

68

http://dx.doi.org/10.1007/BF01067217
http://dx.doi.org/10.1007/BF01067217
http://dblp.uni-trier.de/db/conf/acl/acl2006.html#AdlerE06
http://dblp.uni-trier.de/db/conf/acl/acl2006.html#AdlerE06
http://aclweb.org/anthology/P/P16/P16-1231.pdf
http://aclweb.org/anthology/P/P16/P16-1231.pdf
http://dl.acm.org/citation.cfm?id=2390948.2391114
http://dl.acm.org/citation.cfm?id=2390948.2391114

Bibliography

url: http://dblp.uni-trier.de/db/journals/tacl/tacl1.html#

BohnetNBFGH13.

[Cho65] Noam Chomsky. Aspects of the Theory of Syntax. Cambridge: The MIT

Press, 1965. url: http://www.amazon.com/Aspects-Theory-Syntax-

Noam-Chomsky/dp/0262530074.

[Col02] Michal Collins. “Discriminative training methods for hidden markov mod-

els: Theory and experiments with perceptron algorithms”. In: Proceedings

of ACL. 2002.

[CR04] Michal Collins and Brian Roark. “Incremental Parsing with the Perceptron

Algorithm”. In: Proceedings of ACL. 2004.

[Gol15] Yoav Goldberg. “A Primer on Neural Network Models for Natural Language

Processing”. In: CoRR abs/1510.00726 (2015). url: http://arxiv.org/

abs/1510.00726.

[GE10] Yoav Goldberg and Michael Elhadad. “An Efficient Algorithm for Easy-

First Non-Directional Dependency Parsing”. In: Proceedings of ACL. 2010.

[GN12] Yoav Goldberg and Joakim Nivre. “A Dynamic Oracle for Arc-Eager De-

pendency Parsing”. In: COLING 2012, 24th International Conference on

Computational Linguistics, Proceedings of the Conference: Technical Pa-

pers, 8-15 December 2012, Mumbai, India. 2012, pp. 959–976. url: http:

//aclweb.org/anthology/C/C12/C12-1059.pdf.

[GT08] Yoav Goldberg and Reut Tsarfaty. “A Single Framework for Joint Mor-

phological Segmentation and Syntactic Parsing”. In: Proceedings of ACL.

2008.

[Hat+11] Jun Hatori et al. “Incremental Joint POS Tagging and Dependency Parsing

in Chinese”. In: Fifth International Joint Conference on Natural Language

Processing, IJCNLP 2011, Chiang Mai, Thailand, November 8-13, 2011.

2011, pp. 1216–1224. url: http://aclweb.org/anthology/I/I11/I11-

1136.pdf.

[HS97] Sepp Hochreiter and Jürgen Schmidhuber. “Long Short-Term Memory”.

In: Neural Comput. 9.8 (Nov. 1997), pp. 1735–1780. issn: 0899-7667. doi:

10.1162/neco.1997.9.8.1735. url: http://dx.doi.org/10.1162/

neco.1997.9.8.1735.

[HJ14] Matthew Honnibal and Mark Johnson. “Joint Incremental Disfluency De-

tection and Dependency Parsing”. In: Transactions of the Association of

Computational Linguistics – Volume 2, Issue 1 (2014), pp. 131–142. url:

http://aclweb.org/anthology/Q14-1011.

[IW08] Alon Itai and Shuly Wintner. “Language resources for Hebrew”. In: Lan-

guage Resources and Evaluation 42.1 (Mar. 2008), pp. 75–98.

http://dblp.uni-trier.de/db/journals/tacl/tacl1.html#BohnetNBFGH13
http://dblp.uni-trier.de/db/journals/tacl/tacl1.html#BohnetNBFGH13
http://www.amazon.com/Aspects-Theory-Syntax-Noam-Chomsky/dp/0262530074
http://www.amazon.com/Aspects-Theory-Syntax-Noam-Chomsky/dp/0262530074
http://arxiv.org/abs/1510.00726
http://arxiv.org/abs/1510.00726
http://aclweb.org/anthology/C/C12/C12-1059.pdf
http://aclweb.org/anthology/C/C12/C12-1059.pdf
http://aclweb.org/anthology/I/I11/I11-1136.pdf
http://aclweb.org/anthology/I/I11/I11-1136.pdf
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://aclweb.org/anthology/Q14-1011

Bibliography

[KG16] Eliyahu Kiperwasser and Yoav Goldberg. “Simple and Accurate Depen-

dency Parsing Using Bidirectional LSTM Feature Representations”. In:

TACL 4 (2016), pp. 313–327. url: https://transacl.org/ojs/index.

php/tacl/article/view/885.

[KMN09] Sandra Kübler, Ryan McDonald, and Joakim Nivre. Dependency Parsing.

Synthesis Lectures on Human Language Technologies 2. Morgan & Claypool

Publishers, 2009. isbn: 1598295969, 9781598295962.

[Li+14] Zhenghua Li, Min Zhang, Wanxiang Che, Ting Liu, and Wenliang Chen.

“Joint Optimization for Chinese POS Tagging and Dependency Parsing”.

In: IEEE/ACM Trans. Audio, Speech & Language Processing 22.1 (2014),

pp. 274–286. doi: 10.1109/TASLP.2013.2288081. url: http://dx.doi.

org/10.1109/TASLP.2013.2288081.

[Li+11] Zhenghua Li, Min Zhang, Wanxiang Che, Ting Liu, Wenliang Chen, and

Haizhou Li. “Joint Models for Chinese POS Tagging and Dependency Pars-

ing”. In: Proceedings of the Conference on Empirical Methods in Natu-

ral Language Processing. EMNLP ’11. Edinburgh, United Kingdom: As-

sociation for Computational Linguistics, 2011, pp. 1180–1191. isbn: 978-

1-937284-11-4. url: http://dl.acm.org/citation.cfm?id=2145432.

2145557.

[Man11] Christopher D. Manning. “Computational Linguistics and Intelligent Text

Processing: 12th International Conference, CICLing 2011, Tokyo, Japan,

February 20-26, 2011. Proceedings, Part I”. In: ed. by Alexander F. Gel-

bukh. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. Chap. Part-

of-Speech Tagging from 97% to 100%: Is It Time for Some Linguistics?,

pp. 171–189. isbn: 978-3-642-19400-9. doi: 10.1007/978-3-642-19400-

9_14. url: http://dx.doi.org/10.1007/978-3-642-19400-9_14.

[Mcd07] Ryan Mcdonald. “On the complexity of non-projective data-driven depen-

dency parsing”. In: In Proc. IWPT. 2007, pp. 121–132.

[MP06] Ryan McDonald and Fernando Pereira. “Online learning of approximate

dependency parsing algorithms”. In: Proceedings of 11th Conference of the

European Chapter of the Association for Computational Linguistics (EACL-

2006)). Vol. 6. 2006, pp. 81–88.

[Mik+13] Tomas Mikolov et al. “Efficient Estimation of Word Representations in

Vector Space”. In: CoRR abs/1301.3781 (2013). url: http://arxiv.org/

abs/1301.3781.

[MSS13a] Thomas Mueller, Helmut Schmid, and Hinrich Schütze. “Efficient Higher-

Order CRFs for Morphological Tagging”. In: Proceedings of the 2013 Con-

ference on Empirical Methods in Natural Language Processing. Seattle,

https://transacl.org/ojs/index.php/tacl/article/view/885
https://transacl.org/ojs/index.php/tacl/article/view/885
http://dx.doi.org/10.1109/TASLP.2013.2288081
http://dx.doi.org/10.1109/TASLP.2013.2288081
http://dx.doi.org/10.1109/TASLP.2013.2288081
http://dl.acm.org/citation.cfm?id=2145432.2145557
http://dl.acm.org/citation.cfm?id=2145432.2145557
http://dx.doi.org/10.1007/978-3-642-19400-9_14
http://dx.doi.org/10.1007/978-3-642-19400-9_14
http://dx.doi.org/10.1007/978-3-642-19400-9_14
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1301.3781

Bibliography

Washington, USA: Association for Computational Linguistics, Oct. 2013,

pp. 322–332. url: http://www.aclweb.org/anthology/D13-1032.

[MSS13b] Thomas Müller, Helmut Schmid, and Hinrich Schütze. “Efficient Higher-

Order CRFs for Morphological Tagging”. In: In Proceedings of EMNLP

(2013).

[Niv03] Joakim Nivre. “An Efficient Algorithm for Projective Dependency Parsing”.

In: Proceedings of the 8th International Workshop on Parsing Technologies

(IWPT. 2003, pp. 149–160.

[Niv04] Joakim Nivre. “Incrementality in Deterministic Dependency Parsing”. In:

Proceedings of the Workshop on Incremental Parsing: Bringing Engineering

and Cognition Together. IncrementParsing ’04. Barcelona, Spain: Associa-

tion for Computational Linguistics, 2004, pp. 50–57. url: http://dl.acm.

org/citation.cfm?id=1613148.1613156.

[Niv08] Joakim Nivre. “Algorithms for Deterministic Incremental Dependency Pars-

ing”. In: Comput. Linguist. 34.4 (Dec. 2008), pp. 513–553. issn: 0891-2017.

doi: 10.1162/coli.07-056-R1-07-027. url: http://dx.doi.org/10.

1162/coli.07-056-R1-07-027.

[Niv+16a] Joakim Nivre et al. Universal Dependencies 1.3. LINDAT/CLARIN digital

library at Institute of Formal and Applied Linguistics, Charles University

in Prague. 2016. url: http://hdl.handle.net/11234/1-1699.

[Niv+16b] Joakim Nivre et al. “Universal Dependencies v1: A Multilingual Treebank

Collection”. In: Proceedings of the Tenth International Conference on Lan-

guage Resources and Evaluation (LREC 2016). Ed. by Nicoletta Calzolari

(Conference Chair) et al. Portorož, Slovenia: European Language Resources

Association (ELRA), May 2016. isbn: 978-2-9517408-9-1.

[SKT14] Djamé Seddah, Sandra Kübler, and Reut Tsarfaty. “Introducing the spmrl

2014 shared task on parsing morphologically-rich languages”. In: 2014,

pp. 103–109.

[Sim+01] Khalil Sima’an et al. “Building a Tree-Bank of Modern Hebrew Text”. In:

Traitment Automatique des Langues 42.2 (2001).

[Smi+14] Peter Smit et al. “Morfessor 2.0: Toolkit for statistical morphological seg-

mentation”. In: Proceedings of the Demonstrations at the 14th Conference

of the European Chapter of the Association for Computational Linguis-

tics. Gothenburg, Sweden: Association for Computational Linguistics, 2014,

pp. 21–24. url: http://aclweb.org/anthology/E14-2006.

[SHS16] Milan Straka, Jan Hajic, and Jana Straková. “UDPipe: Trainable Pipeline

for Processing CoNLL-U Files Performing Tokenization, Morphological Anal-

ysis, POS Tagging and Parsing”. In: Proceedings of the Tenth International

Conference on Language Resources and Evaluation (LREC 2016). Ed. by

http://www.aclweb.org/anthology/D13-1032
http://dl.acm.org/citation.cfm?id=1613148.1613156
http://dl.acm.org/citation.cfm?id=1613148.1613156
http://dx.doi.org/10.1162/coli.07-056-R1-07-027
http://dx.doi.org/10.1162/coli.07-056-R1-07-027
http://dx.doi.org/10.1162/coli.07-056-R1-07-027
http://hdl.handle.net/11234/1-1699
http://aclweb.org/anthology/E14-2006

Bibliography

Nicoletta Calzolari (Conference Chair) et al. Portorož, Slovenia: European

Language Resources Association (ELRA), May 2016. isbn: 978-2-9517408-

9-1.

[Tes59] L Tesnière. Elements de syntaxe structurale. Ed. by Editions Klincksieck.

Editions Klincksieck, 1959.

[Tsa13] Reut Tsarfaty. “A Unified Morphosyntactic Scheme for Stanford Depen-

dencies”. In: Proceedings of ACL. 2013.

[TG08] Reut Tsarfaty and Yoav Goldberg. “Word-Based or Morpheme-Based? An-

notation Strategies for Modern Hebrew Clitics”. In: Proceedings of LREC.

2008.

[Tsa+10] Reut Tsarfaty, Djamé Seddah, et al. “Statistical Parsing of Morphologi-

cally Rich Languages (SPMRL): What, How and Whither”. In: Proceed-

ings of the NAACL HLT 2010 First Workshop on Statistical Parsing of

Morphologically-Rich Languages. SPMRL ’10. Los Angeles, California: As-

sociation for Computational Linguistics, 2010, pp. 1–12. url: http://dl.

acm.org/citation.cfm?id=1868771.1868772.

[Zha+14a] Meishan Zhang et al. “Character-Level Chinese Dependency Parsing”. In:

Proceedings of the 52nd Annual Meeting of the Association for Computa-

tional Linguistics (Volume 1: Long Papers). Baltimore, Maryland: Associa-

tion for Computational Linguistics, June 2014, pp. 1326–1336. url: http:

//www.aclweb.org/anthology/P14-1125.

[Zha+14b] Meishan Zhang et al. “Character-level chinese dependency parsing”. In: In

Proceedings of the ACL. 2014.

[ZC11] Yue Zhang and Stephen Clark. “Syntactic Processing Using the Generalized

Perceptron and Beam Search”. In: Computational Linguistics 37.1 (2011),

pp. 105–151. doi: 10.1162/coli_a_00037. url: http://dx.doi.org/10.

1162/coli_a_00037.

[ZN11] Yue Zhang and Joakim Nivre. “Transition-based Dependency Parsing with

Rich Non-local Features”. In: Proceedings of the 49th Annual Meeting of the

Association for Computational Linguistics: Human Language Technologies:

Short Papers - Volume 2. HLT ’11. Portland, Oregon: Association for Com-

putational Linguistics, 2011, pp. 188–193. isbn: 978-1-932432-88-6. url:

http://dl.acm.org/citation.cfm?id=2002736.2002777.

[Zhu+13] Muhua Zhu et al. “Fast and Accurate Shift-Reduce Constituent Parsing”.

In: Proceedings of the 51st Annual Meeting of the Association for Computa-

tional Linguistics, ACL 2013, 4-9 August 2013, Sofia, Bulgaria, Volume 1:

Long Papers. The Association for Computer Linguistics, 2013, pp. 434–443.

url: http://aclweb.org/anthology/P/P13/P13-1043.pdf.

http://dl.acm.org/citation.cfm?id=1868771.1868772
http://dl.acm.org/citation.cfm?id=1868771.1868772
http://www.aclweb.org/anthology/P14-1125
http://www.aclweb.org/anthology/P14-1125
http://dx.doi.org/10.1162/coli_a_00037
http://dx.doi.org/10.1162/coli_a_00037
http://dx.doi.org/10.1162/coli_a_00037
http://dl.acm.org/citation.cfm?id=2002736.2002777
http://aclweb.org/anthology/P/P13/P13-1043.pdf

 תקציר

ותחבירי אוטומטי של שפות עשירות מורפולוגית, כמו תוצאות עדכניות לניתוח מורפולוגי

שימושים מעשיים, כמו אלה המיושמים לשפות שנחקרו רבות עברית, נמוכות מכדי לאפשר

כמו אנגלית. מצב זה נובע מכך שתשתיות קיימות לניתוח מורפולוגיה ותחביר בנויות על

הנחות יסוד המפרידות בין עיבוד מורפולוגי ותחבירי. אולם, הנחות אלה מופרות בהקשר של

 שפות עשירות מורפולוגיה.

לית עם יישומים לניתוח (כלshift-reduceצמצם)-תשתית העברבעבודה זו אנו מציגים

עמימות(מורפולוגי עצמאי, -נתונים, מנתח)מפיג לקסיקון ומונע עצמאי מבוסס מורפולוגי

תחבירי משולב. כל אחת ממשימות אלו מוגדרת על -מורפולוגי נתחתחבירי עצמאי, ומ נתחמ

 cross linguistic)שפתי -רבתכונות ודל (, מtransition systemידי מערכת מעברים)

feature model(ופונקציית תמחור ,)scoring function) .בעיית אנו פותרים את גלובלית

על פיענוח יעיל מבצעים (, וgeneralized perceptronעל ידי פרספטרון מוכלל) הלמידה

 (.beam searchידי חיפוש קרן)

, ומציגים משימות הניתוח המורפולוגי והתחבירי בנפרדאנו מציגים תוצאות עדכניות ל

לעיבוד מורפולוגי ועיבוד תלויות משותף לטקסטים מבוססת מעברים מערכתלראשונה

השפתיות של המנתח והמעבד -את השימושיות ורב מדגימיםבנוסף, אנו בעברית.

שפות 48של המורפולוגי על ידי הפעלת ניתוח ועיבוד)הפגת עמימות(מורפולוגי על קבוצה

 .(http://universaldependencies.org)הלקוחה ממאגר בנק התלויות הבינלאומי

אריאל פרופ' דר' רעות צרפתי מהאוניברסיטה הפתוחה ושל םעבודה זו בוצעה בהדרכת

 מבי"ס אפי ארזי למדעי המחשב, המרכז הבינתחומי, הרצליה. שמיר

 המרכז הבינתחומי בהרצליה
ספר אפי ארזי למדעי המחשב-בית

 מחקרימסלול - (.M.Scהתכנית לתואר שני)

עיבוד מורפולוגי ותחבירי

לשפות עשירות משולב

 מורפולוגית

 במערכת מעברים

 מאת

 אמיר מור

במסלול .M.Scק מהדרישות לשם קבלת תואר מוסמך כחל עבודת תיזה המוגשת

 הרצליה זי למדעי המחשב, המרכז הבינתחומיהמחקרי בבית ספר אפי אר

2016 ספטמבר

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	List of Algorithms
	1 Introduction
	1.1 Syntactic Parsing of Natural Language
	1.2 Morphological Ambiguity
	1.3 The Joint Hypothesis

	2 Related Work
	2.1 Morphological Disambiguation
	2.2 Dependency Parsing
	2.3 Morphological and Syntactic Processing
	2.3.1 Pipeline Approaches
	2.3.2 Joint Approaches

	3 Approach and Formal Preliminaries
	3.1 Morphological Analysis and Disambiguation
	3.2 Labeled Dependency Trees
	3.3 The Framework
	3.3.1 Transition Systems
	3.3.2 Transition Prediction with the Generalized Perceptron
	3.3.3 Beam-Search Decoding

	3.4 Research Objectives

	4 Experimental Setup
	4.1 Data
	4.1.1 Modern Hebrew
	4.1.2 Universal Dependencies

	4.2 Implementation
	4.3 Evaluation
	4.3.1 The Morphological Model
	4.3.2 The Syntactic Model
	4.3.3 The Joint Model

	5 Transition-Based Morphological Disambiguation
	5.1 Introduction
	5.2 Parameterizing Transitions
	5.3 Word-Based Transitions
	5.3.1 Transition System
	5.3.2 Learning

	5.4 Morpheme-Based Transitions
	5.4.1 Transition System
	5.4.2 Learning
	5.4.3 Decoding
	5.4.4 ENDTOKEN vs IDLE

	5.5 Empirical Comparison
	5.6 Results for Modern Hebrew
	5.7 Results for Universal Dependencies
	5.8 Discussion

	6 Transition-Based Dependency Parsing
	6.1 Introduction
	6.2 Arc Standard
	6.3 Arc Eager
	6.4 Arc ZEager
	6.4.1 Configuration and Root Node
	6.4.2 End of Sequence
	6.4.3 SHIFT
	6.4.4 ARCLEFT
	6.4.5 ARCRIGHT
	6.4.6 Discussion

	6.5 Dependency Parsing of Modern Hebrew
	6.5.1 Rich Linguistic Features

	6.6 Experiments
	6.7 Results

	7 Transition-Based Joint Processing
	7.1 A Joint Morpho-Syntactic Configuration
	7.2 Joint Strategies
	7.2.1 MDFirst
	7.2.2 ArcGreedy

	7.3 Experiments
	7.4 Results

	8 Discussion and Conclusion
	8.1 Discussion
	8.1.1 Morphological Disambiguation
	8.1.2 Dependency Parsing
	8.1.3 Joint Morpho-Syntactic Processing

	8.2 Conclusion

	A Word-Based MD Feature Model
	A.1 Feature Properties
	A.2 Features

	B Morpheme-based MD Feature Model
	B.1 Feature Properties
	B.2 Features

	C Rich Linguistic Features for Dependency Parsing of Hebrew
	C.1 Feature Addresses
	C.2 Rich Non-Local Addresses and Feature Types
	C.3 Rich Linguistic Feature Types
	C.4 Morphological Augmentation
	C.5 Features

	Bibliography

