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Abstract

Every software engineering process starts with an idea. Most of these
ideas are described and formalized by specification documents written by
humans by means of Natural Language. Then, software engineers translate
those specifications into executable code.

In previous studies, researchers aimed to automate this translation task.
Initially, Abbott, 1983 focused on extracting object models from sentences
(a.k.a. Classes, Methods and Properties). Later on, Mich, 1996 defined
a semi-English language, a.k.a. a Controlled Natural Language (CNL),
for specification documents. CNLs enjoy an easy translation to a formal
representation (like other programming languages) but they suffer of non-
intuitiveness and they are unnatural to humans.

In this research, we aim to automatically translate requirements docu-
ments into executable code using Natural Language processing and ma-
chine learning techniques. Our main goal is to go beyond an object model
extraction, by capturing the instantiation of objects and the interactions be-
tween them. Furthermore, we aim to handle requirements in true Natural
Language while not setting any assumptions on the input.

Our method translates requirements documents into executable code
via an intermediate formal representation. This representation is a set of
Live Sequence Charts (LSCs) — formal, unambiguous multi-modal charts
that capture the dynamic system behavior — and a system model (SM) that
captures the structure of the system (the static part). This representation
has a direct translation into Java (Harel et al., 2010).

Gordon and Harel, 2009, defined a CNL and a semi-automatic parser,
that with user help can map a single CNL sentence into an LSC representa-
tion. In this thesis, we fully automate the CNL-to-LSC translation process,
i.e., remove the need of an interactive user to solve ambiguities. Moreover,
we also allow the user to enter a complete requirements document and use
document context to help the disambiguation of individual requirements.

Using a small seed of annotated data, we developed a statistical parser
that successfully parses requirements in CNL with 95% F-Score on a small
benchmark of CNL scenarios created by human experts (for more details
see chapter 4 table 4.11), alleviating the need of human disambiguation and
speeding up the translation process significantly. We showed empirically
that context matters, i.e., parsing a requirements document as a whole, in-
stead of each sentence in isolation, improved parsing results.

As a subsequent step, we aim to extend our input domain to unre-
stricted Natural Language. Roth et al., 2014 treat the mapping from Natu-
ral Language requirements to formal representations as a semantic parsing
task and contribute an annotated data set which contains a set of require-
ments documents from CS students homework assignments annotated with
semantic role labels such – Actor, Owner, etc. Each document describes a
simple application such as: taxi reservation, a library ordering system, and
so on.

We developed a rule-based algorithm that integrates statistical tools in-
cluding Part-of-speech taggers, a semantic role labeler, phrase and depen-
dency parsers in order to translate those specification documents into ex-
ecutable code. Our algorithm exploits the context of the entire document
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and translates the requirements into SM and LSCs. We further developed
an evaluation method for object/data modeling based on tree edit distance,
and showed that the agreement score between our system’s output and an
expert software engineer is almost the same as the agreement score between
two human experts, when designing a model based on the same set of re-
quirements.
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Chapter 1

Introduction

1.1 Background

Let us start with a simple question: what is a computer program? Wikipedia
describes it as follow: "A computer program is a collection of instructions that
performs a specific task when executed by a computer ... A computer program
is usually written by a computer programmer in a programming language." .
This definition misses an important observation, namely, that the specific
task should address some desired behavior. Another interesting point in
wikipedia’s definition is the need of a specialist and a programming lan-
guage to create a computer program.

Software engineering usually starts with a need and an idea that can
address this need. The need and the way to solve it are described and for-
malized in Natural Language requirements documents, via a process that
is called Requirements Elicitation. Later, those requirements documents are
translated (i.e., implemented) by software engineers into a programming
language that can be executed by the machine and fulfill the desired need.

In this thesis, we aim to automatically translate requirements docu-
ments into executable code using Natural Language Processing (NLP) meth-
ods and techniques. NLP is a field of research concerned with the interac-
tions between computers and humans in Natural Language. Many chal-
lenges in NLP involve natural language understanding, enabling comput-
ers to derive meanings from natural language input.

1.2 Related research

In previous scientific studies, researchers aimed to automate the text-to-
code translation task. At the beginning, Abbott, 1983 focused on extract-
ing object models from sentences (a.k.a. Classes, Methods and Properties).
Later, Mich, 1996 defined a semi-English language, a.k.a. a Controlled Nat-
ural Language (CNL), and used it for specification documents. CNLs enjoy
an easy translation to a formal representation (like other programming lan-
guages) but they suffer from non-intuitiveness and they are unnatural to
humans.

Recent studies opened the door to translating unrestricted NL into code
in domain-specific tasks. Examples include analyzing API documents to in-
fer API library specifications (Zhong et al., 2009), analyzing code comments
to detect concurrency bugs (Tan, Zhou, and Padioleau, 2011) and automat-
ically generating parser programs from natural language input format de-
scriptions (Barzilay et al., 2013).
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Unlike to the aforementioned studies, we aim to develop a general tech-
nique for semantic parsing of requirements documents in the area of reac-
tive systems. Furthermore, we aim to go beyond capturing the static parts
(i.e., the objects structure) and also capture the dynamic behavior of the
system (i.e., object initiations, inter-object instance communication and in-
teractions, and more).

1.3 Hypothesis, Methodology and Strategy

We aim to tackle the task of translating requirements documents into ex-
ecutable code using an intermediate formal representation called Live se-
quence charts (LSC) which is a formal, unambiguous, representation of multi
modal charts that capture the dynamic system behavior. The set of LSCs is
accompanied by a system model (SM) that captures the structure of the sys-
tem (the static part).

From the SE perspective, the LSC language has been defined for formal-
izing requirements in a fashion that accommodates the way humans think.
Moreover, its constructs are scenarios that can be usually described with a
single sentence in natural language. From the NLP perspective, LSCs have
a very good alignment with linguistic constructs that NLP algorithms aim
to recover, such as entities, events, temporality and more. Finally, the LSC
representation directly fulfills the basic requirement of text-to-code trans-
lation, since it has a direct translation into executable java code (Harel and
Maoz, 2006, Harel et al., 2010).

Gordon and Harel, 2009, defined a Controlled Natural Language using
a context-free grammar and a semi-automatic parser, that with the help of
an interactive user can solve ambiguities and map a single CNL sentence
into an LSC/SM representation.

Our first challenge is to create a fully automatic parser for this CNL lan-
guage that, using the context of the entire document, can parse successfully
a complete requirements document without the need of an co-operating
user.

Using a small seed of annotated data, we developed a statistical parser
that successfully parse requirements in CNL with 95% F-Score on a small
benchmark of CNL scenarios created by human experts (for more details
see chapter 4 table 4.11.). In this, we succeeded in alleviating the need of
human disambiguation.

Furthermore, we proved empirically that context matters, i.e., that pars-
ing a requirements document as a whole, instead of each sentence in iso-
lation, improved parsing accuracy. This is because overlapping between
sentences helps disambiguation.

Having automated the CNL to LSC mapping, our next goal is to handle
unrestricted natural language requirements documents. The first challenge
was to find a suitable data. Roth et al., 2014 treat the mapping from Natu-
ral Language requirements to formal representations as a semantic parsing
task and contribute an annotated data set, which contains a set of require-
ments documents from CS students homework assignments. Each docu-
ment describes an atomic simple application such as a messaging system
(see more in appendix B).
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Using the data of Roth, we developed a rule-based algorithm that in-
tegrates statistical tools including Part-of-Speech taggers, a semantic role
labeler, phrase and dependency parsers and linguistic ontologies that we
created in order to translate each requirements document into an LSC/SM
formal representation. Our algorithm exploits the context of the whole doc-
ument and translates the requirements into an LSC/SM representation. In
order to evaluate our results, we developed an evaluation metric for ob-
ject/data modeling based on tree edit distance.

As reference translations for our evaluation we used human modeling
by software engineering experts with diverse backgrounds, such as stu-
dents, junior and senior software engineers, in order to compare our au-
tomatically generated System Models against expert created System Mod-
els. We found that the agreement scores of the auto-generated models com-
pared with the models created by human experts was almost the same as
the agreement scores between different engineers.

Our experiments raise an interesting and important question for further
research in this area, namely: is there a perfect model? and more inter-
estingly, do we need to assume a single perfect model when developing
models for the text-to-code translation task? and finally, with no attested
gold, what would be a sound evaluation method for text-to-code?

1.4 Outline

In the next sections we describe in details the different parts of this research.
Firstly, in chapter 2 we survey related work on text-to-code translation and
in chapter 3 we discuss the formal preliminaries that are common to chap-
ters 4 and 5. In chapter 4 we describe our work on automating the CNL
translation into LSC representation, and how we modeled, developed and
evaluated it. In chapter 5 we describe how we extend our domain to unre-
stricted Natural Language. We describe our algorithm, its implementation
and evaluation. Finally, in chapter 6 we conclude our work and discuss
possible future research directions.





5

Chapter 2

Related Work

2.1 When SE met NLP

One of the oldest question in computer science is whether one could pro-
gram a computer by speaking to it in natural language (Dijkstra, 1979). Pro-
gramming in natural language may seem impossible, because it requires
complete natural language understanding and dealing with the vagueness
of human specification of programs.

Natural language programming intersects two disciplines in computer
science, on the one hand we are dealing with Natural Language Processing
(NLP), since our input is a specification document written in natural lan-
guage that describe a desired software system, and on the other hand with
Software Engineering (SE), since our output is an executable code (a software
system).

To be more precise, in SE we focus on Requirements Engineering which is
a subfield of SE that deals with the process of defining, documenting and
maintaining requirement, while in NLP we focus on Semantic Parsing, the
task of accepting a requirements document as input, and output a formal
representation that captures the meaning, in our case the desired system.

2.1.1 Requirements Engineering

Every software system is ultimately measured by the degree to which it
is able to meet the purpose for which it was designed. Requirements En-
gineering (RE) is the process of describing that purpose, by identifying the
stakeholders and their needs. The output of RE is a specification document,
that is written in a rich natural language. After that, the system analyst
transforms the captured information into formal and semi-formal artifacts,
mostly diagrams (Leite, 1987).

There is a number of inherent difficulties in the RE process. The stake-
holders might be numerous and distributed, their goals may vary and even
conflicting. Also, their goals may not be explicit and are difficult to artic-
ulate, which makes this process critical to the success of the final system
(Nuseibeh and Easterbrook, 2000). We aim to close this gap by allowing
a deeper analysis of stakeholder desired scenarios, which are mostly ex-
pressed in natural language. Moreover, by allowing to execute these NL
scenarios the analysis might be able to detect conflicts early in the process.
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2.1.2 Natural Language Processing

Natural Language Processing (NLP) is a field of research in computer sci-
ence and a sub-field of artificial intelligence, that mainly deals with auto-
matically analyzing and understanding human language. The algorithms
in NLP can be abstracted to a structure prediction function, where the input
is a natural language utterance, such as words, sentences and whole doc-
uments, and the output is some formal representation that represents the
linguistic structure and content. Common NLP tasks are usually divided to
analyzing the syntactic and semantic levels. Syntax level algorithms focus
on capturing the grammar and structure of the language, for example, de-
termine sentences, phrases, part-of-speech tags, derivation trees and more.
Semantic level algorithms focus on the meaning of the given utterance. For
example, in question-answering systems, in order to capture the knowledge
and make reasoning possible, the knowledge is usually captured by some
formal logic that supports the reasoning process. In our case, our output is
an executable program that captures the meaning of the system specifica-
tion in the requirements document.

2.1.3 Natural Language Programming

Early work in natural language programming has been rather ambitious,
targeting the generation of complete computer programs that would com-
pile and run. For instance, Ballard and Biermann, 1979 created the “NLC”
prototype which aimed to create a natural language interface for process-
ing data stored in arrays and matrices, with the ability of handling low level
operations such as the turning natural language statements like add y1 to
y2 into the programmatic expression y1 + y2. These first attempts triggered
the criticism of the community. Dijkstra, 1979 took the position that the use
of a formal language is essential to prevent the introduction of meaning-
less constructs, and dismissed natural language programming as "foolish".
However, a couple of decades later, Lieberman and Liu, 2005 describe why
new developments in NLP might now make programming in natural lan-
guage feasible. In their work, they proposed NL programming as a testbed
for NL processing algorithms. Their main claim is that the tremendous im-
provement of natural language parsers and semantic extraction techniques
make the NL programming dream feasible.

2.2 SE for NL-Programming

The first researchers to face the challenge of natural language programming
came from the software engineering community. SE researchers often use
existing off-the shelf natural language processing tools (for example — us-
ing part-of-speech tagging to determine nouns as possible objects) and ap-
ply additional transformations on their output to map them to executable
code. In the following sections we will review two main approaches : NL-
Programming using Controlled Natural Language and NL-Programming using
off-the-shelf tools.
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2.2.1 Controlled Natural Language

Software programming languages are formal languages that have an unam-
bitious translation to machine code. So, one of the first approaches to natu-
ral language programming was to try to define a formal language that will
look like a natural language. Controlled natural languages (CNLs) are subsets
of natural language, obtained by restricting the grammar and vocabulary in
order to reduce or eliminate ambiguity and complexity. Traditionally, con-
trolled languages fall into two major types: those that improve readability
for human readers (e.g. non-native speakers), and those that enable reliable
automatic semantic analysis of the language (Kuhn, 2014).

Several CNLs were introduced for Requirements Elicitation. Fuchs and
Schwitter, 1995 developed the Attempto Controlled English (ACE), a sub-
language of English whose utterances can be unambiguously translated
into Prolog clauses, hence become formal and executable. Over the years,
ACE has evolved into a mature controlled language, which is used mainly
for reasoning about software requirements specification.

Bryant and Lee, 2002, use a CNL called Two-Level Grammar (TLG) to first
extract the objects and methods and then extract classes, hierarchies and
methods. TLG is designed to output UML class diagrams and Java code.
The methods are described in natural language as a sequence of intra-object
behaviors.

Cabral and Sampaio, 2008, propose a strategy that automatically trans-
lates use cases, written in a Controlled Natural Language with a fix gram-
mar, into specification in CSP process algebra. They define templates that
represent requirements at different levels of abstraction .Moreover, a refine-
ment notion is defined based on events mapping between abstract and con-
crete models.

Zapata and Losada, 2012, proposed a model for knowledge representa-
tion of the transformation process from a natural language discourse into
controlled language specifications (within the context of the requirements
elicitation process) by using pre-conceptual schemes.

Gordon and Harel, 2009, created a controlled natural language inter-
face, which, for a useful class of systems, yields the automatic production
of executable code from structured requirements.

The main drawbacks of the CNL approach is the limitation on the ex-
pressivity (a.k.a what can be expressed by the language) of the formal lan-
guage and the non-intuitiveness to the average Joe compared to unrestricted
rich natural language.

2.2.2 Off-the-shelf solutions

In order to deal with the drawbacks of the CNL approach, some researchers
aimed to use off-the-shelf natural language processing solutions to parse re-
quirements documents written in unrestricted natural language and extract
different levels of software artifacts abstraction.

The first one to employ this approach was Abbott, 1983. In his paper
he introduces a technique for extracting data types, objects, variables and
operators from informal English texts. His method was based on a sim-
ple rule-based algorithm, in which nouns were determined as objects and
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verbs as operators between them. Later, Booch, 1986 has extend Abbott’s
approach to the object oriented paradigm.

The first automatic prototype for constructing object-oriend models from
informal requirements was introduced by Saeki, Horai, and Enomoto, 1989.
Unlike Abbott and Booch, Seaki’s system is based on automatically ex-
tracted nouns and verbs. Due to high ambiguities that characterize in-
formal requirements, Saeki realized that in order to achieve diagrams of
reasonable quality human intervention was still needed to distinguish be-
tween words that are relevant for the model and irrelevant nouns and verbs.

Nanduri and Rugaber, 1995 proposed to further automate the object-
oriented analysis of requirement texts by applying a syntactic parser and a
set of post-processing rules. In a similar setting, Mich, 1996 employed a full
NLP pipeline that contains a semantic analysis module, thus omitting the
need for additional post-processing rules. More recent approaches include
those by Harmain and Gaizauskas, 2003 and Kof, 2004, who relied on a
combination of NLP components and human interaction.

As mention before, Lieberman and Liu, 2005 have conducted a feasibil-
ity study and showed how a partial understanding of a text, coupled with a
dialog with the user, can help non-expert users make their intentions more
precise when designing a computer program. Their study resulted in a sys-
tem called METAFOR (Liu and Lieberman, 2005), able to translate natural
language statements into class descriptions with the associated objects and
methods.

Gulwani and Marron, 2014 developed NLyze, a system that synthesizes
spreadsheet formulas from NL. Their translation algorithm builds over ideas
of keyword programming and semantic parsing.

Most approaches aimed to create class diagrams. Ghosh et al., 2014 pro-
posed a pipeline architecture that converts syntactic parses to logical ex-
pressions via a set of heuristic post-processing rules.

The biggest drawback of the off-the-shelf approach is that these NL pro-
cessing tools were not designed for the specific domain of NL program-
ming, and therefore, those works are not able to go beyond capturing static
models and shallow interactions between object. In order to capture the dy-
namic nature of programming, domain-oriented semantic parsers that aim
to capture the dynamic aspects of meaning of the specification documents
are needed.

2.3 NL-Processing for NL-Programming

Mihalcea, Liu, and Lieberman, 2006 were the first to tackle the NL Pro-
gramming problem from a Natural Language Processing perspective. In this
research, Mihalcea et al. argue that modern Natural Language Processing
techniques can make possible the use of natural language to express pro-
gramming ideas, thus drastically increasing the accessibility of program-
ming to non-expert users. To demonstrate it, they tackle two main pro-
gramming patterns : steps and loops. Their algorithms consisted of three
components:

• Step finder, which has the role of identifying in a natural language
text the action statements to be converted into programming language
statements.
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FIGURE 2.1: Class hierarchy of Michael Roth’s conceptual
ontology for modeling software requirements.

• Loop finder, which identifies the natural language structures that indi-
cate repetition.

• Comment identification components, which identify the descriptive state-
ments that can be turned into program comments.

The step and loop finder components are based on information extraction
methods that use keywords and patterns to extract the action and then lin-
guistic structures to extract the arguments.

Later on, Roth et al., 2014 suggest to treat the mapping from NL re-
quirements documents to formal representation as a semantic role label-
ing task. This research establishes an ontology for formally representing
requirements (as shown in figure 2.1). The ontology is hierarchal and in-
cludes three levels. In the first level they distinguish between things and
operations. Where a thing can be a Participant which is involved in an oper-
ation. They further subdivide Participants into Actors, which can be users
of a system or the system itself, and Objects. A Property is an attribute of an
Object or a characteristic of an operation. Operations are divided as well to
few subclasses — for example an Action that describes an operation that is
performed by an Actor on one or several Object(s) (see figure 2.1).

Later, Roth and Klein, 2015 adapt techniques from semantic role label-
ing on these concepts and relations for describing static software function-
alities. In our research, we aim to go beyond the static structure and first
level interaction (a.k.a. subject-verb-object), and we target capturing the
dynamic parts and interactions involving events, quantifiers and other soft-
ware artifacts such as loops, conditions, and so on, which cannot be cap-
tured via the terms defined in this ontology.
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2.3.1 Semantic Parsing

Semantic parsing is the process of automatically mapping a natural-language
sentence into a formal representation of its meaning. A shallow form of
semantic representation is a case-role analysis (a.k.a. a semantic role label-
ing), which identifies roles such as agent, patient, source, and destination. A
deeper semantic analysis provides a representation of the sentence in pred-
icate logic or other formal language which supports automated reasoning.

So how do we define such formalization and translate natural language
to it? Many different formal representations were defined, some of them
capture only the static parts of the meaning, others tried to capture dynamic
and temporal aspects. After the formalization is defined, the translation
task is usually done using machine learning algorithms.

Moens and Steedman, 1988 use temporal logic to describe the seman-
tics of natural language, they proposed an ontology based on notions such
as causation and consequences. Later studies combine temporal logic with
distributional statistics (Lewis and Steedman, 2014). These approaches re-
mained theoretical and there currently exists no algorithms to map NL sen-
tences to these dynamic semantic representations.

Clark, Coecke, and Sadrzadeh, 2011 proposed a mathematical frame-
work for unification of the distributional theory of meaning in terms of
vector space models. Das et al., 2010 contribute a formalization of frame-
semantic parsing as a structure predication problem, their parser finds words
that evoke FrameNet frames, select frames for them, and locate their argu-
ments. Liang, Jordan, and Klein, 2011 use logical form as semantic repre-
sentation to learn how to map questions to answers via latent logical forms,
which are induced from question-answer pairs (supervised model). In a
later study, Liang and Potts, 2015 present a discriminative learning frame-
work for compositional semantic models and relate them to logical theories.

Poon and Domingos, 2009 are the first research to apply unsupervised
modeling to semantic parsing, by using Markov logic. Their USP system
transforms dependency trees into quasi-logical forms, recursively induce
lambda forms and clusters them to abstract away syntactic variations of the
same meaning.

Every semantic system differs in the input, the learning method and the
output. All those parameters are derived from the task that the parser aims
to solve. In this work, we focus on understanding natural language de-
scription, therefore, we use a semantic representation that aims to capture
the dynamic, executional meaning of the processes that will be executed by
the specified system.

2.3.2 Applications

Recently, different studies on semantic parsing have been applied to the
general problem of natural language programming, or text-to-code transla-
tion, in various sub-domains of programming. All these studies try to go
beyond the creation of formal specification or structure.

Examples include analyzing API documents to infer API library specifi-
cations (Zhong et al., 2009), analyzing code comments to detect concurrency
bugs (Tan, Zhou, and Padioleau, 2011) and automatically generating parser
programs from natural language input format descriptions (Barzilay et al.,
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2013). Kushman and Barzilay, 2013 consider the problem of translating nat-
ural language text queries into regular expressions.

Other popular applications of semantic parsing to NL programs are
database queries. Thompson, Mooney, and Tang, 1997 learned a determin-
istic shift reduce parser for this task, while Zettlemoyer and Collins, 2012
use a log-linear model to induce a grammar for the problem.

Other works focus on mapping natural language instructions to actions.
Artzi and Zettlemoyer, 2013 used a grounded CCG semantic parsing ap-
proach to interpret and execute instructions using a weakly supervised
model. Branavan, Zettlemoyer, and Barzilay, 2010 also deal with mapping
high level instructions to commands in an external environment.

All of the aforementioned studies focus on sentence or paragraph level
and a specific task, while we target the analysis of document/discourse
level, towards describing a complete software system.

2.4 Summary

The text-to-code translation is a challenge at the intersection of SE and NLP
disciplines. This task is an old dream that was heavily criticized by Dijk-
stra. At the beginning, SE researchers tackle this challenge with two main
approaches — definitions of CNLs and off-the-shelf NLP tools. Recent NLP
studies approach the task by casting it as a semantic parsing tasks and
translating sentences into some, often static, formal representation.
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Chapter 3

Formal Preliminaries

In this chapter we review the formal preliminaries required for the next
chapters which will in turn describe our text-to-code translation algorithms.

3.1 The Semantic Representation

Let us restate our desired function: our input is a requirements document (a
list of sentences where every sentence is a requirement of a desired system)
written in natural language, and our desired output is a software system
that meets those requirements. Formally, our input is a requirements doc-
ument D 2 D, which consists of n requirements - D = d1, ..., dn, and our
output is a desired software - SW . So our function is f : D ! SW . The
first question that arises is: what formal representation is suitable for im-
plementing our function?

In order to implement this function, we choose an intermediate formal
representation called Live sequence charts (Damm and Harel, 2001). The first
contribution of this thesis is the proposal that the LSC formal language, pre-
viously proposed for manual scenario-based programming, could provide
a viable semantic representation for automatic (and statistical) text-to-code
translation. In addition to LSCs which capture the dynamic behavior, our
target formal representation also contains a System model (SM), which cap-
tures the static structure (i.e., the objects structure) of the desired system.

From the SE perspective, the LSC language has been defined for formal-
izing requirements and in a fashion that accommodates the way humans
think. Moreover, its constructs are scenarios that can be usually described
with a single sentence in natural language. From the NLP perspective, LSC
has a very good alignment with linguistic constructs that NLP algorithms
aim to recover, such as entities, events, temporality and more. Finally, the LSC
representation directly fulfills the basic requirement of text-to-code transla-
tion, since it has a direct translation into executable java code (Harel and
Maoz, 2006, Harel et al., 2010).

Harel et al., 2010, develop an algorithm that maps the LSC/SM repre-
sentation into an executable code. So, relying on this work, we already have
a deterministic function that maps an LSC/SM representation to code:

f1 : LSC/SM ! SW

In order to complete our task we will develop a model for the function that
maps a requirements document into its LSC/SM representation:

f2 : D ! LSC/SM
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FIGURE 3.1: The LSC graphical depiction of the scenario:
“When the user clicks the button, the display color must

change to red.”

By composing these functions, f1 and f2, we will achieve our translation
goal.

f(D) = f1(f2(D)) = f1(LSC/SM) = SW

In this work we make two preliminary assumptions on the task:

1. We assume that our input documents describe reactive systems.

2. Every sentence in the document is a self-contained requirement that
can be mapped to a single LSC.

We will introduce this formal representation via two concepts: a system
model, representing the static (architectural) aspects of system design and
live sequence charts, representing the dynamic (behavioral) aspects of system
flow.

3.1.1 Live Sequence Charts

A Live Sequence Chart (LSC) is an extension of Message Sequence Chart
(MSC). Entities in LSC diagrams are represented as vertical lines called life-
lines, and interactions between entities are represented by horizontal arrows
between lifelines (or a self-pointing arrow) called messages. Messages con-
nect the sender and the receiver, where the head of the arrow points to the
receiver. Time in LSCs proceeds from top to bottom, imposing a partial
order on the execution of all messages.

A message can be “hot" (obligatory), represented by a red color, or “cold"
(optional), colored in blue. Every message has an execution status: solid
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FIGURE 3.2: A System Model representing the System Ar-
chitecture: Classes and Objects Views.

arrows represent methods to be executed, and dash arrows represent meth-
ods to be monitored. The LSC specification language also contains control
structures such as if conditions, switches and bounded loops. The negation
of flows can designate forbidden scenarios. To illustrate, Figure 3.1 shows
the LSC for a simple scenario involving two objects from the architecture
presented in Figure 3.2.

So what can be expressed effectively by the LSC representation? The
predecessors of LSCs, Message sequence charts (MSCs), are widely used in
industry to document the interworking of processes or objects – but they
are expressively weak, based on the modest semantic notion of a partial
ordering of events (Damm and Harel, 2001). LSCs propose an extension of
MSCs which deals with specifying “liveness”, i.e., things that must occur
in the lifespan of objects. LSCs allow distinguishing between possible and
necessary behavior, both globally, on the level of an entire chart, and locally,
when specifying events and conditions within a chart.

Furthermore, they enable naturally specifying constructs such as sub-
charts, branching (i.e., if statements - as in figure 3.3) and iteration (i.e.,
loops - as in figure 3.4), and allow specifying forbidden scenarios (as in
figure 3.5). The representation also allows us to distinguish universal bind-
ing that applies on all instances of the participating lifelines, and existential
binding that applies to only specific instance (figure 3.6).

Formally, it can be shown that the execution semantics of the LSC lan-
guage is embedded in a fragment of a branching temporal logic called CTL*
(Kugler et al., 2005). Gordon and Harel, 2011 showed empirically that LSC
is a suitable formalism for specifying dynamic reactive systems, which is in
turn our selected domain for formal specification.
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FIGURE 3.3: An LSC for an if statement that represents the
requirement : "When the baby unit temperature changes,
the mobile unit beeps if the baby unit temperature is greater
than temperature threshold" (This requirement is taken
from the Baby Monitor episode from the data of Gordon)
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FIGURE 3.4: An LSC for a loop operation that represents the
requirement: "A taxi notifies the server of its location con-
tinuously." (This requirement is taken from the Taxi episode

of Roth et al., 2014).
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FIGURE 3.5: An LSC for a forbidden state that represents
the requirement: "when the beeper state changes to on,
as long as the beeper state is on and two seconds elapse,
the beeper beeps, the display mode may not change."
(This requirement is taken from the "wristwatch" episode
at - http://wiki.weizmann.ac.il/playgo/index.

php/Wristwatch_Example)
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FIGURE 3.6: An LSC for the requirement: "Any user must
be able to search by tag the public bookmarks off al REST-
MARKS users" (This requirement is taken from the REST-

MARK episode of Roth et al., 2014).

3.1.2 The System Model

A System Model (SM) represents the static architecture of a proposed sys-
tem. It consists of classes (types), objects (instances), methods, and prop-
erties, along with their default and actual values. Figure 3.2 provides a
screenshot of the Classes and Objects views of a specified system. These
views also allow to expand a class or an object down to its properties and
methods. Every reactive system to be developed using our framework is
assumed to also have special classes and objects of one of the following
types: Env that represents the environment, Clock that accounts for time
operations, and User that simulates an interactive user. Those three special
objects represent the outside world, and allow us to model a system that
can be integrated in a real world (interact with users, sample different real-
world phenomenas - temperature, time and more). These objects effectively
trigger the system events and cannot be expanded.

3.2 Play-In and Play-Out

Play-in/Play-out is a methodology for scenario-based specification of reac-
tive systems developed be Harel and Marelly, 2003. In this methodology
the behavior is “played in” directly from the system’s GUI or some abstract
version thereof, and can then be “played out”, i.e., executed according to
the specification. Play-in is a user-friendly high-level way of specifying be-
havior and play-out is a way of working with a fully operational system
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directly from its inter-object requirements. This methodology is relevant to
many stages of system development, including requirements engineering,
specification, testing, analysis and implementation. Let us specify about
these two concepts further.

3.2.1 Play-In

The basic unit of an LSC system is a "scenario", which describes a facet of
the system’s behavior. We assume that every requirement sentence can be
mapped directly to a single "scenario". Play-in is the process of creating a
scenario, it consists of demonstrating user actions and specifying possible
or mandatory system reactions. There are at least two ways of playing-in a
scenario, using a GUI application or NL play-in interface.

• GUI: In this approach, the user specifies scenarios by playing them
in directly from a graphical user interface (GUI) of the system being
developed. The developer interacts with the GUI that represents the
objects in the system, still a behavior-less system, in order to show,
or teach, the scenario-based behavior of the system by example (e.g.,
by clicking buttons, changing properties or sending messages). As a
result, the system generates automatically, and on the fly, live sequence
charts that represent the desired behavior.

• NL Play-in: In this approach, the user specifies scenarios by describ-
ing them in (semi-)natural language. Every requirement is parsed
separately, ambiguities are resolved by user intervention (using in-
teractive mode) and finally the requirement is mapped to LSC rep-
resentation and the SM is updated accordingly. Post edit operations
are also available using the GUI interface (Gordon and Harel, 2009).
Figure 3.7 presents the NL Play-in interface, the user types a single
requirement and the parser tries to resolve it. If there is more than one
possible parse for the requirement, the user should disambiguate by
selecting one of the offered possibilities.

3.2.2 Play-Out

Play-out is a method introduced in Harel and Marelly, 2003 for executing
LSC specifications. According to them, play-out is the means for running
a scenario-based program. Every execution of an operation is considered a
step. Following a user action, the system executes a superstep - a sequence
of the steps that follows from the user action, and which terminates either
at a stable situation, where the next event is a user action, or when the entire
execution terminates. By executing the events in these charts and causing
the GUI application and object map to reflect the effect of these events on
the system objects, the user is provided with a simulation of an executable
application. Figure 3.8 presents the LSC and SM during play-out. The blue
traces manifesting the system behavior on the LSC in real time.
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3.2.3 The PlayGo Tool

The Play-in/Play-out methodology is implemented by a tool called Play-
Go 1. PlayGo supports three modes of play-in:

• Editor: a drag and drop interface to create LSCs.

• GUI: the user specifies scenarios by playing them in directly from a
graphical user interface of the system being developed.

• CNL Play-in: an initial implementation of NL Play-in, the user de-
scribes the desired system using a Controlled Natural Language.

As the behavior is played in, the play-go tool automatically generates a
formal LSC/SM representation of the system. PlayGo then allows to play
it out, causing the application to react according to the specified behavior
and can be monitored to check their successful completion.

The execution can be visually depicted as a set of traces, as shown in
Figure 3.8.

In this work, we aim to lift two inherent restrictions of the current CNL
play-in. The first one is to remove the need of user disambiguation (see
Figure 3.7), chapter 4 will focus on this task. The second is to augment the
PlayGo tool with an additional mode of unrestricted NL play-in, chapter 5
will describe our steps towards this target.

3.3 Summary

The main contribution of this thesis is the proposal to use the LSC repre-
sentation as a formal semantic representation of specification documents
of reactive systems. Subsequently, the algorithms described in this thesis
translating texts into their LSC representation are implemented and inte-
grated in the PlayGo Tool (Harel et al., 2010).

1PlayGo project page - www.playgo.co
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FIGURE 3.7: A screenshot of NL Play-In. Note the red
squiggly line that indicates an ambiguity, i.e., that there is
more than one possible parse for the sentence. The user
should disambiguate by selecting one of the offered pos-
sibilities. The selection can have a significant effect on the

created LSC.
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FIGURE 3.8: A Live Sequence Chart (LSC) and a System
Model (SM) during play-out. Note the blue traces manifest-
ing the system behavior on the LSC in real time, and the

real-time properties of the Objects in the SM.
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Chapter 4

Programming in Controlled
Natural Language

4.1 Rule-Based NL Play-In

The starting point for this research is the work of Gordon and Harel, 2009,
who define a CNL Play-in interface that is implemented in the PlayGo tool.
This CNL defines a subset of English that is generated by a context-free
grammar that has a direct translation into the LSC/SM representation. Cur-
rently the translation is semi-automatic and requires a user intervention
when ambiguities arise. Our goal in this chapter is to create a fully auto-
matic statistical parser that removes the need for user intervention by rely-
ing on statistical learning as well as exploiting document context in order
to solve ambiguities automatically.

4.1.1 Controlled NL

The CNL defined by Gordon and Harel is based on a hand-crafted context-
free grammar. A context-free grammar (CFG) is a set of production rules
that allow to generate possible strings in the specified formal language.
Production rules indicate simple replacements. Most of the programming
languages are CFG languages and they are unambiguous in order to make
the translation to machine code trivial.

Gordon and Harel, 2009 defined a Control Natural Language , a subset
of English, that has a direct translation into LSC/SM representation. The
CNL is described by Context-free grammer that includes 189 rules (for the
version that we used in this project). In figure 4.1 we show an example of
a requirement that can be derived by the grammar. The full specification of
the CNL grammar can be found in appendix A.

4.1.2 Semi-Automatic Parser

Gordon and Harel, 2009 also developed a semi-automatic parser for the
described CNL. The parser consists of a context-free grammar bottom-up
parser and a dialog system that helps the programmer create both a system
model and a set of LSC scenarios.

When a requirement is analyzed, it first tokenizes the sentence, than for
each token the parser tries to fit a production rule. The parser uses a Word-
Net dictionary in order to determine whether a word is a noun, a verb, or
an adjective, and whether it is meant as an object, a method or a persistent
property. When ambiguity arise, i.e., when more than one rule can induce
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FIGURE 4.1: A derivation tree for the requirement: "When
the user clicks that button, the display color must change to

red".
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the terminal, the system requires an interactive user intervention in order
to solve the ambiguity.

As previously mention, our main goal in this chapter is to replace the
semi-automatic parser with a fully automatic parser that uses statistical
methods and exploits the context to resolve ambiguities and remove the
need of the human precious time and effort.

4.2 What happen Next?

In this chapter we aim to create a fully automatic parser for the CNL-to-LSC
task, i.e., remove entirely the need of an interactive user for solving ambigu-
ities. In order to do that, we will use a common statistical modeling strategy
based on Shannon’s Noisy Channel Model (more details in subsection 4.2.1).
Moreover, in order to solve ambiguities that might arise during parsing,
we will exploit the discourse context of the entire document (more on that
in subsection 4.2.2). Finally, by parsing complete documents a whole, we
add the capacity of entering a complete system description and processing
it in one go, without requiring a sentence-by-sentence manual process, as is
currently the case in previous solutions.

4.2.1 Noisy Channel Model

Shannon, 1948 introduce one of the most important theories of computer
since in the 20th century: A mathematical Theory of Communication. The
Noisy-Channel coding theorem establishes that for any given degree of
noise contamination of a communication channel, it is possible to com-
municate discrete data (digital information) nearly error-free up to a com-
putable maximum rate through the channel. This model has been applied
to a wide range of NLP problems. Bahl, Jelinek, and Mercer, 1983 formu-
lated the speech recognition problem as a problem of maximum likelihood
decoding based on the noisy channel model, Brill and Moore, 2000 used
the noisy channel for spelling correction algorithm and Brown et al., 1993
used the noisy-channel model as the basis of a statical model of machine
translation.

4.2.2 Discourse Analysis

Discourse analysis is a broad term for the study of the ways in which lan-
guage is used in texts and contexts. The discourse properties of text have
long been recognized as critical to language technology, and over the past
40 years, our understanding of and ability to exploit the discourse proper-
ties of text has grown in many ways. Webber and Joshi, 2012 recount these
developments, the technology they employ, the applications they support,
and the new challenges that each subsequent development has raised. As
we are aiming to analyze specification documents and not separated sen-
tences, it is very natural to use discourse methods to improve the results of
the automatic analysis.
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4.3 Statistical NL Play-In

In this chapter we define the probabilistic models for translating require-
ments written in CNL into LSC/SM representations. Based on our proba-
bilistic models, we implement a statistical parser that automatically parses
requirement documents and converts them into executable code.

4.3.1 Formal Settings

In the NL Programming task (i.e., text-to-code translation task), we aim
to implement a prediction function f : D ! M ,such that D 2 D is a
specification document consisting of an ordered set of requirements D =

d1, d2, ..., dn and f(D) = M 2 M is a code-base hierarchy that grounds the
semantic interpretation of D (that is, the code that fits all the requirements).
We formally denote the fact that M grounds the semantics of D as M .
sem(D).

Furthermore, we assume that each requirement d
i

2 D represents a cer-
tain aspect of the model M . We assume a sequence of snapshots of M that
correspond to the timestamps 1...n, that is: m1,m2, ...,mn

2 M where each
SM snapshot is the section of the code-based that grounds the implemen-
tation of the specific LSC that represents the meaning of the requirements.
Formally, we term this 8i : m

i

. sem(d
i

).
Let ⌃ be a finite lexicon and let L

req

✓ ⌃

⇤ be a language for specifying
requirements. At the beginning, we limit our domain to controlled natural
language, so we assume that requirements in L

req

have been generated by
a context-free grammar G. In this entire chapter we assume the d

i

require-
ment sentences are all from L

req

.
We define T

req

to be the set of trees strongly generated by G, and utilize
an auxiliary yield function yield : T

req

! L
req

returning the leaves of the
given tree t 2 T

req

. Different parse-trees can generate the same utterance, so
the task of analyzing the structure of every requirement d 2 L

req

is modeled
via a function syn : T

req

! L
req

that returns the correct, human-perceived,
parse t 2 T

req

of d 2 L
req

.

4.4 Probabilistic Modeling

Our formal representation consists of two parts, LSCs and a SM. LSCs are
responsible for capturing the content of every requirement, while the SM
is a global object that captures the context. According to these phenom-
ena, we defined two probabilistic models. The first one is a content model,
a sentence-level model which is based on a probabilistic grammar aug-
mented with compositional semantic rules. The second model is a context
model, discourse-level sequence model that takes into account the content
of every sentence as well as the relation between System model snapshots
(a local SM) at different time stamps.

In both models, given a requirements document D that consists of n re-
quirements, D = d1, ..., dn , our focus is to map every d

i

to a correct deriva-
tion tree of the CNL grammar. Then, we rely on the existence of a mapper
algorithm M : T

req

! (LSC, SM) (implemented in Gordon and Harel,
2009), and we return an LSC/SM representation for each requirement.
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In order to obtain a SM as a global object that represents the structure of
the whole system, we combine all SM snapshots, mapped from each of the
requirements, to a single global SM.

4.4.1 Sentence-Based Modeling

The theory
Our task is to learn a mapping function from each sentence to its correct
LSC and SM snapshot. Formally, given a requirements document with n
requirements D = d1, ..., dn , we map every d

i

to the tuple (LSC
i

, SM
i

)

where SM
i

is a partial snapshot of the global SM . In this model, given a re-
quirements document, we parse and analyze each requirement separately.
Than, in order to complete our task we combine all partial SM

i

together to
create a global SM (SM =

S
n

i=1 SMi

).
We address this task via a probabilistic context-free grammar augmented

with a semantic interpretation function. More formally, given a require-
ments document with n requirements D = d1, ..., dn , we assume that each
d
i

has been generated by a probabilistic context-free grammar (PCFG) G.
The syntactic analysis of d

i

might be ambiguous and return more than
one derivation tree. So, in order to overcome it we implement a syntactic
analysis function syn : L

req

! T
req

using a probabilistic model that selects
the most likely syntax tree. Formally, syn(d) = argmax

t2TreqP (t|d). This
proposal relies on Shannon’s (1948) noisy channel model (more details in
4.2.1) and starts with the idea that pure semantic content (an SM snapshot)
existed at every timestamp, and through the noisy channel, the SM snap-
shot gets "corrupted" into a requirement description written in NL. The task
then is to remove the "noise" and restore the original SM snapshot.

Formally, given a requirement d, we can simplify syn(d) with respect to
the maximization as follows:

syn(d) = argmax
t2TreqP (t|d)

= argmax
t2Treq

P (t, d)

P (d)
conditional probability rule

= argmax
t2TreqP (t, d) P (d) is constant for all trees

= argmax
t{t|t2Treq^yield(t)=d}P (t) projection to trees that their yield is r

Since we assume context-freeness, it holds that P (d) =
Q

d2der(t) P (r), where
der(t) return the rules that derive t. Finally, our model will take the follow-
ing form:

syn(d) = argmax
t{t|t2Treq^yield(t)=d}

Y

r2der(t)

P (r)

The implementation
The sentence-based model relies on two main components - the PCFG model
and the CKY parsing algorithm (Younger, 1967). The PCFG learning phase
is an offline process that is learned once and used multiple times, while the
CKY decoding is an online process, applied fresh for every new require-
ment.
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The probability of P (t) is estimated using a treebank PCFG (Charniak,
1996), based on all pairs (d

ij

, t
ij

) 2 D ⇥ T
req

in the parallel corpus that con-
sists of requirements d1, ..., dn with their corresponded syntax trees t1, ..., tn.
We have estimated the rule probabilities using maximum-likelihood esti-
mations and smoothed unknown words based on rare words distributions.
This means that words that haven’t passed a minimal cutoff number of oc-
currences, were considered as special token ##UNKNOWN##, and this to-
ken probability is assigned to future unseen words.

In order to simplify our model, we perform a binarization on our trees
that reserve the tree probability, such that every rule will be unary or binary,
formally, X ! Y or X ! Y Z. The maximum likelihood will be as follow :

ˆP (r) = P (x ! ↵) =

(
count(x!y z)

count(x) , for binary rules
count(x!y)
count(x) , for unary rules

with respect to the smoothing cutoff.
After we have learned a PCFG model, we iterate through the given re-

quirements document, and for every sentence we apply the CKY algorithm
to find the most likely syntax tree. In this greedy approach , we takes the
best syntax tree for every sentence without taking into consideration the
context.

Runtime complexity
The overall complexity of decoding a document with n requirements, where
the number of tokens of the longest requirement is l, using a grammar G
of size |G|, is given by: O(n ⇥ l3 ⇥ |G|). CKY worse case complexity is
O(l3 ⇥ |G|). The space complexity is the size of the table O(l2) (Younger,
1967).

4.4.2 Discourse-Based Modeling

The theory
In contrast to the sentence-base modeling, in this model, the selection of a
derivation tree for every d 2 D will not rely only on a local maximization,
but will take into account also the context. As before, our input is a re-
quirements document D 2 D and we aim to find the most probable system
model M 2 M that fits the requirements.

We assume that M reflects a single domain that the stakeholders have in
mind, and we are provided with an ambiguous natural language evidence,
an elicited discourse D, in which they convey it.

We instantiate this view as a noisy channel model (Shannon, 1948), which
provides the foundation for many NLP applications, such as speech recog-
nition Bahl, Jelinek, and Mercer, 1983 and machine translation Brown et al.,
1993. According to the noisy channel model, when a signal is received it
does not uniquely identify the message being sent. A probabilistic model is
then applied to decode the original message.

In our case, the signal is the discourse and the message is the overall
system model. In formal terms, we want to find a system model M that
maximizes the following:

f(D) = argmax
M2MP (M |D)
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We can simplify further :

f(D) = argmax
M2MP (M |D)

= argmax
M2M

P (D|M)P (M)

P (D)

Bayes law

= argmax
M2MP (D|M)P (M) P (D) is constant

Therefore, we would like to estimate two types of probability distribu-
tions, P (M) over the source and P (D|M) over the channel. Both M and
D are structured objects with complex internal structure. In order to as-
sign probabilities to objects involving such complex structures it is custom-
ary to break them down into simpler, more basic, events. We know that
D = d1, ..., dn is composed of n individual requirement sentences, each rep-
resenting a certain aspect of the model M . We assume a sequence of snap-
shots of M that correspond to the timestamps 1...n, that is: m1,m2, ...,mn

2
M where 8i : m

i

. sem(di).
The complete SM is given by the union of the different snapshots re-

flected in different requirements, M =

S
i

m
i

. We then rephrase:

P (M) = P (m1, ...,mn

)

P (D|M) = P (d1, ..., dn|m1, ...,mn

)

These events may be seen as points in a high dimensional space. In
actuality, they are too complex and would be too hard to estimate directly.
We then define two independence assumptions. First, we assume that a
system model snapshot at time i depends only on k previous snapshots (a
stationary distribution). Secondly, we assume that each sentence i depends
only on the SM snapshot at time i. We now get:

P (m1, ...,mn

) ⇡
Y

i

P (m
i

|m
i�k

, ...,m
i�1)

P (d1, ..., dn|m1, ...,mn

) ⇡
Y

i

P (d
i

|m
i

)

Therefore, assuming bi-gram transitions, our objective function is now
represented as follows:

f(D) = argmax
M2M

nY

i=1

P (m
i

|m
i�1)P (d

i

|m
i

)

Note that m0 may be empty if the system is implemented from scratch,
and non-empty if the requirements assume an existing code-base, which
makes P (m1|m0) a non-trivial transition.

The implementation
The discourse-based model is in essence a Hidden Markov models, where
the states capture SM snapshots, state-transitions probabilities model that
transition between SM snapshots and emission probabilities model the ver-
bal description of each state.
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In order to implement this, we defined a training algorithm that auto-
matically learns the values of model parameters P (m

i

|m
i�1) and P (d

i

|m
i

)

given annotated data, and a decoding algorithm that, given the learned
parameters, generates SM snapshot candidates for each requirement and
searches through possible sequences of SM snapshots to find the one that
maximizes our objective function.

So, the learning algorithm learns to assign numerical estimates to the
P (m

i

|m
i�1) and P (d

i

|m
i

) parameters, and the decoding algorithm imple-
ments the search for argmax. And our objective function looks as follows:

f(D) = argmax
M2M| {z }

decoding

nY

i=1

P (m
i

|m
i�1)P (d

i

|m
i

)| {z }
training

Training : Estimation of model parameters

During the training phase, our task is to estimate our parameter values -
the emission and transition probabilities. We assume a supervised training
set which consists of examples that were annotated by human experts. As
will be discussed at length in subsection 4.5.1, our seed is fairly small and
in order to generalize from it, we have also created a larger set of synthetic
examples that were generated by the rules of the CNL grammar.

Training Emission Parameters The parameter P (d
i

|m
i

) represents the
probability of a verbal description of a requirement given an SM snapshot
which grounds the semantics of that description. A single SM may result
from many different syntactic derivations. We estimate the probability by
using all t 2 T

req

that their yield is a requirement d and their grounded
semantics is m, divided by all possible trees that their grounded semantics
is m.

P (d|m) =

P (d,m)

P (m)

=

P
t2{t|yield(t)=d^m.sem(t)} P (t)
P

t2{t|t2Treq^m.sem(t)} P (t)

P (t) is calculated by the CKY algorithm with the PCFG model that we
described in the sentence-based model.

Estimating Transition Parameters The parameter P (m
i

|m
i�1) represents

the probability of seeing a SM snapshot in time i given the SM snapshot in
time i� 1. We look at the current and the previous system model, and aim
to estimate how likely the current SM is given the previous one. There are
different assumptions that may underly this probability distribution,
reflecting different principles of human communication in general and
software design in particular. We first define a generic estimator as follow :

ˆP (m
i

|m
j

) =

gap(m
i

|m
j

)P
mk

gap(m
i

|m
k

)
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Transition: gap(m
i

,m
j

)

max-overlap |set(mi)\set(mj)|
|set(mi)|

max-expansion 1� |set(mi)\set(mj)|
|set(mi)[set(mj)|

min-distance 1� ted(mi,mj)
|set(mi)|+|set(mj)|

TABLE 4.1: Quantifying the gap between SM snapshots,
set(mi) is a set of nodes marked by path to root in the tree
that represent the mi, ted(mi,mj) is a tree edit distance met-

ric.

where gap(m
i

|m
j

) captures the information sharing between SM
snapshots. By definition, and with a constraint that the gap(.) function is
non-negative, it is easily shown that ˆP is a conditional probability
distribution where, ˆP : M⇥M ! [0, 1] ^ 8m

i

:

P
mj

ˆP (m
i

|m
j

) = 1.
We define several gap(.) implementations, reflecting different assumptions
about how requirements document are written. Our first assumption here
relies on the idea that different SM snapshots share the same context, that
is, refer to the same conceptual world, so there should be a large overlap
between them. We call this the max-overlap function. A second
assumption relies on collaborative communication, a new requirement will
only be stated if it provide a new, significant information about the system,
akin to Grice, 1975. That is, every new requirement will try to expand the
system, this is the max-expansion function. A third assumption prefers
"easy" transitions over "hard" ones, meaning that the new information
expands locally. We call this the min-distance function, and based it on tree
edit distance metrics. The different gap calculations are listed in Table 4.1.

Decoding : Applying the model to translate requirements documents into
code
The input to our decoding algorithm is a specification document D that
contains n requirements , formally - D = {d1, ..., dn}. For every require-
ment d

i

our algorithm derives and considers N-best syntactic trees , which
are retrieved via a CKY chart parser. Each syntactic tree t

i

implies a seman-
tic SM snapshot, and some trees may have the same SM snapshots, so we
combine all the tree for same SM snapshot and summing their probabilities.
So, at each step i = 1, ...n we assume at most N SM snapshots states which
represent the semantics of the N best syntax trees.

Thus, setting N = 1 is equivalent to our sentence-based model, a greedy
algorithm in which for each requirement we simply select the most likely
tree according to a probabilistic grammar, and construct a semantic repre-
sentation for it.

For each document with n requirements, we assume that the entire uni-
verse of the system models M is composed of N ⇥ n SM snapshots, re-
flecting the N most-likely analyses of n requirements, as derived by the
probabilistic syntactic model. As shall be seen shortly, even with the re-
stricted1 universe approximating M, our discourse-based model achieves
substantial improvements over the sentence-based model.

1This restriction is akin to pseudo maximum-likelihood estimation, as in “Pseudolikeli-
hood Estimation: Some Examples”. In the pseudo likelihood-estimation, instead normaliz-
ing over the entire set of elements, one uses a subset that reflects only the possible outcomes.
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FIGURE 4.2: An illustration of the algorithm, on X axis we
have the requirements and on Y axis we have the candidate
system models. The circles represent the emission probabil-
ities and the arrows represent the transition probabilities.

Our discourse-based model is a Hidden Markov Model (HMM) where
every requirement is an observed signal, and each i = 1, ..., N is a state
representing the SM that grounds the ith best syntactic tree. Because of the
Markov independence assumption our step satisfies the optimal subproblem
and overlapping problem properties, and we can use efficient Viterbi decoding
(Viterbi, 1967) to exhaustively search through the different state sequences,
and find the most probable sequence of SM snapshots that has generated
the sequence of requirements according to our discourse-based probabilis-
tic model. In figure 4.2 we see an illustration of the sequence selection
phase. The X axis holds the requirements as ordered in the document and
on the Y axis we have the candidate SM snapshots. The circles represent
the emission probabilities, while the green arrows represent the transition
probabilities and what we look for is the most likely sequence of green ar-
rows leading connecting d1 to d

n

.

Time complexity
The overall complexity of decoding a document with n requirements, where
the number of tokens of the longest requirement is l, using a grammar G of
size |G| and a fixed N (number of considered syntax trees per requirement),
is given by:

O(n⇥ l3 ⇥ |G|+ l2 ⇥N2 ⇥ n+ n3 ⇥N2
)

We can break this expression into 3 parts as follows:

In our case, instead of summing SM probabilities over all possible sentences in the language,
we sum up the SM analyses of the sentences observed in the document only.
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1. O(n⇥ l3⇥ |G|) - we generate N best trees for each one of the n require-
ments using CKY chart (Younger, 1967). (CKY worse case complexity
is O(l3 ⇥ |G|))

2. O(l2⇥N2⇥n) - we create the universe M based on the N best trees of
the n requirements, and calculate N ⇥N transitions in every adjacent
requirements d

i

, d
i+1 . The transition calculation complexity is O(l2).

3. O(n3⇥N2
) = O((N⇥n)2⇥n) - we decode the n⇥N grid using Viterbi

decoding. (Viterbi complexity is O(|S|2 ⇥ T ) where S represents the
possible states and T is the number of the observations — Viterbi,
1967.)

4.5 Empirical Evaluation

4.5.1 The Data

Every statistical supervised model requires annotated data that represent
the gold (correct) analyses as assigned by human experts. Another impor-
tant property of the data is that it is representative in order to be able to
generalize from it and prevent over-fitting.

Our gold annotated data is a parallel corpus that at one side contains a
CNL sentence and on the other side a correct parse tree based on the CNL
rules.

We fortunately could benefit from a small seed of correctly annotated
requirements-specification case studies that describe simple reactive sys-
tems in the LSC language. These case studies were created by software en-
gineering graduate students and experts at the software engineering team
at the Weizmann Institute.

Each document contains a sequence of requirements, each of which is
annotated with the correct LSC diagram. The entire program is grounded
in a java implementation. As training data, we use the case studies pro-
vided by Gordon and Harel (2009). Table 4.2 lists the case studies and basic
statistics concerning these data (We list here only episodes with at least ten
requirements).

As our annotated seed is quite small, it is hard to generalize from it to
unseen examples. In particular, we are not guaranteed to have observed all
possible structures that are theoretically permitted by the assumed gram-
mar. To cope with this, we generated a synthetic set of examples by sam-
pling the grammar of Gordon and Harel, 2009 in generation mode, and
randomly generate trees t 2 T

req

using the derivation rules.
The grammar we use to generate the synthetic examples clearly over-

generates. That is to say, it creates many trees that do not have a sound
interpretation. In fact, only 3000 our of 10000 generated examples turn out
to have a sound semantic interpretation grounded in an SM. Nonetheless,
these data allow us to smooth the syntactic distributions that are observed
in the seed, and increase the coverage of the grammar learned from it.

This data set, the real-world seed along with the generated data , will be
used to learn a probabilistic context-free grammar (PCFG) model in order
to estimate probabilities of derivation trees for unseen CNL requirement
sentences.
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System # of requirements avg requirement length
Phone 21 23.33
Wrist Watch 15 29.8
Chess 18 15.83
Baby Monitor 14 20
Total 68 22.395

TABLE 4.2: Small seed of gold-annotated requirements doc-
uments

4.5.2 Experimental Setup

Goal: Our goal is to evaluate the accuracy of the semantic parser for re-
quirements documents, and compare the two modes of analysis, sentence-
based and discourse-based. Our evaluation methodology is as standardly
assumed in supervised machine learning and NLP: given a set of annotated
examples, in our case, given a set of requirements documents, we have for
each requirement a gold representation of the LSC and a complete SM for
the whole document. Formally we have a parallel corpus with the follow-
ing pairs:

(D, hLSC, SMi) = ({d1, ..., dn}, h{lsc1, ..., lscn}, SMi)

We partition this set into two disjoint sets - training set and test set. We
train our statistical model on the examples in the training set and apply
the learned model to the test set, and then automatically evaluate its per-
formance. We compare the predicted semantic analyses of the test set with
gold analyses, and empirically quantify the prediction accuracy.

Metrics: Our semantic LSC object has the form of a tree (reflecting the se-
quence of nested events in our scenarios). Therefore, we can use standard
tree evaluation metrics, such as ParseEval (Black, Lafferty, and Roukos,
1992), to evaluate the accuracy of our prediction. Overall, we have defined
three metrics to evaluate the accuracy of the LSC trees:

• POS: this metric capture the percentage of part-of-speech tags predi-
cated correctly. (POS of the defined CNL Grammar).

• LSC-F1: F1, is a F-Measure metric with � = 1, which is a harmonic
means of precision and recall of the predicted tree.

• LSC-EM: EM abbreviation stands for exact match, this metric is 1 if the
predicted tree is an exact match of the gold tree, and 0 otherwise.

In the case of SM trees, as opposed to the LSC trees, we cannot assume
identity of the yield between the gold and predicted trees for a same re-
quirement sentence, so we cannot benefit from ParseEval. Therefore, we
implemented a distance-based metrics in the spirit of Tsarfaty et al. (2012).
Then, to evaluate the accuracy of the SM, we use two kinds of scores:

• SM-TED: Tree-edit distance (TED) is the normalized edit distance be-
tween the predicated and the gold SM trees.
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• SM-EM: As in LSC-EM, this metric is 1 if the predicted SM is an exact
match with the gold SM, and 0 otherwise.

Parameters: Our models consist of several hyper parameters to play with.
First, we would like to test the impact of the P-CFG models on the final

results, for that we will create 3 different models - one based only on the
synthetic data, the second based only on the real-world data, and the last
one using real-world data together with the synthetic data.

Secondly, we will test how does N, the number of considered candidate
syntactic trees, generated by CKY algorithm, impact the final results. An in-
teresting observation is that when N = 1 the discourse-model is equivalent
to the sentence-based model.

The last hyper parameter will be the Transitions we describe previously,
we define 3 estimators — max-overlap, max-expansion and min-distance. We
will test each of them separately and also interpolation between them.

4.5.3 Results and Analysis

In all our experiments we used the Phone episode as our development set
in order to optimize our hyper-parameters. When then verified our models
on the other episodes using the cross-fold validation methodology.

Real-world data improves substantially the results.
The goal of our first experiment was to check the impact of using a small
seed of real-world data. Table 4.3 presents the results for parsing our four
episodes using a leave-one-out method. The parameter that we change here
is the training data for our PCFG model. We can see that despite the small
size of the real-world seed, adding it to the synthetic examples substan-
tially improves all our evaluation metrics relative to the model that has been
trained only on the synthetic examples.

Another setup we examined is using as training data our annotated seed
only, and parsed each one of the episodes. Interestingly, this setup outper-
formed the seed+synthetic examples setup. This result surprised at first.
Investigating further, we have been able to show that this result is due to
overfitting. Tables 4.4, 4.5 and 4.6 show that when we learn the grammar
from a single episode and try to parse another single episode, the result im-
proved when adding the synthetic rules. This is reasonable as part of the
derivation structure cannot be observed and learn from a small and specific
data set.

In our next experiment, we aim to determine empirical upper-bounds
and lower-bounds for the discourse-based model. Table 4.7 presents the
results of the discourse-based model for N � 1 on the Phone episode.
Gen�Only presents the results of the discoursed-based model with a PCFG
learned from synthetic trees only, incorporating transitions obeying the max-
overlap assumption. Already here, we can see a mild improvement for
N > 1 relative to the sentence-based model where N = 1, which indi-
cates that even a weak signal such as the overlap between neighboring re-
quirement sentences already improves sentence disambiguation in context.
These results provide a lower bound on parser performance for each N .

We next present the results of the Orcale experiment (Table 4.8), where
every requirement is assigned the highest scoring tree in terms of LSC-F1
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Scenarios POS LSC-F1 LSC-EM SM-TED SM-EM
Phone
Gen-Only 89.04 86.38 9.52 85.12 9.52
Seed-Only 93.54 93.73 61.90 98.19 90.48
Gen+Seed 91.78 87.71 14.29 85.48 14.29
Baby Monitor
Gen-Only 94.63 91.87 7.14 87.88 28.57
Seed-Only 85.57 90.84 42.86 93.51 71.43
Gen+Seed 94.63 91.26 7.14 87.88 28.57
Wrist Watch
Gen-Only 44.19 58.54 10.00 70.19 10.00
Seed-Only 55.97 59.26 35.00 82.25 60.00
Gen+Seed 44.84 57.60 20.00 70.39 20.00
Chess Game
Gen-Only 91.23 93.08 0.00 96.42 55.56
Seed-Only 100.0 99.31 94.44 100.0 100.0
Gen+Seed 92.63 95.79 5.56 95.35 61.11

TABLE 4.3: Sentence-based modeling: Cross-fold valida-
tion - comparing the gen+seed grammar vs only generated

grammar.

Learning / Testing Phone Baby Monitor Wrist Watch Chess Game
Seed-Only
Phone / 48.66 36.99 100.0
Baby Monitor 69.47 / 43.37 61.05
Wrist Watch 50.10 61.74 / 76.49
Chess Game 49.12 44.63 21.44 /
Gen+Seed
Phone / 93.96 43.37 88.77
Baby Monitor 86.69 / 43.04 87.02
Wrist Watch 90.61 94.63 / 91.23
Chess Game 90.02 94.63 44.19 /

TABLE 4.4: Sentence-based modeling: in this setup, we
learn the PCFG only on single episode and test against each
of the other episodes separately. These results show that
the seed-only method is limited and that additional gener-
ated data improves the results in most cases. (POS metric

comparison)



4.5. Empirical Evaluation 39

Learning / Testing Phone Baby Monitor Wrist Watch Chess Game
Seed-Only
Phone / 68.68 54.36 98.62
Baby Monitor 78.39 / 58.54 76.88
Wrist Watch 66.84 75.94 / 86.27
Chess Game 68.03 65.19 38.70 /
Gen+Seed
Phone / 91.12 56.50 93.73
Baby Monitor 87.11 / 57.69 91.56
Wrist Watch 88.80 91.26 / 93.32
Chess Game 88.30 91.26 56.41 /

TABLE 4.5: Sentence-based modeling: in this setup, we
learn the PCFG only on single episode and test against each
of the other episodes separately. These results show that
the seed-only method is limited and that additional gener-
ated data improves the results in most cases. (LSC-F1 metric

comparison)

Learning / Testing Phone Baby Monitor Wrist Watch Chess Game
Seed-Only
Phone / 85.91 76.89 100.00
Baby Monitor 90.37 / 74.24 94.38
Wrist Watch 83.49 88.55 / 89.33
Chess Game 77.89 82.41 70.63 /
Gen+Seed
Phone / 87.39 71,09 95.25
Baby Monitor 84.71 / 70.79 96.42
Wrist Watch 85.26 87.88 / 96.42
Chess Game 85.25 87.88 70.19 /

TABLE 4.6: Sentence-based modeling: in this setup, we
learn the PCFG only on single episode and test against each
of the other episodes separately. These results show that the
seed-only method is limited and that additional generated
data improves the results in most cases. (SM-TED metric

comparison)
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N=1 N=2 4 8 16 32 64 128
Gen-Only
POS 89.04 89.24 89.04 90.22 91.00 91.19 91.39 91.39
LSC-F1 86.38 86.38 87.33 90.12 91.29 91.82 91.62 91.90
LSC-EM 9.52 9.52 19.05 33.33 33.33 33.33 33.33 33.33
SM-TED 85.12 85.19 86.98 88.78 91.58 92.86 92.29 93.14
SM-EM 9.52 9.52 19.05 33.33 33.33 38.10 42.86 38.10
Seed-Only
POS 93.54 93.15 93.35 93.15 93.35 92.95 93.15 93.15
LSC-F1 93.73 93.59 93.66 93.59 93.72 93.16 92.73 92.86
LSC-EM 61.90 61.90 61.90 61.90 61.90 61.90 61.90 61.90
SM-TED 98.19 97.31 97.75 97.31 97.31 96.06 93.52 95.13
SM-EM 90.48 85.71 85.71 85.71 85.71 71.43 66.67 66.67
Gen+Seed
POS 91.78 91.78 92.76 93.74 94.13 94.32 94.91 94.32
LSC-F1 87.71 87.69 89.15 90.92 91.47 91.87 92.55 92.35
LSC-EM 14.29 19.05 38.10 47.62 47.62 52.38 52.38 52.38
SM-TED 85.48 85.38 90.93 92.05 93.82 94.45 95.73 93.17
SM-EM 14.29 19.05 42.86 57.14 57.14 61.90 61.90 57.14

TABLE 4.7: Discourse-based modeling: Evaluation results
on the Phone episode, our development set. Gen-only se-
lects the most probable tree, relying on synthetic examples

only, providing the lower bound.

metrics form the N-best derived candidates by the CKY with respect to the
gold tree, while keeping the same transitions estimator. Again, we can see
that the results improve with higher N , indicating that the syntactic model
alone does not provide optimal disambiguation. These results provide an
upper bound on the parser performance for each N .

Gen + Seed presents the results of the discourse-based model where
the PCFG interpolates the seed and the synthetic train set together, with
max-overlap transitions. In this setup, we can see larger improvements
over the Gen�Only PCFG. That is, modeling grammaticality of individual
requirement sentences improves the interpretation of the document.

Here we can see another evidence that using only Seed data is not enough,
and even though the result of the Seed-only models are much higher, the in-
crease of N and usage of the context does not improves that model and
even reduce the accuracy, this further supports our conjecture that when
using only seed data severe overfitting takes place.

Transition functions comparison
The next experiment aims to test the impact and performance of the differ-
ent implementations of the gap(m

i

,m
j

) functions, that reflect the transition
probabilities in our model. We have estimated probability distributions that
reflect each of the assumptions previously discussed, and also added an
additional method called hybrid, in which we interpolate the max-overlap
and max-expansion methods. Formally, the hybrid estimator is :
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Gen+Seed
POS 91.78 91.78 92.76 93.74 94.13 94.32 94.91 94.32
LSC-F1 87.71 87.69 89.15 90.92 91.47 91.87 92.55 92.35
LSC-EM 14.29 19.05 38.10 47.62 47.62 52.38 52.38 52.38
SM-TED 85.48 85.38 90.93 92.05 93.82 94.45 95.73 93.17
SM-EM 14.29 19.05 42.86 57.14 57.14 61.90 61.90 57.14
Oracle
POS N/A 91.98 93.54 94.91 95.30 96.09 96.67 96.87
LSC-F1 N/A 88.73 91.33 93.19 94.39 95.11 95.91 96.70
LSC-EM N/A 23.81 42.86 61.90 61.90 66.67 76.19 76.19
SM-TED N/A 86.54 91.28 94.28 94.88 96.24 97.51 98.80
SM-EM N/A 23.81 42.86 66.67 71.43 76.19 76.19 76.19

TABLE 4.8: Discourse-based modeling: Evaluation results
on the Phone episode, our development set. The Oracle se-
lects the highest scoring LSC tree among the N-best can-
didates using gen+seed PCFG model, providing an upper

bound.
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We tested different approaches for w1 and w2 and the one that presents the
best results was w1 = w2 = 0.5. In table 4.9, we can see that the trend from
the previous experiment persists, meaning, as we increase N our results
improve. Notably, the hybrid model provides a larger error reduction than
each of its components (i.e., max-overlap and max-expansion) used sepa-
rately. This phenomenon indicates that in order to capture the discourse
context we may need to balance various, possibly conflicting, factors.

Another interpolated gap function that we tried is called greedy. Greedy
method is also an interpolation of the max-overlap and max-expansion
methods. But compared to the hybrid method, greedy selects the maxi-
mum score between max-overlap and max-expansion. Formally :
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This method outperformed all previous methods, including hybrid. These
results also support that we may need to balance possibly conflicting factors
in order to capture the discourse context.

We further added a control setup, called no emissions, in this case, we
rely solely on the probability of the state transitions , and again increasing
N leads to improvement (see results it Table 4.10). This result confirms that
context is indispensable for sentence interpretation even when probabili-
ties for sentence’s semantics (a.k.a. content) are entirely absent. Another
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control setup, we called no transitions, in this setup, we eliminate the tran-
sition probabilities, and consider the emission probabilities only. Our ex-
periments showed that the results improved when we increase N , as we
aggregate the syntactic trees that implies the same semantic together, we
see that the correct semantic is rising up.

Next, we preform a cross-fold experiment, in which we leave one real-
world episode (document) out as a test set, and use the rest as our seed to
generate a P-CFG model (i.e., we learn for every episode e a Gen+ Seed�e

grammar). The results of this experiment are provided in Table 4.11. The
discourse-based model outperforms the sentence-based model N = 1 in all
cases (N > 1). Moreover, the drop in N = 128 for Phone seems incidental
to this set and the other cases level off beforehand.

Despite our small seed, the persistent improvement on all metrics is
consistent with our hypothesis that modeling the interpretation process
within the discourse has substantial benefits for automatic understanding
of the text, than modeling sentence by sentence interpretation.

The significant of sentences order
Finally, we tested the impact of the requirements order. Formally, given
a requirements document D = d1, d2, ..., dn, does the requirements order
affect the parsing results? To test this, we shuffled the individual require-
ments in each of our episodes, and repeated the parsing experiments.

Surprisingly, regardless of the requirements order, we observe the sim-
ilar results and the same trends, i.e., we observe significant improvements
as the number of candidates increase (see results in table 4.12). It seems
that this result is related to CNL episodes and the way they were created,
namely, each requirement is independent. We do believe that in real-world
requirements documents, the order will be important as humans intend to
rely on previous information.

So, if the order of the sentences does not seem to matter, why do we
observe improvements when allowing more candidates and when using a
global inference procedure? This is because the requirements document as
a whole describes a complete system, and refers to the same elements over
and over again. An algorithm that relies on more information (i.e., context)
provides a better disambiguation capacity when it optimizes a global func-
tion (document level) and not a local function (sentence level) that takes
into account overlaps in the document and easy transition between require-
ments.

4.6 Conclusion

The requirements understanding task presents an exciting challenge for
CL/NLP. We ought to automatically discover the entities in the discourse,
the actions they take, conditions, temporal constraints, and execution modal-
ities. Furthermore, it requires us to extract a single code-base ontology that
satisfies all individual requirements.

The contributions of this part are three-fold: we formalize the text-to-
code prediction task where the input is a requirements document and the
output is an executable code. We propose a semantic representation with
well-defined grounding by means of LSC/SM formalism. And we show
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Transitions N=2 4 8 16 32 64 128
Min Dist
POS 90.61 91.98 92.76 92.95 93.54 94.13 94.52
LSC-F1 88.80 90.65 91.50 92.45 92.36 93.37 93.72
LSC-EM 14.29 42.86 52.38 47.62 52.38 52.38 52.38
SM-TED 85.26 90.50 90.76 93.72 92.37 94.83 95.59
SM-EM 14.29 42.86 52.38 47.62 52.38 61.90 61.90
Max Overlap
POS 90.61 92.37 92.56 92.95 93.35 93.93 94.32
LSC-F1 88.80 91.11 91.43 92.45 92.29 93.30 93.65
LSC-EM 14.29 47.62 47.62 42.86 47.62 47.62 47.62
SM-TED 85.26 90.69 90.08 93.51 91.72 94.21 94.99
SM-EM 14.29 47.62 47.62 42.86 47.62 57.14 57.14
Max Expansion
POS 90.61 91.59 91.98 92.17 92.76 93.35 93.74
LSC-F1 88.80 90.18 90.65 91.60 91.50 92.52 92.88
LSC-EM 14.29 38.10 42.86 38.10 42.86 42.86 42.86
SM-TED 85.26 90.31 90.50 93.46 92.11 94.58 95.34
SM-EM 14.29 38.10 42.86 38.10 42.86 52.38 52.38
Hybrid
POS 90.61 91.59 92.17 92.37 92.95 93.54 93.74
LSC-F1 88.80 90.30 91.04 91.99 91.90 92.91 93.00
LSC-EM 14.29 38.10 42.86 38.10 42.86 42.86 42.86
SM-TED 85.26 89.85 90.01 93.02 91.65 94.15 94.94
SM-EM 14.29 38.10 42.86 38.10 42.86 52.38 52.38
Greedy
POS 90.61 92.37 93.15 93.35 93.93 94.52 94.91
LSC-F1 88.80 91.11 91.97 92.91 92.82 93.83 94.18
LSC-EM 14.29 47.62 57.14 52.38 57.14 57.14 57.14
SM-TED 85.26 90.69 90.95 93.91 92.56 95.02 95.77
SM-EM 14.29 47.62 57.14 52.38 57.14 66.67 66.67
No transition
POS 90.61 92.37 92.76 92.95 93.54 93.74 93.93
LSC-F1 88.80 91.11 91.57 92.51 92.42 93.04 93.20
LSC-EM 14.29 47.62 52.38 47.62 52.38 47.62 42.86
SM-TED 85.26 90.69 90.88 93.50 92.15 94.56 95.13
SM-EM 14.29 47.62 52.38 47.62 52.38 57.14 52.38
No Emissions
POS 91.78 91.98 92.37 92.37 92.17 92.76 93.15
LSC-F1 88.11 88.79 89.12 89.12 89.39 89.67 89.89
LSC-EM 19.05 19.05 23.81 23.81 23.81 23.81 23.81
SM-TED 85.49 85.74 85.82 85.82 85.87 86.85 86.92
SM-EM 19.05 19.05 23.81 23.81 23.81 23.81 23.81

TABLE 4.9: Discourse-based modeling: Experiments on
the Phone development set. Comparison of all metrics
for different transition estimators. All experiments use the

Gen+Seed P-CFG for emission probabilities
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Transitions N=2 4 8 16 32 64 128
Min Dist
POS 90.61 91.78 92.17 92.76 93.54 93.35 93.74
LSC-F1 88.80 90.37 90.77 91.59 92.57 92.29 92.78
LSC-EM 14.29 38.10 42.86 47.62 52.38 52.38 52.38
SM-TED 85.26 89.53 89.60 92.47 92.63 91.33 93.49
SM-EM 14.29 38.10 42.86 47.62 52.38 52.38 52.38
Max Overlap
POS 90.61 91.39 91.39 91.59 91.59 91.78 91.78
LSC-F1 88.80 89.74 90.00 90.41 90.45 90.73 90.73
LSC-EM 14.29 23.81 19.05 19.05 19.05 19.05 19.05
SM-TED 85.26 85.64 84.64 84.33 83.68 83.64 83.64
SM-EM 14.29 23.81 19.05 19.05 19.05 19.05 19.05
Max Expansion
POS 90.61 91.59 91.39 91.78 91.59 92.56 92.76
LSC-F1 88.80 90.18 90.11 90.66 90.85 91.26 91.18
LSC-EM 14.29 38.10 38.10 33.33 33.33 38.10 33.33
SM-TED 85.26 90.31 89.89 92.44 91.55 91.98 92.26
SM-EM 14.29 38.10 38.10 33.33 33.33 42.86 33.33
Hybrid
POS 90.66 90.87 91.29 91.29 91.19 91.39 91.59
LSC-F1 89.01 89.43 90.16 90.52 90.26 90.14 90.36
LSC-EM 15.00 20.00 20.00 20.00 19.05 19.05 19.05
SM-TED 85.26 85.81 85.63 86.78 86.16 85.06 86.03
SM-EM 14.29 19.05 19.05 19.05 19.05 19.05 19.05
Greedy
POS 90.61 91.78 91.98 92.56 92.56 92.37 92.76
LSC-F1 88.80 90.29 90.67 91.82 92.03 92.03 92.30
LSC-EM 14.29 33.33 38.10 38.10 42.86 38.10 42.86
SM-TED 85.26 87.72 87.12 90.16 90.70 89.18 89.78
SM-EM 14.29 33.33 38.10 38.10 42.86 38.10 42.86

TABLE 4.10: Discourse-based modeling: Experiments on
the Phone development set. Comparison of all metrics for
different transition estimators. All didn’t take into account

emission probabilities - based only on transitions
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Data Set N=2 4 8 16 32 64 128
Baby Monitor
POS 94.63 95.64 96.31 96.64 96.98 96.98 96.98
LSC-F1 91.26 93.27 93.98 94.56 95.14 95.14 95.14
LSC-EM 7.14 14.29 21.43 21.43 21.43 21.43 21.43
SM-TED 87.88 91.79 92.59 92.11 93.53 93.53 93.53
SM-EM 28.57 50.00 57.14 57.14 64.29 64.29 64.29
Chess
POS 91.23 91.23 92.63 93.33 93.33 93.33 93.33
LSC-F1 93.32 93.54 95.22 95.46 95.46 95.46 95.46
LSC-EM 0.00 0.00 5.56 5.56 5.56 5.56 5.56
SM-TED 96.42 95.77 95.53 96.61 96.61 96.61 96.61
SM-EM 55.56 55.56 61.11 61.11 61.11 61.11 61.11
Phone
POS 91.78 92.76 93.74 94.13 94.32 94.91 94.32
LSC-F1 87.69 89.15 90.92 91.47 91.87 92.55 92.35
LSC-EM 19.05 38.10 47.62 47.62 52.38 52.38 52.38
SM-TED 85.38 90.93 92.05 93.82 94.45 95.73 93.17
SM-EM 19.05 42.86 57.14 57.14 61.90 61.90 57.14
Wrist Watch
POS 43.86 44.35 44.84 44.84 45.34 45.34 45.34
LSC-F1 57.73 58.88 59.62 59.89 60.75 61.02 61.02
LSC-EM 5.00 20.00 30.00 30.00 30.00 30.00 30.00
SM-TED 71.39 74.14 74.88 74.88 77.33 78.28 78.28
SM-EM 10.00 20.00 30.00 30.00 35.00 40.00 40.00

TABLE 4.11: Discourse-based modeling: Impact of require-
ments order in the document - N=1,..,128. Gen+Seed for

emissions, Greedy estimator for transitions
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Data Set N=1 2 4 8 16 32 64 128
Phone - Ordered
POS 91.78 91.78 92.76 93.74 94.13 94.32 94.91 94.32
LSC-F1 87.71 87.69 89.15 90.92 91.47 91.87 92.55 92.35
LSC-EM 14.29 19.05 38.10 47.62 47.62 52.38 52.38 52.38
SM-TED 85.48 85.38 90.93 92.05 93.82 94.45 95.73 93.17
SM-EM 14.29 19.05 42.86 57.14 57.14 61.90 61.90 57.14
Phone - random 1
POS 91.78 91.78 92.76 93.74 94.13 94.32 94.91 94.32
LSC-F1 87.71 87.69 89.15 90.92 91.47 91.87 92.55 92.35
LSC-EM 14.29 19.05 38.10 47.62 47.62 52.38 52.38 52.38
SM-TED 85.48 85.38 90.93 92.05 93.82 94.45 95.73 93.17
SM-EM 14.29 19.05 42.86 57.14 57.14 61.90 61.90 57.14
Phone - random 2
POS 91.78 91.98 92.95 93.93 94.13 94.52 94.91 94.52
LSC-F1 87.71 87.97 89.43 91.20 91.47 92.15 92.55 92.62
LSC-EM 14.29 23.81 42.86 52.38 47.62 57.14 52.38 57.14
SM-TED 85.48 86.42 91.88 92.99 93.82 95.34 95.73 94.07
SM-EM 14.29 23.81 47.62 61.90 57.14 66.67 61.90 61.90

TABLE 4.12: Discourse-based modeling: Cross-Fold Valida-
tion for N=1,..,128. Gen+Seed for emissions, Greedy estima-

tor for transitions

consistent improvement of the discourse-based over sentence-based mod-
els, in all case studies.
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Chapter 5

Programming in Natural
Language

Having lifted the manual, sentence-by-sentence restriction on Play-In, we are
ready to tackle the greater question: can we lift the restriction of using a
controlled fragment of NL? That is, can we automatically interpret require-
ments documents written in reasonably rich and natural English? Here, we
propose an implementation that can accept a requirements document writ-
ten in English as input and provide its LSC/SM representation as output.
We evaluate our output using evaluation method that we have developed
called semnaticTED that compares that output SM with an expert-annotated
SM, and we show that the agreement between the models almost reaches
the agreement when comparing two human written SMs.

5.1 Data

In every supervised machine learning model, the most critical step is ob-
taining a collection of annotated data, that will be used for learning and
evaluation phases. Our departure point is the data set of Roth et al., 2014,
which contains 324 syntactically parsed and semantic role-labeled require-
ments.

As one of our main insights from the previous chapter was that context
indeed matters (i.e., discourse-based models outperform sentence-based
models) , we divided this data into disjoint systems and created 25 distinct
documents with an average of 12 requirements per system. A requirement
has an average of 12.53 tokens and the median of 12 tokens.

Every requirement contains at least one verb and at least one explicit
entity (that is, we assume at least a subject-predicate pair). In average each
requirement contains 1.32 actions (verbs), and 1.31 entities.

We devise an algorithm that aims to pair this corpus of NL requirements
with aligned LSC/SM representations. Our target is to make our outputs as
close as possible to the correct LSC/SM representations, meaning, minimal
manual post-editing.

This corpus is intended to facilitate the development of statistical mod-
els for translating unrestricted NL requirements directly into LSC/SM rep-
resentations (and hence to executable code).
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FIGURE 5.1: The class hierarchy of Michael Roth’s concep-
tual ontology for modeling software requirements. (A du-

plication of figure 2.1).

5.2 The Parsing Algorithm

Our implementation makes use of the joint dependency parser and semantic-
roles labeler (SRL) of Roth and Klein, 2015. The representation Roth’s parser
delivers is an extension of the CoNLL 2009 dependency format, which also
identifies SRLs — the actors, objects, actions and properties1 in each parse.
Figure 5.1 shows the class hierarchy of the SRL. 2

Our algorithm is built around three conceptual steps:

• Lifeline candidates extraction - focus on high recall, that is, not miss-
ing any class candidates.

• LSCs and SM creation - focus on precision, while using the candidates
from previous step as a global context that aids local disambiguation
.

• Cleanup phase - false (or un-needed) candidates are discarded.

Let us review these different steps in turn:

Step 0: Preprocessing We start our data processing by applying a batch of
syntactic and semantic algorithms in order to enrich our NL requirements
with linguistic constructs. We hereby list the tools and representations that
we use:

• OpenNLP POS tagger - gives part-of-speech tags. Figure 5.3 presents
an example of the POS tagger output.

• Semantic-Role-Labeler parser - the output provides semantic role la-
bels that adheres to Roth et al., 2014. In addition, the output of the

1where ‘properties’ is a cover term for various sorts of verbal and nominal modification.
2The ontology of semantic roles that is provided by Roth is described in details in Roth

et al., 2014.
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FIGURE 5.2: A SRL parser output for : "A taxi notifies the
server of its location continuously.".

.

FIGURE 5.3: A POS tagger output for : "A taxi notifies the
server of its location continuously.". Every token in the sen-

tence is tagged with its part-of-speech tag.

parser provides internal features such as part-of-speech tags and joint
dependency parser output. Figure 5.2 presents an example of the SRL
parser output.

• Coreference Resolution by Stanford’s CoreNLP algorithms (Raghu-
nathan et al., 2010. Lee et al., 2011; Lee et al., 2013; Recasens, Marneffe,
and Potts., 2013). This algorithm is responsible for finding all expres-
sions that refer to the same entity in a sentence. Figure 5.4 presents
an example of the coreference resolution output.

Step 1: Lifeline-candidates extraction In this step, based on the enrich-
ment from the preprocessing step, we extract all possible class candidates
(henceforth, lifelines) of the specified system.

In order to extract all possible classes, we iterate over the requirements.
For each requirement, first, we use the following labels of the SRL parser —
Actor, Object or Theme labels as potential candidates for lifelines.

Secondly, since the output of the semantic role labeler is noisy, we have
added two fallback strategies for lifeline/class identification: We use de-
pendency relations (i.e., subject-predicate-object relations) marked in the
dependency tree and add all subjects and the objects as possible lifelines.
We also use POS tags and mark NN or NN-sequences as optional lifelines.

The output for this step is a set of candidate lifelines for each require-
ment and an additional set of all possible unique lifelines, which would

FIGURE 5.4: A co-reference analyzer output for : "A taxi
notifies the server of its location continuously.". The algo-
rithm connects phrases that point to the same entity, in this

example "a taxi" and "its" refer to the same entity.



50 Chapter 5. Programming in Natural Language

then become the classes in the system model (SM), and provide structural
context for the entire analysis of the document.

In order to identify co-mentions of the same entities within this set, we
use the co-references tags for grouping co-mentions of entities within every
requirement.

Step 2: Analysis and LSC creation In this phase, we iterate over the re-
quirements again. For every requirement we create a feature structure that
captures the semantic information for creating the LSC representation for
the requirement and incremental creation of the global SM.

• Step 2.1: Feature Structure Generation In this phase we map ev-
ery requirement to a feature structure that captures the lifelines (ob-
jects), actions (methods) and themes (method arguments) which are
required for executing the scenario. In figure 5.5 we illustrate the
feature structure for the requirement: “A user must be able to cre-
ate a user account by providing a username and a password.”, where
we have two possible lifelines, two actions and two themes, in ev-
ery such artifact we hold the token, the semantic-role label and addi-
tional linguistic information (i.e., binding, modifier, modal). For each
of these feature-structures we extract attribute:value pairs that add
different dimensions of semantic interpretation, as we will specify in
the next paragraph. The attributes are the fields in the feature struc-
tures. Based on these feature-structures and attribute:value pairs, our
algorithm constructs an LSC that represents the dynamic flow of the
requirement, and, as side effect, takes the information that is discov-
ered to expand the global system model for the entire document.

The attribute:value pairs we extract include the following informa-
tion: semantic value (i.e., the reference of each attribute), the type of
binding of each reference (i.e., should we use an existing instance or
create a new one?), the role of each identified argument (i.e., should
the argument be a modifying property or a theme?) , the modality
of actions (i.e, whether they can, may, or must happen) and the im-
plied linear ordering of actions — by default this order coincides with
the order of the verbs, but this is no necessarily so (see Figure 5.6).
We created a linguistic ontology that implies ordering based on the
modalities.

We further use the co-reference component to determine the values of
the property “ownership". For example: in the requirement “A user
must be able to login to his account by providing his username and
password.” , “his" points to “user", and so we can determine the value
of the property “owner”. The feature structure and the correspond-
ing LSC for the first requirement in Roth et al., 2014 are provided in
Figures 5.5-5.6.

• Step 2.2: Feature Structure to LSC

Having extracted the feature structures we are ready to create an LSC
for each requirement.

Lifelines creation
For each requirement we initially add all possible lifelines based the
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candidates set that we have initialized in step 1. For every possible
lifeline, we retrieve from the feature structure and co-references com-
ponent the properties for those classes , to expend the system model.3

Actions creation
Having created all possible lifelines for the scenario, we add to the
LSC the interaction between them , i.e., the actions.

As time proceeds from top to bottom in LSC, this imposes a partial
order on the execution of the actions. Therefore, we have to sort the
action verbs before we insert them as methods. The sorting is done
by understanding the dependencies between the actions, based lin-
guistic (lexically-specified) rules on dependency parse relations. For
example, in the requirement “A user must be able to create a user
account by providing a username and a password.”, we have two ac-
tions, create and providing. The by preposition helps us to determine
that providing happens before creating.

Now, for each action in the ordered sequence we detect the sender,
the receiver and the arguments based on feature structures and at-
tribute:value pairs. We also detect the state (HOT/COLD, Monitored/Executed)
based on modifiers and action orders, and add SYNC elements to im-
pose a linear order between actions.

Triggers creation
As our data captures reactive systems, each requirement should have
some trigger that causes the execution. The trigger might be some
state of the system, action that happened, (e.g., a user clicks a button),
periodically or initialization execution (e.g., at the beginning the color
of the display is red), etc. Based on the content of the dependency
relations and adverbial modifiers we determine if we already have an
explicit trigger in a given requirement or need to create one (i.e., need
to add clock trigger).

Step 3: Cleanup As a final step, for each created LSC, we go over all of its
candidate lifelines and remove those which do not participate in any inter-
action i.e., no in-coming or out-coming message for this lifeline. By doing
so, we separate the wheat from the chaff, keeping the important informa-
tion of the document explicit in the semantic, and executable, representa-
tion of the system.

See a complete pseudo-code of the algorithm in appendix C.

5.3 Empirical Evaluation

The previous section described a baseline, rule-based algorithm for translat-
ing a requirements document written in natural language into the LSC/SM
representation, that makes use of statistical NLP components. Each of these

3There is a subtlety here concerning an implicit“Controller" lifeline in the system. In
“The user must be able to login" we have an explicit lifeline a User but also an implicit one
that we call a Controller through which the login is executed. We infer the name for this
“Controller" based on the existence of an explicit system object in other requirements in the
document.
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FIGURE 5.5: A feature structure for the requirement: “A
user must be able to create a user account by providing a

username and a password.”
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FIGURE 5.6: An LSC scenario for the requirement: “A user
must be able to create a user account by providing a user-

name and a password."

FIGURE 5.7: The online annotation platform for modeling
requirements
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artifacts require a different evaluation method. In this section we will focus
on evaluating the accuracy of the global SM predicted for the system.

In the CNL-to-LSC/SM (Chapter 4) we used a simple tree edit distance
(TED) metric to evaluate the SM (every SM can be represented as tree; see
figure 4.1). Simple TED requires two conditions - order of leafs and strict
comparison of leads labels. In chapter 4 we parsed requirements based
on a controlled language, so the simple TED metric satisfied our needs.
Here, we aim to parse unrestricted natural language, and simple TED is
no longer an option. Our predicted systems are compared to systems from
human experts, and we cannot force the order or usage of the same token
during their modeling process. So, we adjust the TED metric to our NL
programming task.

Note that the SM tree (Figure 4.1) contains 2 subtrees: the static ob-
ject models (Classes) and the instantiation of those classes (Objects). The
nodes in the trees are of two different types. The first type contains frozen
structural/functional labels — Classes, Methods ,Properties — let’s call them
functional nodes. The second type holds the information content - classes
names , methods return type , methods names, methods arguments, classes
properties, etc — let’s call them content nodes.

We define TED-based evaluation that removes the order constraint. Our
objective function is to maximize the similarity of the compared SM trees,
by minimized TED in every sub-tree comparison. Our edit operations com-
pare apples to apples, using the functional nodes as anchors. This means
that our TED operations compare classes to classes, properties to properties,
and so on.

Our metric is specified as follows, where SemanticTED(Tree1,Tree2) con-
tains the Tree edit distance between the compared SMs. We used functional
nodes to compare sub-trees, meaning, given two functional nodes of the
same type, we compared all children sub trees (a quadratic number of com-
parisons), and match them with respect to our objective function - maxi-
mize the similarity (minimized TED). The distance is normalized to provide
a score between 0 and 1 by dividing on the size of the SM trees.

Score = 1� SemanticTED(Tree1, T ree2)

|Tree1|+ |Tree2|

5.3.1 Experiments

We aim to evaluate the accuracy of the predicted SM of the system, de-
scribed in the input requirements document. We set out to provide the
baseline results that would encourage more researchers to join the text-to-
code effort.

To achieve this, we selected 9 requirements documents (aka episodes),
with average length of 10 requirements each, to be modeled by experts.
We intendedly selected episodes that contain varied logical expressions (if
statements, loops, existence and universal bindings and more). We devel-
oped an online annotation platform (as depicted in figure 5.7) which we
sent out to human expert annotators (in our case, graduate students who
work as software engineers). Each annotator can pick a requirements doc-
ument from the pre-selected set and model it by determining the classes,
methods, properties and so on.
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As our algorithm depends on the joint dependency parser and semantic-
roles labeler (SRL) of Roth and Klein, 2015, and our data is also taken from
same work, we re-trained the SRL models with "leave-one-out" approach.
That is, when we parse episode X, we trained a new SRL model with all
data except for episode X, by doing this we reassure that we do not overfit
our training data.

5.3.2 Results and Analysis

For every episode we got at least two outside human annotators, and a con-
trol human annotation done by us. In table 5.3 we see the scores of compar-
ison between our algorithm and the manual annotators models according
to our semanticTED metric. As expected, our controlled annotation achieves
the highest scores — this is expected as the algorithm has been designed by
us, so it reflects the way we tend to conceptualize model requirements.

To obtain an upper bound, we applied our algorithm to gold SRL an-
notation provided by Roth et al. (Table 5.2). As expected, those scores are
higher than the ones using the statistical SRL parser, as this setup enjoys
error-free SRL annotations. Another insight that comes from the table is
that our scores decrease as the number of requirements per document in-
crease. This is reasonable, as every additional information (requirement)
adds new structure and increases the error space.

We applied our evaluation method to compare between the expert mod-
els. In table 5.1 we compared 4 annotators (including our own human anno-
tation) on the Taxi episode. The agreement scores are a bit higher compared
to the previous scores, as expected – we get higher agreement between hu-
mans, than between the human and the machine. Means, the agreement be-
tween the auto-generated models and the expert models is almost the same
as the agreement between two experts. Interestingly though, the results are
far from perfect. When we analyzed the results qualitatively we observe
that “gold” models for a given requirements set vary widely between any
two experienced developers.

We conducted a qualitative error analysis to cluster the type of differ-
ences between the algorithm and the various human annotators. The most
common error types are when comparing auto-generated models and hu-
man expert models:

• Name Conventions: there are conventions and best practices guiding
the modeler in how to call a class/method/member. Our method
does not capture small difference in names, for example. “change" vs
“changeStatus", “Zone" vs “ZoneInformation".

• Synonyms & Prior: developers are using some world knowledge that
does not only depend on the data itself. It is sometimes reflected as
synonyms of composites - for example “location” vs “coordinates”.

• Design Patterns: developers often apply known design patterns and
the algorithm doesn’t. For example, our annotators applied Observ-
able Pattern, Producer-consumer pattern for Restmarks episode.

• Object Handling: Our algorithm handle every extracted Class as a new
object that extends java.object while human annotator use known Ob-
ject types - Strings, Maps, Lists and more.
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Scores Comparison
Annotator /
Episode

1 2 3 Control

Taxi (6) 64.31 66.31 57.48 68.13
Game (6) 60.13 75.84 62.77 63.03
Restmarks
(13)

41.44 / 39.67 48.8

Social (17) / 62.98 45.66 52.91

TABLE 5.1: In this table we compare 3 external annotators
and our control annotation against the algorithm. The num-
ber in the brackets in the first column indicates the amount
of requirements of each episode, the number inside each cell

indicate the semanticTED score.

• Logical Entities vs Physical Entities: The notation of user in the LSC
representation is a physical entity, while sometimes a logical entity
that represents the user is also needed.

• Implicit controller: who owns a given method? For example, in “The
taxi notifies its location continuously to the server", does “notify” be-
long to the Taxi or to the Server? We notice in our data that in most
cases the document assumes an implicit controller that "coordinates"
the activities, so our algorithm creates one if such controller does not
exist explicitly in the requirements document.

Beyond these observed differences, our experimental results raise a more
foundational question, namely, is there a correct model for a given desired
system? Based on the variance of the created models by different experts, it
seems that the answer is no. We have seen that even experienced software
engineers think differently about modeling and each one of them has his or
her own style of software design.

Based on these differences, another question has been raised: does our
algorithm have to target the perfect model? As industry nowadays shifts
towards working in small development cycles and focus on fast deliver-
ies. This paradigm is known as CI/CD (stands for continuous integration
/ continuous deployment). This leads us to batch of open research ques-
tions: Is the output of our algorithm a better starting point than starting
with nothing at all? Can our auto-generated models be utilized for SW
bootstrapping? How much time could be saved in practice using such com-
putational SW design methodology?

5.4 Conclusion

We present an end-to-end system for NL programming based on statis-
tical syntactic and semantic parsing components. We showcased the NL
programming capacity for reasonably rich, uncontrolled, NL requirements
data. We developed an evaluation method that extends the TED method,
and observed that software gold modeling is, for the most part, subjective.
In the future we intend to develop advanced models for statistical natural
language programming, as well as more sophisticated evaluation methods
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Gold SRL Scores Comparison
Annotator /
Episode

1 2 3 Control

Taxi (6) 58.06 74.15 69.11 65.31
Game (6) 48.55 68.18 44.58 56.21
Restmarks
(13)

41.44 / 39.67 48.8

Social (17) / 62.98 45.66 52.91

TABLE 5.2: Annotators scores across episodes: gold seman-
tic roles

Scores Comparison between Annotators - Taxi
Annotators 1 2 3 Control
1 / 66.46 70.0 64.1
2 66.46 / 77.47 75.49
3 70.0 77.47 / 77.96
Control 64.1 75.49 77.96 /

TABLE 5.3: Score comparison between manual annotators
for a single episode

for the task, taking into account multiple reference annotations. We conjec-
ture that the representation and tool we provide herein will prove valuable
for future exploration of text-to-code translation.
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Chapter 6

Conclusion and Future
Research

6.1 Conclusion

The requirements understanding task presents an exciting challenge for
NLP, a task that might make programming accessible to non-experts. In
our proposed models, we see out to automatically discover the entities in
the discourse, the actions they take, conditions, temporal constraints, and
execution modalities. Furthermore, it requires us to extract a single ontol-
ogy that satisfies all individual requirements in a document, forcing us to
take into account discourse phenomena.

In the first part of this thesis (Chapter 4), we developed an automatic
statistical parser for requirements document written in CNL, and manage
to successfully parse whole documents, we have also integrated our so-
lution in the PlayGO tool. The main contributions of the first part are (i)
formalization the text-to-code predication task, (ii) proposal of a seman-
tic representation with well-defined grounding, and (iii) empirical evalua-
tion of our models for this prediction showing consistent improvement of
discourse-based over sentence-based models, in all case studies.

In the second part (Chapter 5), we proposed a model for interpreting
requirements in unrestricted English. We present an end-to-end system for
NL programming based on statistical syntactic and semantic parsing com-
ponents. We showcased the NL programming capacity for reasonably rich,
uncontrolled, NL requirements data. We developed an evaluation method
that extends the TED method, and observed that software gold modeling is,
for the most part, subjective. The main contributions of this part are (i) an
initial step for creating a parallel corpus for the text-to-code translation task
and (ii) an evaluation method and platform for system modeling compari-
son.

In the future we intend to develop advanced models for statistical natu-
ral language programming, as well as more sophisticated evaluation meth-
ods for the task, taking into account multiple reference annotations. We
conjecture that the representation and tool we provide herein will prove
valuable for future exploration of the topic and development of interactive
programming methodologies.
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6.2 Future Extensions and Discussion

In this project, we first automated the translation of requirement documents
written in CNL into LSC/SM representation. Than we introduced a first at-
tempt to translate requirements documents written in unrestricted Natural
Language into LSC/SM representation. We have also introduced an evalu-
ation method to evaluate our intermediate representation. In the following
paragraphs we will suggest several future directions in each of our endeav-
ors.

As mentioned before, modeling is subjective, and even two experts might
model the same requirements document completely differently. During our
error analysis, we have noticed that some differences might be due to us-
age of synonyms or "close" terms to describe that same thing - for example,
methods : change vs changeStatus, remove vs removeRestaurant, click vs
press classes: ZoneInfo vs ZoneInformation). We suggest to add prior in-
formation concerning synonyms using WordNet and VerbNet knowledge
bases. We also suggest to improve the node’s content comparator to allow
more “fuzzy" matching than restricted String.equals, that will match terms
such as "change" vs "changeStatus".

We have looked at different approaches to evaluating our system. One
of those was an existing tool for translating between models in software en-
gineering called Dozer 1. We noticed that these tools do not exploit textual
information apart from trivial one (i.e., same name fields or code styling
such as camel casing vs underscores - firstName vs first_name), and
mostly focus on data types (i.e., primitives and basic object such as string).
We are convinced that NLP approaches might improve such tools dramati-
cally along the lines proposed here.

Another challenge that remains unsolved is the evaluation of the be-
havioral part of our models - The LSCs. We suggest to explore the use of
crowd-sourcing techniques to ask which “image" captures more informa-
tion of the requirement. But how to properly apply this evaluation process
to our task is still an open question.

As mentioned before, this is a first attempt at translating unrestricted
natural language requirements into SM/LSC representation. As our algo-
rithm is integrated in PlayGo and the framework allows for post-edit oper-
ations, bootstrapping a parallel corpus is not only necessary but also possi-
ble.

In future text-to-code models, we suggest to use discriminative mod-
els and estimate directly the conditional probability P (M |D). In order to
learn new parameters, we suggest to use Conditional Random Fields (CRF)
and Max Entropy methods. The decoding architecture can remain as in our
CNL model (chapter 4), with small adaptations to support discriminative
modeling. Use of discriminative models will allow us to integrate more so-
phisticated linguistic features and by this exploiting better local and global
(context) phenomena.

Now, what about the answer to the question: can we lift the restriction
of using a controlled fragment of NL? The question is still open, as of yet.

1Dozer supports simple property mapping, complex type mapping, bi-directional map-
ping, implicit-explicit mapping, as well as recursive mapping. This includes mapping
collection attributes that also need mapping at the element level. - http://dozer.
sourceforge.net/
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However, in this research we did take a first step towards this goal. We
introduced a first system that translates requirements documents written
in real natural language into LSC/SM representation. We have also intro-
duced an evaluation method for this task.

During the evaluation phase, our experimental results raise a more foun-
dational question, namely, is there a correct model for a given desired sys-
tem? Based on the variance of the created models by different experts, it
seems that the answer is no. We have seen that even experienced software
engineers think differently about modeling and each one of them has his or
her own style of software design.

Based on these differences, another question has been raised: does our
algorithm have to target the perfect model? As industry nowadays shifts
towards working in small development cycles and focus on fast deliver-
ies. This paradigm is known as CI/CD (stands for continuous integration
/ continuous deployment). This leads us to batch of open research ques-
tions: Is the output of our algorithm a better starting point than starting
with nothing at all? Can our auto-generated models be utilized for SW
bootstrapping? How much time could be saved in practice using such com-
putational SW design methodology? We aim to investigate these questions,
among others, in future cycles of our text-to-code research project.2

We are hopeful that this interesting challenge will be perused further
within both the SE and NLP communities.

2This Text-to-Code project is kindly funded by a generous ERC Starting Grant awarded
to the thesis supervisor, Dr. Reut Tsarfaty.
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Appendix A

Full Specification of CNL CFG

We present here a full specification of CNL-Play context-free grammar de-
fined by Gordon and Harel, 2009. In chapter 4 we implemented a statistical
parser for this grammar.

The -> arrow indicates substitution in the course of derivation, and the
{...} brackets defined the semantic interpretation function of the production
rule.

S -> LSC {LSC.sem}
S -> MODEL {MODEL.sem}
LSC -> MAINPRECLAUSE {fCreateLsc(MAINPRECLAUSE.sem)}
LSC -> FORBID THEN CLAUSE {fCreateForbiddenLsc(CLAUSE.sem)}
LSC -> FORBID THEN MAINPRECLAUSE

{fCreateForbiddenLsc(MAINPRECLAUSE.sem)}
MAINPRECLAUSE -> WHEN CLAUSE-COLD THEN CLAUSE-HOT

{fAddPreMain(CLAUSE-COLD.sem, CLAUSE-HOT.sem)}
CLAUSE-COLD -> CLAUSE {CLAUSE.sem}
CLAUSE-HOT -> CLAUSE {CLAUSE.sem}
CLAUSE -> CLAUSE CONNECT CLAUSE

{fAddCharts(0.CLAUSE.sem, CONNECT.sem, 2.CLAUSE.sem)}
CLAUSE -> COND-CLAUSE {COND-CLAUSE.sem}
CLAUSE -> LOOP-CLAUSE {LOOP-CLAUSE.sem}
CLAUSE -> MSG {MSG.sem}
CLAUSE -> PROP-CHANGE {PROP-CHANGE.sem}
CLAUSE -> TIME-CHANGE {TIME-CHANGE.sem}
CLAUSE -> PROPBABILITY-CLAUSE {PROPBABILITY-CLAUSE.sem}
CLAUSE -> SAVE-VARIABLE {fAddToLsc(SAVE-VARIABLE.sem)}
CLAUSE -> LOAD-VARIABLE {fAddToLsc(LOAD-VARIABLE.sem)}
CLAUSE -> MAINPRECLAUSE {fAddToLsc(MAINPRECLAUSE.sem)}
CLAUSE -> ELSE-IF-CLAUSE {fAddToLsc(ELSE-IF-CLAUSE.sem)}
CLAUSE -> ELSE-CLAUSE {fAddToLsc(ELSE-CLAUSE.sem)}
CLAUSE -> EXPRESSION {fAddToLsc(EXPRESSION.sem)}
LOOP-CLAUSE -> WHILE EXPRESSION THEN CLAUSE

{fCreateLoopWithCondition(EXPRESSION.sem, CLAUSE.sem)}
COND-CLAUSE -> IF-CLAUSE {IF-CLAUSE.sem}
COND-CLAUSE -> IF-CLAUSE ELSE-IF-CLAUSE

{fAddCharts(IF-CLAUSE.sem, NULL.sem, ELSE-IF-CLAUSE.sem)}
COND-CLAUSE -> IF-CLAUSE ELSE-CLAUSE

{fAddCharts(IF-CLAUSE.sem, NULL.sem, ELSE-CLAUSE.sem)}
COND-CLAUSE -> IF-CLAUSE ELSE-IF-CLAUSE ELSE-CLAUSE

{fAdd3Charts
(IF-CLAUSE.sem, ELSE-IF-CLAUSE.sem, ELSE-CLAUSE.sem)}
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IF-CLAUSE -> IF EXPRESSION THEN CLAUSE
{fCreateCondAddChart(EXPRESSION.sem, CLAUSE.sem)}

ELSE-IF-CLAUSE -> ELSE-IF EXPRESSION THEN CLAUSE
{fCreateElseCondAddChart(EXPRESSION.sem, CLAUSE.sem)}

ELSE-IF-CLAUSE -> ELSE-IF-CLAUSE ELSE-IF-CLAUSE
{fAddCharts

(0.ELSE-IF-CLAUSE.sem, NULL.sem, 1.ELSE-IF-CLAUSE.sem)}
ELSE-CLAUSE -> [THEN] ELSE [THEN] CLAUSE

{fCreateElseAddChart(CLAUSE.sem)}
MSG -> OP1 [TEMP] METHOD OP2 [PROP-VAL]

{fCreateMessage
(OP1.sem, OP2.sem, TEMP.sem, METHOD.sem, PROP-VAL.sem)}

MSG -> OP [TEMP] METHOD [PROP-VAL]
{fCreateMessage

(OP.sem, OP.sem, TEMP.sem, METHOD.sem, PROP-VAL.sem)}
MSG -> OP1 [TEMP] METHOD PROP-VAL PROPOSITION OP2

{fCreateMessage
(OP1.sem, OP2.sem, TEMP.sem, METHOD.sem, PROP-VAL.sem)}

MSG -> OP1 [TEMP] METHOD OP2 PROP-NAME
{fCreateMessageWithPropArg

(OP1.sem, OP2.sem, TEMP.sem, METHOD.sem, PROP-NAME.sem)}
MSG -> OP1 [TEMP] METHOD DET PROP-NAME OF OP2

{fCreateMessageWithPropArg
(OP1.sem, OP2.sem, TEMP.sem, METHOD.sem, PROP-NAME.sem)}

PROP-CHANGE -> OP1 [TEMP] SET-PROP OP2 PROP-NAME [PROP-VAL]
{fCreatePropChange
(OP1.sem, OP2.sem, TEMP.sem, PROP-NAME.sem, PROP-VAL.sem)}

PROP-CHANGE -> OP PROP-NAME [TEMP] SET-PROP [PROP-VAL]
{fCreatePropChange

(OP.sem, OP.sem, TEMP.sem, PROP-NAME.sem, PROP-VAL.sem)}
PROP-CHANGE -> OP [TEMP] SET-PROP [PROP-VAL] PROP-NAME

{fCreatePropChange
(OP.sem, OP.sem, TEMP.sem, PROP-NAME.sem, PROP-VAL.sem)}

PROP-CHANGE -> OP [TEMP] SET-PROP ITS PROP-NAME [PROP-VAL]
{fCreatePropChange

(OP.sem, OP.sem, TEMP.sem, PROP-NAME.sem, PROP-VAL.sem)}
PROP-CHANGE -> OP1 PROP-NAME1 [TEMP] SET-PROP [PROPOSITION]

[DET] OBJECT PROP-NAME2
{fCreatePropChangeEx
(OP1.sem, OP1.sem, TEMP.sem, PROP-NAME1.sem,
OBJECT.sem, PROP-NAME2.sem)}

PROP-CHANGE -> OP1 PROP-NAME1 [TEMP] SET-PROP [PROPOSITION]
[DET] OBJECT PROP-NAME2
{fCreatePropChangeEx
(OP1.sem, OP1.sem, TEMP.sem, PROP-NAME1.sem,
OBJECT.sem, PROP-NAME2.sem)}

PROP-CHANGE -> OP1 [TEMP] SET-PROP-BY-VAL OP2 PROP-NAME PROP-VAL
{fCreatePropChangeByVal

(OP1.sem, OP2.sem, TEMP.sem, PROP-NAME.sem,
PROP-VAL.sem, SET-PROP-BY-VAL.sem)}
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PROP-CHANGE -> OP PROP-NAME [TEMP] SET-PROP-BY-VAL PROP-VAL
{fCreatePropChangeByVal

(OP.sem, OP.sem, TEMP.sem, PROP-NAME.sem,
PROP-VAL.sem, SET-PROP-BY-VAL.sem)}

PROP-CHANGE -> OP [TEMP] SET-PROP-BY-VAL PROP-VAL PROP-NAME
{fCreatePropChangeByVal

(OP.sem, OP.sem, TEMP.sem, PROP-NAME.sem, PROP-VAL.sem,
SET-PROP-BY-VAL.sem)}

PROP-CHANGE -> OP [TEMP] SET-PROP-BY-VAL ITS PROP-NAME by PROP-VAL
{fCreatePropChangeByVal

(OP.sem, OP.sem, TEMP.sem, PROP-NAME.sem, PROP-VAL.sem,
SET-PROP-BY-VAL.sem)}

EXPRESSION -> EXPRESSION AND EXPRESSION
{fConcatExpressions(0.EXPRESSION.sem, 2.EXPRESSION.sem)}

EXPRESSION -> OP PROP-NAME COMPARE PROP-VAL
{fCreateExpression

(OP.sem, PROP-NAME.sem, NULL.sem, COMPARE.sem, NULL.sem, NULL.sem, PROP-VAL.sem)}

EXPRESSION -> OP PROP-NAME TEMP COMPARE PROP-VAL
{fCreateExpression

(OP.sem, PROP-NAME.sem, TEMP.sem, COMPARE.sem, NULL.sem, NULL.sem, PROP-VAL.sem)}

EXPRESSION -> OP PROP-NAME COMPARE OP PROP-NAME
{fCreateExpression

(0.OP.sem, 1.PROP-NAME.sem, NULL.sem, COMPARE.sem, 3.OP.sem,
4.PROP-NAME.sem, NULL.sem)}

EXPRESSION -> OP PROP-NAME TEMP COMPARE OP PROP-NAME
{fCreateExpression
(0.OP.sem, 1.PROP-NAME.sem, TEMP.sem, COMPARE.sem, 4.OP.sem,
5.PROP-NAME.sem, NULL.sem)}

EXPRESSION -> OP PROP-NAME COMPARE OBJECT
{fCreateExpressionForObject

(0.OP.sem, 1.PROP-NAME.sem, NULL.sem, COMPARE.sem, OBJECT.sem)}

EXPRESSION -> OP PROP-NAME TEMP COMPARE OBJECT
{fCreateExpressionForObject

(0.OP.sem, 1.PROP-NAME.sem, TEMP.sem, COMPARE.sem, OBJECT.sem)}

EXPRESSION -> TIME-CHANGE {TIME-CHANGE.sem}

PROPBABILITY-CLAUSE -> PROPBABILITY-COND CLAUSE
{fCreateProbabilityCond(PROPBABILITY-COND.sem, CLAUSE.sem)}

PROPBABILITY-COND -> SOMETIMES {-1}
PROPBABILITY-COND -> NUMBER PERCENT OF THE TIME {NUMBER.sem}
FORBID -> THE FOLLOWING CAN NEVER HAPPEN
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FORBID -> THE FOLLOWING IS FORBIDEN
NULL -> null
OP -> DET OBJECT {fCreateObject(DET.sem, OBJECT.sem)}
OP -> DET OBJECT WITH PROP-NAME PROP-VAL
{fCreateObjectWithCond(DET.sem, OBJECT.sem, PROP-NAME.sem, PROP-VAL.sem)}
OP -> DET PROP-VAL PROP-NAME OBJECT
{fCreateObjectWithCond(DET.sem, OBJECT.sem, PROP-NAME.sem, PROP-VAL.sem)}
OP -> DET-INDEFINITE CLASS-NAME

{fCreateObject(DET-INDEFINITE.sem, CLASS.sem)}
OP1 -> OP {OP.sem}
OP2 -> OP {OP.sem}
OP-NO-DET -> OBJECT {fCreateObject(eInstance, OBJECT.sem)}
OP -> OP-NO-DET {OP-NO-DET.sem}
PROP-NAME1 -> PROP-NAME {PROP-NAME.sem}
PROP-NAME2 -> PROP-NAME {PROP-NAME.sem}
CONNECT -> THEN {eControlExit}
CONNECT -> AND AFTER THAT {eControlSync}
CONNECT -> AND ONLY THEN {eControlSync}
CONNECT -> AND {eControlContinue}
CONNECT -> THEN AND {eControlContinue}
CONNECT -> UNLESS {eControlColdForbid}
CONNECT -> UNTIL {eControlColdForbid}
DET -> DET-INDEFINITE {DET-INDEFINITE.sem}
DET -> DET-DEFINITE {DET-DEFINITE.sem}
DET-INDEFINITE -> a | an | any | all | some | other | another {eSymbolic}
DET-DEFINITE -> THE {eInstance}
TEMP -> TEMP-HOT {eTempHot}
TEMP -> TEMP-COLD {eTempCold}
TEMP -> TEMP-HOT-NOT {eTempHotNot}
TEMP -> TEMP-COLD-NOT {eTempColdNot}
TEMP-HOT -> MUST [EVENTUALLY] | EVENTUALLY | [EVENTUALLY] MUST
MUST -> must | shall | should | will
TEMP-COLD -> may | could | can | does
TEMP-COLD-NOT -> MUST NOT | CANNOT | TEMP-COLD NOT
TEMP-HOT-NOT -> TEMP-HOT NEVER | TEMP-COLD NEVER
SET-PROP -> turn | change | set | turns | changes | IS SET | sets

{ePropSet}
SET-PROP-BY-VAL -> INCREASE [by] {ePropIncrease}
SET-PROP-BY-VAL -> DECREASE [by] {ePropDecrease}
PROPOSITION -> TO | from | by | IN | of
WHEN -> when | whenever
THEN -> then | , | do {eControlExit}
ELSE -> else | [THEN] OTHERWISE {else}
ELSE-IF -> ELSE IF {elseif}
EVENTUALLY -> eventually
EQUAL -> equal
EQUALS -> equals
COMPARE -> IS {eEqual}
COMPARE -> IS NOT {eNotEqual}
COMPARE -> BE {eEqual}
CANNOT -> cannot
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COMPARE -> CANNOT BE {eNotEqual}
COMPARE -> EQUALS [TO] {eEqual}
COMPARE -> EQUAL [TO] {eEqual}
COMPARE -> IS NOT EQUAL [TO] {eNotEqual}
COMPARE -> IS EQUAL [TO] {eEqual}
COMPARE -> IS GREATER THAN {eGreaterThan}
COMPARE -> IS LESS THAN {eLessThan}
COMPARE -> IS GREATER [THAN] OR EQUAL [TO] {eGreaterEqual}
COMPARE -> IS LESS [THAN] OR EQUAL [TO] {eGreaterEqual}
COMPARE -> IS NOT EQUAL TO {eNotEqual}
COMPARE -> DOES NOT EQUAL [TO] {eNotEqual}
SOMETIMES -> sometimes | OTHER TIMES
NUMBER -> CARDINAL-NUMBER {CARDINAL-NUMBER.sem}
NUMBER -> CARDINAL-NUMBER NUMBER

{fCreateNumber(CARDINAL-NUMBER.sem, NUMBER.sem)}
WHILE -> while | AS LONG AS
TIME-PASSED -> [have] PASSED | [have] ELAPSED | elapses | passes |

elapse | pass
TIME-UNIT -> minutes | minute | seconds | second | hour | hours |

day | days
TIME-INTERVAL -> NUMBER TIME-UNIT

{fCreateTimeInterval(NUMBER.sem, TIME-UNIT.sem)}
TIME-CHANGE -> TIME-INTERVAL [TEMP] TIME-PASSED

{fCreateTimeChange(TIME-INTERVAL.sem, TEMP.sem)}
STORED -> stored | saved
SAVE-VARIABLE -> SAVE OP PROP-NAME IN UNKNOWN-NAME

{fCreateSetVariable(OP.sem, PROP-NAME.sem, UNKNOWN-NAME.sem, eSave)}
SAVE-VARIABLE -> SAVE [THE] CURRENT OP-NO-DET PROP-NAME

{fCreateSetVariable(OP-NO-DET.sem, PROP-NAME.sem, NULL.sem, eSave)}
LOAD-VARIABLE -> SET OP PROP-NAME TO [THE] STORED UNKNOWN-NAME

{fCreateSetVariable(OP.sem, PROP-NAME.sem, UNKNOWN-NAME.sem, eLoad)}
LOAD-VARIABLE -> SET OP PROP-NAME1 TO [THE] LAST OBJECT PROP-NAME2

{fCreateSetVariable(OP.sem, PROP-NAME1.sem, NULL.sem, eLoad)}
LOAD-VARIABLE -> LOAD [THE] STORED UNKNOWN-NAME TO OP PROP-NAME

{fCreateSetVariable(OP.sem, PROP-NAME.sem, UNKNOWN-NAME.sem, eLoad)}
LOAD-VARIABLE -> LOAD [THE] LAST OP-NO-DET PROP-NAME1 TO OP PROP-NAME2

{fCreateSetVariable(OP-NO-DET.sem, PROP-NAME1.sem, NULL.sem, eLoad)}
UNKNOWN-NAME -> STRING-VAL {STRING-VAL.sem}
MODEL -> OP IS A TYPE OF [A] OP

{fAddObjectToModel(OP.sem, OP.sem)}
MODEL -> OP IS A OP-NO-DET

{fAddObjectToModel(OP.sem, OP-NO-DET.sem)}
LAST -> last
CURRENT -> current
SAVE -> save | store | stores
LOAD -> load
PASSED -> passed
ELAPSED -> elapsed
OF -> of
TIME -> time
PERCENT -> percent
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OTHER -> other
TIMES -> times
DOT -> .
OTHERWISE -> otherwise
IS -> is | be
IF -> if
NOT -> not
IN -> in
TO -> to
SET -> set
THE -> the
WITH -> with
WHEN -> when
THAT -> that
ITS -> its
FOLLOWING -> following
CAN -> can
NEVER -> never
HAPPEN -> happen
GREATER -> greater
LESS -> less
THAN -> than
EQUAL -> equal
OR -> or
ONLY -> only
AFTER -> after
AND -> and
AS -> as
LONG -> long
DOES -> does
UNTIL -> until
UNLESS -> unless
INCREASE -> increase | increases | increased
DECREASE -> decrease | decreases | decreased
METHOD -> increase | increases | increased {increase}
METHOD -> decrease | decreases | decreased {decrease}
A -> a | an
TYPE -> type
CLASS -> Category
ARE -> are
FORBIDEN -> forbiden
METHOD -> METHOD PROPOSITION {METHOD.sem}
PROP-VAL -> [PROPOSITION] STRING-VAL

{fCreateStringValue(STRING-VAL.sem, null)}
PROP-VAL -> [PROPOSITION] TIME-INTERVAL {TIME-INTERVAL.sem}
PROP-VAL -> [PROPOSITION] [DET] STRING-VAL

{fCreateStringValue(STRING-VAL.sem, DET.sem)}
STRING-VAL -> coins
STRING-VAL -> coin
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Michael Roth Data

We present here a few example episodes from Michael Roth’s data (Roth
et al., 2014). Each episode describes a simple system via a set of roughly
a dozen individual requirements or less. The original data of Roth can be
downloaded at URL http://www.coli.uni-saarland.de/~mroth/
data/requirements.tar.gz.

Restmarks

1. A user must be able to create a user account by providing a username
and a password.

2. A user must be able to login to his account by providing his username
and password.

3. A user that is logged in to his account must be able to update his
password.

4. A logged in user must be able to add a new bookmark to his account.

5. A logged in user must be able to retrieve any bookmark from his ac-
count.

6. A logged in user must be able to delete any bookmark from his ac-
count.

7. A logged in user must be able to update any bookmark from his ac-
count.

8. A logged in user must be able to mark his bookmarks as public or
private.

9. A logged in user must be able to add tags to his bookmarks.

10. Any user must be able to retrieve the public bookmarks of any REST-
MARKS’s community user.

11. Any user must be able to search by tag the public bookmarks of a
specific RESTMARKS’s user.

12. Any user must be able to search by tag the public bookmarks of all
RESTMARKS users.

13. A logged in user , must be able to search by tag his private bookmarks
as well.
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Taxi

1. A taxi notifies the server of its location continuously.

2. A taxi can get its zone information from the server.

3. A taxi can change its status.

4. A customer can place an order for a taxi.

5. A taxi can receive a customer order.

6. After the taxi is selected , customer gets taxi info.

Teacher and Students

1. Teachers could browse as well as create topic or course with the pos-
sibility to add and manipulate material or resources as per need.

2. Teachers could easily create exercise on a selected topic or course.

3. Teachers could add and manipulate file resources with respect to spe-
cific course or a topic.

4. Teachers can create flash cards.

5. The students could browse and search a topic in any domain.

6. Students have the ability to write notes and could also take printouts
of them.

7. It is also possible for students that they can create cards and share
them among others.

8. Students could do some exercises and the systems should show re-
sults at the end highlighting score.
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Rule-Based Algorithm Pseudo
Code

1. Role labeler annotation <- parse each requirement according to Michael
Roth role labeler.

2. Co-references <- for each requirement get it’s co-references.

3. Possible lifelines detection (add context) <- iterate over all require-
ments and create list of all possible lifelines (actors, theme and (NN,
SBJ))

4. For each requirement :

(a) create lifelines based on annotation + possible lifelines
(b) add clock if init step is needed (or periodically ticking is needed)
(c) add properties to lifelines by usage of co-references + annota-

tions + rules - .
(d) add Framework (System) lifeline if needed.
(e) sort action by linguistic hints (based on modifiers ontology)
(f) for each action:

i. detect sender, receiver and parameters according to SRL and
dependency tree

ii. detect state (HOT/COLD, Monitored/ Executed) according
to the feature structure

iii. add sync
(g) remove lifelines that do not participate in the current LSC (do not

have any income/outcome message/ part of loop/if statement/
assignment and so..)
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(   סט של חוקי גזירה המצורף בנספחים, כלומר)שר הגדירו שפה חסרת הק[, Gordon 2009]גורדון והראל 

. אוטומטי שעל ידי עזרה מן המשתמש ממפה משפטים השייכים לשפה לייצוגם הפורמלי-ואלגוריתם חצי

שלמד מדוגמאות מנותחות  , פיתחנו מנוע לימוד סטטיסטי[ Tsarfaty et al. 2014]בעבודתנו הראשונה 

(annotated data )מסמכי ( ללא צורך בהתערבות של משתמש אנושי)אוטומטי  כיצד למפות באופן

 .לייצוג הפורמלי CNLדרישות שנכתבו ב

  

על סט קטן של דוגמאות  F-scoreבמדד  %95ניסויים אמפיריים שערכנו הראו איכות תרגום של 

משפר את הדיוק ( בהקשר הדרישה)כמו כן הראנו ששימוש במסמך כולו . למסמכי דרישות בשפה זו

 .וח דרישות לעומת ניתוח ברמת המשפט הבודדבנית

 

ניתוח מסמכי דרישות שנכתבו בשפה , המשכנו לאתגר הבא שלנו, לאחר שהורדנו את התלות במשתמש

מסמכי [. Roth 2014]מסמכי הדרישות הכתובים בשפה טבעית לקוחים ממחקר אחר . טבעית ללא מגבלות

כל . ודנטים  במדעי המחשב במסגרת שיעורי הביתדרישות אלה הינם אפיונים של מערכות שניתנו לסט

פיתחנו אלגוריתם המשלב כלים סטטיסטים כגון מנתח . מסמך דרישות מתאר מערכת יחידה ופשוטה

( rule based)ועבורם הגדרנו סט חוקים , מנתח תלויות ומנתח סמנטי, מנתח תחבירי, חלקי דיבר

, כמו כן. ם את המסמך לייצוג הפורמלי הרצויעל מנת לתרג( context)המשתמש בתוכן המסמך כולו 

 המבוססת על מרחק עריכת העצים, פיתחנו מדדי בקרת איכות לבדיקת איכות הפלטים שלנו

(edit distance )של המבנה הסטטי. 

 

ביקשנו ממספר מהנדסי תוכנה לייצר עברנו את המודל הסטטי , על מנת להבין את איכות המערכת שלנו

(object model )ראינו שממד , ידי שימוש במדדי בקרת האיכות שלנו-על. ור מספר מסמכי דרישותעב

ידי האלגוריתם -ההסכמה בין שני מהנדסי תוכנה שונים כמעט זהה למדד ההסכמה בין המודל שנוצר על

תוצאות אלו העלו לנו מספר שאלות . ידי מהנדסי תוכנה עבור אותן מסמכי דרישות-למודל שנוצר על

האם נקודת התחלה ? האם יש צורך להתחיל ממודל נכון? האם יש דבר כזה מודל נכון .יםהבאלמחקרים 

 ? של מודל אוטומטי עדיף מהתחלה ריקה

 



 תקציר

 

רוב הרעיונות הנ״ל מתוארים על ידי מסמכי אפיון הנכתבים , כל תהליך של הנדסת תוכנה מתחיל מרעיון

מסמכי דרישות , לאחר מכן. בשפה טבעית( מנתחי דרישות, מהנדסי מערכת, בעלי עניין)על ידי בני אדם 

 .לדרישותאלו מתורגמים על ידי מהנדסי תוכנה לתוכנית מחשב בשפת קוד העונה 

 

כבר בעבר התמודדו חוקרים עם המשימה של תרגום אוטומטי של מסמכי דרישות בשפה טבעית לתכניות 

, התמקד בחילוץ העצמים והמאפיינים מתוך הדרישות[ Abbot 1983]המחקר הראשון . מחשב בשפת קוד

קרים מאוחרים מח(. methods)ושיטות (,  properties)מאפייני עצמים (, objects)עצמים  -כלומר 

לרוב )שפות אלו . הגדירו  שפות חלקיות מבוססות אנגלית לכתיבת מסמכי דרישות[ Mich 1996, ]יותר

, נהנו מתרגום ישיר לייצוג פורמלי( בדומה לשפות תכנות, שפות חסרות הקשר עם חוקי גזירה מוגדרים

ואינן , לות ביכולת הביטוי שלהןשפות אלו הנן מוגב ---אך אליה וקוץ בה . ומתרגום חד משמעי לשפת קוד

 .טבעיות לביטוי והבנה עבור דוברי שפה אנושית

 

מטרתנו במחקר זה היא לתרגם בצורה אוטומטית מסמכי דרישות שנכתבו בשפה טבעית לתוכניות בשפת 

על ידי שימוש בכלים ושיטות הלקוחים מתחום עיבוד השפה הטבעית ומכונות , קוד הניתנת להרצה

על ידי הבנת ( , object model) להרחיב מעבר לחילוץ מבנה התוכנה, ה העיקרית שלנוהמטר. לומדות

אין ברצוננו להניח , עם זאת. של עצמים ומידול התקשורת ביניהם( instances)הדרך בה נוצרים מופעים 

 .מטרתנו היא להתמודד עם תרגום של שפה טבעית אמיתית -שום הנחה מקלה על הקלט 

  

מסמכי הדרישות הכתובים בשפה טבעית לשפת קוד היא דרך תרגומם לייצוג ביניים  שיטתנו לתרגום

 System Modelו  LSCשנסמן כ  Live Sequence Charts: ישויות מרכזיות 2המורכב מ. פורמלי

( אחד לכל דרישה) LSCכל מסמך דרישות המורכב מאוסף של דרישות ממופה לאוסף של . SMשנסמן כ 

המתאר את ההתנהגות הדינמית של  UMLהינו הרחבה מעל  LSC. מסמך כולוגלובלי ברמת ה SMו

אנו ,בסיום תרגום זה. הינו מידול הסטטי של המערכת כולה SMואילו , העצמים המתוארים בדרישה זו

 .JAVAמסתמכים על תרגום ישיר הקיים בין הייצוג הפורמלי לקוד 



 
  

 דר' רעות צרפתי מהאוניברסטיה הפתוחה ופרופסור שמעון שוקןשל  עבודה זו בוצעה בהדרכתם
מבי"ס אפי ארזי למדעי המחשב, המרכז הבינתחומי, הרצליה.  
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בית ספר אפי ארזי למדעי המחשב-  
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מדרישות מערכת בשפה 
טבעית לקוד הניתן להרצה  

 
 

 
 

 מאת
 איליה פוגרבצקי

 
 
 
 
 

  .M.Scק מהדרישות לשם קבלת תואר מוסמך כחל זה המוגשתעבודת ת
הרצליה זי למדעי המחשב, המרכז הבינתחומיבמסלול המחקרי בבית ספר אפי אר  
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