

The Interdisciplinary Center, Herzlia
Efi Arazi School of Computer Science

M.Sc. program - Research Track

Deep Learning and Sequence
Determinants of Gene

Co-Expression

by
Sharon Mayer Sultan

M.Sc. dissertation, submitted in partial fulfillment of the requirements
for the M.Sc. degree, research track, School of Computer Science

 The Interdisciplinary Center, Herzliya

February 2021

This work was carried out under the supervision of Prof. Zohar Yakhini

from the Efi Arazi School of Computer Science, The Interdisciplinary

Center, Herzliya.

Deep Learning and Sequence Determinants of Gene

Co-Expression

Sharon Sultan, Zohar Yakhini

February 2021

Abstract

Gene co-expression can be used as a second order indicator to associate genes with

a biological process, to better understand the role of genes and to explore regula-

tory roles they may play in living organisms and systems. Tracing back and deci-

phering such connections, and the processes that form them, can be a complicated

inference process. Along with that, deep neural networks are increasingly taking

part in the field of computational biology. They are extensively used these days to

learn, predict and unlock complex biological processes and hidden connections. In

this paper we present the use of deep learning tools to predict co-expression con-

nections and decipher their hidden genomic sequence determinants if such exist.

We first explore the capacity of a deep neural network, in the context of predict-

ing and discovering hidden motifs in synthetically generated data, built on top of

actual genome parts. We then further explore and apply similar techniques on real

gene co-expression data from yeast. We show that the deep learning based learning

process we established here produces meaningful predictions and uncovers candi-

date co-expression associated motifs (CoAMs). We also show that some of these

CoAMs are known to play regulatory roles in yeast.

3

Contents

Abstract 3

Contents 4

1 Introduction 5

2 Methods 8

Data processing . 8

Synthetic co-expression data . 8

Real dataset . 9

Learning co-expression . 10

Train test sprint . 10

Convolutional neural network . 10

Robustness analysis . 11

Uncovering co-expression associated motifs . 12

Integrated gradients . 12

Extract CoAMs from regions of interest . 13

Complete process pipeline overview . 14

3 Results 15

Co-expression prediction in synthetic data . 15

Co-expression prediction in yeast . 19

4 Discussion 22

5 Supplementary Material 24

k-mers output of DRIMust for yeast promoters . 24

k-mers output of DRIMust for yeast 3’UTRs . 26

References 28

4

1 Introduction

In the field of computational biology, many resources have been invested in the last few decades to

acquire the knowledge of how genes encode to gene products. This knowledge can then be applied

to classify and understand the role that genes and other elements play in biological process. Part

of this effort materialized by taking samples from living organisms and measuring expression of

genes and of gene products and regulators, including proteins and non-coding RNA molecules.

With gene expression data widely available, gene co-expression analysis was found to be a useful

tool for discovering and understanding biological regulatory processes; the processes that even-

tually control the transcription and translation of genetic sequences into the gene products. Ex-

pression data can be used to construct co-expression networks, such networks have been used to

cluster and classify genes and to associate them with functional groups [7, 24, 27]. Nonetheless,

this doesn’t shed much light on the underlying cause that eventually results with a pair of genes

having a correlated expression pattern. Over time, accumulated knowledge began to unravel that

the regulation of gene expression involves a set of highly complex mechanisms. Those mecha-

nisms are influenced by many factors, both internal and external[12], and can be active during any

step of regulatory pathway. Not surprisingly, some of the those mechanisms are influenced by the

genomic sequence of genes and their surrounding regions. [3, 21].

For almost a decade, the field of deep learning revolutionized the area of data processing. Com-

binations of increasingly growing computation power along continuously and rapidly evolving

techniques, made it a go-to tool whenever there is a sufficiently large dataset involved. It earned

its place and proved to be a very powerful tool for pattern recognition and detection tasks, and

lately it has been widely applied in the field of genetic and genomic research for numerous tasks;

it have been successfully used for predicting sequence specificities of binding proteins[1], pre-

dicting off-target activity in CRISPR-Cas9 [20], predicting gene expression [4], inferring spatial

transcriptomics from (H&E) images[17, 18, 19], and more.

In recent work, reported by Tasaki et al. (2020)[26], addresses differential co-expression predic-

tion using deep learning. In this paper they develop a model that utilizes deep learning to predict

differential co-expression based on genomic binding sites on RNAs and promoters. They also

report predicting negative/positive co-expression relationships between gene pairs, both in-tissue

and inter-tissue, and investigate the key factors driving the co-expression.

5

Having a deep neural network performing well on the task it was trained to master is highly

important, but not always a straight forward goal to achieve; being able to learn or deduce the

hidden logic that guides a trained network in making decisions, is sometimes just as important and

not less challenging. Up until recent years, most of those who were using deep neural networks,

to say nothing of those who were not, were still considering the deep neural networks to be black

boxes. One way to shed light into such black boxes, is to try to determine the importance of input

features in producing a certain prediction, this is referred to as prediction attribution; a relatively

recent emerging such technique is integrated-gradients[25]. Integrated-gradients uses sensitivity

and implementation-invariance axioms to attribute deep neural network prediction to its input;

those inputs could be pixels in a picture, individual words in text and in our case, nucleotide base

positions in a genomic sequence. Examples for integrated gradients applications, and comparison

to simple gradients prediction attribution is shown in Fig. 1

In this paper, we investigate the capabilities of deep neural networks in the context of learning

and predicting sequence determinants of genes co-expression. This is motivated by the assumption

that much of the process of regulation is driven by the genes’ adjacent sequences (e.g. genes pro-

moter region and 3’UTR regions). We show that for synthetic data the network can easily handle

noise, which we would expect to be inherently present, and uncover those signals even when they

are obscure. We also demonstrate how, with a well trained network, we can trace back and unveil

the underlying cause for co-expression using integrated-gradients prediction attribution technique

and minimum-hypergeometric (mHG) based search[8, 16]. We then challenge the fundamental

motivating assumption by applying our method to actual yeast expression data. We first show that

using adjacent input sequences (i.e. promoter regions and 3’UTRs) along with TF regulation vec-

tors, which we assembled from existing regulation databases, the network is capable of learning to

correctly predict much of the co-expression. We take this further and leave out the TF regulation

vectors as the final challenge; we show that the network is still capable of predicting co-expression

in a significant manner. Finally, we use this network, again along with integrated gradients and

mHG statistical analysis, to propose some insights on the input adjacent regions, including the

discovery of putative CoAM.

6

Fig. 1 (left) Attribution for a molecule under the W2N2 network [13]. By applying integrated gradients,

Sundararajan et al. (2020)[25] were able find anomaly that revealed that parts of the input were left uninten-

tionally not fully convolved. (right) Integrated gradients vs. gradients at the image. Left-to-right: original

input image, label and softmax score for the highest scoring class, visualization of integrated gradients,

visualization of gradients*image.

7

2 Methods

Here we discuss the structure of the neural-network used, as well as the process we constructed

to generate both synthetic and real inputs for the learning and test phases. The network training

was first tested on synthetic data, which we describe below. We also cover the process we used

to identify motifs associated with co-expression using integrated-gradients. We call these co-

expression associated motifs, or CoAM.

Data processing

Synthetic co-expression data

For the purpose of creating the synthetic data we used a real expression data taken from humans;

the dataset we used is GSE66360[23] (Whole blood gene expression data). Our first step was

to filter out genes with low coefficient of variation: CV < 0.2 out of the assumption that genes

that almost don’t vary will have little or even negative contribution to the co-expression analysis

process. The next step was to calculate gene co-expression matrix. Namely, if E is the expression

matrix with row entries G = g1, g2, ,̇gn representing the measured gene products, and columns

S = s1, s2, . . . , sm expression sample representing instances (individuals), we define rg1,g2 to be

Spearman rank correlation of g1 and g2 over the samples S:

rg1,g2 = ρrg1,rg2 =
cov(rg1, rg2)
σrg1σrg2

where ρ denotes the Pearson correlation, rgi is the ranked gi expression vector, σx is standard

deviation of a vector x, and cov(x, y) is the covariance of the vectors x, y.

We divided the pairs (gi, gj) into two classes, based on a cutoff threshold applied to their mea-

sured co-expression. This gives rise to labeling every pair of genes g1 and g2 as co-expressed

or not. For each gene we extracted its promoter region sequence based on UCSC hg38, the full

human genome assembly [14, 11], and its annotations [10]. Using the annotations we considered

promoter regions to be 200 bps upstream the transcription start site. We then observed the set

of co-expressed pairs, and for all these pairs we modified their promoter region by planting in

each promoter an occurrence of an 8-mer. These were randomly picked from a pool of 20 ran-

domly pre-generated 8-mer motifs. The outcome of this process is a dataset of manipulated pairs

8

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE66360
https://genome.ucsc.edu/cgi-bin/hgGateway?redirect=manual&source=genome.ucsc.edu

of promoters, labeled as co-expressed according to the presence of our synthetic co-expression

associated motifs. See Fig. 2.

g13 g14 g15 g16 g17 g18

g4

g5

g6 1 1

g7

g8 0

g9

case I

case II

case III

p6 g6

p15 g15

p6 g6

p17 g17
p8 g8

p14 g14

Fig. 2 Synthetic data generation - modifying promoter sequences according to co-expression matrix. (case

I) randomly plant CoAM (blue box) in promoter regions of a pair of co-expressed genes. (case II) ran-

domly plant a different CoAM (red box) in promoter regions of pair of co-expressed genes where on of the

promoters has a previously planted CoAM (blue box with lines). (case III) A CoAM (green box) in pair

of gene that are not co-expressed. This happens in one of two cases: either each promoter region share a

previously planted CoAM or by chance both share a sequence identical to a CoAM.

Real dataset

The dataset we used was taken from GSE18121[6], which contains expression measurements of

yeast subjected to heat stress through time course of 30 minutes. The total number of samples is

42: for 3 strains of yeast, at 7 time points (at 0, 5, 10, 15, 20, 25 and 30 minutes) with 2 replicates

per each sample. The expression was measured using GPL90 Affymetrix microarray.

The yeast complete genomic sequence and its annotations were both obtained from Saccharomyces

Genome Database (SGD) [9, 5]. Using this full chromosomal sequences and the annotations we

extracted two sequences per gene: the first is the promoter region sequence, that is consisted of the

1000 nucleotides that precede the transcription start start. The other sequence is the most down-

stream untranslated region of the gene (the most downstream 3’UTR), which we considered to

be the sequence that follows the end position of the last mRNA coding region, to its termination

9

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE18121
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL90
http://sgd-archive.yeastgenome.org/sequence/S288C_reference/chromosomes/fasta/
http://sgd-archive.yeastgenome.org/curation/chromosomal_feature/saccharomyces_cerevisiae.gff.gz

position.

Besides these two sequences, we wanted to be able to provide the network with a hint vector; for

this we used known regulating transcription factors (TFs). We constructed Gene to TF regulation

matrix, where each gene is represented as a row entry in the matrix, and each TF as a columns.

For each gene, known regulating TF, either up or down regulating, columns we assigned the value

1, while all other columns are 0. This regulation matrix was assembled using data retrieved from

Yeastract[22]

Learning co-expression

Train test split

Co-expression relations between genes are not independent, meaning that certain genes tend to be

co-expressed with many other genes. Therefore, a strict train-test-validation split is necessary in

order to avoid having such prior as much as possible. To achieve this, the split has to be done

over the complete set of genes, prior to the co-expression calculation. This way the input sample

sequences are disjoint through all phases. See Fig. 3.

g1
g2
g3
.
.

.

.
gn

g1 g2 g3 gn

train

valid.

test

Fig. 3 Train-test-validation split. The set of genes is split into train, validation and test sets. This results in

the above sparse block diagonal matrix as a mask for the co-expression matrix.

Convolutional neural network

In the field of machine learning and artificial neural networks (ANN), convolutional neural net-

works (CNN) are usually used to solve complex problems of pattern recognition and detection,

primarily in images. CNNs are doing an outstanding job in extracting features from input images.

10

http://www.yeastract.com/

Roughly, this is done by passing the input through three types of layers. The first type is convo-

lutional layers which act as high dimensional locally connected layers from the input, to higher

dimensional output. The second type of layers is the pooling layers, which down sample the input

along the image spacial dimension. The last type of layers are fully connected layers which act

as classification layers on top of the extracted features from the usually interleaving convolutional

and pooling layers.

For our classification task we consider our input sequences, encoded as one-hot vectors, to be

similar to images; thus we decided to use a CNN for the task. A simplified schematic view of the

architectural structure of the network used is shown is Fig. 4. The input to the network are one-

hot matrices of shape: sequence length × nucleotides vocab size, that represent the input DNA

sequences. DNA sequences we used are taken from promoter region of genes and from the most

downstream 3’UTR (only in yeast data). Each input matrix then goes, separately, through several

convolutional/pooling layers. Their output is then flattened into a single high dimensional vector,

that goes through several fully connected layer. The output layers is a two dimensional vector for

classification. The structure in details of the each CNN we used, is brought in Results section.

2 x one-hot
representation

C
G
C
A
.
.
T
G

feature extraction layers

convolutional layer

pooling
layer

convolutional layer

pooling
layer

fully connected
layers

output layer

Fig. 4 A schematic sketch of a convolutional neural network that was we used. This basic structure was

modified and optimized for training over our different datasets.

Robustness analysis

As mentioned above, real world data is not expected to be noise free. On the contrary, to begin

with not all gene interactions is coded into the regions with consider in our training. Moreover,

there are many other unconsidered factors that play a role in the process of regulating expression

11

of genes. On top of that, our method of using a cut-off threshold for classification of co-expressed

genes adds an inherent noise. Therefore, we also explore and assess the robustness of the model

to noise. This is done with two differently noisified datasets; each constructed using a different

type of noise. The first type is a symmetric noise, where we symmetrically swap labels on both

directions, with some probability pnoise. The other type of noise is false labeling of co-expressed

pairs, where we falsely label negatively labeled samples as if they were co-expressed. The latter

type probably better represents the type of noise we would expect to encounter in real world

datasets.

Uncovering co-expression associated motifs

In case our assumption is correct, and there are indeed co-expression associated motifs in the

regions of interest we looked at, and in case we eventually have a neural network that can predict

them successfully, the next obvious step is to understand what parts in those regions contributed

the most to the predictions, or, uncover the hidden CoAM.

Integrated gradients

For the purpose of identifying the hidden motifs, we use attribution techniques. Those prove to

be helpful when there is a need to debug and better understand network prediction, to analyze

its robustness, and assess the confidence of predictions. There are many approaches to compute

feature contribution, many of them suffer from problems like high computational cost, relying

on generated non-realistic input, and failing to properly handle interactions within the feature

space. Eventually most produce, in many cases, noisy and non-meaningful output. Integrated-

gradients attribution methods introduced by [25](Sundararajan et al. 2017) overcomes some of

those problems.

The principle in the base of integrated gradients is using a baseline input x′, that could be black

image when dealing with images or zero embedding vector for texts. In our case that would be

zeros matrix in the dimensions of (sequencelength × vocabsize). The next step is to construct

a straight line path between baseline input x′ and input x. Integrated gradients are defined as the

path integral of gradients along this constructed straight line path. That is, for the input of the ith

12

dimension xi define:

IntegratedGradientsi(x) := (xi − x′i)×
∫ 1

α=0

∂F (x′ + α× (x− x′))
∂xi

dα

Where F is the function computed by the network. Eventually we’d expect the output of the

attribution process to assign for each nucleotide in our input x, a value that indicates, in both

magnitude and sign, its negative or positive contribution to the predicted label.

Fig. 5 Section of integrated-gradients output (26 bp, from 100 to 125) on two promoter region sequences

input. In this case input was predicted as co-expressed (label=1) by the network, and attribution was for

label=1. The suspected CoAM (GGCAGACG) in the input sequence is ”hot” and it is clearly within the

region of interest detected by the IG.

Extract CoAM from regions of interest

The prediction attribution process is designed to support the detection of parts of the input that

most contributed to the actual prediction. This is by no means an accurate function from predic-

tions to the underlying motifs. Rather than that, it can help us in isolating regions of interest,

possibly multiple regions per instance; those instances can then be statistically analyzed to extract

potential motif candidates.

We defined those regions of interest Ri to be the Ljki , k < K, j ∈ {1, 2} neighborhood of the

top significant K inputs from attribution process applied for positive co-expression class decision:

Ri =

{
MergeIntersecting

(
Ljki

)
: k < K, j ∈ {1, 2}

}

Ljki =

{
xji [tk − l : tk + l] : tk ∈ topK, j ∈ {1, 2}

}

We define the L to be L = {L1, L2, . . . , LS} where n1 < n2 ⇐⇒ Ln1 = Ljki , Ln2 = Luvl

13

and PCoE(x
j
i , x

1−j
i) > PCoE(x

u
l , x

1−u
l). Which is in fact a list of Ljki sequences sorted in a

descending order, by how confident was the network in predicting co-expression for the input

instance si with the source genomic sequence xji . We feed L into DRIMust[16] which takes as

input a ranked list of sequences and returns motifs that are over-represented at the top of the list,

where the determination of the threshold that defines ”top” is data driven. The search is based on

minimum-hypergeometric (mHG). From our perspective, its output is the list of CoAM candidates.

Complete process pipeline overview

To wrap it all together, the complete pipeline for CoAMs extraction is shown and described in

Fig. 6. The input to this pipeline is the produced dataset we constructed using expression data

(for labeling), complete genomic sequence of the relevant organism including annotations (for

input sequences extraction, i.e. promoters, 3’UTRs) and TF regulations vectors constructed from

a library of known TFs per gene.

Fig. 6 Overview of the proposed pipeline (left to right). Training a CNN to successfully classify co-

expressed pairs of genes; given a successfully trained CNN apply integrated gradient to attribute positive

co-expression to parts of the input sequences; rank attributed sequences by the confidence of the predic-

tions; feed the ranked list to DRIMust; DRIMust’s output is a set of possible CoAMs, which are enriched

motifs and a list of ranked k-mers by enrichment.

14

3 Results

Co-expression prediction in synthetic data

Our first stop was to verify that our network architecture is capable of learning to correctly clas-

sify co-expression as well as handling noise, while we use synthetic data modified promoters as

input. For that purpose, from GSE66360 human expression dataset, we generated a synthetic

co-expression data set, based on the calculated co-expression network (see Methods). We set a

co-expression threshold for labeling the data such that:

Label(CoE(gi, gj)) =

1, if CoE(gi, gj) > 0.6

0, otherwise

At first, as expected, our data was extremely imbalanced, with training size of 6.5M pairs of

genes, out of which 4% are labeled as 1 (i.e. CoE > 0.6), our test and validation sets are of size

of 300K with similar skew in class balance.

Fig. 7 Motifs occurrence fre-

quency in the synthetic dataset.

To overcome class balance skew, we downsampled the data; this

was done while keeping all examples labeled as 1, and uniformly

sampling 0-labeled examples to match 1-labeled set. Eventually

we ended up with 500K pairs in a balanced train set, and 25K in

each of the validation/test sets.

Once we had the balanced and labeled dataset, we applied the

synthetic co-expression data generation process as illustrated in

Fig. 2; during this process it turned out that the network of co-

expression is highly connected. In this highly connected network,

when picking a CoAM to use, an attempt to re-use an already ex-

isting motif in one promoter would eventually end up with a single

CoAM, that dominates the entire dataset and appears in almost all

pairs as the only motif. This is undesirable. On the other hand,

random uniform selection of a of motif for each pair would result

with most promoter sequences being totally contaminated with all

15

(a)
(b)

(c)

(d)

(e)

(f)
(g)

� input � convolution � pooling
� batch norm. � flattened � fully-connected
� drop-out � co-exp � no co-exp

Fig. 8 1D CNN network architecture used for training with synthetic dataset. (a) input layer, two one-hot

encoded genetic sequences of shape 200 x 4. (b) first 1D convolutional layer with 128 filters of size=5

each, followed by a max-pooling layer with filter size=5 and stride=2, followed by a batch-normalization

layer. (c) second 1D convolutional layer with 256 filters of size=3 each, followed by a max-pooling layer

with filter size=3 and stride=2, followed by a batch-normalization layer. (d) falttened convolutional output

1D vector (size=23552). (e) first fully connected layer with 128 nodes with relu activation, followed by a

dropout layer (rate=0.2). (f) second fully connected layer with 64 nodes with relu activation, followed by a

dropout layer (rate=0.2). (g) output layer, 2 nodes for specifying the probability assigned to co-expression.

The training loss function used in the training is softmax cross entropy.

the 20 promoters. Therefore, we decided to go for a middle ground, where we normally sample

the 20 motifs in such a way that the CoAM frequency is normally distributed as demonstrated in

Fig. 7. More precisely, we define a truncated normal distribution over the integer indices values of

idx ∈ [0, 19], centered at the µ = 10 with standard-deviation of σ = 3 which we use to sample a

motif index when selecting a motif to plant. The down side of this approach, is that the such ran-

dom selection and plating of CoAMs might still yield domination of some connection over others.

Namely this might result with rarely occurring CoAMs hidden by more dominant ones.

For training, we used a model with a vanilla 1-D CNN architecture. The architecture in detail

is described in Fig. 8. The loss function we used is softmax cross entropy, with mini-batch with

size of 32 and learning rate of 2e−4. The network learning optimizer algorithm used is adaptive

moment estimation (aka Adam optimizer)[15]

DL model successfully predicts co-expression and uncovers co-expression associated mo-

tifs. The CNN model successfully learns and classifies co-expressed in pairs of genes in the test

16

set. It pretty quickly converges to performance of accuracy=0.94 with high precision and recall.

The performance details are shown in Fig. 10.

Fig. 9 Synthetic motifs uncov-

ered after training by the inte-

grated gradients and DRIMust.

Vividly colored motifs are those

that were in the output of

DRIMust; in green rectangles

are motifs that were unexpect-

edly omitted from DRIMust

output despite the fact that they

were actually significantly en-

riched in the top of the ranked

list provided to DRIMust. The

8 uncovered motifs can be ac-

counted to more than 95% of the

co-expressed pairs of genes in

the dataset.

Immediately visible is the fact that the synthetics dataset is im-

balanced, there are 14k samples labeled as 1 vs. 8k samples

labeled as 0; this is a result of labeling examples according to case

III rule in Fig. 2. Yet, this doesn’t seem to have any noticeable

effect on the performance of the model.

Given the well trained model, we set to uncover the planted mo-

tifs. We applied integrated-gradients to all instances in the evalua-

tion set and computed IGCoE(xi), we followed process described

in Methods, and obtained the regions of interest. After feeding

the ranked list of regions of interest into DRIMust, we were able

to uncover the 5 most frequent CoAM; this is demonstrated in

Fig. 9. Nonetheless, there are still 15 uncovered CoAM. This is

probably related to the way that planted the motifs, eventually re-

sulting in multiple occurrences of motifs per promoter, leading the

network to prefer the most common motifs over learning much

less common motifs. To further validate and assess the results,

we performed two additional tasks. The first task was to use the

fact that we know which motifs we expect to uncover and vali-

date the output of DRIMust; here we explicitly calculated the en-

richment of out synthetic motifs in the ranked list we provided to

DRIMust. We discovered that there are 3 significantly enriched

motifs that DRIMust omitted despite the fact that they have p-

values of: 10−12, 10−16, 10−94. This could be a result of a

limitation or an existing issue in DRIMust’s algorithm. The sec-

ond validation was to assess how much of the co-expressed pairs

we can attribute to the uncovered 8 motifs (5 from DRIMust + 3

we manually uncovered). We found out that over 95% of the co-

expressed pairs can be attributed to the 8 uncovered motifs. This

could explain the preference of the CNN to generalize and learn these motifs over the other 12.

17

Fig. 10 CNN model synthetic evaluation-set performance, of co-expression inference from promoters with

planted motifs. (a) distribution of the distance between the confidence in each class. Clearly shows that

the network was trained to successfully and confidently predict co-expression. (b) confusion matrix of co-

expression class prediction. Both here and in predictions distributions it is visible that the synthetic dataset

resulted in an imbalanced classes; this is due to labels applied according to case III in Fig. 2 (c) ROC curve

and AUC. (d) PR curve and AUC. Both ROC and PR curves show almost perfect performance over the

synthetic dataset.

DL shows robustness to noisy data. At this point we introduced the two noisified datasets

with both types noise as described in Methods. In each dataset we used an increasing rate pnoise

of noise, starting from pnoise = 0.05 up to pnoise = 0.5. The performance of the model over these

datasets is shown in Fig. 11.

In both noisified datasets with both types of noise, it seems that the model was capable of handling

a great amount of inconsistency. Looking at the performance of the model trained with the dataset

that was symmetrically noisified (inconsistency by symmetric label swapping), it seems that the

performance is consistently high until pnoise hits 0.3, then it is gradually decreasing until the

model is no longer able to predict co-expression at noise rate of 0.5 (complete inconsistency), and

performs as good as random choice null model.

Looking at the model that was trained with the datasets noisified with false labeling, the model is

18

far more robust to the misleading labeling; and is capable of achieving equivalently good results

to the model trained with clean dataset, over the eval-set even when almost half of the dataset is

noise. At the point of pnoise = 0.5 the model does not perform as well but it still outperforms the

null model.

Fig. 11 CNN model performance of co-expression inference after training over noisified synthetic datasets.

(a) ROC AUC of datasets noisified with inconsistency noise achieved by symmetric labels swapping. (b)

ROC AUC of datasets noisified with misleading noise achieved by unidirectional false labeling, where

negative samples were false labeled as true labels. This was done while keeping the class balancing.

Co-expression predictions in yeast

Here we applied the same principles for predicting gene co-expression using yeast gene expression

data from GSE18121.

We used a CNN model with a similar but augmented architecture to the one used with synthetic

dataset. In this model, we’ve doubled the input sequences we feed the network by also providing

the network with 3’UTR. Therefore, we augmented the architecture by introducing a new sepa-

rate convolutional path for the 3’UTRs. Both paths, for promoters and 3’UTRs, share the same

structure, but each is trained with a separate set of weights. The structure of the paths itself was

updated by adding a third set of convolutional layers, along other changes in layers parameters

(see Fig. 13).

As mentioned in Methods, we trained two variations of this model, the first variation also takes

as input the TF regulation, while the other trains only seeing the promoter and 3’UTR sequences.

Our motivation for training a model that trains using genes TFs regulation vector is an attempt to

19

have a rough headroom assessment of co-expression prediction capability; this makes sense since

we know that TFs play a significant role in regulation process. There is a minor structural change

in the model that gets the TFs regulation vectors as input; there, we serially concatenated both the

regulation to the single high-dimensional flattened vector that follows the convolutional paths, and

precedes the fully connected layers. The entire network structure details are provided in Fig. 13

Fig. 12 CoAM uncovered after train-

ing on yeast expression data with-

out TF regulation vectors, using inte-

grated gradients and DRIMust. (left)

3’UTR regions. (right) promoter re-

gions.

As we could expect the model that got as input the TF regu-

lation vectors significantly outperformed the one that did not.

Yet, both were able to learn to some extent to predict when a

pair of genes from the test set are co-expressed. The model

trained with TF regulation vector was able to achieve almost

70% accuracy; the one trained only on promoters and 3’UTR

was able to achieve almost 60% accuracy. The performance

details of both models are presented in the FIg. 14.

For the next step, of searching for CoAM candidates,

we used the network trained solely with the promoters and

3’UTRs sequences. The reason for us to prefer using this less

performing model is the fact that we wanted to avoid having

the model focusing on TFs regulation vector and overlooking

the data encoded in the sequences; this is since the predictions

attribution to the sequences is the main input to DRIMust.

The suggested motifs output from DRIMust is shown in 12.

The full output from DRIMust, for both synthetic and yeast datasets, including motifs occur-

rences, statistics and the full list of enriched k-mers is provided in the Supplementary Material

section.

20

(a2)

(a1)

(b)

(b)

(c)

(c)

(d)

(d)

(tf)

(tf)

(e)

(f)

(g)

(h)

� input � convolution � pooling

� batch norm. � flattened � fully-connected

� drop-out � co-exp � no co-exp

Fig. 13 1D Network network architecture used for training with yeast expression dataset. (a1) promoter

input layer, two one-hot encoded genetic sequences of shape 1000 x 4. (a2) 3’UTR input layer, two one-hot

encoded genetic sequences padded when necessary to of shape 1000 x 4. (b) first 1D convolutional layers

(with distinct set of weights), with 96 filters of size=11 and stride=4 each, followed by max-pooling layer

with filter size=6 and stride=4, followed by batch-normalization layer. (c) second 1D convolutional layers

(with distinct set of weights) with 128 filters of size=3 each, followed by max-pooling layer with filter

size=6 and stride=4, followed by batch-normalization layer. (d) third 1D convolutional layers (with distinct

set of weights) with 256 filters of size=3 each, followed by max-pooling layer with filter size=2 and stride=2,

followed by batch-normalization layer. (e) falttened convolutional output 1D vector (size=529472). (tf1,tf2)

transcription factor activation binary vector appended to the falttened convolutional output. (f) first fully

connected layer with 64 nodes with relu activation, followed by a drop out layer with dropout (rate=0.3).

(g) second fully connected layer with 12 nodes with linear activation, followed by a drop out layer with

dropout (rate=0.3). (h) output layer, 2 nodes for specifying the probability assigned to co-expression. The

training loss function used in the training is softmax cross entropy.

21

Results using transcriptioin factors Results without using transcription factors

Fig. 14 CNN model performance of yeast co-expression predictione for. (left) network inputs are promoters,

3’UTR and TF regulation vector. (right) network inputs are promomers and 3’UTR only. (a) distribution

of the distance between the confidence in each class. The difference in the confidence of the predictions

is visible between the models; the model that trained with the TF regulation vectors tend to have more

confident predictions. (b) confusion matrix of co-expression class prediction. (c) ROC curve and AUC.

Both models show significant capability in predicting co-expression, whit the model trained seeing the TF

regulation vectors outperforming the one that didn’t, as expected. (d) PR curve and AUC. Here we notice

that for the two models we can successfully trade-off recall for precision, up to the point that the model

trained with TFs regulation vector is able to predict 20% of the pairs with 90% precision; the model trained

on the sequences only can predict 10% of the pairs with 80% precision.

4 Discussion

It is interesting to look in to the performance differences between the two models trained on yeast

data. As we would expect, the model that was trained with the TF regulation vector performs

significantly better; the model was capable of learning the TFs influence on co-expression. One

thing that demonstrated this effect is the histograms of p1 − p0 in Fig. 14 (a); those histograms

actually reflect certainty of the model in the prediction. The closest the values to the edges {−1, 1},

the more certain the model is in the prediction. The TFs regulation vector are associated with

predictions that are more decisive and accurate.

22

As we mentioned in the Introduction, regulation of gene expression and co-expression is a

set of pretty complicated mechanisms. Therefore, it wouldn’t surprise us if we wouldn’t be able

to achieve perfect accuracy. Yet, it is very interesting to change the prediction threshold and

examine the precision/recall trade-off. The model trained with the TFs regulation matrix is able

to predict 20% of the co-expressed pairs with precision > 90%. The model that was only to train

using promoter regions and 3’UTR is not as good, yet, it is capable of predicting 10% of the

co-expressed pairs with precision of 80%.

Looking at the artifacts of the next phase of our process, the CoAM candidates yields very

interesting results. DRIMust emitted a single CoAM candidate in the 3’UTR region: ATGTA with

pvalue = 1.5E − 7. This motif was observed by Aranda Proudfoot (1999)[2], as transcriptional

pause element in yeast.

For the k-mers that DRIMust found enriched in the ranked integrated-gradient output, we looked

for matching TFs. We first extracted from yeast database the full list of transcription factors and

their binding site per-gene; with this list extracted we matched all the k-mers that had a no-miss

hit with any TF binding site. The list of those motifs is shown in Tab. 1

The entire lists of k-mers emitted by DRIMust for both 3’UTRs and promoter regions are avail-

able in Supplementary material section.

There are still unanswered questions and directions of improving of our statements in this paper,

which leave room for future related work. A further exploration of the performance of deep learn-

ing models in this context can be conducted with more variations of synthetic data; for instance,

the dataset can be constructed with the number of planted motifs being increased by one or more

order of magnitude. Up to the point that we can assess if the model is capable of detecting general

common motifs (single occurrence motifs in the dataset). Maybe the most interesting new path

to take would be to apply this pipeline on other organisms. Humans would be the most challeng-

ing, since the regulation mechanisms get more complex and include new entities such as miRNA

molecules.

Finally, in this paper we perform binary classification of gene co-expression, we could generalize

our prediction task to include directionality, and even try training a regression model.

23

p-value motif reverse complement TF / gene sites
6.6E-5 GTATTTAG CTAAATAC ABF1 / SPR3 CGTATTTAGTGAT
5.8E-4 CGCGTG CACGCG PDR1;PDR3 / YOR1 CGCGTGGTTCCGTGGAAAT
7.3E-4 TATTTAG CTAAATA ABF1 / SPR3 CGTATTTAGTGAT
2.0E-3 GACGGAT ATCCGTC CSRE / FBP1 CGGACGGATGGA
2.0E-3 GACGGAT ATCCGTC CSRE / FBP1 TCCGGACGGATGG
2.0E-3 GGTGAC GTCACC REB1 / ACT1 CTGTCACCCGGCC
2.0E-3 GGTGAC GTCACC UASH / UME6 TCGTCTGAGGTGACA
3.0E-3 GCTTG CAAGC RAP1 / TEF1 AACACCCAAGCACAG
3.0E-3 GGTTGC GCAACC ARC / ARG1 TCGCAACCTATTTCCATTAACGG
3.0E-3 GTTGCA TGCAAC BAS1 / ADE2 GACAAATGACTCTTGTTGCATG
3.0E-3 GTTGC GCAAC ARC / ARG1 TCGCAACCTATTTCCATTAACGG
3.0E-3 GTTGC GCAAC BAS1 / ADE2 GACAAATGACTCTTGTTGCATG
3.0E-3 GTTGC GCAAC DAL82 / DAL7 GCTGAAAGTTGCGGTGCGATAGA ATAC-

CGCGGATTTTGGAA
3.0E-3 GTTGC GCAAC UIS / DAL7 GAAAGTTGCGGTG
3.0E-3 TAGGTTG CAACCTA ARC / ARG1TTTA TCGCAACCTATTTCCATTAACGG
4.0E-3 GAGTCC GGACTC URSSGA / SGA1 GGGACTCAGGCACAGAAGCAAGGG TC-

CTTTTTTGGTTCCCTGTTTCCTC
4.0E-3 GTCTGA TCAGAC UASH / UME6 TCGTCTGAGGTGACA
4.0E-3 TAAGGA TCCTTA MCM1 / FAR1 TTTCCAAGTAAGGAAA
4.0E-3 TAAGGA TCCTTA MCM1 / CDC47 TTTCCTTATAAGGAAA
4.0E-3 TAAGGA TCCTTA MCM1 / CDC47 TTTCCTTATAAGGAAA

Tab. 1 List of k-mers (CoAM candidates) produced by of DRIMust for yeast promoters regions, with no-

miss matching TF/gene binding sites.

5 Supplementary Material

k-mers output of DRIMust for yeast promoters

kmer pvalue N B n b enrichment
TGCTTGA 1.8E-5 4526 6 25 3 90.52
TGTATTTAG 6.6E-5 4526 8 25 3 67.89
GTATTTAG 6.6E-5 4526 8 25 3 67.89
AAGGCGA 2.0E-4 4526 14 197 6 9.85
GCTTGA 5.4E-4 4526 24 33 4 22.86
CGCGTG 5.8E-4 4526 6 12 2 125.72
TTAGGTTGCTTG 7.0E-4 4526 4 25 2 90.52
TGTATTTAGGTT 7.0E-4 4526 4 25 2 90.52
GTATTTAGGTTG 7.0E-4 4526 4 25 2 90.52
AATGTATTTAGG 7.0E-4 4526 4 25 2 90.52
ATTTAGGTTGCT 7.0E-4 4526 4 25 2 90.52
TTTAGGTTGCTT 7.0E-4 4526 4 25 2 90.52
ATGTATTTAGGT 7.0E-4 4526 4 25 2 90.52
TAGGTTGCTTGA 7.0E-4 4526 4 25 2 90.52
TATTTAGGTTGC 7.0E-4 4526 4 25 2 90.52
TATTTAG 7.3E-4 4526 14 25 3 38.79
TCGCTTG 7.7E-4 4526 12 183 5 10.31
GTTGCTT 8.8E-4 4526 16 63 4 17.96
TATGGTCTGATA 9.4E-4 4526 4 29 2 78.03
AATATATGGTCT 9.4E-4 4526 4 29 2 78.03
ATGGTCTGATAT 9.4E-4 4526 4 29 2 78.03
TGGTCTGATATA 9.4E-4 4526 4 29 2 78.03
TATATGGTCTGA 9.4E-4 4526 4 29 2 78.03
GTCTGATATAAA 9.4E-4 4526 4 29 2 78.03
ATATATGGTCTG 9.4E-4 4526 4 29 2 78.03
GGTCTGATATAA 9.4E-4 4526 4 29 2 78.03

24

kmer pvalue N B n b enrichment
ATATGGTCTGAT 9.4E-4 4526 4 29 2 78.03
TCTGATATAAA 9.4E-4 4526 4 29 2 78.03
CTGATATAAA 9.4E-4 4526 4 29 2 78.03
TGATATAAA 9.4E-4 4526 4 29 2 78.03
GATCGCTTG 0.001 4526 8 183 4 12.37
ATCGCTTG 0.001 4526 8 183 4 12.37
GCTTGAA 0.001 4526 8 183 4 12.37
AGGCGAA 0.001 4526 8 183 4 12.37
GCGAAGA 0.001 4526 8 183 4 12.37
AGGCGA 0.002 4526 30 214 8 5.64
CCAAGGAACGCG 0.002 4526 2 2 1 1131.50
CTCCAAGGAACG 0.002 4526 2 2 1 1131.50
TCCAAGGAACGC 0.002 4526 2 2 1 1131.50
CAAGGAACGCGT 0.002 4526 2 2 1 1131.50
AAAACTCCAAGG 0.002 4526 2 2 1 1131.50
AAACTCCAAGGA 0.002 4526 2 2 1 1131.50
AACTCCAAGGAA 0.002 4526 2 2 1 1131.50
ACTCCAAGGAAC 0.002 4526 2 2 1 1131.50
AAGGAACGCGTG 0.002 4526 2 2 1 1131.50
TGTAGC 0.002 4526 8 14 2 80.82
GACGGAT 0.002 4526 4 45 2 50.29
GGTGAC 0.002 4526 6 24 2 62.86
GTTGC 0.003 4526 70 229 13 3.67
TATTTAGGT 0.003 4526 6 25 2 60.35
TTTAGGTT 0.003 4526 6 25 2 60.35
ATTTAGGT 0.003 4526 6 25 2 60.35
TAGGTTG 0.003 4526 6 25 2 60.35
GGTTGC 0.003 4526 6 25 2 60.35
TCTGTTGCAGCT 0.003 4526 2 3 1 754.33
TGAATTCTGTTG 0.003 4526 2 3 1 754.33
GTTGCAGCTGAC 0.003 4526 2 3 1 754.33
ATTCTGTTGCAG 0.003 4526 2 3 1 754.33
TTCTGTTGCAGC 0.003 4526 2 3 1 754.33
TGTTGCAGCTGA 0.003 4526 2 3 1 754.33
CTGTTGCAGCTG 0.003 4526 2 3 1 754.33
AATTCTGTTGCA 0.003 4526 2 3 1 754.33
GAATTCTGTTGC 0.003 4526 2 3 1 754.33
GTTGCA 0.003 4526 26 204 7 5.97
GCTTG 0.003 4526 88 33 6 9.35
TTAGGTT 0.003 4526 10 164 4 11.04
CGTGTGT 0.003 4526 6 139 3 16.28
TGTTTTCCTGAA 0.003 4526 4 53 2 42.70
GAGTGTTTTCCT 0.003 4526 4 53 2 42.70
AAGAGTGTTTTC 0.003 4526 4 53 2 42.70
AGAGTGTTTTCC 0.003 4526 4 53 2 42.70
GTGTTTTCCTGA 0.003 4526 4 53 2 42.70
AGTGTTTTCCTG 0.003 4526 4 53 2 42.70
AAAGAGTGTTTT 0.003 4526 4 53 2 42.70
AATATATGG 0.004 4526 6 29 2 52.02
GATATAAA 0.004 4526 6 29 2 52.02
ATATATGG 0.004 4526 6 29 2 52.02
ATGGTCT 0.004 4526 6 29 2 52.02
TATATGG 0.004 4526 6 29 2 52.02
TGATATA 0.004 4526 6 29 2 52.02
TCTGATA 0.004 4526 6 29 2 52.02
GTCTGA 0.004 4526 6 29 2 52.02
AGTTTTTGGGTT 0.004 4526 2 4 1 565.75
TTGGGTTTGTAT 0.004 4526 2 4 1 565.75
TGGGTTTGTATA 0.004 4526 2 4 1 565.75
GGGTTTGTATAA 0.004 4526 2 4 1 565.75

25

kmer pvalue N B n b enrichment
TTTTGGGTTTGT 0.004 4526 2 4 1 565.75
TTTGGGTTTGTA 0.004 4526 2 4 1 565.75
GTTTTTGGGTTT 0.004 4526 2 4 1 565.75
TTTTTGGGTTTG 0.004 4526 2 4 1 565.75
GGTTTGTATAAT 0.004 4526 2 4 1 565.75
GAGTCC 0.004 4526 12 408 6 5.55
GCGAAG 0.004 4526 10 68 3 19.97
TAAGGA 0.004 4526 28 198 7 5.71
ATTGCATTCCAA 0.004 4526 12 56 3 20.21
GCATTCCAAAAA 0.004 4526 12 56 3 20.21
TGCATTCCAAAA 0.004 4526 12 56 3 20.21
CATTCCAAAAAT 0.004 4526 12 56 3 20.21
TCCAAAAATAA 0.004 4526 12 56 3 20.21
CCAAAAATAA 0.004 4526 12 56 3 20.21

k-mers output of DRIMust for yeast 3’UTRs

kmer pvalue N B n b enrichment
AACGTAAGAAAC 3.8E-4 1632 4 7 2 116.57
GTAAGAAACTAA 3.8E-4 1632 4 7 2 116.57
AAAACGTAAGAA 3.8E-4 1632 4 7 2 116.57
AAACGTAAGAAA 3.8E-4 1632 4 7 2 116.57
AGCTAAAACGTA 3.8E-4 1632 4 7 2 116.57
ACGTAAGAAACT 3.8E-4 1632 4 7 2 116.57
AAGAAACTAAGG 3.8E-4 1632 4 7 2 116.57
CGTAAGAAACTA 3.8E-4 1632 4 7 2 116.57
GCTAAAACGTAA 3.8E-4 1632 4 7 2 116.57
TAAGAAACTAAG 3.8E-4 1632 4 7 2 116.57
CTAAAACGTAAG 3.8E-4 1632 4 7 2 116.57
TAAAACGTAAGA 3.8E-4 1632 4 7 2 116.57
GAAAATTAT 4.7E-4 1632 6 27 3 30.22
AAAATTAT 4.7E-4 1632 6 27 3 30.22
TATGTAC 4.7E-4 1632 6 27 3 30.22
ATGTA 7.7E-4 1632 94 48 12 4.34
AGTCAT 10.0E-4 1632 20 60 6 8.16
GAGCTAAAACGT 0.001 1632 6 7 2 77.71
TGATTAGTGTTA 0.001 1632 6 7 2 77.71
ATTAGTGTTAGA 0.001 1632 6 7 2 77.71
TTTTGATTAGTG 0.001 1632 6 7 2 77.71
AGTGTTAGAGCT 0.001 1632 6 7 2 77.71
GTTAGAGCTAAA 0.001 1632 6 7 2 77.71
GTGTTAGAGCTA 0.001 1632 6 7 2 77.71
TTTGATTAGTGT 0.001 1632 6 7 2 77.71
GATTAGTGTTAG 0.001 1632 6 7 2 77.71
TTGATTAGTGTT 0.001 1632 6 7 2 77.71
TAGTGTTAGAGC 0.001 1632 6 7 2 77.71
AGAGCTAAAACG 0.001 1632 6 7 2 77.71
TGTTAGAGCTAA 0.001 1632 6 7 2 77.71
TTAGAGCTAAAA 0.001 1632 6 7 2 77.71
AATTTTGATTAG 0.001 1632 6 7 2 77.71
TAGAGCTAAAAC 0.001 1632 6 7 2 77.71
ATTTTGATTAGT 0.001 1632 6 7 2 77.71
TTAGTGTTAGAG 0.001 1632 6 7 2 77.71
AGCTAAAACGT 0.001 1632 6 7 2 77.71
GCTAAAACGT 0.001 1632 6 7 2 77.71
CTAAAACGT 0.001 1632 6 7 2 77.71
GTAAGAAA 0.001 1632 6 7 2 77.71
TAAAACGT 0.001 1632 6 7 2 77.71
GAAACTA 0.001 1632 6 7 2 77.71

26

kmer pvalue N B n b enrichment
AAACGTA 0.001 1632 6 7 2 77.71
AAACTAA 0.001 1632 6 7 2 77.71
AACGTA 0.001 1632 6 7 2 77.71
GAGAAA 0.002 1632 16 27 4 15.11
GAGAAAAT 0.002 1632 8 27 3 22.67
AAATTAT 0.002 1632 8 27 3 22.67
AGAGAAA 0.002 1632 8 27 3 22.67
AGAGAA 0.002 1632 12 41 4 13.27
GAAAAGA 0.002 1632 26 6 3 31.38
TCACTA 0.002 1632 10 22 3 22.25
AGGATGC 0.002 1632 4 17 2 48.00
GGATGC 0.002 1632 4 17 2 48.00
AAAAGAGTGGAT 0.002 1632 8 6 2 68.00
AAGAAAAGAGTG 0.002 1632 8 6 2 68.00
AGAGTGGATGTA 0.002 1632 8 6 2 68.00
AGAAAAGAGTGG 0.002 1632 8 6 2 68.00
AACAAGAAAAGA 0.002 1632 8 6 2 68.00
GATGTAGCAACT 0.002 1632 8 6 2 68.00
AAGAGTGGATGT 0.002 1632 8 6 2 68.00
ATGTAGCAACTG 0.002 1632 8 6 2 68.00
AGTGGATGTAGC 0.002 1632 8 6 2 68.00
ACAAGAAAAGAG 0.002 1632 8 6 2 68.00
GAAAAGAGTGGA 0.002 1632 8 6 2 68.00
GAGTGGATGTAG 0.002 1632 8 6 2 68.00
TGGATGTAGCAA 0.002 1632 8 6 2 68.00
AAAGAGTGGATG 0.002 1632 8 6 2 68.00
GTGGATGTAGCA 0.002 1632 8 6 2 68.00
GGATGTAGCAAC 0.002 1632 8 6 2 68.00
TAACAAGAAAAG 0.002 1632 8 6 2 68.00
CAAGAAAAGAGT 0.002 1632 8 6 2 68.00
TGTAGCAACTG 0.002 1632 8 6 2 68.00
GTAGCAACTG 0.002 1632 8 6 2 68.00
TAGCAACTG 0.002 1632 8 6 2 68.00
AGCAACTG 0.002 1632 8 6 2 68.00
AAGAG 0.003 1632 66 44 9 5.06
GTAAAAAAA 0.003 1632 6 50 3 16.32
AAGAAA 0.003 1632 86 9 5 10.54
TAAGAAACT 0.003 1632 8 7 2 58.29
CGTAAGAA 0.003 1632 8 7 2 58.29
AAGAAACT 0.003 1632 8 7 2 58.29
ACGTAA 0.003 1632 8 7 2 58.29
ATTAGT 0.003 1632 8 7 2 58.29
TTAGTG 0.003 1632 8 7 2 58.29
TGGATCAT 0.004 1632 6 54 3 15.11
GGATCAT 0.004 1632 6 54 3 15.11
ACTCGGGAAATA 0.004 1632 4 22 2 37.09
TTAACTCGGGAA 0.004 1632 4 22 2 37.09
TAACTCGGGAAA 0.004 1632 4 22 2 37.09
CTCGGGAAATAT 0.004 1632 4 22 2 37.09
TCGGGAAATATG 0.004 1632 4 22 2 37.09
TATGTATCACTA 0.004 1632 4 22 2 37.09
GAAATATGTATC 0.004 1632 4 22 2 37.09
TTTTAACTCGGG 0.004 1632 4 22 2 37.09
CGGGAAATATGT 0.004 1632 4 22 2 37.09
AACTCGGGAAAT 0.004 1632 4 22 2 37.09
ATGTATCACTA 0.004 1632 4 22 2 37.09
TGTATCACTA 0.004 1632 4 22 2 37.09
GTATCACTA 0.004 1632 4 22 2 37.09
TATCACTA 0.004 1632 4 22 2 37.09

27

References
[1] Babak Alipanahi et al. “Predicting the sequence specificities of DNA- and RNA-binding

proteins by deep learning”. In: Nature Biotechnology 33.8 (July 2015), pp. 831–838. DOI:
10.1038/nbt.3300. URL: https://doi.org/10.1038/nbt.3300.

[2] Agusti
n Aranda and Nick J. Proudfoot. “Definition of Transcriptional Pause Elements in Fission
Yeast”. In: Molecular and Cellular Biology 19.2 (Feb. 1999), pp. 1251–1261. DOI: 10.
1128/mcb.19.2.1251. URL: https://doi.org/10.1128/mcb.19.2.1251.

[3] Adrian P. Bird. “CpG-rich islands and the function of DNA methylation”. In: Nature 321.6067
(May 1986), pp. 209–213. DOI: 10.1038/321209a0. URL: https://doi.org/10.
1038/321209a0.

[4] Yifei Chen et al. “Gene expression inference with deep learning”. In: Bioinformatics 32.12
(Feb. 2016), pp. 1832–1839. DOI: 10.1093/bioinformatics/btw074. URL: https:
//doi.org/10.1093/bioinformatics/btw074.

[5] J. M. Cherry et al. “Saccharomyces Genome Database: the genomics resource of budding
yeast”. In: Nucleic Acids Research 40.D1 (Nov. 2011), pp. D700–D705. DOI: 10.1093/
nar/gkr1029. URL: https://doi.org/10.1093/nar/gkr1029.

[6] L Ashley Cowart et al. “Revealing a signaling role of phytosphingosine-1-phosphate in
yeast”. In: Molecular Systems Biology 6.1 (Jan. 2010), p. 349. DOI: 10.1038/msb.
2010.3. URL: https://doi.org/10.1038/msb.2010.3.

[7] Sipko van Dam et al. “Gene co-expression analysis for functional classification and gene–disease
predictions”. In: Briefings in Bioinformatics 19.4 (Jan. 2017), pp. 575–592. ISSN: 1477-
4054. DOI: 10.1093/bib/bbw139. eprint: https://academic.oup.com/bib/
article-pdf/19/4/575/25193126/bbw139.pdf. URL: https://doi.
org/10.1093/bib/bbw139.

[8] Eran Eden et al. “Discovering Motifs in Ranked Lists of DNA Sequences”. In: PLoS Com-
putational Biology 3.3 (Mar. 2007). Ed. by Ernest Fraenkel, e39. DOI: 10.1371/journal.
pcbi.0030039. URL: https://doi.org/10.1371/journal.pcbi.0030039.

[9] Stacia R. Engel et al. “The Reference Genome Sequence ofSaccharomyces cerevisiae: Then
and Now”. In: G3: Genes — Genomes — Genetics 4.3 (Dec. 2013), pp. 389–398. DOI: 10.
1534/g3.113.008995. URL: https://doi.org/10.1534/g3.113.008995.

[10] Maximilian Haeussler et al. “The UCSC Genome Browser database: 2019 update”. In:
Nucleic Acids Research 47.D1 (Nov. 2018), pp. D853–D858. DOI: 10.1093/nar/
gky1095. URL: https://doi.org/10.1093/nar/gky1095.

[11] “Initial sequencing and analysis of the human genome”. In: Nature 409.6822 (Feb. 2001),
pp. 860–921. DOI: 10.1038/35057062. URL: https://doi.org/10.1038/
35057062.

[12] Rudolf Jaenisch and Adrian Bird. “Epigenetic regulation of gene expression: how the genome
integrates intrinsic and environmental signals”. In: Nature Genetics 33.S3 (Mar. 2003),
pp. 245–254. DOI: 10.1038/ng1089. URL: https://doi.org/10.1038/
ng1089.

[13] Steven Kearnes et al. “Molecular graph convolutions: moving beyond fingerprints”. In:
Journal of Computer-Aided Molecular Design 30.8 (Aug. 2016), pp. 595–608. DOI: 10.
1007/s10822-016-9938-8. URL: https://doi.org/10.1007/s10822-
016-9938-8.

28

https://doi.org/10.1038/nbt.3300
https://doi.org/10.1038/nbt.3300
https://doi.org/10.1128/mcb.19.2.1251
https://doi.org/10.1128/mcb.19.2.1251
https://doi.org/10.1128/mcb.19.2.1251
https://doi.org/10.1038/321209a0
https://doi.org/10.1038/321209a0
https://doi.org/10.1038/321209a0
https://doi.org/10.1093/bioinformatics/btw074
https://doi.org/10.1093/bioinformatics/btw074
https://doi.org/10.1093/bioinformatics/btw074
https://doi.org/10.1093/nar/gkr1029
https://doi.org/10.1093/nar/gkr1029
https://doi.org/10.1093/nar/gkr1029
https://doi.org/10.1038/msb.2010.3
https://doi.org/10.1038/msb.2010.3
https://doi.org/10.1038/msb.2010.3
https://doi.org/10.1093/bib/bbw139
https://academic.oup.com/bib/article-pdf/19/4/575/25193126/bbw139.pdf
https://academic.oup.com/bib/article-pdf/19/4/575/25193126/bbw139.pdf
https://doi.org/10.1093/bib/bbw139
https://doi.org/10.1093/bib/bbw139
https://doi.org/10.1371/journal.pcbi.0030039
https://doi.org/10.1371/journal.pcbi.0030039
https://doi.org/10.1371/journal.pcbi.0030039
https://doi.org/10.1534/g3.113.008995
https://doi.org/10.1534/g3.113.008995
https://doi.org/10.1534/g3.113.008995
https://doi.org/10.1093/nar/gky1095
https://doi.org/10.1093/nar/gky1095
https://doi.org/10.1093/nar/gky1095
https://doi.org/10.1038/35057062
https://doi.org/10.1038/35057062
https://doi.org/10.1038/35057062
https://doi.org/10.1038/ng1089
https://doi.org/10.1038/ng1089
https://doi.org/10.1038/ng1089
https://doi.org/10.1007/s10822-016-9938-8
https://doi.org/10.1007/s10822-016-9938-8
https://doi.org/10.1007/s10822-016-9938-8
https://doi.org/10.1007/s10822-016-9938-8

[14] W. J. Kent et al. “The Human Genome Browser at UCSC”. In: Genome Research 12.6 (May
2002), pp. 996–1006. DOI: 10.1101/gr.229102. URL: https://doi.org/10.
1101/gr.229102.

[15] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. 2014.
eprint: arXiv:1412.6980.

[16] Limor Leibovich et al. “DRIMust: a web server for discovering rank imbalanced motifs
using suffix trees”. In: Nucleic Acids Research 41.W1 (May 2013), W174–W179. DOI:
10.1093/nar/gkt407. URL: https://doi.org/10.1093/nar/gkt407.

[17] Alona Levy-Jurgenson et al. “Predicting Methylation from Sequence and Gene Expression
Using Deep Learning with Attention”. In: (Dec. 2018). DOI: 10.1101/491357. URL:
https://doi.org/10.1101/491357.

[18] Alona Levy-Jurgenson et al. “Predicting Methylation from Sequence and Gene Expression
Using Deep Learning with Attention”. In: Algorithms for Computational Biology. Springer
International Publishing, 2019, pp. 179–190. DOI: 10.1007/978-3-030-18174-
1_13. URL: https://doi.org/10.1007/978-3-030-18174-1_13.

[19] Alona Levy-Jurgenson et al. “Spatial transcriptomics inferred from pathology whole-slide
images links tumor heterogeneity to survival in breast and lung cancer”. In: Scientific Re-
ports 10.1 (Nov. 2020). DOI: 10.1038/s41598- 020- 75708- z. URL: https:
//doi.org/10.1038/s41598-020-75708-z.

[20] Jiecong Lin and Ka-Chun Wong. “Off-target predictions in CRISPR-Cas9 gene editing
using deep learning”. In: Bioinformatics 34.17 (Sept. 2018), pp. i656–i663. DOI: 10 .
1093 / bioinformatics / bty554. URL: https : / / doi . org / 10 . 1093 /
bioinformatics/bty554.

[21] Barsanjit Mazumder, Vasudevan Seshadri, and Paul L Fox. “Translational control by the
3′-UTR: the ends specify the means”. In: Trends in Biochemical Sciences 28.2 (Feb. 2003),
pp. 91–98. DOI: 10.1016/s0968-0004(03)00002-1. URL: https://doi.org/
10.1016/s0968-0004(03)00002-1.

[22] Pedro T Monteiro et al. “YEASTRACT: a portal for cross-species comparative genomics of
transcription regulation in yeasts”. In: Nucleic Acids Research 48.D1 (Oct. 2019), pp. D642–
D649. DOI: 10.1093/nar/gkz859. URL: https://doi.org/10.1093/nar/
gkz859.

[23] Evan D. Muse et al. “A Whole Blood Molecular Signature for Acute Myocardial Infarc-
tion”. In: Scientific Reports 7.1 (Sept. 2017). DOI: 10.1038/s41598-017-12166-0.
URL: https://doi.org/10.1038/s41598-017-12166-0.

[24] Joshua M. Stuart et al. “A Gene-Coexpression Network for Global Discovery of Conserved
Genetic Modules”. In: Science 302.5643 (2003), pp. 249–255. ISSN: 0036-8075. DOI: 10.
1126/science.1087447. eprint: https://science.sciencemag.org/
content/302/5643/249.full.pdf. URL: https://science.sciencemag.
org/content/302/5643/249.

[25] Mukund Sundararajan, Ankur Taly, and Qiqi Yan. “Axiomatic Attribution for Deep Net-
works”. In: CoRR abs/1703.01365 (2017). arXiv: 1703.01365. URL: http://arxiv.
org/abs/1703.01365.

[26] Shinya Tasaki et al. “Deep learning decodes the principles of differential gene expression”.
In: Nature Machine Intelligence 2.7 (2020), pp. 376–386. DOI: 10.1038/s42256-
020-0201-6. URL: https://doi.org/10.1038%2Fs42256-020-0201-6.

29

https://doi.org/10.1101/gr.229102
https://doi.org/10.1101/gr.229102
https://doi.org/10.1101/gr.229102
arXiv:1412.6980
https://doi.org/10.1093/nar/gkt407
https://doi.org/10.1093/nar/gkt407
https://doi.org/10.1101/491357
https://doi.org/10.1101/491357
https://doi.org/10.1007/978-3-030-18174-1_13
https://doi.org/10.1007/978-3-030-18174-1_13
https://doi.org/10.1007/978-3-030-18174-1_13
https://doi.org/10.1038/s41598-020-75708-z
https://doi.org/10.1038/s41598-020-75708-z
https://doi.org/10.1038/s41598-020-75708-z
https://doi.org/10.1093/bioinformatics/bty554
https://doi.org/10.1093/bioinformatics/bty554
https://doi.org/10.1093/bioinformatics/bty554
https://doi.org/10.1093/bioinformatics/bty554
https://doi.org/10.1016/s0968-0004(03)00002-1
https://doi.org/10.1016/s0968-0004(03)00002-1
https://doi.org/10.1016/s0968-0004(03)00002-1
https://doi.org/10.1093/nar/gkz859
https://doi.org/10.1093/nar/gkz859
https://doi.org/10.1093/nar/gkz859
https://doi.org/10.1038/s41598-017-12166-0
https://doi.org/10.1038/s41598-017-12166-0
https://doi.org/10.1126/science.1087447
https://doi.org/10.1126/science.1087447
https://science.sciencemag.org/content/302/5643/249.full.pdf
https://science.sciencemag.org/content/302/5643/249.full.pdf
https://science.sciencemag.org/content/302/5643/249
https://science.sciencemag.org/content/302/5643/249
https://arxiv.org/abs/1703.01365
http://arxiv.org/abs/1703.01365
http://arxiv.org/abs/1703.01365
https://doi.org/10.1038/s42256-020-0201-6
https://doi.org/10.1038/s42256-020-0201-6
https://doi.org/10.1038%2Fs42256-020-0201-6

[27] Bin Zhang and Steve Horvath. “A General Framework for Weighted Gene Co-Expression
Network Analysis”. In: Statistical Applications in Genetics and Molecular Biology 4.1 (12
Aug. 2005). DOI: https://doi.org/10.2202/1544-6115.1128. URL: https:
//www.degruyter.com/view/journals/sagmb/4/1/article-sagmb.
2005.4.1.1128.xml.xml.

30

https://doi.org/https://doi.org/10.2202/1544-6115.1128
https://www.degruyter.com/view/journals/sagmb/4/1/article-sagmb.2005.4.1.1128.xml.xml
https://www.degruyter.com/view/journals/sagmb/4/1/article-sagmb.2005.4.1.1128.xml.xml
https://www.degruyter.com/view/journals/sagmb/4/1/article-sagmb.2005.4.1.1128.xml.xml

 המרכז הבינתחומי בהרצליה
 בית-ספר אפי ארזי למדעי המחשב

 התכנית לתואר שני (M.Sc.) - מסלול מחקרי

 למידה עמוקה ורצפים קובעי

 מִתְאָם של ביטוי גנטי

 מאת
 שרון מאיר סולטן

.M.Sc עבודת תזה המוגשת כחלק מהדרישות לשם קבלת תואר מוסמך
 במסלול המחקרי בבית ספר אפי ארזי למדעי המחשב, המרכז

 הבינתחומי הרצליה

 פברואר 2021

 תקציר

לבין גנים בין קשר למצוא על-מנת כמַחְוָן לשמש יכול גנטי ביטוי של מִתְאָם

וכדי גנים של תפקידם את יותר טוב להבין על-מנת זאת ביולוגיים. תהליכים

הללו, הקשרים אחר הִתְחַקּותּ חיים. ביצורים בקרה תהליכי לחקור

ק. להֶסֵּ וקשים מורכבים להיות עלולים והבנתם, אותם, שיוצרים והתהליכים

בתחום חשוב תפקיד ותופסות הולכות עמוקות נוירונים רשתות זה, לצד

ללמוד על-מנת בימינו נרחב שימוש אלו ברשתות נעשה החישובית. הביולוגיה

זה במאמר סמויים. וקשרים מורכבות ביולוגיות בעיות ולפתור לחזות לגלות,

ביטוי של מתאם קשרי לחזות כדי עמוקה למידה של בכלים שימוש מציגים אנו

אלו. קשרים קובעים אשר חבויים גנטיים רצפים של מיקומם את ולפענח גנטי

של וגילוי חיזוי של בהקשר העמוקה הרשת יכולות את חוקרים אנו תחילה

לאחר ממשיים. גנומים רצפים מעל שנבנו סינתטיים, בנתונים חבויים מוטיבים

מתאם של אמיתיים נתונים על השיטות אותן את ומיישמים מעמיקים אנו מכן,

התהליך כי להראות בידינו עולה מָרִים. בשְׁ ממדידות שנאספו גנטי ביטוי של

ולחשוף משמעות בעלי חיזויים להפיק מסוגל שבנינו, עמוקה למידה המבוסס

שייכים הם כי שאפשר להבנת המפתח להיות יכולים אלה מוטיבים מוטיבים.

כן כמו .(CoAMs = Co-expression Associated Motifs) גנטי ביטוי של למתאם

ידוע תפקיד ממלאים והם מוכר הללו המוטיבים מן חלק כי מראים אנו

 בתהליכי בקרה בשמרים.

 עבודה זו בוצעה בהדרכתו של פרופ' זהר יכיני מבי"ס אפי ארזי למדעי המחשב,
 המרכז הבינתחומי, הרצליה.

