
The Interdisciplinary Center, Herzlia
Efi Arazi School of Computer Science

M.Sc. program - Research Track

Cluster-Based Load Balancing for
Better Computer Network Security

by

Gal Frishman

M.Sc. dissertation, submitted in partial fulfillment of the requirements for
the M.Sc. degree, research track, School of Computer Science

The Interdisciplinary Center, Herzliya

January 2018

This work was carried out under the supervision of Dr. Yaniv Ben-Itzhak from IBM

Research Israel, with guidance of Prof. Anat Bremler-Barr from the Efi Arazi School of

Computer Science, The Interdisciplinary Center, Herzliya.

Some results in this thesis have been published as articles by the author and research

collaborators in conferences and journals during the course of the author’s masters research

period, the most up-to-date versions of which being:

Gal Frishman et al. Cluster-based load balancing for better network security. In Proceedings
of Big-DAMA ’17. ACM, 2017.

Acknowledgements

I would like to thank my supervisor, Dr. Yaniv Ben-Itzhak, for the guidance, encourage-

ment and advise he provided throughout my time as his student. Thanks to him, I had an

amazing experience presenting the work in Big-DAMA ’17.

I would also like to thank Dr. Oded Margalit for reviewing the paper and providing

insights on the research.

Lastly, I must express my gratitude to my wife, Ariella, for her continued support and

encouragement, for pushing me to finish the research and thesis writing and providing me

the time and peace of mind to do that.

Abstract

In the big-data era, the amount of traffic is rapidly increasing. Therefore, scaling methods

are commonly used. For example, an appliance composed of several instances (scaled-out

method), and a load-balancer that distributes incoming traffic among them.

While the most common way of load balancing is based on round robin, some approaches

optimize the load across instances according to the appliance-specific functionality. For

example, load-balancing for scaled-out proxy-server that increases the cache hit ratio.

In this paper, we present a novel load-balancing approaches for machine-learning based

security appliances. Our proposed load-balancers use clustering methods while keeping a

balanced load across all of the network security appliance’s instances. We demonstrate that

our approach is scalable and improves the machine-learning performance of the instances,

as compared to traditional load-balancers.

The contribution of this work is threefold. First, we present an up to date survey of

balance-driven clustering algorithms and discuss their applicability to the load balancing

problem. Second, we evaluate and demonstrate the intrusion detection performance

improvement of clustering based load-balancers over traditional load-balancers. Third, we

open source our evaluation framework and implementation of different clustering algorithms

for reproducibility and future use.

1

Contents

Abstract 1

List of Figures 5

Abbreviations and Notations 7

1 Introduction 8

1.1 Background . 8

1.2 Motivation . 9

1.3 Problem Statement . 11

2 Previous Work 13

2.1 Graph Partitioning . 13

2.2 K-means Variations . 14

2.3 Other Algorithms . 16

3 Clustering Load Balancer 17

4 Evaluation 20

4.1 Evaluation Setup . 20

4.1.1 Traces . 20

4.1.2 Load Balancer Models . 21

4.1.3 Tools and Method . 22

4.2 Results . 24

4.2.1 Load balancing performance of the CLB models 24

2

4.2.2 Flows Distribution . 26

4.2.3 NIDS misuse detection performance 27

4.2.4 Scalability . 33

5 Summary and Future Work 35

5.1 Summary . 35

5.2 Future Work . 36

A K-means weighting scheme 38

Hebrew Abstract i

3

4

List of Figures

2.1 (a) network traffic modeled as a graph, vertexes represent flows, edges

represent flows similarity. (b) balanced partitioning example. 14

2.2 Clustering result of MCBC algorithm. The green cluster wraps the other

ones. 16

4.1 Workflow of load balancing model evaluation (* - using the same model) . 23

4.2 Workflow of ML performance evaluation over NIDS’ instances 24

4.3 Flows label (class) distribution across clusters, for k = 9. On top - traditional

LB models, on bottom - CLB models. 27

4.4 Average F-score and standard deviation of every LB model using decision

tree and random forest classification algorithms. 29

4.5 ROC plots for classes NORMAL, U2R and R2L on testing data, k = 9 of

decision tree and random forest classification algorithms. 30

4.6 Average F-score of baseline model with varying decision tree depths com-

pared with CLB models with decision tree of depth 3. 31

4.7 Average F-score of LB models using MLP classification algorithm per

encoding and scaling. 32

4.8 Average F-score of LB models using SVM classification algorithm per encoding. 33

4.9 Run times of best performing CLB models on test dataset. 34

4.10 Average F-score of best performing CLB models across all misuse detection

algorithms, on test dataset. 34

5

6

Abbreviations and Notations

1NN : 1 Nearest Neighbors

AUC : Area Under Curve

CLB : Clustering Load Balancer

COTS : Commercial Off-The-Shelf

DT : Decision Tree

LB : Load Balancer

MCBC : Modified K-means Clustering algorithm with Balancing Constraints

ML : Machine Learning

MLP : Multilayer Perceptron

MMR : Min-Max Ratio

NFV : Network Function Virtualization

NIDS : Network Intrusion Detection System

RF : Random Forest

ROC : Receiver Operating Characteristic

RR-DNS : Round Robin Domain Name System

SDN : Software Defined Network

SVM : Support Vector Machine

7

Chapter 1

Introduction

1.1 Background

Load-balancing techniques are prevalent in enterprise and data-center networks, and mostly

used to support scaled-up services.

Early works [KBM94, Mog95] are based on Round-Robin DNS (RR-DNS) to distribute

incoming connections across a cluster of servers. Other well-known load-balancing ap-

proaches are based on IP level according to flow tuple [BCLM98], or according to the

relative load on the different network instances [AB00]. Other load-balancers are employed

on Layer 4 and Layer 7; for instance, HAProxy [Tar06]. LBs are also used for other

network services, such as network proxy servers. Such LBs are usually based on the

proxy-server’s cache-content and their goal is to increase the cache hit ratio rather than

achieve a balanced load between the servers (e.g., [Yu02]).

Machine learning (ML) based network security appliances (e.g., network intrusion

detection system – NIDS) are inherently different from traditional network services,

such as web and proxy servers. Web servers respond to queries; and proxy servers

cache data, while providing high cache-hit rate. On the other hand, network security

appliances generate statistics, maintain different phases (training/non-training), and

generate prediction or classification based on their collected statistics during the training

phase. Therefore, optimizing the performance of a network security appliance that consists

of several instances requires different load-balancing considerations.

8

Machine learning misuse detection based NIDS, which searches for known intrusive

patterns, have been extensively researched and presented. For instance, using the following

classification algorithm: Näıve Bayes[PP07], Hidden Näıve Bayes[KMS12], Support Vec-

tor Machine (SVM) [HSC+11, LXZ+12], K-Nearest Neighbors [AFAA08], Decision Tree

[KLK14], Random Forest [ZZH08].

Most of the current work on misuse detection based NIDS present a centralized solution,

in which a single central device is used to analyze and detect patterns for all of the ingress

network traffic. However, in the big-data era, it would be infeasible or extremely expensive

for a single device to train, process and cluster/predict all of the data-center’s traffic. In

order to cope with the increased ingress traffic, other works proposed distributed ML

algorithms (e.g., [HGW+14, TLX09]), which share information between NIDS’ instances.

Another approach is to use NIDS appliance composed of several ’centralized ML-based’

instances, where each instance independently analyzes subset of the network traffic. Hence,

no shared information (states or sync) is required between the instances. Practically, this

approach can utilize the previous centralized misuse NIDS solutions.

In this paper, we present five different clustering based load-balancers for the latter

approach, which aim to maximize misuse detection performance of NIDS, while preserving

a balanced load among its instances.

Our load-balancers cluster incoming traffic into groups of similar flows and assign them

to NIDS’ instances, one group per instance. ’Similar flows’ are defined by having some

correlation between them, according to given features (e.g., same source subnet).

1.2 Motivation

Nowadays, networks are required to support high capacity demands and to scale as needed.

Furthermore, the SDN and NFV paradigms are shifting the industry from using vendor-

specific physical network appliances to virtual appliances deployed over standard COTS

servers. Therefore, all network functions, including NIDS, are being virtualized and scaled.

There are several known ways to scale services [GdB12]:

Scale up. By using stronger server with more memory and compute resources to support

9

the growing bandwidth demands. However, this approach may not be feasible since: a)

Some machine learning algorithms can’t be parallelized and the compute capacity of a

single core is limited. b) The training time may grow faster than linear with the processed

network demand.

Scale out by distributed algorithm over several instances of the same NIDS appliance.

For example, [HGW+14, TLX09] train distributed nodes locally and use them to train

a global model. This approach is more scalable by design; however, it requires network

overhead in order to synchronize the appliance’s instances.

Scale out by load-balancing the network traffic over multiple independent NIDS

instances. The load balancer should distribute traffic across the instances in a way that

maximizes overall learning performance (i.e., corresponds to detection quality), while

maintaining a balanced load as possible.

In this paper, we focus on the latter approach. We argue that conventional load-

balancing approaches (e.g., round-robin [F515] and uniform random flow distributions),

which aim for equal load over the instances, are not suitable for machine-learning based

NIDS. Such conventional approaches degrade the overall machine learning performance

(in terms of the prevalent ML metrics: precision, recall, F-score, and area under curve).

Previous proposals for NIDS load balancing [LASB08, VSL+07, XCA+06, SWF05, JSD05]

are inapplicable too as they are designed for non-learning NIDS (e.g., signature based or

using statistical properties).

The performance of ML-NIDS appliance highly depends on the similarity across different

network flows in the traffic assigned to each of its instances. Therefore, optimizing the

security performance of such NIDS appliance requires new approach for load-balancing

the network traffic between its instances. Our work presents new approaches to distribute

groups of similar network flows across the appliance’s instances (with the same functionally)

to achieve better security performance, while preserving a balanced load among its

instances.

Finding and generalizing such a load-balancing approach is not a trivial task. First,

research domain is relatively broad. There are many clustering algorithms that can be

10

used by the load balancer and many misuse detection algorithms that can be used by

the NIDS. Proper evaluation requires good understanding of existing methods and their

respective domains (e.g., statistical, centralized/distributed, offline/online, classification

based, outlier based). In addition, many of the proposed methods have no publicly available

implementation for evaluation purposes.

Second, availability and quality of public datasets in this domain is limited. KDD

CUP ’99 dataset [SFL+00] is outdated and heavily criticized for not representing attacks

realistically. NSL-KDD dataset [TBLG09] is more challenging for ML but still lacks

modern attacks. Therefore, in order to develop load-balancing approach that is dataset

agnostic, variety of traces and data sources should be used.

Third, the combinations of the different required evaluation steps is growing exponen-

tially. There are several clustering methods to be employed as the LB; different feature

extraction/selection/preprocessing methods for preparation the input data to the ML

algorithms; and several misuse algorithms to be employed as the NIDS.

1.3 Problem Statement

The role of load balancers is to maintain a balanced load across instances of some

application, typically by controlling how incoming traffic is distributed. In this work,

we focus on ML-based NIDS as the application. On every NIDS instance an intrusion

detection classifier is trained independently of the other instances. The load balancer for

this application has two goals:

1) Distribute network flows in a way that maximizes NIDS’ learning performance (e.g., its

precision, recall, F-score, etc.).

2) Maintain a balanced load across the instances.

To this end, we define a clustering load balancer (CLB). To address the first goal, we

assume and demonstrate that network flows of same normal/attack class have intrinsic

similarities. The CLB tries to unearth these similarities using a clustering algorithm. It

clusters incoming traffic into groups of similar flows and assigns them to NIDS’ instances,

one group per instance. Therefore, traffic of same class is expected to end up on a single

11

or very few instances, compared with traffic distributed using traditional load balancing

methods (e.g., uniform random or round robin). Thus, ML classifiers trained on these

groups can capture more of the underlying characteristics associated with each class,

compared with classifiers trained according to the traditionally load balanced traffic. In

cases that the classes are represented by a very small portion of the traffic, such as low

frequent attacks, the impact is even greater. If such traffic is traditionally load balanced,

there may not be enough information on each instance to properly characterize that class.

As groups of similar flows are naturally uneven in size, the first and the second goals

will nearly always be contradictory. Thus, it is required for the CLB to use a clustering

algorithm capable of forming balanced cluster sizes. This problem is known as balance-

driven clustering or balance-constrained clustering [MF14]. The former allows some level

of imbalance while the latter requires a perfect balance.

12

Chapter 2

Previous Work

Previous works present clustering and flow correlation methods for NIDS. However, none of

which were used for scale-out by LB as presented in this paper. They either propose load

balancing approaches for non-learning NIDS or use clustering to improve ML classification

performance but not for load balancing (e.g., [LKT15]).

To the best of authors’ knowledge, this is the first work that addresses scaling out of

ML-based NIDS by LB. The following subsections describe approaches for balance driven

clustering from different fields of computer science and their applicability to our problem.

2.1 Graph Partitioning

In graph theory the problem is known as uniform/balanced graph partitioning. It deals

with partitioning a graph to k equal-size blocks of nodes, such that the weights on edges

across blocks are minimized or maximized. This problem is known to be NP-complete

[BMS+16]. In this domain, our problem can be formulated as a graph with network flows

represented by vertexes, distances between flows (similarity metric) represented by weights

on edges and k equals number of NIDS instances. Given a solution, every graph partition

forms a cluster of similar network flows. The k partitions (clusters) are promised to have

near equal sizes. Figure 2.1 demonstrates such partitioning.

Since the problem is NP-complete, practical solutions use heuristics. These can be

categorized into several broad approaches. Local approaches such as Kernighan–Lin [KL70]

13

Figure 2.1: (a) network traffic modeled as a graph, vertexes represent flows, edges represent
flows similarity. (b) balanced partitioning example.

and Fiduccia-Mattheyses [FM88] iteratively improve the starting solution based on local

information. Their main drawback is low quality partitioning resulting from an arbitrary

initial step. Global approaches such as spectral partitioning [HL95] find solutions based

on the properties of the entire graph. However, they are often used for small graphs as

their time complexity incur scalability issues [BMS+16]. The most successful approaches

for large graphs are based on multilevel graph partitioning. These approaches reduce the

size of the graph, partition the reduced graph, map it back to original graph and refine it.

One famous example is the algorithm proposed by Karypis and Kumar, multilevel k-way

partitioning, implemented in METIS [KK98]. This algorithm is evaluated as a CLB.

2.2 K-means Variations

K-means is a well known clustering algorithm with no balancing constraint. In the following,

we review K-means variations that impose a balancing constraint either on every algorithm

iteration or as a post-processing step.

[BBD00] propose K-means variation that promises minimal cluster size by formalizing

a linear algebra optimization problem with constraints on minimal cluster size. On every

iteration, the cluster assignment step is solved as a minimum cost flow problem using

linear programming or network simplex. However, the time complexity of O(n3) makes

this algorithm impractical for a network load balancer.

Similarly, [CNMY14] formalize balanced K-means as linear algebra optimization prob-

lem. The balance is achieved by minimizing both the sum of squared distances between

14

data points and centroids (objective of K-means) and the squared sum of number of data

points in each cluster (exclusive lasso regularizer). The relative weight of the competing

variables in the objective function is controlled via parameter. This algorithm is evaluated

as a CLB.

[LHNL17] propose similar method using least square linear regression and augmented

lagrange multipliers. The linear regression estimates the hyperplanes that separate one

class from another. Augmented lagrange multipliers method is used to estimate a solution

to the optimization problem. The algorithm’s time complexity is O(n2c + d2c) and the

space complexity is O(n2 + d2) (n - number of data points, d - dimensions, c - number of

centroids); hence, the evaluation of large datasets is not feasible.

[MF14] propose balance-constrained K-means. The algorithm is essentially K-means

with a different assignment step. Instead of assigning data points to their closest centroids,

they are assigned to one of n slots, where every n/k slots are preallocated to a cluster.

This assignment problem formalization is solved using the Hungarian algorithm. Its time

complexity of O(n3) makes it impractical for a network load balancer as well.

[GCC14] propose simple K-means variation where data points are assigned to closest

centroid only if its cluster size is less than n/k. This means that clustering quality highly

depends on centroids initialization. Due to this, the authors assume prior knowledge of at

least few data points per each cluster is available, which is not the case in our problem.

[YMC11] proposes MCBC, a K-means variation that assigns each data point to either

nearest cluster to decrease objective function or to nearest constraint-unsatisfactory cluster

to improve balancing. Its time complexity is not analyzed, though it is clear that in the

worst case it is O(n2) which doesn’t scale well. Empirical evaluation shows that it is indeed

the case. Moreover, clusters that are bigger than n/k have tendency to get wrapped by

other clusters as their outermost data points get reassigned (figure 2.2). This behavior is

undesired for our problem.

[HXSZ09] proposes to run K-means as is and then iteratively adjust the borders between

the resulting clusters. The algorithm describes how to find bordering data points. However,

it doesn’t explain how to adjust the borders nor when the process converges. Therefore it

15

Figure 2.2: Clustering result of MCBC algorithm. The green cluster wraps the other ones.

is not evaluated.

2.3 Other Algorithms

Agglomerative clustering methods can be adapted to achieve balanced clusters: once a

cluster reaches a certain size in the bottom-up agglomeration process, it can be removed

from further consideration. However, this may significantly impact cluster quality [BG06]

and since its complexity of O(n2) does not scale well, it is inapplicable for our problem.

[ZWL10] proposes generic approach that gets as input any clustering result (assignment

of every data point to a cluster) and a list of constraints such as data points that must/must

not be on the same cluster as well as clusters’ sizes. The algorithm returns new clusters

assignment that satisfy the constraints while having minimal deviation from input clusters

assignment. It is done by formulating an integer linear programming optimization problem

that maximizes agreement between partitions. It may be used as a CLB if size constraints

of n/k are provided. However, since it doesn’t take into account distances between data

points, we expect that the clustering quality will be lesser of the aforementioned methods

and therefore it is not evaluated.

16

Chapter 3

Clustering Load Balancer

In the below, we propose different methods for clustering based load balancing. Detailed

evaluation of their load balancing performance and how they affect the ML-based NIDS is

presented in chapter 4.

The following methods are based on existing off-the-shelf balance-driven clustering

algorithms.

1. Multilevel K-way graph partitioning (Multipart). The graph we build consists

of n vertexes, each represents a network flow. The distance metric we use is Euclidean

distance. In order to reduce run time and memory footprint, we don’t use a complete

graph, which have
(
n
2

)
edges. Instead, we only use distances between data points and

their nearest 100 neighbors, which have upper bound of 100n edges. We evaluate

the algorithm implemented in METIS, using the metis-python wrapper [Wat17].

This implementation can only minimize the objective function; i.e., weights across

partitions. However, our objective is that close data points in the Euclidean space

will end up on the same partition whereas distant data points will end up on different

partitions. To achieve that we scale all distances to a fixed range [0, 1000] and use

1000− distance as weights.

2. Balanced K-means using exclusive lasso regularizer (XLK-means). We

implement the algorithm from [CNMY14]. It requires that on every iteration, for

each data point and centroid, the following expression will be calculated:

17

||X −HF T ||2F + γTr(F T11TF) where X ∈ IRD×N is the data points (network flows)

and F ∈ {0, 1}N×C is clusters assignment matrix (N data points, D dimensions, C

clusters). Näıve implementation that recalculates the full expression would have

been slow. Our implementation calculates for each data point only the expression

parts that can actually change, while keeping intermediate results throughout the

iteration. In addition, we avoid the inner loop (going over each centroid) using matrix

multiplications and reduce convergence time by adopting inertia based convergence

criteria. All these improvements result in significant speed up. For evaluation we

use γ = 0.1 which provides satisfactory empirically results.

In the below we propose new methods for clustering based load balancing. We use the

K-means clustering algorithm in different ways to achieve balanced clustering.

3. K-means on subset of features (K-means). This is the main concept we present

in our paper [FBIM17]. We search for subsets of features with specific preprocessing

options (encoding and scaling) such that when clustered by K-means, the result

is relatively balanced. Table 3.1 presents the predefined features subsets that we

search through. They were chosen manually. The evaluation framework presented on

section 4.1.3 filters out imbalanced clustering results; thus, leaving in only features

subsets that naturally result in balanced clusters.

Clustering Feature Sets # Description

1. Same destination 5 Statistics on connections to same destination in last 2 seconds
2. Same service 4 Statistics on connections to same service in last 2 seconds
3. 100 connections 10 Statistics on 100 last connection to same destination
4. Domain expert 13 Features within a connection suggested by domain knowledge
5. TCP features 9 Statistics on individual TCP connection
6. All 2 secs features 9 Union of 2 secs same destination + service
7. All history features 19 Union of 100 connections + all 2 secs features

Table 3.1: Features options for traffic clustering. Each row describes a predefined subset
of features. The column with hash sign denotes number of features.

4. K-means with greedy clusters merge (KC-means). We run K-means with

K = kc, where k equals to the requested number of clusters and c is a constant.

18

The resulting kc clusters need to be merged into k output clusters. If only cluster

sizes are considered (without inter-cluster distances), this problem is equivalent to

the NP-hard problem of balanced multi-way number partitioning. We solve it by

sorting the kc clusters according to size in descending order and assigning them

one by one to the smallest output cluster. This greedy heuristic may not find an

optimal solution but its run time, O(kc log(kc)) is acceptable. Other heuristics are

discussed in [ZMP11]. This approach can be generalized to any clustering algorithm

that gets k desired number of clusters as an input. However, the level of imbalance is

uncontrolled and if one of the kc clusters is significantly larger than n/k, the output

k clusters will be highly imbalanced, regardless how they are merged.

For evaluation we use c = 5, an arbitrary choice. Our experiments show that this

constant has no significant impact on the results as long as it is big enough.

5. Weighted K-means (WK-means). We attempt to achieve balanced K-means

result by weighting every feature in proportion to its level of balance; i.e., how evenly

its values are spread across their range. Features that are more balanced will get

higher weights; thus, the probability of having balanced clustering result will be

higher. Unfortunately, K-means doesn’t support features weighting. However, the

desired effect can be achieved by preprocessing every feature’s variance (Appendix

A). We standardize every feature to a unit variance. Then, we assign it a weight

of (σ(D)/µ(D))−4 where D is the differences between consecutive values. We use

the well known relative standard deviation σ/µ which is a standardized measure of

dispersion to quantify the level of imbalance of every feature. The exponent in the

formula amplifies weight’s magnitude.

19

Chapter 4

Evaluation

In this chapter, we evaluate our approach; i.e., the improvement gained by using clustering

load balancer for misuse ML-based NIDS. In section 4.1 we describe our evaluation setup

(i.e., the traces, models, tools and method). Then, in section 4.2 we present the results

as follows. Section 4.2.1 compares the CLB approaches in terms of clustering quality

and run times. Section 4.2.2 demonstrates flows distribution of traditional LB models

and CLB approaches. Section 4.2.3 presents ML performance comparison of centralized

model, traditional LB models and CLB approaches. Lastly, in section 4.2.4 we discuss the

scalability of the CLB approaches.

4.1 Evaluation Setup

4.1.1 Traces

For evaluation, the well known NSL-KDD [TBLG09] dataset is used. It is reduced version

of KDD CUP ’99 [SFL+00], more adequate for machine learning benchmarks. This dataset

has 148,517 records based on traffic captured during nine weeks simulation of military

network under attack. The data from the first seven weeks of the simulation is used for

the training of the models and the data from last two weeks which includes new types of

attacks is used for the testing.

Each record is made of 41 features derived from a sequence of packets in a TCP session.

20

The features can be divided into few categories: basic information of the individual TCP

connection (e.g., duration, source bytes), expert knowledge, statistics over all connections

to the same destination host/service in the last two seconds and statistics over last 100

connections to the same host/service.

Records are labeled as either Normal or one of four classes of attack: DOS (Denial

of Service), PROBE (scanning), R2L (Remote-to-Local, unauthorized remote access), or

U2R (User-to-Root, unauthorized local access).

4.1.2 Load Balancer Models

Three types of models are evaluated as load balancers: baseline (centralized), traditional

LB and clustering LB. Models get traffic and k number of instances as input and return

data slices as output. Every model consists of a load balancing algorithm as detailed in

table 4.1 and data preprocessing options as detailed in table 4.2. The clustering LB model

that evaluates vanilla K-means has in addition a subset of features. Models’ quality is

measured in the following aspects:

Misuse Detection Performance. That is the performance of the ML classifiers trained

and tested on NIDS’ instances. We evaluate classification algorithms that are commonly

used for misuse detection, namely, 1-Nearest-Neighbor (1NN), Decision Tree (DT), Random

Forest (RF), Multilayer Perceptron (MLP) and support vector machines (SVM). The

performance metrics we use are precision, recall, F-score and area under curve (AUC).

Model Type Algorithms Short Name

Baseline
(centralized)

All traffic is processed by a single NIDS instance Baseline

Traditional LB
Round Robin flows distribution
Uniform random flows distribution

Round Robin
Uniform Random

Clustering LB
(detailed in
chapter 3)

Multilevel k-way graph partitioning
Balanced K-means using exclusive lasso regularizer
K-means on subset of features
K-means with k=rc and greedy clusters merge
Weighted K-means

Multipart
XLK-means
K-means
KC-means
WK-means

Table 4.1: Load balancing model types and evaluated algorithms

21

Preprocessing aspect Evaluated options

Data scaling
No scaling
Range scaling according to min/max values
Standard scaling - data centered around mean with unit variance

Encoding of
categorical features

No categorical features, only numeric
One-hot encoding

Table 4.2: Data preprocessing options used for LB models evaluation

Load Balancing. Two metrics determine the level of balance: σk - standard deviation of

slice sizes and MMRk - ratio between maximal and minimal slice sizes. Model’s level of

balance is defined as σ = max
k

(σk), MMR = max
k

(MMRk).

Run Time. We measure the absolute time it takes the load balancing algorithms to

process all input flows, in seconds. As the evaluated algorithms are not optimized for

production workloads, nor for the hardware we used, the measured run times are not

comparable with a real life system. Instead, they give a sense of relativity between the

clustering algorithms.

Scalability. In today’s dynamic nature of traffic, it is important that the clustering load

balancer would work for any k. To this end, we analyze the empirical correlation between

k and misuse detection performance, load balancing quality and run time.

4.1.3 Tools and Method

The evaluation framework is based on Python 2.7 and the scikit package1. It ran on

Amazon Linux 64-bit, Intel Xeon E5-2666 v3 @ 2.9GHz, 7.5GB RAM. The source code is

publicly available at https://github.com/frishrash/thesis_code.

The evaluation process is depicted in figure 4.1. First, the dataset is split to train and

test sets. We start with training data. Every LB model (which consists of LB algorithm,

preprocessing option and optionally features subset) is evaluated on varying number of

instances k = {3..9}. Load balancing time is recorded. We define a load balance feasibility

criteria: σ ≤ 6500,MMR ≤ 20. Only models that meet this criteria continue to next

1a free software machine learning library for the Python programming language [PVG+11] (http:
//scikit-learn.org).

22

https://github.com/frishrash/thesis_code
http://scikit-learn.org
http://scikit-learn.org

evaluation step. Infeasible models are discarded. The thresholds were chosen such that

most of models were deemed infeasible, yet, there was enough variety among the feasible

ones.

Dataset

Testing
Data

Training
Data

Run LB
model* on
Training

Data

Run LB
model* on

Testing Data

Evaluate
Load Balance

Feasibility
σ ≤ 6500

MMR ≤ 20

Evaluate
Load Balance

Feasibility
σ ≤ 6500

MMR ≤ 20

Evaluate ML
Performance
over NIDS’
Instances

Evaluate ML
Performance
over NIDS’
Instances

Figure 4.1: Workflow of load balancing model evaluation (* - using the same model)

The next step evaluates misuse detection performance of the LB model for every

classification algorithm (1NN, DT, RF, MLP, SVM2). Figure 4.2 depicts the evaluation

process for a single algorithm. Each data slice is assigned to NIDS instance. Classification

algorithm’s performance is evaluated using 5-fold cross validation on all instances in parallel.

The confusion matrices and prediction probabilities from all instances are summarized

into a single matrix from which performance measurements are calculated.

Models that complete evaluation on the training data repeat the same process on the

testing data. By the end of evaluation process, only valid models are left. For each, the

framework records {LB model, preprocessing options, features subset, dataset, number

of instances (k), load balancing time, level of balance (σ,MMR), classification algorithm,

misuse detection performance}.

2SVM is evaluated only on min-max scaled data due to excessive run times.

23

Data Slice

Data Slice

...

Data Slice

ML Instance 1
5-Fold Cross-
Validation

ML Instance 2
5-Fold Cross-
Validation

...

ML Instance k
5-Fold Cross-
Validation

Aggregate
Confusion

Matrices and
Calculate ML
Performance

Metrics

Figure 4.2: Workflow of ML performance evaluation over NIDS’ instances

4.2 Results

4.2.1 Load balancing performance of the CLB models

In this subsection, the quality of all feasible CLB models is discussed in terms of run

times, σ and MMR. Table 4.3 presents all feasible CLB models and compares the best

performing model of every clustering algorithm. Feasible models are marked with 3. Best

performing model is highlighted in red 3 and its performance from the testing data is

presented.

The scaling and encoding refer to data preprocessing options as presented in table 4.2.

NU stands for numeric only encoding and OH stands for one-hot encoding. Evaluated

clustering algorithms are the ones presented in table 4.1 using short names. Rectangular

Min-max None Standard Best Model PerformanceClustering
Algorithm OH NU OH NU OH NU Avg. Run-time σ MMR

Multipart 3 3 3 3 3 9.17s 174.3 1.06
XLK-means 3 3 3 3 6.7s 4.92 1.01
KC-means 3 3 3 3 5.58s 512.09 1.62
K-means 3 3 3.25s 5358.91 8.11
K-means [3] 3 3 3 3 1.77s 2643.96 14.9
K-means [5] 3 3.53s 3452.61 7.55
K-means [7] 3 3 3 3 2.39s 5731.14 11.52
WK-means 3 3 3 3 3 3 3.08s 6472.2 19.81

Table 4.3: Feasible CLB models and performance of best model per clustering algorithm.
OH stands for one-hot encoding, NU for numeric only. σ and MMR determine standard
deviation and min-max ratio of cluster sizes as defined earlier.

24

brackets refer to a features subset as presented in table 3.1.

For every clustering algorithm, the best performing CLB model is compared with the

others in terms of run times, σ and MMR.

To summarize, the fastest clustering algorithm is K-means. However, sizes of resulting

clusters are far from being perfectly balanced. WK-means run time is similar but its

balancing performance is worse. Next, KC-means is a bit slower but shows a great

increase in balancing performance. XLK-means is somewhat slower than KC-means but its

balancing performance is near perfect. Lastly, Multipart is the slowest but with balancing

performance that is only second to XLK-means. It is important to stress that although all

models were evaluated on the same framework, run times are also depend on the concrete

implementations and may be significantly improved. For example, scikit’s implementation

of K-means algorithm uses compiled native code, while XLK-means is implemented in

pure python.

Multipart. For all feasible models, run time behaves similarly. That is, for k = {4..9}

run time on training data is between approx. 8.5s and 10s and on testing data between

approx. 7s and 8.7s. However, for k = 3 run times are extremely higher, with the model of

None-NU being the fastest (21.7s on training data, 18.3s on testing data) and the model

of Standard-OH being the slowest (106.3s on training data, 86.7s on testing data). We

couldn’t find explanation for this phenomenon, we assume it is a property of the algorithm

or its implementation in METIS. In terms of balancing, all models have the same MMR

value of 1.06. σ varies with no apparent correlation to k or to the model (same model

behaves differently on training and testing data). Since absolute σ values are relatively low

(73-225 on training, 83-174 on testing), best performing model is chosen mainly according

to run time, which is None-NU.

XLK-means. Results show strong correlation between run times and level of balance;

i.e., fastest model is also the most balanced and vice versa. This surprising behavior may

be explained by the fact that run time is mostly dominated by number of iterations until

convergence. We assume that some models, without the regularizer are naturally closer to

a balanced form and therefore converge faster and yield a more balanced clusters. There

25

is no correlation between run time/balance and k. The models ordered from best to worst

are: Min-max-NU, Min-max-OH, Standard-NU, Standard-OH. Run times vary from 7.29s

to 47.38s on training data and from 6.7s to 39.98s on testing data. MMR varies between

1.01 and 1.09 and σ varies between 7.45 and 75.43 on training data and 4.92 to 62.66 on

testing data.

KC-means. For this algorithm, run times increase almost monotonically with k since

merging time is dominated by kc. At large, models with numeric encoding run faster than

models with one-hot encoding at the expense of yielding less balanced clusters. Run times

vary between 5.66s and 8.94s on training data and between 5.48s and 8.32s on testing

data. MMR values are best for models with min-max scaling, ranging from 1.34 to 1.76

and worst for models with standard scaling, ranging from 2.61 to 4.91. Similarly, σ values

range from 323 to 855 on models with min-max scaling and from 2145 to 2865 on models

with standard scaling.

K-means. Run times are mostly dominated by number of features and in general range

between 1.77s and 4.64s across different features subsets and training/testing datasets.

MMR values range between 7.55 and 17.75. σ ranges between 2643.96 and 5731.14.

WK-means. Since this algorithm has its own features normalization method, run times

are not affected by model scaling. However, they are affected by model encoding since

models with numeric encoding disregard the categorical features, which means less features

to work on. On training data, run times are around 3.8s for models with numeric encoding

and around 5.3s for models with one-hot encoding. On testing data, run times are 3.1s and

4.8s accordingly. MMR values are nearly the same for all models. On training it is approx.

19.4, on testing 19.8. Similarly, σ values are nearly the same for all models, around 6080

on training and 6475 on testing.

4.2.2 Flows Distribution

CLB models are expected to group similar network flows (assumed to be of the same class)

to the same cluster. An ideal clustering result would maximize clusters’ homogeneity;

i.e., classes that have less than n/k data points should be on a single cluster and classes

26

that have more than n/k data points should be spread over minimal number of clusters,

yielding mostly homogeneous clusters. In such ideal case, NIDS instances that process the

homogeneous clusters will achieve perfect classification as all their data points belong to

a single class. Instances that process the non-homogeneous clusters may achieve better

classification than if they processed random traffic since they should have more data points

belonging to the same class. The misuse detection performance will be discussed in the

next subsection but to demonstrate that CLB models indeed group similar network flows,

figure 4.3 presents network flows’ class distribution for traditional LB models, Multipart

and XLK-means CLB models for k = 9. As can be seen, some clusters of the CLB models

are close to being homogeneous.

(a) Flows distribution of Uniform Random. (b) Flows distribution of Round Robin.

(c) Flows distribution of Multipart. (d) Flows distribution of XLK-means.

Figure 4.3: Flows label (class) distribution across clusters, for k = 9. On top - traditional
LB models, on bottom - CLB models.

4.2.3 NIDS misuse detection performance

In this subsection, the LB models (table 4.1) are compared for their resulting misuse

detection performance for every classification algorithm. There are 48 feasible LB models

(30 clustering, 12 traditional, 6 baseline), each model is evaluated on 5 different classification

27

algorithms, on 7 different k’s, on training and testing data, and for each there are 7

different evaluation metrics (AUC per class, precision, recall). This yields more than

20,000 individual results. In order to present and compare the results we filter and

aggregate them as follows: (1) Only results on testing data are presented. (2) As precision

and recall results are very similar we only present their harmonic mean, known as F-score.

(3) For every model, F-score and AUC is averaged over all K’s. (4) Among the CLBs, only

the best performing models, in terms of clustering quality and speed are compared. (5)

When several models of the same LB approach/algorithm have similar results, evaluation

metrics are averaged over these models as well.

1-Nearest-Neighbor. Average F-score of baseline models is 0.97. Traditional LB models

are near 0.95. CLB models vary between 0.95 and 0.97. While all CLB models perform

better than the average traditional LB model, the improvement is insignificant. However,

the insignificance is only due to the very high score that traditional LB models achieve

using 1-nearest-neighbor algorithm on NSL-KDD dataset. Area under curve follows a

similar pattern, where average AUC of every CLB model is greater than the average AUC

of traditional LB models by 0.1-0.5. The average AUC of best performing CLB model is

near equal baseline’s.

Decision Tree and Random Forest. For these classification algorithms, the improve-

ment of CLB models over traditional LB and baseline models is the most prominent.

Figure 4.4 presents the average F-score and standard deviation for every LB model. Using

decision tree classification algorithm, the average F-score of CLB models is between 5.92%

and 15.36% greater than rest of models (WK-means vs. baseline and K-means [5] vs.

Uniform Random accordingly). In case of random forest, the improvement is even greater.

CLB models perform between 11.62% and 18.01% better than rest of models

(XLK-means vs. baseline and Multipart vs. Uniform Random accordingly).

The average AUC using decision tree and random forest classification algorithms for

all CLB models is greater than traditional LB’s. Vast majority of these models also beat

the baseline. As an example, figure 4.5 depicts ROC plots with AUC of classes NORMAL,

U2R and R2L, for all models when k = 9.

28

(a) Results for random forest classification algorithm.

(b) Results for decision tree classification algorithm.

Figure 4.4: Average F-score and standard deviation of every LB model using decision tree
and random forest classification algorithms.

29

(a) Decision tree classifier, class NORMAL. (b) Random forest classifier, class NORMAL.

(c) Decision tree classifier, class U2R. (d) Random forest classifier, class U2R.

(e) Decision tree classifier, class R2L. (f) Random forest classifier, class R2L.

Figure 4.5: ROC plots for classes NORMAL, U2R and R2L on testing data, k = 9 of
decision tree and random forest classification algorithms.

The performance improvement of CLB models over the baseline is quite surprising

as one might assume that since all traffic is processed on a single NIDS instance, it

should outperform any LB model using the same classification algorithm. However, this

30

assumption is flawed as the same complexity constraints are used both for the baseline

and for each and every one of the instances. More concretely, let d denote the maximal

depth constraint we impose on our decision trees/random forests and n number of network

flows we use for training. For the baseline model we have a single decision tree of depth

d built during training over n flows. For every LB model we have k decision trees (one

per instance), each of depth d built during training over n/k flows with the LB effectively

employing additional tree level. Such comparison is valid from a practical point of view,

e.g., in cases centralized NIDS appliance is replaced by a CLB. However, the underlying

classifiers are not directly comparable and should not be expected to have the same misuse

detection performance.

Figure 4.6: Average F-score of baseline model with varying decision tree depths compared
with CLB models with decision tree of depth 3.

We can however quantify the decision tree depth for which baseline’s performance

would be comparable with the CLBs. To this end we evaluate the baseline model with

decision trees of varying depths. Figure 4.6 compares the average F-score of baseline

models with d = 3..6 and the CLB models (using decision trees of depth 3). It can be seen

that Multipart and K-means [5] are equivalent to a baseline of 6 levels, KC-means and rest

of K-means models are equivalent more or less to a baseline with 5 levels, XLK-means to

a baseline of 4 levels and WK-means somewhere between 3 and 4 levels.

31

(a) Min-max scaling, one-hot encoding. (b) Min-max scaling, numeric only encoding.

(c) No scaling, one-hot encoding. (d) No scaling, numeric only encoding.

Figure 4.7: Average F-score of LB models using MLP classification algorithm per encoding
and scaling.

Multilayer Perceptron. The results of this classification algorithm greatly depend on

models’ encoding and scaling options. Since F-score variation of baseline and traditional

LB models is high, we compare the LB models per encoding and scaling as presented in

figure 4.7. Standard scaling is not presented since none of the CLB models use this scaling

option. As can be seen, in all cases the average F-score of the CLB models is better than

the average F-score of traditional LB models. For models scaled according to minimal

and maximal values this improvement is insignificant as the scores of all LB models are

high. For models without scaling the improvement is more significant and especially in

the case of numeric only encoding where average F-score of Multipart is 0.93, baseline’s is

0.82 and traditional LB’s is 0.8. AUC follows very similar behavior for most classes and

CLB models. For all, the average AUC of the CLB models is either the same or better

than the rest. The most significant improvement achieved in the case of models without

32

scaling and numeric only encoding, for the U2R class, with average AUC of the CLB

model (Multipart) 0.88 where baseline’s is 0.83 and traditional LB’s around 0.75.

SVM. The evaluation of SVM classifier has several limitations. First, we evaluate only

models scaled according to minimal and maximal values due to excessive run times of

SVM on other scaling options. Second, the results are sensitive to encoding. The end

result is that only 4 CLB models complete evaluation using SVM. The average F-score of

all LB models per encoding is presented in figure 4.8. Average AUC of all CLB models is

nearly the same as baseline’s and traditional LB’s for all models and classes.

(a) Min-max scaling, one-hot encoding. (b) Min-max scaling, numeric only encoding.

Figure 4.8: Average F-score of LB models using SVM classification algorithm per encoding.

4.2.4 Scalability

To evaluate CLB models’ scalability we look at run time and F-score as function of k.

Run time. The run times of all K-means based CLB models (KC-means, K-means, WK-

means) are linear in number of data points, number of dimensions and k. The theoretical

run time of Multipart is not clear. Empirical evaluation shows it is independent of k

expect the discussed case of k = 3 in which run times are significantly high. For k = {4..9}

run times are fixed up to a 1.7 seconds difference. Run time scalability of XLK-means

is arguable. In our implementation, the theoretic upper bound on run time is same as

K-means’. However, in practice, number of iterations until convergence dominates the run

time. Empirical evaluation shows that run times increase relatively linearly as function

of k for models with Min-max scaling, whereas there is no apparent correlation between

33

run time and k for models with Standard scaling. Figure 4.9 shows the run times of best

performing CLB models as function of k on test dataset.

Figure 4.9: Run times of best performing CLB models on test dataset.

F-score. The F-score of misuse detection algorithms Decision Tree, Random Forest and

SVM monotonically increase with k for vast majority of CLB models. For Multilayer

Perceptron and 1-Nearest-Neighbors, the F-score is more or less fixed across different k’s,

for all CLB models. Figure 4.10 presents for each of the best performing CLB models, the

average F-score across all misuse detection algorithms as function of k on test dataset.

Figure 4.10: Average F-score of best performing CLB models across all misuse detection
algorithms, on test dataset.

34

Chapter 5

Summary and Future Work

5.1 Summary

We live in an era of ever-growing network capacity demands. Data centers and enterprises

deploy network capacity on demand. As the traffic bandwidth increases, the network

functions, which process it, should be scaled accordingly. In particular, network security

functions, for instance, ML-based NIDS. The NFV paradigm, which allows running virtual

network functions on commodity hardware has enabled network operators with easy

provisioning and scaling processes.

Since vertical scaling (i.e., scale-up) is limited to the capacity of a single server, a

more practical approach is horizontal scaling (i.e., scale-out). That is, spawning multiple

instances of the same appliance and distribute the traffic between them by using a load

balancer.

However, traditional load balancers are not optimized to maximize the learning perfor-

mance of ML-based NIDS. To this end, we define a new type of load balancer: the clustering

load balancer. Its goal is to maximize the learning (misuse detection) performance while

keeping a balanced load across NIDS’ instances. It works by clustering the ingress traffic

into groups of similar flows, while keeping groups’ sizes somewhat equal. The groups are

then processed independently on different NIDS instances.

We survey existing balance-driven clustering algorithms from different domains and

determine their applicability for balancing traffic. Two algorithms were found appli-

35

cable: Multilevel K-way graph partitioning (Multipart) and balanced K-means using

exclusive lasso regularizer (XLK-means). The rest were found inapplicable due to run

time complexity.

In addition, we propose three new methods based on existing algorithms. The applicable

and the proposed algorithms are evaluated as clustering load balancers. We compare

their run times, level of load balance and scalability. We also present and discuss the

machine learning performance gain resulting from clustering load balancers compared

versus traditional load balancers, and versus a centralized ML-based NIDS.

Our evaluation results show that run times and level of balance vary between the

different clustering algorithms and depend on data preprocessing. K-means on subset of

features is the fastest but yields moderate level of load balance; whereas XLK-means and

KC-means have moderate run times but yield good levels of load balance. All clustering

load balancers produce data slices that are more homogeneous as compared with traditional

load balancers. Hence, using CLB outperforms the traditional load balancers in terms

of machine learning performance, for all evaluated classification algorithms. The most

significant performance gain is achieved by decision tree and random forest classification

algorithms.

In order to allow further research and reproducing of our results, we publish our

evaluation framework as open source, including the implementation of the proposed

methods and the referenced algorithms.

5.2 Future Work

In this work, we present the concept of clustering load balancer for scaling of misuse

detection ML-based NIDS. This work can be further extended in several directions:

1. Scope expansion. In this work, we focus on misuse detection, i.e., learning how to

identify known attack patterns. However, there are ML-based NIDS appliances that

attempt to detect anomalous traffic with respect to learned baseline (i.e., anomaly

36

detection). These algorithms are more practical for real life usage as they don’t

require a labeled dataset. However, they have higher false positive rates and are

more difficult to evaluate. Another research direction that may enable real life usage

is to evaluate our approach on on-line clustering and classification algorithms.

2. Clustering algorithms improvement. Each of the CLB algorithms has its own

drawbacks, which can be further mitigated. For instance, (a) our proposed WK-

means yields clusters that are not balanced enough for a load balancing application.

Further research can be conducted in order to improve its load balance. (b) For K-

means, the process of selecting features subsets was done manually. Further research

may find better ways of selecting optimal features (that yield the most balanced

clusters). (c) The runtime of XLK-means and Multipart clustering algorithms can be

improved using native and parallel implementation. XLK-means may converge faster

using different initiation scheme. Multipart may run faster using better Pythonic

interface to METIS and using less neighbors.

3. Further evaluation. We evaluate the approach on a single dataset. Although

we use common practices to avoid over-fitting, such as, split to train and test sets,

and cross-validation it would be interesting to validate our approach on additional

traces. In addition, it would be interesting to research whether the approach can be

generalized to other ML-based appliances that require scaling.

37

Appendix A

K-means weighting scheme

K-means is well defined only for Euclidean spaces, where distance between vectors A and

B is expressed as ||A−B|| =
√∑

i(Ai −Bi)2. Let W be a weights vector, wi denotes the

weight of the i-th feature. The weighted distance can be expressed as

||A−B||W =

√∑
i

wi(Ai −Bi)2 =

√∑
i

(
√
wi(Ai −Bi))2

=

√∑
i

(
√
wiAi −

√
wiBi)2 = ||

√
WA−

√
WB||

Thus, in order to give a weight of wi to the i-th feature, the i-th element of all vectors

should be multiplied by
√
wi.

It is a common practice to standardize data for K-means such that every feature has

zero mean and unit variance. The unit variance is achieved by dividing every feature by

its standard deviation. According to the weighting scheme it is the equivalent of giving

weight of 1/σ2 (the variance).

38

Bibliography

[AB00] Luis Aversa and Azer Bestavros. Load balancing a cluster of web servers:
using distributed packet rewriting. In Performance, Computing, and
Communications Conference, 2000. IPCCC’00. Conference Proceeding
of the IEEE International, pages 24–29. IEEE, 2000.

[AFAA08] Adebayo O Adetunmbi, Samuel O Falaki, Olumide S Adewale, and
Boniface K Alese. Network intrusion detection based on rough set
and k-nearest neighbour. International Journal of Computing and ICT
Research, 2(1):60–66, 2008.

[BBD00] PS Bradley, KP Bennett, and Ayhan Demiriz. Constrained k-means
clustering. Microsoft Research, Redmond, pages 1–8, 2000.

[BCLM98] Azer Bestavros, Mark Crovella, Jun Liu, and David Martin. Distributed
packet rewriting and its application to scalable server architectures. In
Network Protocols, Proceedings. Sixth International Conference on, pages
290–297. IEEE, 1998.

[BG06] Arindam Banerjee and Joydeep Ghosh. Scalable clustering algorithms
with balancing constraints. Data Mining and Knowledge Discovery,
13(3):365–395, 2006.

[BMS+16] Aydın Buluç, Henning Meyerhenke, Ilya Safro, Peter Sanders, and
Christian Schulz. Recent advances in graph partitioning. In Algorithm
Engineering, pages 117–158. Springer, 2016.

[CNMY14] Xiaojun Chang, Feiping Nie, Zhigang Ma, and Yi Yang. Balanced
k-means and min-cut clustering. CoRR, abs/1411.6235, 2014.

[F515] F5. Deploying the BIG-IP LTM with Multiple BIG-IP AAM and ASM
Devices, 2015.

[FBIM17] Gal Frishman, Yaniv Ben-Itzhak, and Oded Margalit. Cluster-based load
balancing for better network security. In Proceedings of the Workshop
on Big Data Analytics and Machine Learning for Data Communication
Networks, pages 7–12. ACM, 2017.

[FM88] Charles M Fiduccia and Robert M Mattheyses. A linear-time heuristic
for improving network partitions. In Papers on Twenty-five years of
electronic design automation, pages 241–247. ACM, 1988.

39

[GCC14] Nuwan Ganganath, Chi-Tsun Cheng, and K Tse Chi. Data clustering
with cluster size constraints using a modified k-means algorithm. In
Cyber-Enabled Distributed Computing and Knowledge Discovery (Cy-
berC), 2014 International Conference on, pages 158–161. IEEE, 2014.

[GdB12] Guilherme Galante and Luis Carlos E de Bona. A survey on cloud
computing elasticity. In Utility and Cloud Computing (UCC), 2012
IEEE Fifth International Conference on, pages 263–270. IEEE, 2012.

[HGW+14] Weiming Hu, Jun Gao, Yanguo Wang, Ou Wu, and Stephen Maybank.
Online adaboost-based parameterized methods for dynamic distributed
network intrusion detection. IEEE Transactions on Cybernetics, 44(1):66–
82, 2014.

[HL95] Bruce Hendrickson and Robert Leland. An improved spectral graph
partitioning algorithm for mapping parallel computations. SIAM Journal
on Scientific Computing, 16(2):452–469, 1995.

[HSC+11] Shi-Jinn Horng, Ming-Yang Su, Yuan-Hsin Chen, Tzong-Wann Kao,
Rong-Jian Chen, Jui-Lin Lai, and Citra Dwi Perkasa. A novel intrusion
detection system based on hierarchical clustering and support vector
machines. Expert systems with Applications, 38(1):306–313, 2011.

[HXSZ09] Ruhan He, Weibin Xu, Jiaxia Sun, and Bingqiao Zu. Balanced k-means
algorithm for partitioning areas in large-scale vehicle routing problem. In
Intelligent Information Technology Application, 2009. IITA 2009. Third
International Symposium on, volume 3, pages 87–90. IEEE, 2009.

[JSD05] Wenbao Jiang, Hua Song, and Yiqi Dai. Real-time intrusion detection
for high-speed networks. Computers & security, 24(4):287–294, 2005.

[KBM94] Eric Dean Katz, Michelle Butler, and Robert McGrath. A scalable http
server: The ncsa prototype. Computer Networks and ISDN systems,
27(2):155–164, 1994.

[KK98] George Karypis and Vipin Kumar. A fast and high quality multilevel
scheme for partitioning irregular graphs. SIAM Journal on scientific
Computing, 20(1):359–392, 1998.

[KL70] Brian W Kernighan and Shen Lin. An efficient heuristic procedure for
partitioning graphs. The Bell system technical journal, 49(2):291–307,
1970.

[KLK14] Gisung Kim, Seungmin Lee, and Sehun Kim. A novel hybrid intrusion
detection method integrating anomaly detection with misuse detection.
Expert Systems with Applications, 41(4):1690–1700, 2014.

[KMS12] Levent Koc, Thomas A Mazzuchi, and Shahram Sarkani. A network
intrusion detection system based on a hidden näıve bayes multiclass
classifier. Expert Systems with Applications, 39(18):13492–13500, 2012.

40

[LASB08] Anh Le, Ehab Al-Shaer, and Raouf Boutaba. On optimizing load
balancing of intrusion detection and prevention systems. In INFOCOM
Workshops 2008, IEEE, pages 1–6. IEEE, 2008.

[LHNL17] Hanyang Liu, Junwei Han, Feiping Nie, and Xuelong Li. Balanced
clustering with least square regression. In AAAI, pages 2231–2237, 2017.

[LKT15] Wei-Chao Lin, Shih-Wen Ke, and Chih-Fong Tsai. Cann: An intru-
sion detection system based on combining cluster centers and nearest
neighbors. Knowledge-based systems, 78:13–21, 2015.

[LXZ+12] Yinhui Li, Jingbo Xia, Silan Zhang, Jiakai Yan, Xiaochuan Ai, and
Kuobin Dai. An efficient intrusion detection system based on support
vector machines and gradually feature removal method. Expert Systems
with Applications, 39(1):424–430, 2012.

[MF14] Mikko I Malinen and Pasi Fränti. Balanced k-means for clustering. In
Joint IAPR International Workshops on Statistical Techniques in Pattern
Recognition (SPR) and Structural and Syntactic Pattern Recognition
(SSPR), pages 32–41. Springer, 2014.

[Mog95] Jeffrey C Mogul. Network behavior of a busy web server and its clients.
1995.

[PP07] Mrutyunjaya Panda and Manas Ranjan Patra. Network intrusion detec-
tion using näıve bayes. International journal of computer science and
network security, 7(12):258–263, 2007.

[PVG+11] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer,
Ron Weiss, Vincent Dubourg, et al. Scikit-learn: Machine learning
in python. Journal of Machine Learning Research, 12(Oct):2825–2830,
2011.

[SFL+00] Salvatore J Stolfo, Wei Fan, Wenke Lee, Andreas Prodromidis, and
Philip K Chan. Cost-based modeling for fraud and intrusion detection:
Results from the jam project. In DARPA Information Survivability
Conference and Exposition, 2000. DISCEX’00. Proceedings, volume 2,
pages 130–144. IEEE, 2000.

[SWF05] Lambert Schaelicke, Kyle Wheeler, and Curt Freeland. Spanids: a
scalable network intrusion detection loadbalancer. In Proceedings of the
2nd Conference on Computing Frontiers, pages 315–322. ACM, 2005.

[Tar06] Willy Tarreau. Haproxy-the reliable, high-performance tcp/http load
balancer, April 2006.

[TBLG09] Mahbod Tavallaee, Ebrahim Bagheri, Wei Lu, and Ali A Ghorbani.
A detailed analysis of the kdd cup 99 data set. In Computational
Intelligence for Security and Defense Applications, 2009. CISDA 2009.
IEEE Symposium on, pages 1–6. IEEE, 2009.

41

[TLX09] Daxin Tian, Yanheng Liu, and Yang Xiang. Large-scale network intrusion
detection based on distributed learning algorithm. International Journal
of Information Security, 8(1):25–35, 2009.

[VSL+07] Matthias Vallentin, Robin Sommer, Jason Lee, Craig Leres, Vern Paxson,
and Brian Tierney. The nids cluster: Scalable, stateful network intrusion
detection on commodity hardware. In International Workshop on Recent
Advances in Intrusion Detection, pages 107–126. Springer, 2007.

[Wat17] Ken Watford. METIS for Python. https://github.com/kw/

metis-python, 2012–2017. [Online; accessed 10-Oct-2017].

[XCA+06] Konstantinos Xinidis, Ioannis Charitakis, Spyros Antonatos, Kostas G
Anagnostakis, and Evangelos P Markatos. An active splitter architecture
for intrusion detection and prevention. IEEE Transactions on Dependable
and Secure Computing, 3(1):31–44, 2006.

[YMC11] Sun Yuepeng, Liu Min, and Wu Cheng. A modified k-means algorithm for
clustering problem with balancing constraints. In Measuring Technology
and Mechatronics Automation (ICMTMA), 2011 Third International
Conference on, volume 1, pages 127–130. IEEE, 2011.

[Yu02] Philip Shi-lung Yu. Loading balancing across servers in a computer
network, February 26 2002. US Patent 6,351,775.

[ZMP11] Jilian Zhang, Kyriakos Mouratidis, and Hwee Hwa Pang. Heuristic
algorithms for balanced multi-way number partitioning. 2011.

[ZWL10] Shunzhi Zhu, Dingding Wang, and Tao Li. Data clustering with size
constraints. Knowledge-Based Systems, 23(8):883–889, 2010.

[ZZH08] Jiong Zhang, Mohammad Zulkernine, and Anwar Haque. Random-
forests-based network intrusion detection systems. IEEE Transactions
on Systems, Man, and Cybernetics, Part C (Applications and Reviews),
38(5):649–659, 2008.

42

https://github.com/kw/metis-python
https://github.com/kw/metis-python

תקציר

למשל, (סילומיות). גידול בשיטות רב שימוש נעשה לכן, וגדלה. הולכת התעבורה כמות עתק, נתוני בעידן
הנכנסת התעבורה את שמחלק עומסים מאזן עם יחד רכיב אותו של מופעים ממספר הבנוי רשתי שירות

המופעים. בין

הלוקחות מיטבי לאיזון גישות ישנן ״ראונד־רובין״, על מבוססת עומסים לאיזון ביותר הנפוצה השיטה בעוד
ההמצאות יחס את המגדיל ״פרוקסי״ שרתי של עומסים איזון למשל, השירות. פונקציונליות את גם בחשבון

המטמון. בזכרון

מבוססות מחשבים רשתות אבטחת מערכות עבור עומסים לאיזון חדשות גישות מציגים אנו זה, במאמר
בין מאוזן עומס על שמירה תוך (CLUSTERING) אשכול בשיטות שימוש עושות המוצעות הגישות למידה.
הלומדת, המערכת ביצועי את משפרות וגם גידול ברות גם הן אלו גישות כי מדגימים אנו המערכת. רכיבי

מסורתיות. עומסים איזון לגישות בהשוואה

מוכווני אשכול אלגוריתמי של עדכני סקר מציגים אנו ראשית, חלקים. שלושה זו עבודה של לתרומה
בביצועי השיפור את ומדגימים מעריכים אנו שנית, תקשורת. עומסי איזון לבעיית בהתאמתם ודנים איזון
איזון גישות מול אל בהשוואה שלנו בגישות משימוש כתוצאה לומדות מחשבים רשתות אבטחת מערכות
המימוש ואת שפיתחנו ההערכה מערכת של המקור קוד את משחררים אנו שלישית, מסורתיות. עומסים

עתידי. ומחקר שלנו התוצאות של שחזור לאפשר במטרה השונים האשכול לאלגוריתמי שלנו

i

ענת פרופ׳ של ובליוויה IBM של המחקר ממעבדת בן־יצחק יניב דר׳ של בהדרכתו בוצעה זו עבודה
הרצליה. הבינתחומי, המרכז המחשב, למדעי ארזי אפי מבי״ס ברמלר־בר

במהלך ובכתבי־עת בכנסים למחקר ושותפיו המחבר מאת כמאמרים פורסמו זה בחיבור התוצאות מן חלק
הינן: ביותר העדכניות גרסאותיהם אשר המחבר, של המחקר תקופת

Gal Frishman et al. Cluster-based load balancing for better network security. In Proceedings
of Big-DAMA ’17. ACM, 2017.

תודות

לו, תודות התיזה. במהלך לי שנתן והעידוד ההדרכה על בן־יצחק יניב ד״ר שלי, למנחה להודות ברצוני
.BIG־DAMA 17׳ בכנס העבודה בהצגת מדהימה לחויה זכיתי

המחקר תובנות ועל המאמר של הביקורתית הקריאה על מרגלית עודד לד״ר להודות ברצוני כן, כמו
לי. שנתן

לסיים אותי שעודדה ועל המתמשכת תמיכתה על אריאלה, לאשתי, תודה הכרת להביע ברצוני לסיום,
זאת. לבצע הנפשי והשקט הזמן את לי ואפשרה והמאמר המחקר את

בהרצליה הבינתחומי המרכז
המחשב למדעי ארזי אפי בית־ספר

מחקרי מסלול ־ (M.SC.) שני לתואר התכנית

אבטחת לשיפור אשכול מבוסס עומסים איזון
מחשבים רשתות

מאת
פרישמן גל

M.SC. מוסמך תואר קבלת לשם מהדרישות כחלק המוגשת תזה עבודת
הרצליה הבינתחומי המרכז המחשב, למדעי ארזי אפי ספר בבית המחקרי במסלול

2018 ינואר

	Abstract
	List of Figures
	Abbreviations and Notations
	1 Introduction
	1.1 Background
	1.2 Motivation
	1.3 Problem Statement

	2 Previous Work
	2.1 Graph Partitioning
	2.2 K-means Variations
	2.3 Other Algorithms

	3 Clustering Load Balancer
	4 Evaluation
	4.1 Evaluation Setup
	4.1.1 Traces
	4.1.2 Load Balancer Models
	4.1.3 Tools and Method

	4.2 Results
	4.2.1 Load balancing performance of the CLB models
	4.2.2 Flows Distribution
	4.2.3 NIDS misuse detection performance
	4.2.4 Scalability

	5 Summary and Future Work
	5.1 Summary
	5.2 Future Work

	A K-means weighting scheme
	Bibliography
	Hebrew Abstract

