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Abstract

The advent of high throughput sequencing has greatly improved our ability to investigate the evolutionary
history of species using detailed demographic models. A popular approach for inferring parameters in these
demographic models is to sample genealogical histories at many short unlinked loci using a Markov Chain
Monte Carlo algorithm. The use of explicit coalescent models by these methods makes them powerful for
inferring demographic parameters, but they are limited in their ability to assess the fit of the inferred model
to data. The purpose of this research is to examine a new approach, based on Relative Bayes Factors, for
using genealogy samples to compare different evolutionary hypotheses.

In this work we review Bayesian inference of parameterized demographic models and formalize the model
selection problem. We then define Relative Bayes Factors (RBFs), which represent demographic model fit
relative to some reference demographic model. We further derive RBFs for two types of reference models -
Clade models and Comb models. The two types are useful for different model-selection problem instances.
Having reached tractable formulae for relative model fit, we describe in detail how they are calculated in an
efficient manner, without incurring significant computational overhead during MCMC sampling. Finally, we
test these model-fit assessments using a series of model-selection experiments based on simulated sequence
data. Our results show RBFs significantly improving on the base-line harmonic mean model fit estimator in
the model selection task.
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1 Introduction

In recent years, advances in high throughput DNA sequencing have made it easy to sequence many genomes
of individuals from closely related species. This allows evolutionary biologists to examine the evolution
of recently diverged species by employing sophisticated computational methods and statistical models.
Typically, an evolutionary biologist, having obtained and aligned genome sequences of individuals from
closely related species or populations, would like to reconstruct the evolutionary history of these populations.
This evolutionary history includes a series of population splits, population size changes and post-divergence
gene flow.

Evolutionary history is often modeled using a parameterized probabilistic demographic model M, which
induces a probability distribution over observed genomic data X. The structural components of M consist
of a population phylogeny 7 and a collection of migration bands B that indicate ordered pairs of populations
between which gene flow is allowed. The free parameters of M, such as population divergence times,
population sizes and migration rates, are denoted by ®. The model M is thus defined by specifying the
structural components (7, B) and a prior distribution over the free parameters of the model P(©®|M).
The conditional probability distribution for the observed genomic data P(X|M, ©) is defined by standard
models for molecular evolution and population genetics (e.g., Jukes and Cantor (1969); Kingman (1982)).

A common approach to inferring parameters of a demographic model M is to assume the model structure
(T, B), and to explicitly represent the genealogy of the sequenced individuals at short unlinked loci. These
genealogies are used along-side the target model parameters as hidden variables in a Markov chain Monte
Carlo MCMC) sampling algorithm. The algorithm effectively integrates out the genealogical relationships
between individuals and produces Bayesian estimates of target parameters. These methods have two key
advantages. 1) The full probabilistic generative model of the data at their core allows modeling of more
complex evolutionary history, with more free parameters; 2) The parameter values sampled by the MCMC
provide means to assess the uncertainty in the resulting estimates. However, because these methods condition
on a given model structure, they provide no straightforward way to compare demographic model hypotheses.

In principle, measuring of model fit P(X|M) can be approximated by using importance sampling on
the approximated posterior distribution (Newton and Raftery (1994)), and this could be used to compare
models. However, it was shown that estimates tend to be biased upward, and they are more biased the more
parameter-rich the model is (Xie et al., 2011). There have been several methods suggested to improve the
accuracy of importance sampling estimation by sampling from “hybrid”” models (Lartillot and Philippe, 2006;
Xie et al., 2011). These methods are very effective, but they require an order of magnitude more sampling
iterations ( 10x ) compared to the number of iterations required for the MCMC of parameter inference. So
they are not very practical in our setting.

The goal of our research is thus to improve on existing importance-sampling approaches to model
selection, without incurring significant additional computational cost. We accomplish this by estimating
model fit relative to some reference model M,..;. Reference models are base-line phylogenetic structures
used to asses model fit within a specific context, allowing us to better select between competing model
candidates. We implement the model-selection algorithm based on the parameter-inference framework
G-PhoCS , but our theory and approach can be applied to all bayesian demography inference methods.

We will start in subsection 1.1 by overviewing relevant work in the field. Subsections 1.2-1.3 present
background on the demography inference problem and state the model selection problem. Section 2 formally
introduces the concept of reference models and explains how they relate to phylogenetic population models.
It then derives the theory behind our relative Bayes factors (RBFs), and explains how they are used as
model selection criteria. Section 3 explains in depth our implementation of McRef - our model selection
algorithm which uses the G-PhoCS parameter-inference framework. McRef earned it’s nickname due to it’s
employment of reference models in the MCMC process. Finally, in section 4 we share empirical results from
our model-selection experiments on simulated sequence data, showcasing the advantages and limitations of



our method.

1.1 Related work

There are several common approaches for demography inference; Likelihood-based models associate each
model M with the most likely parameter values ®. The joint likelihood P(X|M, ©) is then approximated
by making additional simplifying assumptions on the population genetic model, or the data. There are
methods which assume that all sites are independent (i.e. allow free recombination between sites) and use
a combination of analytic calculations and simulations to estimate P(X|M, ®) (Gutenkunst et al., 2009;
Kamm, Terhorst and Song, 2017; Kamm et al., 2018). Other methods use summary statistics extracted from
the data, such as the lengths of shared haplotypes (Harris and Nielsen, 2013; Browning and Browning, 2015).
The key disadvantages of these methods is that 1) they make many simplifying assumptions, and 2) they
associate a model with its most likely parameter values. This means they give an advantage to models which
imply high confidence in the parameter values compared to models where the likelihood is more spread out
across the parameter space.

Bayesian model-based methods, such as IM (Nielsen and Wakeley, 2001) (most updated version IMa2p
(Hey and Nielsen, 2007; Sethuraman and Hey, 2016)), MCMCcoal Rannala and Yang (2003) (most updated
version BPP (Yang, 2015)), and G-PhoCS (Gronau et al., 2011) all explicitly model genealogies coalescing
in a population phylogeny, and differ mostly in additional modeling assumptions and software design. BPP
does not model gene flow between populations and is thus mostly used for relatively diverged species. IM
was originally developed for analyzing data from models with only two leaf populations. It has since been
extended for larger population phylogenies, but its design limits its use to relatively small data sets (few
populations and up to 1,000 loci). Importantly, all methods use MCMC to generate posterior samples of the
model parameters, and the model selection methods we develop here can be applied to all of them.

Regarding estimation of Bayes factors, the basic idea to use importance sampling (IS) to estimate
P(X|M) in a Bayesian setting was suggested by Newton and Raftery (1994). This idea has since become
the standard way to estimate model fit in a Bayesian setting, but experience has shown it to be very noisy
and biased toward more complex models (Xie et al., 2011). In particular, it was shown that estimates tend
to be biased upward, and they are more biased the more parameter-rich the model is. Several methods have
suggested ways to improve the accuracy of IS estimation by sampling from “hybrid” models, which combine
the prior P(®|M) times some power of the conditional P(X, G| M, ©) (Lartillot and Philippe, 2006; Xie
et al., 2011). Unfortunately, though these methods are effective, they require an order of magnitude more
sampling iterations compared to the number of iterations required for the MCMC of parameter estimation.

1.2 Bayesian inference and G-PhoCS

The objective of demography inference methods is to infer values for ® that have high joint prob-
ability with the data: P(X,©|M) = P(®|M)P(X|M,®), where © consist of divergence times,
T = {7, : pis an ancestral population in 7'}, effective population sizes, @ = {6, : p is a population in 7T},
and migration rates, m = {my, : b € B}. Values of parameters in ® are scaled by mutation rate.

Because the conditional probability P(X|M, ®) does not typically have a closed-form expression, an
increasingly popular approach for inference is to introduce additional hidden variables G, which represent
genealogical relationships between the sampled individuals. The benefit of this is that given the genealogical
information, the data X becomes independent of the model M and parameters ®, and the likelihood can be
expressed as a product of three tractable terms:

P(X,G,0|M) = P(®|M)P(G|M,O®)P(X|G). (1)



This joint probability function may be used by a Markov chain Monte Carlo (MCMC) algorithm to
generate a sample of model parameters together with genealogies according to a probability distribution
approximating the posterior, P(G, ®| M, X). Consequently, the sampled parameter values have high joint
probability with the data. A major advantage of this approach to parameter inference is that it is extremely
flexible and can be applied to a wide range of demographic models and different types of genomic data.

G-PhoCS is one such Bayesian demography inference method. G-PhoCS considers a model of sequence
data at short unlinked loci, where G contains the information on the local tree in each locus, and loci are
assumed to be independent (Figure 1) (e.g., Nielsen and Wakeley (2001); Rannala and Yang (2003); Gronau
et al. (2011)). Equation 2 shows the probability distribution approximated by G-PhoCS.

P(X,G,8|M) = P(O|M)P(G|M,©)P(X|G) = P(O|M)][[P(GiIM,©)P(X)|Gy). (2)
l

In the above Equation 2 P(®]|M) is the prior probability of model parameters. P(G;|M, ®) is the
probability of local genealogy GG; atlocus [ given the model parameters. This is calculated under the Kingman
Coalescent model, with special regard to migration events. P(X;|G;) is the local data likelihood given local
genealogy (;, which is computed using standard DNA substitution models (Jukes and Cantor (1969)). In
each MCMC update step G-PhoCS proposes a new instace of G&®. It then decides whether to accept
the proposal based on the ratio between complete likelihoods of the current instance and proposed instance.
Each G-PhoCS update step is divided into a series of Metropolis-Hastings updates of subsets of variables.
The update steps are:

1. Update coalescent times: For each individual coalescent event in each population, perturb the time of
the event without changing the topology of the genealogy or any other coalescent time.

2. Update genealogy structure: For each subtree of each genealogy, alter the subtree using a subtree
prune-and-regraft operation.

3. Update ¢,: For each population p, perturb 0,,.

4. Update 7;,: For each population p, perturb 7,,. If nescessary, also “stretch” or "squeeze" each genealogy
G; as needed to accommodate the proposed change in 7,,.

5. Rescale all parameters: Slightly perturb all model parameters 6, 7,, m; and all coalescent times
across all genealogies by a multiplicative factor sampled close to 1.

\54;—*—? outgroup
= ind 1
\(
\w ) Ne= ind 2
\\§ Jocal genealogy '
\" ind 3
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Figure 1. G-PhoCS uses independant loci chosen to be far away from genes and from
each other to reduce the influence of selection and accomodate the assumption of
independence. A local genealogy is represented over each locus and embedded in the
population phylogeny.



1.3 The model selection problem

The model selection problem takes sequence data and a series of demography models My, ... M,,, which
differ in their structural components, and aims to find the one which best fits the data set, i.e. select the
model M; with maximal P(X|M;). Typically only the structural assumptions of the models are compared
(T and B), and not specific parameter values (®). Figure 2 is an example instance of the model selection
problem, in which we need to choose the best fitting model amongst three structural hypotheses.

sequence data

-1

model M3 model M3 model M3

Figure 2. An example problem of selecting between three models with different
topological structures. Model M has three leaf populations and no migration. Model
M has the same phylogeny as M but with an additional migration band. In model
M3 the relationship between leaves is different. Given aligned sequence data and a set
of structural hypotheses, we wish to choose which structural model best fits the data.

In this study, building upon the G-PhoCS demography inference method and MCMC sampler, we develop
the theoretical framework for a robust model-selection scheme, and implement a method for comparing
models and their fit to data, this without analytically calculating P(X|M;).

2 Methods

2.1 Estimating data likelihood via importance sampling

Model fit is best captured by the marginal data likelihood, P(X|M), whose computation involves integration
over the space of unknown parameter values and genealogical relationships, denoted jointly by G®. This
high-dimensional integral may be approximated via importance sampling using a collection of instances

{GG)(i)} sampled via MCMC conditioned on X and M. The approximation is established by expressing



the inverse of the likelihood as an expected value under the posterior distribution of G® given M and X:

1 { P(GO|M)dGO
PX|IM) P(X|M)
J P(GO|M) P(X,GO|M)
P(X|M) P(X,GO|M)
_ fP(G@,X|M)/P(X,GG)M)
P(X|M) P(GO|M)
P(GO|M,X)

_ [ECOMX) e
P(X|M,GO)

dGO

dGO

JWP(GG)\M,X)CZG@

= Ecemx [.P();C'})]

1 i 1 3)
N &= p(X|GW)

&

This harmonic mean estimator is straightforward and can be applied in a very general setting, but its
practical use is often limited due to very high variance of the inverse likelihood, 1/P(X|G). This high
variance means that only models with very different levels of fit may be compared reliably via harmonic mean
estimators of P(X|M). The main objective of the approach we propose next is to correlate the sensitivity
of model comparison with the level of similarity between the models being compared.

2.2 Relative Bayes factors

We propose here an alternative way to evaluate the fit of model M by estimating its likelihood relative to

some reference model M,..¢. As before, assume a collection {G(-)(Z)} sampled via MCMC according to
an approximate posterior probability distribution P(GO®|M,X). We wish to use these MCMC samples
to estimate the Bayes factor of M relative to M,.y, defined as the ratio P(X|M)/P(X|M,c¢). The
Bayes factor can be estimated by running an additional MCMC for M,..; and taking the ratio of the two
harmonic-mean estimates for P (X\M) and P(X|M,.¢). However, in some cases the relative Bayes factor

may be estimated directly from {GG) } without the need of an additional MCMC for M,..¢. This is done
by connecting the models M and M,..; via a conditional distribution over the the hidden variables of M,

]5(G®|MT6 ), which satisfies the following two requirements:

P(X|Myep) = fﬁ(G@wmf) P(X|G) dGO 4)

P(GOIM,X) =0 = P(GO|M,;) =0 (5)

The model pairing conditional distribution, ZS(G(-)|MTef), plays a key role in our estimator of the

relative Bayes factor. The special notation P indicates that this probability function is not naturally defined
by either M or M,..y, and there will typically be some degree of freedom associated with its specification.
Given a model-pairing conditional distribution, the relative Bayes factor may be expressed as an expected



value under the posterior distribution of G® given M and X, implying the following approximation:

1 . PX[Me) _ [P(GOIM,s) P(X|G) dGO ©
BF(M : M,s|X) P(X|M) P(X|M)
_ [ P(G®M,p) P(X|G) P(GO|M,X)
- |[Pw e reemxie O
_ [ P(GOIM,s) P(X|G)
_‘[ (X, GO P(G®|M,X)dGO
_ [ P(GOM,.)
_ JHGOMM_HGGMmXMGG (8)
ok P(GO|M,.y)
GOIMX | TP(GOIM)
P(GOY | M,.;)
~ ea 9
NZ P(GOW|M) ®

Note that the condition of Equation 4 implies the equality in Equation 6, and the condition of Equation
5 guarantees no division-by-zero in Equation 7. Interestingly, the contribution of the data to the likeli-
hood cancels out in Equation 8 (because it is equal in both models). Thus the ratio used for estimation,
P(GO|M,., 1)/P(G®|M), is not a direct function of the data (X), and the data affects the estimate only
through its influence on the sampled instances {G@ } We refer to the ratio in Equation 6 as the relative
Bayes factor (RBF) ratio, and employ it as a model selection criteria by comparing RBFs of competing
hypothesis models, calculated using the same reference model -

1 1
BF(M; : Myes[X) ~ BE(M; : MyesX)

P(X|M;) > P(X|M;)

Importantly, the variance of the RBF depends on the definition of the model-pairing conditional, P, and
it will typically decrease as M and M,y become more similar. For instance, in the trivial case where
Mep = M, we can define f’(G@|MTef) = P(G®|M) and the RBF ratio becomes 1 for all instances
{G@(i)}. This is the key advantage of direct estimation of the Bayes factor, when compared to estimation
via harmonic mean. Realizing this advantage requires construction of an effective model-pairing conditional
distribution for M and M,..;. The following sections present specific constructions for P in a series of
cases.

2.3 The null reference model M,

We start by considering a simple case where M is a demographic model with no migration bands and M,..
is the simplest possible model with a single population pg of constant size 6y. We refer to this simple one-
parameter model as the null reference model M (Figure 3). The first step of constructing a model-pairing
conditional for the two models is to identify a mapping F' from the space of hidden variables in M to the

space of hidden variables in M. In our case, denote by G and © the hidden variables of M. Since
both M and M have no migration bands, we may assume that the genealogical information used by both
models is the same, implying a natural one-to-one mapping between G and G (the implications of migration
are discussed in the next subsection). A mapping between ® = (7,0) and ©® = () can be defined by
selecting one of the population size parameters in ® to be associated with 6y. This can be the size of the root
population, 0,.,., or any other population that we expect to best represent the single population in M. The
model pairing conditional is obtained by applying this mapping and extending it to the unmapped hidden
variables, Z = (7,0\{0,00t}), with the use of a conditional distribution, P(Z|GO\Z):

P(GO|Mgy) = P8y = Oroot| Mo) P(G = G| Moy, 00 = Oroot) P(Z|G, 0ro0t) . (10)



Figure 3. Mapping the hypothesis model M}, onto the null reference model M.
Genealogies are mapped as-is. The null population size 6 is defined by associating it
with the size of the population in M which we expect to best represent pg (usually
0ro00t). The remaining model parameters are mapped so as to satisfy the model-pairing
requirements (4 & 5): Population sizes {6, ,6p,,6,.,0p,,} are mapped according to
their prior probability in My,,,. These have no effect on the reference model
structure. Divergence times {7,p, Troot} are mapped onto a uniform distribution with
upper bound calculated (see Appendix A).

The model-pairing condition of Equation 4 is thus established, regardless of how p (Z|G, 0r00t) is defined:
P(X|Mo) — Jp(éwo) PG| Mo, ©) P(X|G) dGd®

- f P (8 = Bro0t| M) P(G = G| Mo, 0 = Or00r) P(X|G) dGlb, 01

fp(oo = Broot| Mo) P(G = G| Mo, 0 = br00t) P(X|G) (J P(Z|G, 0,001) dz> AGdb, o0t

= JP(GO = Br00t| Mo) PG = G| Mo, 60 = br00t) ]3(Z|G, Oro0t) P(X|G) dGO

fﬁ(G@M/lo) P(X|G) dGO . (11)

We are left to construct IS(Z\G, Or00t) O that it ensures the model-pairing condition of Equation 5, and
we wish to use the remaining degree of freedom to minimize the variance of the RBF ratio. Equation 5 is
guaranteed by constricting ﬁ(Z|G, Or00t) to have zero values whenever P(QG, 0,00t, Z| M, X) = 0. Among
the unmapped variables Z = (7,6\{0,00}), the population size parameters 6\{6,,,;} do not pose any
restrictions on the mapped variables G, 0;.,,:. This means that Equations 5 is guaranteed regardless of how
their marginal distribution is defined. We thus define their conditional probability distribution according to

10



their prior probability in M, to cancel out terms in the RBF ratio and reduce its variance.
]B(G®|MO) _ P(QO = 9root|MO) P(G|MU790 = eroot) ]B(Z|G79root)

P(GO|M) P(GO|M)
P(G|Mo, 0 = 0ro0t) P00 = OrootlM0) [ 1,20, P0G 0r00t) P(7|G,0)
B P(G|M, ©) P(Oroot|M) T, P(0,]M) P(T|M)
_ P(GIMo,00 = br00t) P60 = br00tlMo) P(7]G,6) a2
P(G|M, ©) P(Oroot|M)  P(T|IM)

Note that if we assume that M and M use the same prior distribution over 6,.,.: and 6y (resp.), then the
middle term in Equation 12 also cancels out. We cannot similarly define P (T|G, 0) = P(1|M), because
this may lead to conflicts between divergence times and coalescence times in (s, which result in violation
of the model-pairing condition of Equation 5. Such conflicts occur when a divergence time 7, is deeper
than the most recent common ancestor in G of two individuals that are each a descendant of a different
daughter population of population p. Thus, the final step of constructing IB(GG)\MTG ) is to construct
P(7|G,8) = P(7|G) to have zero values whenever P(G|M,7,0) = 0. This guarantee is achieved by
computing for each 73, an upper bound based on the coalescent events in G and defining 15(7' |G) as a product
of uniform distributions in the feasible ranges of 7 (see Appendix A for complete derivation and proof).

2.4 Models with gene flow

Assume now that the reference model is still the null model, M, but the model of interest, M, has a non-
empty set of migration bands, B, associated with migration rates, m = {m;, : b € B}. Migrations complicate
the mapping between M and M because the genealogies in M hold information about migration events,
but the genealogies in Mg do not (Figure 4).

Mhyp M

AN

Figure 4. Mapping a model with migration onto the null reference model.
Genealogies in py do not hold information about migration events. A complex
interplay between migration events and coalescence times makes defining the
conditional probability distribution p challenging. Appendix B specifies the
generative process used to address this.

For a sequence of local genealogies G in M, denote by G, the coalescent trees implied by G and denote
by G, the information on migration events in G (locus, timing of event, branch in G, source and target

11



populations). Thus, a mapping between the hidden variables of M (G, G,,, ®) and the hidden variables
of My (é, o) can be defined by mapping G, to G and mapping some 0., € © to 6y. Consequently, the
set of unmapped hidden variables is Z = (G, 7, m, 0\{0,,0:}). This implies a slight modification of the
model-pairing conditional specified in Equation 10:

]B(G®|MO) = P(HO = 07'0015‘-/\/10) P((N; = G(:|M0;00 = 97'0015) ﬁ(Z|GC797'oot) . (13)

The model-pairing condition of Equation 4 can be confirmed by following a sequence of equalities similar
to the ones we derived for the scenario without migration (see Equation 11). We are thus left to specify

the conditional distribution ]3(Z|GC, Br00t) to ensure that all GO for which P(Ge, 6001, Z|M,X) = 0
also satisfy P(Z|G¢,6,00t) = 0. Since the genealogy trees G, do not restrict the population size and

migration rate parameters, we may define the conditional probability for these parameters based on their
prior probability under M, so that their terms cancel out in the RBF ratio:

P(GOIMy)  P(By = Oroot|Mo) P(G = G| Mo, 00 = bro0t) P(Z|Ge, 0ro0t)

P(GOIM) P(GO|M)
P(G.|Mo, 0 = 0root) P00 = 0root| Mo) I 1,200t P(0,|Ge, 0r00t) [, P(1my|Ge, Oroor) P(1,Gn|G.)
P(G¢, G| M, ©) POroot| M) [ 1p2,,,, PO M) TT, P(ms| M) P(r|M)
_ P(Ge|Mo. 00 = Oroot) P00 = Oro0t|Mo) P(T.Gin|Ge) 14
P(G¢, G| M, 0O) P(0root| M) P(r|M)

As in the case without migration, we are left to define the conditional probability distribution over the
restricting hidden variables, which are in this case the divergence times 7 and the migration events G,,,. The
complex dependence between divergence times and migration events makes this particularly challenging.
For instance, a migration event between populations p; and py at time ¢ implies that the divergence times
of all populations ancestral to p; and p» is at least ¢, but at the same time this migration event may also
relax the upper bound of these divergence times. Thus, bounds on divergence times cannot be determined
solely based on G, and the conditional 13(7', G,,|G.) cannot be factored into a product of two separate
probability distributions for 7 and G,,,. In Appendix B we present a specification for the joint conditional
distribution P(7, G| G.), which addresses this complex dependence and ensures that P(7, G| G.) = 0
whenever P(7, G, G.|M) = 0. This construction results in additional terms canceling out with terms in
the genealogy likelihood P(G., G| M, ®), to further reduce the variance of the RBF ratio.

2.5 The comb reference model

The null model has the unique advantage of being a valid reference for the comparison of any two models.
This advantage, however, comes at the cost of collapsing all population structure. In many cases we know the
population designation of the sampled individuals, and model uncertainty is restricted to the relationships
between the sampled populations. To capture this simple structure we use a population phylogeny with a
single ancestral population splitting simultaneously into all sampled populations. We refer to such reference
models as comb models and denote them by M, due to the comb-like structure of the population phylogeny
(Figure 5). A comb modelis defined by: (1) a set of sampled (leaf) populations, L; (2) an ancestral population,
comb; and (3) a set of migration bands B, between populations in L. The resulting demographic model,
Mm(L, BL), has | Br| + |L| + 2 parameters: ©® = (Toomyp, 6, M), where 6 = {6, :pe LU {comb}}and
m = {mb:bEBL}.

Consider a demographic model, M (7, B), and its corresponding comb model, Mm(L, By,), defined
by L = leaves(T) and By, = B n (L x L). For brevity, we refer to M—(L, By,) simply as Mm. The
model-pairing conditional distribution for M and M is constructed by first defining a mapping between

12
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Figure 5. A mapping from hypothesis My, onto the reference model M .oy,s.
Genealogies and model parameters above min(7) are mapped according to the
mapping into the null model (Subsection 2.3) and those below min(7) are mapped as
is. The remaining parameter p.,,; can be freely mapped in order to improve RBF
estimation.

the hidden variables of M (G®) and the hidden variables of M (GO). This mapping is derived from
the requirement that below the comb divergence time (7,.,,5) the comb model is identical to M and above it
M is identical to the null model M. We thus set Teomp = Tmin a min(7), to guarantee that all population
divergence events in M map to the comb population in M. The migration rates of bands in B n (L x L)
and effective sizes of populations in L are mapped into their counterparts in ©, and following the mapping
for the null model, a single ancestral population size parameter (6,-,5;) is chosen to be mapped into 0.,,,5. We
denote the set of mapped migration rate and population size parameters of M collectively as ®~. Mapping
between genealogies is obtained by removing from G all migration events above time 7;,. The resulting
collection of local genealogies are denoted by G and are directly mapped to G. The remaining unmapped
hidden variables (Z) of M consist of the following components:

1. Unmapped population size parameters: {6, : p ¢ L U {root} }.
2. Unmapped migration rate parameters: {my, : b¢ L x L}.

3. The identity of the ancestral population in 7 with minimum divergence time: minAncPop =
argmin(7). Note that this population may be any ancestral population with two leaf daughters, and
its identity is lost when mapping 7 into Teomp-

4. The divergence times of all other populations: {7, : p # minAncPop}.
5. Information on all migration events in G above time 7,,,,5, Which we denote by Gm‘>Tmin.

A model-pairing conditional distribution for M and M is thus established by applying the mapping de-
scribed above and specifying a conditional distribution over the unmapped parameters, P(Z| G, ©mm, Tmin)-
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The proof of the condition in Equation 4 is given below:
P(GO|Mm) = P(® = (Om, Tyin)|Mm) P(G = G| Mm, O, Tmin) P(Z|Grm, O, Tanin) - (15)
P(X|Mm) = fp(éwm) P(G|Mm, ©) P(X|G) dGO

_ fp(é — (O, Toin) | Mim) P(G = Grr Miry, Orms, Tin) P(X|Gr) dGrm@rminn
— JP((:) = (Om, Tuin)| M) P(G = G| M, O, Tonin) P(X|Grm) U P(Z|Gm, @m,Tmm)dz> AGmO®OmTomin
= fp((:) = (O, Tnin)|Mm) P(G = G| M, Om, Tnin) P(Z|Grn, O, Tnin) P(X|G) dGO

= fﬁ(cewo) P(X|G) dGO . (16)

The conditional distribution P(Z|Grm, ©m, Tmin ) is defined similar to its specification in the null model.
The unmapped population size and migration rate parameters are distributed according to their prior prob-
ability under M to eliminate terms in the RBF ratio. The identity of the minimal ancestral population,
minAncPop, is distributed uniformly among all ancestral populations in 7~ with two leaf daughters. We
denote the number of such populations in 7 by (7). The only unmapped variables restricted by G and
Tmin are the unmapped divergence times and migration events above time 7,;,. Their conditional distribution,
P(T\{Tmin}, G| 7| Ge)» is defined using the process described for the null model (see Appendices A and
B). This specification thus guarantees the condition of Equation 5, as in the case of the null reference model.
The resulting RBF ratio is expressed as follows:

P(GOMm)  P(O = (Om, Tmin)|Mm) P(G = G| M, O, Tmin) P(Z|Grr, O, Tanin)

P(GOIM) P(GO|M)
_ P(G = G| Mm, Om, Tmin) P(O© = (O, Tanin )| M) K(%')ﬁ(T\{Tmin}v G5 | Gre) (17)
B P(G|M, ©) P(©m|M) P(t|M) '

As in the case of the null reference model, the above RBF ratio has several terms canceling out. First,
the conditional probabilities of the unmapped population size and migration rate parameters cancel out with
their priors under M. Second, if we assume identical priors in both models for the mapped parameters, then
these cancel out as well in the second term of Equation 17. Terms in the genealogy likelihood contributed by
migration events above time i, also cancel out in the ratio (see Appendix B). Finally, the contribution of
all events below time 7y, (coalescence and migration) also cancel out. If we denote the portion of G below
time Tmin by G<r,;,,» and the portion above it by G, , then the contribution of G, to the first term of
the RBF ratio cancels out as follows:

P(Gm|Mm,®m77—min) _ P(GI_I_I<7.min|MI_I_I7 emaTmin)P(Gm>7—m,,‘|Mm’G)mvain)

P(GIM, ©) - P(G<,,IM,0)P(G>,, M, O)
. P(G<Tmm|./\/lm, Om, Teomb = Tml'n) P(Gc|>7—mi"‘Ml’T‘la Ocomp = eroot)
~ P(Gary, | M, O, min(7) = Tonin) P(G>r,, M, ©)
_ P(Gc|>7'mm|M0190 = eroot) (18)
P(G>Tmm|M7 8) .
The RBF may thus be re-expressed as follows:
P(GOIMm) 1 P(Gery O\{Tiin} | Mo) PO{Beomb} = (Om\froot}, rmn) M) o)

P(GOIM)  K(T) P(Gsr,,, O\{Tiin} | M) P(Om\{0ro0t}| M)
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2.6 Constructing a reference model

Subsections 2.3-2.5 described two examples of reference models - the null reference model and the comb
reference model. During construction of both these reference models, the structure of the entire phylogeny
(sans a portion of the leaves in case of a comb mapping) is collapsed into a single population, and a mapping
is derived from this. However, in many cases of interest the modeling uncertainty is restricted to a certain
subtree in the population phylogeny. In such cases, we wish to consider a reference model where only a
subset of the sampled populations is collapsed into a clade or a comb submodel.

In general, a reference model M, for hypothesis model M may be obtained by applying the following
three-step process:

1. First, choose a subtree of the population phylogeny of M. The subtree is associated with the
population p at its root.

2. Then collapse the subtree structure into either a clade structure, i.e. a single population p¢;4qe, Or a
comb structure, i.e. an ancestral population p.,,,p and a set of leaf populations and migration bands
L,By.

3. Finally, map the hidden parameters of M onto parameters of M,..r, defining the model-pairing
conditional distribution P such that the necessary conditions (4 & 5) are met. This mapping should
cancel-out as many terms of the RBF ratio as possible (equations (14) & (19)).

Identically mapping all structure and parameters outside the subtree of p during step 3 leads to canceling-
out of all corresponding terms in the RBF of M relative to M,..s.

3 RBF Computational Scheme

Having defined the concept of reference models and formulated their relative Bayes factors, we now describe
the computational scheme we use to estimate RBFs as derived in subsection 2.2:

1 1 i P(GOY | M,.y)

| 20
BFOM: Moy X) ~ N & p(Ggeim) (20)

This RBF is further derived for clade and comb reference models (Equations 14 & 19). We now focus
our attention on the components making up the model pairing conditional. Consider for example the RBF
derivation for a null reference model in equation 14 -

~

IS(GQ‘MO) ~ P(Gc’M0790 = eroot) P(QO = Hroot‘MO) P(T7 Gm‘Gc)

P(GO|M) P(G., G| M, ©) P(6root| M) P(T|M)

The two denominators P(G, G,,| M, ®) and P (7| M) are calculated as part of the G-PhoCS MCMC
flow. During RBF estimation these values are taken as-is from G-PhoCS and utilized as explained in section
3.5. In the derivation we suggest that the parameter priors P(6;,0:| M) and P(68y = 0;00t| M) may share
the same distribution and thus cancel out. However, in theory and practice, any parameter prior or constant
value can be sused as P(6y|My). In such a case, P(0,0t|M) is taken from G-PhoCS as-is and P(6y| M)
is plugged into the calculation in section 3.2. The condtional distribution ]5(7'7 G.|G.) is calculated as
described in appendices A and B and utilized as described in section 3.5. Lastly, the genealogy likelihood
in the reference model P(G.|My,0y = 6r00t) is calculated from scratch under Kingman’s coalescent.
We consider this the main component of the model pairing conditional, as it represents the bulk of our
computational challenge. The rest of section 3 details its calculation in an efficient manner.
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3.1 Maximizing algorithm flexibility

A main objective of our computational scheme is allowing maximal flexibility in choice of reference model,
while attaining reasonable algorithm run time and space usage. Since the most time consuming step is the
MCMC sampling algorithm, we assume only a single MCMC chain per hypothesis. With this in mind,
we note that there exists a clear trade-off between flexibility in choice of reference model and amount of
data the MCMC process is required to emit. For example, if the reference model is predetermined before
MCMC execution (i.e. no flexibility is required), the RBF ratio can be calculated during MCMC iteration
and only the final RBF estimation need be emitted. Unfortunately, this approach would require another full
MCMC execution in order to estimate RBF of any other reference model. On the other hand, the RBF for
every reference model could be computed in post-processing if the MCMC would print out the full hidden
state GO in each iteration. This, however, would yield an unreasonable amount of traced information - in
proportion to the size of the model and to the number of loci.

Our computational scheme aims to find a reasonable middle ground between these two extremes. Our
objective is to maximize the number of reference models we can consider using a single MCMC sampling
chain without blowing up the output trace. This is accomplished by identifying a collection of sufficient
statistics for G that satisfy three conditions:

1. The sufficient statistics allow calculation of P(G|®, M,.f) for a wide variety of reference model
structures, i.e. for any model structure obtained by applying a comb or clade collapse operation on an
ancestral population.

2. Given a reference model structure, the sufficient statistics allow calculation of P(G|©, M, ) for any
value of the freely parameter 0,0 .

3. The number of sufficient statistics depends on the complexity of the hypothesis model My, but not
on the size of the data (i.e. the number of individuals and of loci).

We then perform the RBF calculation in two phases. Phase 1, which is performed jointly with the MCMC
sampling process, emits intermediate summary statistics which meet the above three conditions. Phase 2
is then given a definition of specific reference model structure and mapping of free reference parameters.
This phase assembles the relevant statistics, plugs in the appropriate parameter priors and emits the final
estimate of WMIX) Phase 2 can be repeatedly rerun with different reference models, utilizing the
same sufficient statistics emitted by phase 1, thus calculating RBFs of different reference models.

Subsection 3.2 explains how to calculate sufficient statistics which meet conditions 2 & 3 for a single
model structure. Subsections 3.3 and 3.4 attain condition 1 by efficiently extending these statistics to all
comb and clade reference models. Later, section 3.5 explains how the intermediate sufficient statistics are
combined with other statistics into an RBF estimate for a specific reference model.

3.2 Efficient sufficient statistics for reference model genealogy likelihood

Sufficient statistics that satisfy conditions 2 & 3 are derived from the expression for the genealogy likelihood
P(G|®, M,s) under Kingman’s coalescent, which we briefly recall here. First, because the loci are
assumed to be freely recombining, then the local genealogies G = (G, ...G ) are conditionally independent
given the model parameters and the likelihood may be expressed as a product of locus-specific likelihoods,
P(G|®, M,.y). Each locus-specific likelihood is a product of exponentially distributed waiting times for
coalescent and migration events. The rates of these exponential distributions depend on the model parameters
(population sizes and migration rates) as well as the number of lineages considered for coalescence and
migration. We thus identify for each population the set of coalescent and migration events that change the
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number of lineages modeled in that population in G;. Each time interval I between two consecutive events
is associated with the following properties:

* t(I) — the elapsed time of the interval.
* n(I) — the number of lineages of G; alive during that time in the target population.

* isCoal(I) , isInMig(I) — binary values that indicate whether the event above the interval is a
coalescent event or incoming migration event (respectively).

The contribution of population p to P(G;|®, M,.¢) can then be expressed as a product over the set of
relevant time intervals Z(p, [):

9 isCoal([I) 9 I
fcoal(Gl7p|@7 Mref) = H (0) exp <—9 (n(2 )>t([)> . (2])
IeZ(p,l) N P p

Similarly, the contribution of migration band b to P(G;|®, M,..f) can be expressed as a product over the
set of time intervals Z (b, ) defined by events in the target population of the migration band:

Fmig(GL OO, Myep) = ] mp™™™9D exp (—my n(1) 4(1)) . (22)
I€Z(b,l)

Using these notations, the genealogy log likelihood can be expressed as follows:

In (P(G|®, M,ef)) = In (HP(Gl|@aMref)>
l

1H< n (n fcoal(Glap|®7Mref) nfmig(Gl7b®7Mref)> )
p b

l

ZZIH(fcoal(lep‘®7M7'ef)) + ZZln(f’rnig(Glab|®7M7'€f)) . (23)
l

p 1 b

The key to likelihood calculation is to sum over the log-likelihood contributions across time intervals
and across loci (Figure 6):

Zln (feoat(G1,P|®, Myey)) = ln(p)Z > isCoal(I _72 > ( ) )

U IeZ(p,l) 0 1 I€Z(p,l)
zln (fmig(G1,0]©, Mycy)) n(mp) Z Z isInMig( )—me Z n(I)t(I) . (25)
I IeZ(p,l) I IeZ(p,l)

Note that the four double sums in these expressions depend on the local genealogies G and the divergence
times {7,}, but they do not depend on the population size and migration rate parameters. We thus denote
these sums respectively as numCoals(G,p), coalStats(G, p), numMigs(G,b), and migStats(G,b),
and the log-likelihood can be expressed as follows:

2 1
In (P(G|®, M,ey)) = Zln (9) -numCoals(G, p) — i coal Stats(G, p) (26)
> P P
+ Zln (myp) - numMigs(G,b) — my - migStats(G,b) . 27)
b

The summary statistics numCoals(G,p), coalStats(G,p), numMigs(G,b)&migStats(G,b) ag-
gregate all genealogy state information, and postpone the plugging in of parameters 6, and m,,. This enables
computation of P(G|®, M,.r) for different parameters in a later stage, when settling on a specific free
parameter mapping, as specified in our 2nd requirement from the sufficient statistics.
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* numCoals(G;j, clade(AB)) = 3 * numCoals(G;j, clade(AB)) = 2
. coalStats(Gj, clade(AB)) = - coalStats(Gj, clade(AB)) = )
(3) -0 +(3) -t + (3) ttsi-ta) - (3) tty - 0) +(3) (ty - 1) +(3) (Tagc - ) -

Figure 6. The sufficient statistic coal Stat(G, clade(AB)) is calculated by
accumulating the Kingman Coalescent genealogy log-likelihod across loci. The
contribution of each locus is calculated via the set of intervals Z(clade(AB), ;). The
sufficient statistic numCloals(G, clade(AB)) is simply the sum across loci of the
amount of coalescence events inside clade(AB).

3.3 Sufficient statistics for all clade models

We now consider an example hypothesis and reference setting in order to describe all statistics required in
computing a single RBF estimation. The hypothesis model M has a set of leaf populations A, B, C' and
ancestral populations AB and ABC, as well as possibly other irrelevant populations. To create the reference
model M¢(4p) we collapse the clade under population AB and associate 6y with 64p5. A snippet of the
clade population is seen in Figure 6. The hypothesis and reference model are identical everywhere outside
the AB clade, so to compute the RBF we need only calculate terms inside the clade -

ﬁ(G®|MC(AB)> N P(G<TABC|MC(AB)a‘90 = 0aB) P(0y = 0a5|Mo) (TAB|G<7'ABC)
P(GO|M) P(Geal0a)P(Gepl0B)P(Geasl0as)  P(0as|M) P(tap|M)

A similiar derivation can be done for all reference models generated by the reference construction
process (subsection 2.6). To support calculating RBF of all these models we must calculate all rel-
evant terms for each reference model. Fortunately, statistics heavily reappear in different RBFs; To
fulfill all hypothesis genealogy likelihoods we emit per iteration the genealogy likelihood of each pop-
ulation. These are already calculated during MCMC. This fulfils terms P(Geal|04), P(Gep|fp) and
P(Geapl|0ap) in the above example. All theta values and theta and tau priors are also emitted in each
iteration. Reference tau priors are calculated as described in Appendix A and the rest are readily avail-
able from the MCMC process. This fulfils terms P(645|M), P(6y = 045|Mo), (TAB|G<7—ABC) and
P(74p|M) in the above example. Finally, sufficient statistics for all possible collapsed clades are emitted -
{ numCoals(G, clade(p)), coalStats(G, clade(p)) }p

To efficiently calculate sufficient statistics for all clades, calculation of numCoals and coalStats is
done recursively down the population phylogeny of M as implemented in the pseudo-python code below.
This implementation uses a function for computing coalStats given a sorted list of intervals (function
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calculate_coal_stats), as well as accessors to data from G-PhoCS (functions num_coals_from_gphocs
and sorted_intervals_from_gphocs):

def recursive_num_coals(pop):
"""recursively calculate and store num of coalescence
events in clade(pop) as well as all descendant clades"""

pop_num_coals = num_coals_from_gphocs (pop)

if is_leaf(pop):
return pop_num_coals

left_num_coals = recursive_num_coals(pop.left)
right_num_coals = recursive_num_coals(pop.right)

current_num_coals = pop_num_coals + left_num_coals + right_num_coals
store(current_num_coals)

return current_num_coals

def recursive_coal_stats(pop):
"""recursively calculate and store coalescence stats
of clade(pop) as well as all descendant clades"""

pop_intervals = sorted_intervals_from_gphocs (pop)

if is_leaf(pop):
return pop_intervals

left_intervals = recursive_coal_stats(pop.left)
right_intervals = recursive_coal_stats(pop.right)
merged_intervals = merge_sort(left_intervals, right_intervals)

clade_intervals = merged_intervals.append(pop_intervals)

clade_coal_stats = calculate_coal_stats(clade_intervals)
store(clade_coal_stats)

return clade_intervals

3.4 Recursive Sufficient Statistics for All Comb Models

Equation 18 shows how for a reference model created by comb-collapsing the root population, contribution
of the genealogy-likelihood to the model-pairing conditional is reduced to contribution of the portion of
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genealogies above Ty -
P<Gc|>‘rmin‘M07 00 = eroot)

P(G>Tmin |M? ®)

When comb-collapse is applied to a subtree, we apply the same idea to the portion of the genealogy
contained in that subtree. Figure 7 illustrates the intervals relevant for genealogy-likelihood calculation in
the hypothesis and reference models.

As in the case for clade reference models, we wish to calculate statistics for all viable comb reference
models after only one MCMC chain. We do this by storing for every ancestral population p the log of
the denominator In(P(G=-,, |M,®)) and the two sufficient statistics involved in the calculation of the
enumerator - ({ numCoals(G, comb(p)), coalStats(G,comb(p)) },). This is again calculated recursively
down the population phylogeny of M, but the function calculate_coal_stats now takes into account only

intervals inside the subtree of p and above Tpy;y.
M ref

[Troor-tal 3lin

[t4-Tanc] 4lins

[Tapc-ts] 4lins

[ts-t,] 5lins

[t,-t;] 6lins

[t1-Tmin] 7lins

Figure 7. In comb reference models, genealogy-likelihood need only be calculated
strictly within the bounds of the comb population comb(p). Outside this area of the
topology, genealogy likelihoods of the two models cancel out in the RBF.

3.5 Finalizing the RBF calculation using McRef

After the MCMC process is completed, we are left with sufficient statistics and parameter priors per iteration
for each clade and comb reference model. These are stored in multiple trace files (see example trace snippet
in appendix C). The remaining step is to calculate the estimated relative model fit P(X | M,.¢f)/P(X|Mpyp)
for a chosen reference model (or several). For this purpose we developed the McRef utility.

When setting up McRef, several parameters are configured. The main configurations is the chosen
reference model. This is specified by simply stating on what hypothesis population to perform a comb/clade
collapse operation. The remaining configuration options pertain to standard I/O (e.g. where the trace data
files are stored and where to store output), to G-PhoCS configuration (e.g. what alpha & beta to use for gamma
prior, what print multipliers were applied to trace data when emitted by gphocs etc.), to internal statistical
calculations (e.g. number of bootstrap iterations for confidence calculation and burn-in and sample-dilution
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to apply on MCMC traces) and to debugging (e.g. what debug calculations to run and visualizations to emit).
See appendix C for an example configuration file.

McRef finishes calculating Equation 27 by plugging in the chosen parameters for each configured
reference population. In our current implementation, 6,.,,; of the comb/clade population in the reference
model is set to the value of theta of the population at the root of the comb/clade in the hypothesis, but this can
be easily adjusted if ever we decide to consider other theta mappings. In addition to evaluating RBF, McRef
also roughly measures the accuracy of estimation using bootstrapping of traced samples. The bootstrapping
algorithm used is a simple monte-carlo case resampling. It’s results appear in the bar charts of section 4 as
the error interval.

With the goal of optimizing the practical run-time and usability of McRef, several techniques were
employed; trace data files, which are repeatedly read and used, are lazily loaded and cached in each mcref
process. Multiple McRef processes are launched using a single command-line tool and are cocurrently run
on different processors, eventually aggregating summary results to a single log file. See appendix C for an
example output.

To clarify results and to help understand and debug McRef runs, several visualizations are emitted. Each
McRef run emits plots of the genealogy-log-likelihood for the reference and hypothesis models, as well as a
plot of the RBF and harmonic mean estimations across G-PhoCS iterations. Multiple debug plots are also
emitted by mcref. Their goal is to help the researcher assert the experiment executed as planned. These plots
contain the kingman coalescence and migration likelihoods of every population and migration band in the
hypothesis and reference models. They also contain the aggregate coalescence stats of the hypothesis and
reference model. See appendix C for example debug graphs. The McRef code resides on Github, along with
an installation guide and examples - https://github.com/selotape/McRef .

4 Results

In order to evaluate our new method we designed a series of experiments which measure it’s strengths and
weaknesses. The experiments were set up to try to distinguish between different hypothesis structures;
Experiment 1 tries to decide whether a divergence between populations did or did not occur. Experiment 2
tries to decide the ancestral relationship between three leaf populations and an out-group, and experiment
3 tries to identify the true migration pattern between leaf populations. A secondary goal of the experiment
design is to learn how best to employ RBFs and how to choose a reference model for a given set of hypotheses.

4.1 General setup

We generated data sets under different demographic scenarios, using the following constant setup. In
experiments I and III, the generative population models (the "true" models) have 3 leaf populations A, B and
C, an ancestral population AB and a root ancestral population ABC'. In experiment II the true model has
another ancestor population ROOT" which splits to ABC' and an outgroup leaf population O. We use the
coalescent software ms (Hudson, 2002) to generate four haploid sequences per leaf population. Sequence
data contains 5000 loci of length 1000 bases. See appendix C for a sample ms sequence generation script. For
each demographic scenario we generated two independent data sets (using the same generative hypothesis)
to examine replication of results. To further assess replication we ran 2 independent MCMC runs in each
G-PhoCS setting. See appendix C for an example G-PhoCS MCMC configuration file.

In each comparison instance we compared two hypothesis models M; and M5 on a given data set.
Depending on the specific test, comparison was done using relative Bayes factors with a differing reference
model M,y and using the harmonic mean as a benchmark comparison. On each data set we ran G-
PhoCS twice with M and twice with M, yielding four potential differences between the relevant stats
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 https://github.com/selotape/McRef

(e.g., HM (M1, data) — HM (Ma, data), RBF (M1, My, data) — RBF (Ma, My, data) etc). The
differences represent the algorithms final "choice" between M; and My, i.e. which model has higher
estimated data likelihood relative to the reference model.

For each comparison we recorded the maximum and minimum of the 4 differences with their standard
error margins (which McRef computes via bootstrap). For the max value we recorded max + ste and for
the min value we recorded min — ste. Since these errors correspond to the difference between two values,
we took the square root of the sum of the two appropriate errors. As a result we attained 4 values for each
comparison of M; and M, on a given data set and each method of comparison (e.g. HM, RBF with null
model, etc). We used these values to plot the confidence intervals seen in the figures of each experiment.

4.2 Experiment I - Identifying population separation

In this experiment we generated data sets in which population ABC's divergence time is fixed to 0.00300, and
perturbed ABs divergence time from O up to 0.00050. No migration was allowed between any population.
We considered 2 hypotheses:

1. Mapops - A model with 3 leaf populations A, B and C. This is the true model used to generate the
sequence data

2. Mapops - A model with 2 leaf populations AB and C, where the sequenced individuals of the original
A and B populations are grouped into a single leaf population AB. This model coincides with the
true model in the data set with 745 := 0

and compared these two models using each of three techniques:

1. The harmonic mean
2. Relative Bayes factors with a reference model of M,

3. Relative Bayes factors with a reference model of M 4q¢(4p) (the original model with a clade rooted
at population AB). Note that when My, := Mapops We get Myor = My

We used these three techniques to compare models M35 and Mop,,s (ice., log %ﬁzzzz;)) with
each variant of the data set.

We observe that when computing RBF (M, = Mapops, Myef = Mejaae(an)), We get values near 0
(< 1e7%). This is because the reference and hypothesis models converge to the same model. We consider
this a simple validation of our RBF calculation. We also notice that both HM and the two RBFs are able
to determine the correct model (M3,,,s) for div50, and they don’t reject Moy, for div00 (although
null_RBF does give positive values). In div20 we see that both RBFs determine the correct model, while
the harmonic mean does not significantly reject Mapops. We see that when we use M qqc(4 ), the estimates
of RBF are less noisy than when using M,,.,;;. Lastly, M. appears to bias upward the RBF estimates,
resulting in false-positives for low divergence data sets (div00 and div10).

4.3 Experiment II - Determining model topology

In this experiment the true model contained an additional outgroup leaf population O. The divergence time
of population ROOT to populations O & ABC was set to 0.01000. The divergence time of ABC was again
fixed to 0.00300 and the divergence time of AB was perturbed between 0.00300 and 0.00180. Again, no
migration was allowed between any population. We considered 3 hypotheses:

1. Map ¢ o - A model with four leaf populations A, B and C' and O where A and B are siblings. This
is the true model used to generate the sequence data
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Figure 8. Results of experiments selecting between M3y,ops and Moy, using three
techniques - 1) RBF of the null reference model, 2) RBF of a clade(AB) reference
model and 3) HM. Data sets are marked on the X-axis by divXX-a, where the value of
XX stands for 745 x 10,000 and a indicates the data replicate (1 or 2). The divergence

time of AB used in the generation of the data set increases between comparisons (left
P (X |M3pop8)

) | " POX Mapops)-
Each experiment was repeated twice to assess reproducability. We see in the graph

that for 745 < 0.00020 the harmonic mean does not confidently prefer the true
hypothesis M3, over the competing hypothesis Mo,,,s. RBFs, however, prefer
M3pops starting from 745 > 0.00010, regardless of the chosen reference model.

to right). The bars heights are the values of the comparison metric log

2. M4 pc o - A similiar model but in which B and C are siblings

3. Mac_B o - A similiar model but in which A and C are siblings

Note that when 7(AB) = 0.00300 = 7(ABC), the simulated model is one in which the three populations
instantaneously diverge, so we expect the three hypotheses to have similiar fit to data. We compared these
models using each of five techniques:

1

. The harmonic mean

2. Relative Bayes factors with a reference model of MClade( ROOT) (M)

3

. Relative Bayes factors with a reference model of M i440(4BC)

4. Relative Bayes factors with a reference model of M co,4(rOOT)

5

. Relative Bayes factors with a reference model of M¢omipaBc)

Similiarly to experiment I, we used these techniques to compare the true model M 45 ¢ o against the
alternatives M 4_pc 0 and M ¢ g o. Figure 9 shows the results of the comparisons.
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Figure 9. Results of experiments selecting between three model structures using each
of multiple RBFs and HM. Data sets are marked on the X-axis by divAB_XX-a, where
the value of XX stands for 7(AB) x 10,000 and a indicates the data replicate (1 or 2).
The true gap between divergence times 7(ABC) and 7(AB) starts from zero on the
left -most bar (where 74pc = 0.00300 = 74p) and increases between comparisons
(left to right). We see that the more informative reference models (Comb(ABC)
followed by Comb(ROOT)) successfully select the true model, whereas the more
general methods are very noisy and uncertain, even when the hypotheses should be
indistinguishable.
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We see that the two comb reference methods (first two panels of Figure 9) clearly and confidently choose
the true hypothesis model, M 45 ¢ 0. The comb reference methods also correctly show no preference to
any model when the hypotheses are eqivalent. This is not true for the other methods. Amongst the two
comb reference methods, the more localized comb(ABC') provides a stronger and more confident signal.
However, when using the clade( ABC') reference model (3rd panel) we see at most a gentle upward trend
in results, but no reproducable clear selection. In the remaining two experiments ,clade(ROOT') and HM
(seen in 4th and 5th panels) we see no selection and a high degree of uncertainty.

4.4 Experiment III - Determining direction of gene flow

In this experiment we generated data sets where the divergence times are fixed to Tapc = 0.00300, and
7ap = 0.00150 and simulated different migration rates from population C' to population B. We considered
four hypotheses:

1. MuigcB - A model with a migration band from C' to B (the true model)
2. Muyomig - A model with no migration bands

3. Migarr - A model with migration bands between all pairs of sampled populations (6 migration
bands total)

4. MynigBc - A model with migration band from B to C
and examined two ways to compare these 4 models:

1. Using the harmonic mean estimator (HM)

2. Using RBF where M.y = M,y

To present the results, we conducted a comparison between each of the three models with migration
against M,,omig as a base model (e.g. log %m). We ploted for each hypothesis and each data set
the results when comparing using an RBF with the null modeland when using the harmonic mean (Figure
10). Because the conditional distribution for migration events is not fully implemented, we applied a small
shortcut and assumed migration priors of the hypothesis and reference models cancel out. We estimate that

this results in a relatively small correction, and believe it does not affect any trend in results.
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Figure 10. Results of experiments selecting between multiple migration patterns
using the null reference model (panel 1) and using HM (panel 2). Data sets are
marked by migXX-a, where XX stands for the migration rate from population C to B
and a indicates the data replicate (1 or 2). The migration rate from C to B used in the

generation of the data set increases between comparisons (left to right). The bars
P(X|Mmigpc)
P(X|Mnomig) :
Each experiment was repeated twice to assess reproducability. We see that the

harmonic mean (2nd panel) does not consistently prefer any model over another,
whereas the null RBF (1st panel) prefers models with migration to the migration-less
base model.

heights are the values of the comparison metric against M,o1mig, log

We see that the harmonic mean scores the three models with migrations similarly and it never significantly
prefers models with migration to M,o;mig (Figure 10). RBFs however consistently score M,,;scp and
Mmigar higher than M., ;4 in the 4 data sets with migration. The preference is correlated to the simulated
migration rate. RBFs also score M,,;,cp and M,,;g411, higher than M,,;,pc. This shows that they are
able to identify the direction of migration (C' — B instead of B — (). There doesn’t seem to be a significant
difference between the scores of M,;,cp and M,,;9411. In principle, we would’ve liked to give a higher
score to the most "compact" model, but this is not attained.

4.5 Summary

We’ve utilized RBFs in answering three model selection questions; 1) whether a divergence event occured,
2) what is the true migration pattern and 3) what is the relationship between leaf populations. In all
three scenarios, model selection using relative Bayes factors significantly outperformed the harmonic mean
estimator. We saw in experiments 1 and 2 that the choice of reference model has a great impact on algorithm
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performance. Generaly speaking, the best performing reference model is the most informative reference
model that can be used, i.e. the one closest to all models being compared. We also see that, as expected, the
success of the algorithm is correlated with the true distance between models, but it’s estimations are not of
high certainty. Finally we note that in experiment 3 RBFs did not succeed in choosing the most parsimonious
hypothesis.
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A The conditional distribution P(7|G) for models without migration

When the hypothesis model M has no migration, its model-pairing conditional distribution with the null
model My is determined by specifying a conditional distribution for the divergence times, ﬁ(T|G), such
that P(7|G) > 0if and only if P(G|r, M) > 0 (see Equations 5 and 12). Let (7, T) be a timed population
phylogeny and let G be a collection of coalescent trees in which every leaf is mapped to a leaf population in
T and every internal vertex v corresponds to a coalescent event at time ¢(v). Then P(G|r, M) > 0 if and
only if the trees in G can be embedded in (T, T), as defined below.

Definition 1. An embedding of a collection of local genealogies G in a timed population phylogeny (T, T)
is a mapping, pop : G — T, which satisfies the following conditions for every coalescence event v € G:

1. pop(v) is alive at time t(v): 7(pop(v)) < t(v) < 7(parent(pop(v))).
(if p is a leaf population then T(p) = 0 and if p is the root population then T(parent(p)) = 0.)

2. pop(parent(v)) is ancestral (or equal) to pop(v): pop(parent(v)) =7 pop(v).

Note that if G is embeddable in (7, 7), then this embedding is unique, because given a coalescent event
v with daughter w, there is only one population that is alive at time ¢(v) (condition 1) and ancestral or equal
to pop(u) (condition 2). A similar argument is used to establish a sufficient and necessary condition for
embeddability below.

Definition 2 (mrcaPop). Given a coalescence event v in a local genealogy whose leaves are assigned to
the leaves of a population phylogeny T, let mrcaPop(v) denote the most recent common ancestor (MRCA)
in T of all populations to which leaves in the subtree rooted at v are mapped.

Lemma 1. A collection of local genealogies G has an embedding in a timed population phylogeny (T, T)
iff for every v € G we have t(v) > T(mrcaPop(v)).

Proof.

=: Consider an embedding pop : G — T, and let v be an arbitrary coalescence event in G. Condition 2
implies that pop(v) =7 pop(l) for all leaves in the subtree rooted at v. We thus get pop(v) =7 mrcaPop(v),
and by condition 1: ¢(v) > 7(pop(v)) = T(mrcaPop(v)).

<: Letv be an arbitrary coalescence event in G, and assume that t(v) > 7(mrcaPop(v)). This means that
there is a (unique) population, p*, ancestral to mrcaPop(v) that is also alive at time £(v) (i.e., 7(p*) < t(v)
< 7(parent(p*))). Define the embedding by mapping v to population p*. Condition 1 is guaranteed
by construction. Condition 2 is proved by considering an arbitrary coalescence event v and its parent
u = parent(v). Both pop(u) and pop(v) are ancestral (or equal) to mrcaPop(v), because mrcaPop(u) =7
mrcaPop(v). Thus either pop(v) =7 pop(u) or pop(u) =7 pop(v). Condition 1 implies that pop(v) cannot
be strictly ancestral to pop(u) via the following sequence of inequalities:

r(parent(pop(u) > () > H(v) > T(pop(v)) .
Hence, pop(u) =7 pop(v), establishing condition 2. O

Lemma 1 directly implies a feasible range of every divergence time 7,:

Claim 1. Let G be a collection of local genealogies whose leaves are mapped to leaves of a population
phylogeny T. Then for every ancestral population p, P(G|1, = 7, M) > 0iff 7 € [0, ubound(p|G)), where
the upper bound of the feasible range for T, is given by:

ubound(p|G) = min{t(v) : mrcaPop(v) =7 p} (28)

We thus define P (7|G) as a product of uniform distributions for 7 in their feasible ranges, as defined by
Claim 1.
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B The conditional distribution P(7, G,,|G., m) for models with migration

As with the case without migration, the conditional distribution 13(7', G..|Gc, m) is constructed by first
specifying the necessary and sufficient conditions under which a genealogy with migration events G =
(G¢, Gyp,) is embeddable in a timed population phylogeny (7, 7). Migration complicates these conditions
because of two main reasons: (1) migration breaks the fundamental assumption that genealogy branches
move from a population to its parent in the phylogeny, and (2) unlike coalescent events, migration events are
mapped to specific populations and thus pose strict constraints on the embedding. The first issue is addressed
by examining migration-free trees, obtained by cutting branches of the local genealogies in G at migration
events. We associate each migration event w € G, with the branch in G, on which it is placed, a specific
time along that branch, a source population for migration, and a target population for migration. Thus, each
migration event, w € Gy, is a root of one migration-free tree mapped to population target(w) and a leaf of
another tree mapped to population source(w). In each migration-free tree, leaves are mapped to populations
in 7 and branches move from a population to its parent, as assumed in condition 2 of Definition 1. Hence, we
can extend the operator mrcaPop(v) of Definition 2 as the MRCA of all populations to which the leaves of
the migration-free subtree rooted at v are mapped. The following lemma specifies embeddability conditions
based on this extended mrca Pop operator and on the restriction that at the time of each migration event, the
source and target populations must be alive.

Lemma 2. A collection of local genealogies G consisting of coalescent trees G. and migration events G,
has an embedding in a timed population phylogeny (T, T) iff the following four conditions are satisfied:

1. Yv e G : t(v) > T(mrcaPop(v))

2. Yw € Gy, : target(w) =7 mrcaPop(w)

3. Yw € Gy, : t(w) > max( 7(source(w)) , 7(target(w)))

4. Yw € Gy, : t(w) < min( 7(parent(source(w))) , T(parent(target(w))) )

Proof.

=: Assume a collection of local genealogies G embedded in a timed population phylogeny (7, 7). For
every coalescent event v € G, we know that ¢(v) = 7(pop(v)), and pop(v) =7 mrcaPop(v) (considering
the migration-free tree that v belongs to), implying condition 1. Now consider an arbitrary migration event
w € Gy, which is a root of some migration-free tree in G . Because this root is mapped to population
target(w), we get that target(w) =7 mrcaPop(w) (condition 2). Finally, conditions 3 and 4 are implied
by the fact that w is mapped to populations target(w) (as the root of a migration-free tree) and source(w)
(as a leaf of a migration-free tree).

<: Assume a collection of local genealogies G and a timed population phylogeny (7, 7) satisfying the
four conditions of the lemma. We embed G in (7, 7) by mapping every coalescent event to the population
ancestral to mrcaPop(v) that is also alive at time ¢(v). This is the same mapping used in the proof of
Lemma 1, when no migration was assumed, and as in that case, we can show that such a population exists
(through condition 1) and that for each coalescent event v we have pop(parent(v)) =7 pop(v). Hence, the
two conditions of Definition 1 are satisfied for all coalescent events. The same holds for all migration events,
because conditions 3 and 4 imply that each migration event w is mapped to source and target populations that
are both alive at time ¢(w), and condition 2 implies that target(w) is ancestral to the population to which
the event at the bottom of the branch below w is mapped. Thus the mapping satisfies the two conditions of
Definition 1 with respect to all migration-free trees in G, implying that G is embeddable in (7, 7). O

Note that condition 2 of the lemma specifies constraints on migration events in G,,, and conditions 1, 3,
and 4 define the feasible range for divergence times, as defined below.
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Claim 2. Let G be a collection of local genealogies with migration events. Then for every ancestral
population p, P(G|r, = 17, M) > 0 iff for every w € Gy, we have target(w) =7 mrcaPop(w) and
7 € [lbound(p|G), ubound(p|G)), where the bounds of the feasible range for T, are given by:

lbound(p|G) = max {t(w)|w € G, A (p =7 parent(source(w)) v p =71 parent(target(w)))} (29)
ubound(p|G) = min(ubound, (p|G), ubounds(p|G)) (30)
ubound; (p|G) = min {¢(v)|v € G. A mrcaPop(v) =7 p} (€29)
uboundy (p|G) = min {t(w)|w € Gy, A (source(w) =7 p v target(w) =7 p)} (32)

We thus define the conditional distribution P(Gy,, 7|Ge, m) = P(7|G)P(Gp|Ge, m), where P(7|G)
is the product of uniform distributions for 7 in their feasible ranges, as defined by Claim 2, and P(G,, |G, m)
is defined using a probabilistic protocol for sampling migration events. This protocol mimics the true
migration model of M as much as possible without knowing the divergence times. Migration events
are sampled backward in time by holding for each branch (u,v) € G, the set of populations it may
be embedded in (those ancestral to mrcaPop(v)), and allowing the branch to migrate back along any
migration band whose target population is one of those populations. The protocol starts by enabling
migration in all bands, and it removes a migration band b from consideration when the protocol reaches
time ¢ = min (ubound(parent(source(b))|G), ubound(parent(target(b))|G)), as defined by Equations
30-32. By doing this, the protocol ensures that the resulting G will be embeddable in some timed version of
the population phylogeny (see Claim 3 below).
Sampling protocol for P(G,,|G., m):
1. Initialization:
(a) Initialize set of living branches: Ej;,e < {(u,v) € E(G.)|v is a leaf}. Map each (u,v) € Ejjpe
to the sampling population of the leaf v and all populations ancestral to it: pops((u,v)) «
{plp =7 pop(v)}.
(b) Initialize living migration bands: By < B.

(c) Initialize time: ¢ < 0.

2. Determine current migration rates: Determine the number of branches currently mapped to each
population, n[p] = [{e € Ejjve : p € pops(e)}|, and compute the effective rate of each living migration
band: A\[b] = my x n[target(b)] (the migration rate scaled by the number of potentially migrating
branches).

3. Sample time of next migration: Sample a waiting time At for the next migration event according
to an exponential distribution with rate A = 3}, 5 A[b]. If there are no live migration bands with
positive rates, then A = 0 and the scan terminates (no more migration events to sample). Otherwise,
sett < t + At and compare ¢ to the time of the next coalescent event back in time, v.

4. If t < t(v), then sample migration event:

(a) Sample a migration band b € Bj;,,e using a categorical distribution with p, = @.

(b) Select a branch for migration e € Ej;,. uniformly at random among the n[target(b)] branches
mapped to the target population of the selected migration band.

(c) Add a new migration event w to G, on branch e from population source(b) to population
target(b) at time t.

(d) Update the population mapping of edge e: pops(e) « {p : p =7 source(b)}.
(e) Remove from By, all migration bands whose source or target population is a strict descendant of

either source(b) or target(p). Formally, remove band b/’ iff there is p’ € {source(V'), target(V')}
and p € {source(b), target(b)} s.t. p =7 parent(p’).
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(f) Go to Step 2.
5. If t = t(v), then encounter coalescence event:

(a) Let e; and ey be the two branches coalescing in v, and let e be the branch above v.

(b) Update current branches: Ey;pe <— Ejive\{€1, €2} U {e}.

(c) Map the new branch: pops(e) = pops(e1) N pops(e2).

(d) Remove from By;,,e all migration bands whose source or target is a strict descendant of the most

recent population in pops(e). Formally, if pg is the most recent population in pops(e), then
remove band b iff py =7 parent(source(b)) or pg =7 parent(target(b)).

(e) Sett « t(v) and go to Step 2.
The following claim establishes the validity and completeness of the above protocol for ]3(Gm|Gc7 m):
Claim 3. P(G,,|G¢,m) >0 iff there exist T s.t. P(Ge¢, Gp|T,m, M) > 0.

Proof. First, note that the protocol maps each branch (u, v) to the set of populations ancestral to mrcaPop(v):
pops((u,v)) = {p : p =7 mrcaPop(v)}. This is done by the appropriate initialization of the mapping in
leaf branches in step 1a and branches above migration events in step 4d, and by the appropriate intersection
update in branches above coalescent events in step Sc. Both directions of the claim are now proved using
this observation and the conditions of Claim 2

=

Let G,,, be the set of migration events sampled by the protocol given G, and m. To establish that there exist
T s.t. P(Ge, Gy, |T,m, M) > 0 using Claim 2, we need to show that: (1) every sampled migration event in
G, satisfies target(w) =7 mrcaPop(w), and (2) the resulting G satisfies lbound(p|G) < ubound(p|G)
for every ancestral population p. Let w € G,, be an arbitrary migration event and denote by e(w)
the branch in G, on which w is sampled. Then, target(w) < pops(e(w)) (step 4b), implying that
target(w) =7 mrcaPop(w), as required by Claim 2. Now, consider an arbitrary ancestral population p,
and denote for brevity b = lbound(p|G), uby = ubound; (p|G), and ubs = ubounds(p|G) (Equations
29-32). We will show that Ib < min(uby, uby) = ubound(p|G).

Let v be the coalescent event realizing ub; and let w and w’ be the migration events realizing ubs and [b,
respectively. Note that if one of these events does not exist, then the appropriate bound is set to its extreme
value (0 for [b and oo for ub; and ubs), and the inequality above holds. Otherwise, the definition of w’
and b implies that either p >7 parent(source(w’)) or p =7 parent(target(w’)), and the definition of
w and uby implies that either source(w) =7 p or target(w) =7 p. Hence, the condition of step 4e of
the protocol is satisfied for the migration band of event w’ (b') when the protocol samples event w. This
means that migration band ¥’ is not alive after sampling w and b = t(w') < t(w) = ube. Similarly,
the condition of step 5d of the protocol is satisfied for migration band & when the protocol encounters
coalescent event v (pg = mrcaPop(v)). Hence, migration band ' is not alive after encountering v and
Ib = t(w') < t(v) = uby, completing the requirements of Claim 2.

—

Let (G, T) be a collection of local genealogies and divergence times s.t. P(G., Gy,|7,m, M) > 0. We
will show that the migration events in G, can be sampled by the protocol (with some positive probability).
Consider an arbitrary migration event w € G,,, and assume that the protocol reached time ¢(w) in G, after
having correctly sampled all events w’ € Gy, s.t. t(w’) < t(w). To prove that event w can be sampled with
positive probability we need to establish that: (1) its migration band (ps, pt) = (source(w), target(w))
is alive at time ¢(w), and (2) its branch, e, is mapped to the target population p;. The second requirement
follows from Claim 2, which implies that p, >7 mrcaPop(w), and our observation on the mapping that
states that each branch is mapped to the set of populations ancestral to its mrcaPop.
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To establish the first requirement we need to prove that migration band b = (ps, pt) was not removed from
By before time t(w). The protocol removes migration bands from By, either after sampling migration
events (step 4e) or after encountering a coalescent events (step 5d). Let w’ € Gy, be an arbitrary migration
event sampled before w s.t. t(w’) < t(w). Claim 2 implies that for p’ € {source(w’), target(w’)} we have
7(p') < uboundy(p'|G) < t(w') < t(w), and for p € {ps, p:} we have t(w) < lbound(parent(p)|G) <
T(parent(p)). Hence, 7(p') < 7(parent(p)), implying that populations source(w’) and target(w’) are
not strictly ancestral to populations ps and p;, and so the migration band (ps, p;) is not removed from Bj;e
after sampling event w’ (see step 4e).

Now, let v € G be an arbitrary coalescent event encountered before sampling w s.t. ¢(v) < ¢(w). Claim
2 implies that for p’ = mrcaPop(v) we have 7(p') < ubound; (p'|G) < t(v) < t(w) and for p € {ps, pt}
we have t(w) < lbound(parent(p)|G) < 7(parent(p)). This means that 7(p') < 7(parent(p)), implying
that population mrcaPop(v) is not strictly ancestral to populations ps and p;, and so the migration band
(ps, pe) is not removed from By, after encountering event v (see step 5d). Thus, migration band (ps, p)
is alive at time ¢ = t(w), and the branch e is mapped to p;, allowing the protocol to sample w at time ¢(w)
with positive probability. O

Computing the conditional probability

Now that we have fully defined the conditional probability distribution P (G, T|G, m), we turn to describe
how to compute it for given values of (G, 7, m). The divergence time conditionals, f’(T\G), are defined
as a product of uniform distributions in the feasible space of every parameter, as defined by Claim 2.
The bounds l[bound and ubounds are easy to compute by traversing all migration events in G,,,, and the
bound ubound; can be computed by recursively computing mrcaPop for all coalescent events in G, as
described in the previous section. This is done by considering the migration-free trees defined by G. The
conditional probability for the migration events, ]S(Gm|Gc, m) is computed according to the sampling
protocol described above. As in a standard model of migration at constant rate, this probability can be
expressed as a product of contributions across migration bands:

In (IB(Gm\GC,m)> = Z (ln(mb) -numMigs(Gi,, b)™ — my, - lets(G, b)) . (33
b

Consequently, the contribution of migration band b to ﬁ(Gm\GC, m) is very similar to its contri-
bution to P(G|®, M), and the ratio between these contributions is defined by the difference between
migStats(G,b) and thS(G, b). Both migration statistics are defined as sum across time intervals
in population target(b) across the life span of the migration band. In model M, the life span starts at
t = max(7(source(b)), T(target(b))) and ends at
t = min(7(parent(source(b))), T(parent(target(b)))). In the sampling protocol the life span starts at time
t = 0 and ends at t = min(ubound(parent(source(b))|G), ubound(parent(target(b))|G)). Note that
the life span in M is contained in the protocol life span, and in this time the lineages mapped to population
target(b) are the same in both cases. Thus the residual difference, migStats(G,b) — migStats(G,b),
is computed by considering intervals mapped to target(b) in the protocol and not in M. For instance,
if b is a migration band between two sampled populations, then its life span in M and in the protocol
starts at £ = 0, and the residual is computed by determining which branches of G are mapped to popu-
lation target(p) in the time interval between ¢ = min(7(parent(source(b))), T(parent(target(b)))) and
t = min(ubound(parent(source(b))|G), ubound(parent(target(b))|G)).

C Pipeline examples
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Listing 1. ms script used to generate data-sets in experiment 111
#!/bin/bash

# M4 — four population model with 26 individuals (8 per pop + 2 in outgroup),
# theta = 0.001, tau_AB = TAU, tau_ABC=0.0003, tau_ABCD=0.001, mig C—>A (M_CA)
# and mig A—>C (M_AC)
ms 26 5000 -T —r 0.000001 1000 -1 48882

-n 1 100 —n 2 100 —n 3 100 —n 4 100

-m 1 3 MCA -m 3 1 MAC

—ej TAU 2 1 —en TAU 1 100 —em TAU 1 3 0.0 —em TAU 3 1 0.0

—ej 30 31 —en 30 1 100

—ej 100 4 1 —en 100 1 100
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Sample G-PhoCS MCMC configuration

GENERAL-INFO-START

seq-file /home/rvisbord/experiments/simM4-divAB/data_sets/DATA SET/seqs.txt
random- seed 12345
trace-file ./trace.tsv

comb-stats-file
hyp-stats-file
clade-stats-file
tau-bounds-file

./comb-trace.tsv
./hyp-trace.tsv
./clade-trace.tsv
./tau-bounds.tsv

locus-mut-rate CONST
num-loci 5000
burn-in 0
mcmc-iterations 1000000
mcmc-sample-skip 9
iterations-per-log 100
logs-per-line 100
tau-theta-print 10000

tau-theta-alpha 1

tau-theta-beta 10000

locus-mut-rate CONST

find-finetunes TRUE
find-finetunes-num-steps 100
find-finetunes-samples-per-step 100

GENERAL - INFO-END
CURRENT - POPS -START

POP-START

name A

samples 1h2h3h4h
POP-END
POP-START

name B

samples 9 h 10 h11 h 12 h
POP-END
POP-START

name C

samples 17 h 18 h 19 h 20 h
POP-END
POP-START

name 0

samples 25 h 26 h
POP-END

CURRENT-POPS-END
ANCESTRAL -POPS-START

POP-START
name AB
children A B
tau-initial 0.0001
tau-beta 20000.0
POP-END
POP-START
name ABC
children AB C
tau-initial 0.0005
tau-beta 20000.0
POP-END
POP-START
name ROOT
children ABC 0
tau-initial 0.0020
tau-beta 20000.0
POP-END

ANCESTRAL-POPS-END
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iteration - C_AB cs-C_AB nc-C_AB A cs - C_

0 - 0.
10-1.
20-1.
30-1.
40 -1,
50-1.
60 - 2.
70- 2.
80 - 2.
90 - 2.
100-2.
110-2.
120-3.
130-3.
140-3.
150-3.
160-3.
170-3.
180-3.
190-3.
200-3.
210-3.
220-3.
230-3.
240-3.
250-3.
260-3.
270-3.
280-3.
290-3.
300-3.
310-3.
320-3.
330-3.
340-3.
350-3.
360-3.
370-3.
380-3.
390-3.
400-3.

20366973410201155703092013027344365
10126871980759877906952825287589803
32900937224237747358301930944435298
85112331259358486867938609066186473
26663936711169844429036857036408037
33020299815736553483702664379961789
02986708823795813927404196874704212
45658611939442295124536030925810337
50374019659589430730761705490294844
47360884858641938421897066291421652
53537159454744864817143934487830848
60632525108334878183313776389695704
17809318879738222918263090832624584
51365313847726934426418665680103004
46668609503066171839691378409042954
46401372138331898966612243384588510
47970990940638724708833251497708261
55843563452427602555871999356895685
74590248638590628260658377257641405
75328475920590243219976400723680854
81212670595616209823219833197072148
62836806682405166313287736556958407
69840729983420546389538685616571456
69336052463512576338189319358207285
60820352549132516983831919787917286
61416200964296097097872006997931749
49316705885293865563312465383205563
31792093263106124823025311343371868
32883058618606630929548373387660831
50637358202688353969733725534752011
57485944316276427201728438376449049
55147586581409502315409554284997284
49912863072634339189903585065621883
57815755145079128496377052215393633
30109759915336598012913782440591604
27038569744009111062155170657206327
27032823598987443247665396484080702
38638387038402477458021166967228055
53888220195532010592387450742535293
45793601682768869665096644894219935
46355152928596421446627573459409177

Sample G-PhoCS traces of sufficient stats

AB A nc -

1646
2142
2041
2279
2142
2288
1603
1758
1727
1712
1771
1740
1255
1320
1302
1275
1310
1058

942-0.
905-0.
898-0.
975-0.
819-0.
805-0.
833-0.
803-0.
742-0.
660-0.
690-0.
727-8.
727-0.
752-0.
771-0.
634-0.
598-0.
634-0.
599-0.
641-0.
532-0.
605-0.
618-0.

CAB B cs - C AB B nc - C ABC cs

- C_ABC nc

2313
2254
2030
1853
1707
1712
1747
1703
1739
1720
1742
1729
1528
1529
1542
1524
1556

0.34661536691915373342709472126443870 ~ 2680
0.80977091279377078070211837257375009 -
0.83832391660931859789229747548233718 -
0.99811602649063080328062369517283514
0.58113321502508563654032514023128897 -
0.61763401447521604215040724739083089
0.62155029023361207940467920707305893
0.61292251366304550952435192812117748
0.61377340212756403836635854531778023 -
0.61532720602143475829848284774925560
0.61192896303776989075373649029643275 -
0.61331286034764609382818889571353793 -
0.61811930453756769310302843223325908 -
0.68381785162064046001972883459529839 -
0.69289224272470106846810722345253453 -
0.68146773200866572750555860693566501
0.66949314152587524606730084997252561 ~
0.70243324045707866698506904867826961
69327992933708815215254617214668542 ~ 1580
67717122272736973709328367476700805 —~ 1599
68750807130138780198791437214822508 ~ 1595
66448990810536345819059533823747188 ~ 1497
68337634092795618290239190173451789 ~ 1476
68528617880577458176816207924275659 ~ 1502
69107880740900884397603931574849412 ~ 1480
68797439987651298753945638964069076 —~ 1482
69491904475152477260735395248048007 —~ 1539
73690728397632310198162031156243756 —~ 1572
73737023041358984443149893195368350 ~ 1570
75728401268109091226676810038043186 —~ 1511
76155456628444628819352146820165217 ~ 1499
76266689348880767340688180411234498 ~ 1527
76664781702171946875523644848726690 ~ 1515
76290755342919736037288203078787774 ~ 1521
75972970734773404011264119617408141 ~ 1549
74206749808107164145809520050534047 ~ 1551
73455111595551458858466276069520973 ~ 1568
76972859749693856024066462850896642 ~ 1530
78437356488822251865400403403327800 ~ 1491
77849170264050959744395186135079712 ~ 1496
77612176116559561389607324599637650 ~ 1491

@

C ABC A cs-C ABC A nc-C ABC B cs-C ABC B |

PO D

0.34398667372352753623943044658517465 -~
0.67564021368286364399580179451731965 -
0.69636860070089068308618607261450961 -
1.00306600406348578324866593902697787 -~
0.50702754664224602976219102856703103 -~
0.51942124484265006501004791061859578 -~
0.51408148956712196309126738924533129 -
0.63950900766813811859634597567492165 -~
0.64448167170984027585234343860065565
0.64083541155349399431884194200392812 -
0.64719302342571705111140545341186225 -
0.66466292239653845808078358459169976 -
0.67431594674939587807926955065340735 ~
0.68898295278953003428767942750710063 -
0.68082817929165229120513913585455157 -~
0.66902522383852225384970324739697389 -
0.66911128261355679036626042943680659 -
0.69245228914479650672575417047482915 -~
70502217067040373610353753974777646 ~ 1524
70730778159294727114314582649967633 - 1526
71535664683223132431777457895805128 - 1521
66118517714755975500651175025268458 ~ 1496
67622612296758388694684072106610984 ~ 1514
68586774667919103709579076166846789 ~ 1511
66079007413298473938567667573806830 ~ 1563
66079725261979238570830830212798901 - 1565
69732823501452534387112791591789573 - 1575
71986759360491614501142976223491132 - 1631
72868200919411152405302800616482273 - 1594
75532653994104759220817868481390178 - 1520
77030913157872016316929375534527935 ~ 1503
77273871453149955979000651495880447 ~ 1465
77309066332217524220027371484320611 - 1498
74893275135071823989107997476821765 -~ 1520
74446539192060168232956129941157997 - 1566
74498163312120158074947084969608113 - 1585
73578124057474614261309397988952696 - 1584
76438341552242161647257034928770736 - 1516
75393447671199864679181246174266562 ~ 1542
75197062842280204542078081431100145 -~ 1541
76164421183914055024644085278850980 - 1525

36

2673
2487
2446
2042
2031
2016
2004
1634
1685
1649
1623
1566
1554
1527
1564
1559
1569
1583



Sample McRef config.ini for a comb reference model from experiment IT

[ReferenceModel]
comb = ABC

hyp pops = 0,R00T
comb leaves = A,B,C
hyp mig bands =

[Input]

trace file = ./trace.tsv

comb stats file = ./comb-trace.tsv
clade stats file = ./clade-trace.tsv
hyp stats file = ./hyp-trace.tsv

tau bounds file = ./tau-bounds.tsv
tau-theta-print = 10000.0
tau-theta-alpha = 1.0

tau-theta-beta = 10000.0
mig-rate-print = 0.001

[Output]

[Datal
skip_rows = 100000
number of rows = 400000

[Debug]

enabled = true

hypothesis pops = A,B,C,AB,ABC,0,R00T
hypothesis migbands =
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simulation

/home/ron/Desktop/data_sets/M4.
/home/ron/Desktop/data_sets/M4.
/home/ron/Desktop/data_sets/M4.
/home/ron/Desktop/data_sets/M4.
/home/ron/Desktop/data_sets/M4.
/home/ron/Desktop/data_sets/M4.
/home/ron/Desktop/data_sets/M4.
/home/ron/Desktop/data_sets/M4.
/home/ron/Desktop/data_sets/M4.
/home/ron/Desktop/data_sets/M4.
/home/ron/Desktop/data_sets/M4.
/home/ron/Desktop/data_sets/M4.
/home/ron/Desktop/data_sets/M4.
/home/ron/Desktop/data_sets/M4.
/home/ron/Desktop/data_sets/M4.
/home/ron/Desktop/data_sets/M4.
/home/ron/Desktop/data_sets/M4.
/home/ron/Desktop/data_sets/M4.
/home/ron/Desktop/data_sets/M4.
/home/ron/Desktop/data_sets/M4.
/home/ron/Desktop/data_sets/M4.
/home/ron/Desktop/data_sets/M4.
/home/ron/Desktop/data_sets/M4.
/home/ron/Desktop/data_sets/M4.
/home/ron/Desktop/data_sets/M4.
/home/ron/Desktop/data_sets/M4,
/home/ron/Desktop/data_sets/M4.
/home/ron/Desktop/data_sets/M4.
/home/ron/Desktop/data_sets/M4.
/home/ron/Desktop/data_sets/M4.
/home/ron/Desktop/data_sets/M4,
/home/ron/Desktop/data_sets/M4.
/home/ron/Desktop/data_sets/M4.
/home/ron/Desktop/data_sets/M4.
/home/ron/Desktop/data_sets/M4.
/home/ron/Desktop/data_sets/M4,

Running McRef with ABC_COMB reference model

Sample McRef Qutput from experiment 11

divAB_18-1/results/AB_C_0/seed_12345
divAB_18-1/results/AB_C_0/seed_54321
divAB_18-1/results/A BC_0/seed_12345
divAB_18-1/results/A_BC_0/seed_54321
divAB_18-1/results/AC_B_0/seed_12345
divAB_18-1/results/AC_B_0/seed_54321
divAB_18-2/results/AB_C_0/seed_12345
divAB_18-2/results/AB_C_0/seed_54321
divAB_18-2/results/A_BC_0/seed_12345
divAB_18-2/results/A_BC_0/seed_54321
divAB_18-2/results/AC_B_0/seed_12345
divAB_18-2/results/AC_B_0/seed_54321
divAB_24-1/results/AB_C_0/seed_12345
divAB_24-1/results/AB_C_0/seed_54321
divAB_24-1/results/A_BC_0/seed_12345
divAB_24-1/results/A_BC_0/seed_54321
divAB_24-1/results/AC_B_0/seed_12345
divAB_24-1/results/AC_B_0/seed_54321
divAB_24-2/results/AB_C_0/seed_12345
divAB_24-2/results/AB_C_0/seed_54321
divAB_24-2/results/A_BC_0/seed_12345
divAB_24-2/results/A_BC_0/seed_54321
divAB_24-2/results/AC_B_0/seed_12345
divAB_24-2/results/AC_B_0/seed_54321
divAB_30-1/results/AB_C_0/seed_12345
divAB_30-1/results/AB_C_0/seed_54321
divAB_30-1/results/A_BC_0/seed_12345
divAB_3@-1/results/A BC_0/seed_54321
divAB_30-1/results/AC_B_0/seed_12345
divAB_30-1/results/AC_B_0/seed_54321
divAB_30-2/results/AB_C_0/seed_12345
divAB_30-2/results/AB_C_0/seed_54321
divAB_3@-2/results/A BC_0/seed_12345
divAB_30-2/results/A_BC_0/seed_54321
divAB_30-2/results/AC_B_0/seed_12345
divAB_30-2/results/AC_B_0/seed_54321

rbf_mean

Fhooohbooa~N~o0o 0w

rbf_bootstrap

. 7698
.6897

. 0690867
.15798
.0713541
. 0842066
.9838

. 8009
.0534758
.0697426
. 765409
.172327
.60566
L4061
.168712
.0597326
.111286
.100971
77911
.12774
.132353
. 0485166
.882446
.0600942
.194358
. 840854
.162472
.601917
.406371
.420154
.277489
.16902
.359837
.19312
.618151
. 835659

[

[cNcNcNolofcoNoNocofooNoNoNoNolE e NolooNoNARENooNoNol N« RoRoN ool

BRRPRRPRPRERBRBREBRRBEBRPREPRERRERBRBRBRPBRREREREBRRBRBRRRRRERRRR

hm_mean

.45392e+06
.45388e+06
.45391e+06
45391e+06
.45391e+06
.45392e+06
.45394e+06
.45397e+06
45394e+06
.45398e+06
.45395e+06
45396e+06
.45472e+06
45475e+06
.45474e+06
.45474e+06
45471e+06
.45473e+06
45599e+06
456e+06

.45602e+06
45598e+06
456e+06

456e+06

.45669e+06
.45669e+06
.45669e+06
.45671e+06
.45667e+06
.45668e+06
.45634e+06
.45636e+06
.45638e+06
.45636e+06
.45635e+06
.45635e+06

hm_bootstrap

.2929
.09628
.10843
.02275
L4703
L1779
. 78321
.09
.4059
. 7233
.07356
.51385
.47794
L7023
.01179
.57476
.13128
.0132
. 6686
.2996
.6855
.66902
. 3955
.4949
.2392
L7376
.6343
.8325
.07406
.85529
.22576
.2261
.6903
.9924
.19023
.56084

]

[

[y

N
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Sample McRef debug plot of reference population genealogy likelihoods

Kingman coal & mig of Hypothesis Model
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