
The Interdiciplinary Center, Herzliya
Efi Arazi School of Computer Science

M.Sc. Program - Research Track

A New Bayesian Method for Comparing
Demographic Models

by
Ron Visbord

M.Sc. dissertation, submitted in partial fulfillment of the requirements
for the M.Sc. degree, research track, School of Computer Science

The Interdisciplinary Center, Herzliya

May, 2018



This work was carried out under the supervision of Dr. Ilan Gronau from the Efi Arazi School of
Computer Science, The Interdiciplinary Center, Herzliya.

1



Abstract

The advent of high throughput sequencing has greatly improved our ability to investigate the evolutionary
history of species using detailed demographic models. A popular approach for inferring parameters in these
demographic models is to sample genealogical histories at many short unlinked loci using a Markov Chain
Monte Carlo algorithm. The use of explicit coalescent models by these methods makes them powerful for
inferring demographic parameters, but they are limited in their ability to assess the fit of the inferred model
to data. The purpose of this research is to examine a new approach, based on Relative Bayes Factors, for
using genealogy samples to compare different evolutionary hypotheses.

In this workwe reviewBayesian inference of parameterized demographicmodels and formalize themodel
selection problem. We then define Relative Bayes Factors (RBFs), which represent demographic model fit
relative to some reference demographic model. We further derive RBFs for two types of reference models -
Clade models and Comb models. The two types are useful for different model-selection problem instances.
Having reached tractable formulae for relative model fit, we describe in detail how they are calculated in an
efficient manner, without incurring significant computational overhead during MCMC sampling. Finally, we
test these model-fit assessments using a series of model-selection experiments based on simulated sequence
data. Our results show RBFs significantly improving on the base-line harmonic mean model fit estimator in
the model selection task.
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1 Introduction

In recent years, advances in high throughput DNA sequencing have made it easy to sequence many genomes
of individuals from closely related species. This allows evolutionary biologists to examine the evolution
of recently diverged species by employing sophisticated computational methods and statistical models.
Typically, an evolutionary biologist, having obtained and aligned genome sequences of individuals from
closely related species or populations, would like to reconstruct the evolutionary history of these populations.
This evolutionary history includes a series of population splits, population size changes and post-divergence
gene flow.

Evolutionary history is often modeled using a parameterized probabilistic demographic modelM, which
induces a probability distribution over observed genomic data X. The structural components of M consist
of a population phylogeny T and a collection of migration bandsB that indicate ordered pairs of populations
between which gene flow is allowed. The free parameters of M, such as population divergence times,
population sizes and migration rates, are denoted by Θ. The model M is thus defined by specifying the
structural components pT , Bq and a prior distribution over the free parameters of the model P pΘ|Mq.
The conditional probability distribution for the observed genomic data P pX|M,Θq is defined by standard
models for molecular evolution and population genetics (e.g., Jukes and Cantor (1969); Kingman (1982)).

A common approach to inferring parameters of a demographic modelM is to assume the model structure
pT , Bq, and to explicitly represent the genealogy of the sequenced individuals at short unlinked loci. These
genealogies are used along-side the target model parameters as hidden variables in a Markov chain Monte
Carlo (MCMC) sampling algorithm. The algorithm effectively integrates out the genealogical relationships
between individuals and produces Bayesian estimates of target parameters. These methods have two key
advantages. 1) The full probabilistic generative model of the data at their core allows modeling of more
complex evolutionary history, with more free parameters; 2) The parameter values sampled by the MCMC
provide means to assess the uncertainty in the resulting estimates. However, because these methods condition
on a given model structure, they provide no straightforward way to compare demographic model hypotheses.

In principle, measuring of model fit P pX|Mq can be approximated by using importance sampling on
the approximated posterior distribution (Newton and Raftery (1994)), and this could be used to compare
models. However, it was shown that estimates tend to be biased upward, and they are more biased the more
parameter-rich the model is (Xie et al., 2011). There have been several methods suggested to improve the
accuracy of importance sampling estimation by sampling from “hybrid”models (Lartillot and Philippe, 2006;
Xie et al., 2011). These methods are very effective, but they require an order of magnitude more sampling
iterations ( 10x ) compared to the number of iterations required for the MCMC of parameter inference. So
they are not very practical in our setting.

The goal of our research is thus to improve on existing importance-sampling approaches to model
selection, without incurring significant additional computational cost. We accomplish this by estimating
model fit relative to some reference model Mref . Reference models are base-line phylogenetic structures
used to asses model fit within a specific context, allowing us to better select between competing model
candidates. We implement the model-selection algorithm based on the parameter-inference framework
G-PhoCS , but our theory and approach can be applied to all bayesian demography inference methods.

We will start in subsection 1.1 by overviewing relevant work in the field. Subsections 1.2-1.3 present
background on the demography inference problem and state the model selection problem. Section 2 formally
introduces the concept of reference models and explains how they relate to phylogenetic population models.
It then derives the theory behind our relative Bayes factors (RBFs), and explains how they are used as
model selection criteria. Section 3 explains in depth our implementation of McRef - our model selection
algorithm which uses the G-PhoCS parameter-inference framework. McRef earned it’s nickname due to it’s
employment of reference models in the MCMC process. Finally, in section 4 we share empirical results from
our model-selection experiments on simulated sequence data, showcasing the advantages and limitations of
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our method.

1.1 Related work

There are several common approaches for demography inference; Likelihood-based models associate each
modelM with the most likely parameter values Θ. The joint likelihood P pX|M,Θq is then approximated
by making additional simplifying assumptions on the population genetic model, or the data. There are
methods which assume that all sites are independent (i.e. allow free recombination between sites) and use
a combination of analytic calculations and simulations to estimate P pX|M,Θq (Gutenkunst et al., 2009;
Kamm, Terhorst and Song, 2017; Kamm et al., 2018). Other methods use summary statistics extracted from
the data, such as the lengths of shared haplotypes (Harris and Nielsen, 2013; Browning and Browning, 2015).
The key disadvantages of these methods is that 1) they make many simplifying assumptions, and 2) they
associate a model with its most likely parameter values. This means they give an advantage to models which
imply high confidence in the parameter values compared to models where the likelihood is more spread out
across the parameter space.

Bayesian model-based methods, such as IM (Nielsen and Wakeley, 2001) (most updated version IMa2p
(Hey and Nielsen, 2007; Sethuraman and Hey, 2016)), MCMCcoal Rannala and Yang (2003) (most updated
version BPP (Yang, 2015)), and G-PhoCS (Gronau et al., 2011) all explicitly model genealogies coalescing
in a population phylogeny, and differ mostly in additional modeling assumptions and software design. BPP
does not model gene flow between populations and is thus mostly used for relatively diverged species. IM
was originally developed for analyzing data from models with only two leaf populations. It has since been
extended for larger population phylogenies, but its design limits its use to relatively small data sets (few
populations and up to 1,000 loci). Importantly, all methods use MCMC to generate posterior samples of the
model parameters, and the model selection methods we develop here can be applied to all of them.

Regarding estimation of Bayes factors, the basic idea to use importance sampling (IS) to estimate
P pX|Mq in a Bayesian setting was suggested by Newton and Raftery (1994). This idea has since become
the standard way to estimate model fit in a Bayesian setting, but experience has shown it to be very noisy
and biased toward more complex models (Xie et al., 2011). In particular, it was shown that estimates tend
to be biased upward, and they are more biased the more parameter-rich the model is. Several methods have
suggested ways to improve the accuracy of IS estimation by sampling from “hybrid” models, which combine
the prior P pΘ|Mq times some power of the conditional P pX,G|M,Θq (Lartillot and Philippe, 2006; Xie
et al., 2011). Unfortunately, though these methods are effective, they require an order of magnitude more
sampling iterations compared to the number of iterations required for the MCMC of parameter estimation.

1.2 Bayesian inference and G-PhoCS

The objective of demography inference methods is to infer values for Θ that have high joint prob-
ability with the data: P pX,Θ|Mq “ P pΘ|MqP pX|M,Θq, where Θ consist of divergence times,
τ “ tτp : p is an ancestral population in T u, effective population sizes, θ “ tθp : p is a population in T u,
and migration rates, m “ tmb : b P Bu. Values of parameters in Θ are scaled by mutation rate.

Because the conditional probability P pX|M,Θq does not typically have a closed-form expression, an
increasingly popular approach for inference is to introduce additional hidden variables G, which represent
genealogical relationships between the sampled individuals. The benefit of this is that given the genealogical
information, the data X becomes independent of the modelM and parameters Θ, and the likelihood can be
expressed as a product of three tractable terms:

P pX,G,Θ|Mq “ P pΘ|MqP pG|M,ΘqP pX|Gq . (1)
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This joint probability function may be used by a Markov chain Monte Carlo (MCMC) algorithm to
generate a sample of model parameters together with genealogies according to a probability distribution
approximating the posterior, P pG,Θ|M,Xq. Consequently, the sampled parameter values have high joint
probability with the data. A major advantage of this approach to parameter inference is that it is extremely
flexible and can be applied to a wide range of demographic models and different types of genomic data.

G-PhoCS is one such Bayesian demography inference method. G-PhoCS considers a model of sequence
data at short unlinked loci, where G contains the information on the local tree in each locus, and loci are
assumed to be independent (Figure 1) (e.g., Nielsen and Wakeley (2001); Rannala and Yang (2003); Gronau
et al. (2011)). Equation 2 shows the probability distribution approximated by G-PhoCS.

P pX,G,Θ|Mq “ P pΘ|MqP pG|M,ΘqP pX|Gq “ P pΘ|Mq
ź

l

P pGl|M,ΘqP pXl|Glq. (2)

In the above Equation 2 P pΘ|Mq is the prior probability of model parameters. P pGl|M,Θq is the
probability of local genealogyGl at locus l given themodel parameters. This is calculated under the Kingman
Coalescent model, with special regard to migration events. P pXl|Glq is the local data likelihood given local
genealogy Gl, which is computed using standard DNA substitution models (Jukes and Cantor (1969)). In
each MCMC update step G-PhoCS proposes a new instace of G&Θ. It then decides whether to accept
the proposal based on the ratio between complete likelihoods of the current instance and proposed instance.
Each G-PhoCS update step is divided into a series of Metropolis-Hastings updates of subsets of variables.
The update steps are:

1. Update coalescent times: For each individual coalescent event in each population, perturb the time of
the event without changing the topology of the genealogy or any other coalescent time.

2. Update genealogy structure: For each subtree of each genealogy, alter the subtree using a subtree
prune-and-regraft operation.

3. Update θp: For each population p, perturb θp.

4. Update τp: For each population p, perturb τp. If nescessary, also “stretch” or "squeeze" each genealogy
Gi as needed to accommodate the proposed change in τp.

5. Rescale all parameters: Slightly perturb all model parameters θp, τp, mb and all coalescent times
across all genealogies by a multiplicative factor sampled close to 1.

Figure 1. G-PhoCS uses independant loci chosen to be far away from genes and from
each other to reduce the influence of selection and accomodate the assumption of
independence. A local genealogy is represented over each locus and embedded in the
population phylogeny.
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1.3 The model selection problem

The model selection problem takes sequence data and a series of demography models M1, ...Mn, which
differ in their structural components, and aims to find the one which best fits the data set, i.e. select the
modelMi with maximal P pX|Miq. Typically only the structural assumptions of the models are compared
(T and B), and not specific parameter values (Θ). Figure 2 is an example instance of the model selection
problem, in which we need to choose the best fitting model amongst three structural hypotheses.

Figure 2. An example problem of selecting between three models with different
topological structures. ModelM1 has three leaf populations and no migration. Model
M2 has the same phylogeny asM1 but with an additional migration band. In model
M3 the relationship between leaves is different. Given aligned sequence data and a set
of structural hypotheses, we wish to choose which structural model best fits the data.

In this study, building upon the G-PhoCS demography inferencemethod andMCMC sampler, we develop
the theoretical framework for a robust model-selection scheme, and implement a method for comparing
models and their fit to data, this without analytically calculating P pX|Miq.

2 Methods

2.1 Estimating data likelihood via importance sampling
Model fit is best captured by the marginal data likelihood, P pX|Mq, whose computation involves integration
over the space of unknown parameter values and genealogical relationships, denoted jointly by GΘ. This
high-dimensional integral may be approximated via importance sampling using a collection of instances
tGΘpiqu sampled via MCMC conditioned on X and M. The approximation is established by expressing
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the inverse of the likelihood as an expected value under the posterior distribution of GΘ givenM and X:

1

P pX|Mq
“

ş

P pGΘ|MqdGΘ

P pX|Mq

“

ż

P pGΘ|Mq

P pX|Mq

P pX,GΘ|Mq

P pX,GΘ|Mq
dGΘ

“

ż

P pGΘ,X|Mq

P pX|Mq

N

P pX,GΘ|Mq

P pGΘ|Mq
dGΘ

“

ż

P pGΘ|M,Xq

P pX|M,GΘq
dGΘ

“

ż

1

P pX|Gq
P pGΘ|M,XqdGΘ

“ EGΘ|M,X

„

1

P pX|Gq



«
1

N

N
ÿ

i“1

1

P pX|Gpiq
q
. (3)

This harmonic mean estimator is straightforward and can be applied in a very general setting, but its
practical use is often limited due to very high variance of the inverse likelihood, 1{P pX|Gq. This high
variance means that only models with very different levels of fit may be compared reliably via harmonic mean
estimators of P pX|Mq. The main objective of the approach we propose next is to correlate the sensitivity
of model comparison with the level of similarity between the models being compared.

2.2 Relative Bayes factors
We propose here an alternative way to evaluate the fit of model M by estimating its likelihood relative to
some reference model Mref . As before, assume a collection tGΘpiqu sampled via MCMC according to
an approximate posterior probability distribution P pGΘ|M,Xq. We wish to use these MCMC samples
to estimate the Bayes factor of M relative to Mref , defined as the ratio P pX|Mq{P pX|Mref q. The
Bayes factor can be estimated by running an additional MCMC for Mref and taking the ratio of the two
harmonic-mean estimates for P pX|Mq and P pX|Mref q. However, in some cases the relative Bayes factor
may be estimated directly from tGΘpiqu without the need of an additional MCMC for Mref . This is done
by connecting the models M and Mref via a conditional distribution over the the hidden variables of M,
rP pGΘ|Mref q, which satisfies the following two requirements:

P pX|Mref q “

ż

rP pGΘ|Mref q P pX|Gq dGΘ (4)

P pGΘ|M,Xq “ 0 ñ rP pGΘ|Mref q “ 0 (5)

The model pairing conditional distribution, rP pGΘ|Mref q, plays a key role in our estimator of the
relative Bayes factor. The special notation rP indicates that this probability function is not naturally defined
by either M or Mref , and there will typically be some degree of freedom associated with its specification.
Given a model-pairing conditional distribution, the relative Bayes factor may be expressed as an expected
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value under the posterior distribution of GΘ givenM and X, implying the following approximation:

1

BFpM : Mref |Xq
fi

P pX|Mref q

P pX|Mq
“

ş

rP pGΘ|Mref q P pX|Gq dGΘ

P pX|Mq
(6)

“

ż

rP pGΘ|Mref q P pX|Gq

P pX|Mq

P pGΘ|M,Xq

P pGΘ|M,Xq
dGΘ (7)

“

ż

rP pGΘ|Mref q P pX|Gq

P pX,GΘ|Mq
P pGΘ|M,XqdGΘ

“

ż

rP pGΘ|Mref q

P pGΘ|Mq
P pGΘ|M,XqdGΘ (8)

“ EGΘ|M,X

«

rP pGΘ|Mref q

P pGΘ|Mq

ff

.

«
1

N

N
ÿ

i“1

rP pGΘpiq
|Mref q

P pGΘpiq
|Mq

. (9)

Note that the condition of Equation 4 implies the equality in Equation 6, and the condition of Equation
5 guarantees no division-by-zero in Equation 7. Interestingly, the contribution of the data to the likeli-
hood cancels out in Equation 8 (because it is equal in both models). Thus the ratio used for estimation,
rP pGΘ|Mref q{P pGΘ|Mq, is not a direct function of the data (X), and the data affects the estimate only
through its influence on the sampled instances tGΘpiqu. We refer to the ratio in Equation 6 as the relative
Bayes factor (RBF) ratio, and employ it as a model selection criteria by comparing RBFs of competing
hypothesis models, calculated using the same reference model -

1

BFpMi : Mref |Xq
ą

1

BFpMj : Mref |Xq
ñ P pX|Mjq ą P pX|Miq

Importantly, the variance of the RBF depends on the definition of the model-pairing conditional, rP , and
it will typically decrease as M and Mref become more similar. For instance, in the trivial case where
Mref “ M , we can define rP pGΘ|Mref q “ P pGΘ|Mq and the RBF ratio becomes 1 for all instances
tGΘpiqu. This is the key advantage of direct estimation of the Bayes factor, when compared to estimation
via harmonic mean. Realizing this advantage requires construction of an effective model-pairing conditional
distribution for M and Mref . The following sections present specific constructions for rP in a series of
cases.

2.3 The null reference modelM0

We start by considering a simple case whereM is a demographic model with no migration bands andMref

is the simplest possible model with a single population p0 of constant size θ0. We refer to this simple one-
parameter model as the null reference model M0 (Figure 3). The first step of constructing a model-pairing
conditional for the two models is to identify a mapping F from the space of hidden variables in M to the
space of hidden variables in M0. In our case, denote by rG and rΘ the hidden variables of M0. Since
both M and M0 have no migration bands, we may assume that the genealogical information used by both
models is the same, implying a natural one-to-one mapping between G and rG (the implications of migration
are discussed in the next subsection). A mapping between Θ “ pτ ,θq and rΘ “ pθ0q can be defined by
selecting one of the population size parameters in Θ to be associated with θ0. This can be the size of the root
population, θroot, or any other population that we expect to best represent the single population inM0. The
model pairing conditional is obtained by applying this mapping and extending it to the unmapped hidden
variables, Z “ pτ ,θztθrootuq, with the use of a conditional distribution, rP pZ|GΘzZq:

rP pGΘ|M0q “ P pθ0 “ θroot|M0q P p rG “ G|M0, θ0 “ θrootq rP pZ|G, θrootq . (10)
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Figure 3. Mapping the hypothesis modelMhyp onto the null reference model M0.
Genealogies are mapped as-is. The null population size θ0 is defined by associating it
with the size of the population inM which we expect to best represent p0 (usually
θroot). The remaining model parameters are mapped so as to satisfy the model-pairing
requirements (4 & 5): Population sizes tθpa , θpb , θpc , θpabu are mapped according to
their prior probability inMhyp. These have no effect on the reference model
structure. Divergence times tτab, τrootu are mapped onto a uniform distribution with
upper bound calculated (see Appendix A).

The model-pairing condition of Equation 4 is thus established, regardless of how rP pZ|G, θrootq is defined:

P pX|M0q “

ż

P p rΘ|M0q P p rG|M0, rΘq P pX| rGq d rGd rΘ

“

ż

P pθ0 “ θroot|M0q P p rG “ G|M0, θ0 “ θrootq P pX|Gq dGdθroot

“

ż

P pθ0 “ θroot|M0q P p rG “ G|M0, θ0 “ θrootq P pX|Gq

ˆ
ż

rP pZ|G, θrootq dZ

˙

dGdθroot

“

ż

P pθ0 “ θroot|M0q P ‘p rG “ G|M0, θ0 “ θrootq rP pZ|G, θrootq P pX|Gq dGΘ

“

ż

rP pGΘ|M0q P pX|Gq dGΘ . (11)

We are left to construct rP pZ|G, θrootq so that it ensures the model-pairing condition of Equation 5, and
we wish to use the remaining degree of freedom to minimize the variance of the RBF ratio. Equation 5 is
guaranteed by constricting rP pZ|G, θrootq to have zero values whenever P pG, θroot,Z|M,Xq “ 0. Among
the unmapped variables Z “ pτ ,θztθrootuq, the population size parameters θztθrootu do not pose any
restrictions on the mapped variables G, θroot. This means that Equations 5 is guaranteed regardless of how
their marginal distribution is defined. We thus define their conditional probability distribution according to
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their prior probability inM, to cancel out terms in the RBF ratio and reduce its variance.
rP pGΘ|M0q

P pGΘ|Mq
“

P pθ0 “ θroot|M0q P pG|M0, θ0 “ θrootq rP pZ|G, θrootq

P pGΘ|Mq

“
P pG|M0, θ0 “ θrootq

P pG|M,Θq

P pθ0 “ θroot|M0q
ś

p‰θroot
rP pθp|G, θrootq

P pθroot|Mq
ś

p‰θroot
P pθp|Mq

rP pτ |G,θq

P pτ |Mq

“
P pG|M0, θ0 “ θrootq

P pG|M,Θq

P pθ0 “ θroot|M0q

P pθroot|Mq

rP pτ |G,θq

P pτ |Mq
. (12)

Note that if we assume thatM andM0 use the same prior distribution over θroot and θ0 (resp.), then the
middle term in Equation 12 also cancels out. We cannot similarly define rP pτ |G,θq “ P pτ |Mq, because
this may lead to conflicts between divergence times and coalescence times in G, which result in violation
of the model-pairing condition of Equation 5. Such conflicts occur when a divergence time τp is deeper
than the most recent common ancestor in G of two individuals that are each a descendant of a different
daughter population of population p. Thus, the final step of constructing rP pGΘ|Mref q is to construct
rP pτ |G,θq “ rP pτ |Gq to have zero values whenever P pG|M, τ ,θq “ 0. This guarantee is achieved by
computing for each τp an upper bound based on the coalescent events inG and defining rP pτ |Gq as a product
of uniform distributions in the feasible ranges of τ (see Appendix A for complete derivation and proof).

2.4 Models with gene flow

Assume now that the reference model is still the null model, M0, but the model of interest, M, has a non-
empty set of migration bands,B, associated withmigration rates,m “ tmb : b P Bu. Migrations complicate
the mapping between M and M0 because the genealogies in M hold information about migration events,
but the genealogies inM0 do not (Figure 4).

Figure 4. Mapping a model with migration onto the null reference model.
Genealogies in p0 do not hold information about migration events. A complex
interplay between migration events and coalescence times makes defining the
conditional probability distribution rP challenging. Appendix B specifies the
generative process used to address this.

For a sequence of local genealogies G inM, denote by Gc the coalescent trees implied by G and denote
by Gm the information on migration events in G (locus, timing of event, branch in Gc, source and target
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populations). Thus, a mapping between the hidden variables of M (Gc,Gm,Θ) and the hidden variables
of M0 ( rG, θ0) can be defined by mapping Gc to rG and mapping some θroot P Θ to θ0. Consequently, the
set of unmapped hidden variables is Z “ pGm, τ ,m,θztθrootuq. This implies a slight modification of the
model-pairing conditional specified in Equation 10:

rP pGΘ|M0q “ P pθ0 “ θroot|M0q P p rG “ Gc|M0, θ0 “ θrootq rP pZ|Gc, θrootq . (13)

Themodel-pairing condition of Equation 4 can be confirmed by following a sequence of equalities similar
to the ones we derived for the scenario without migration (see Equation 11). We are thus left to specify
the conditional distribution rP pZ|Gc, θrootq to ensure that all GΘ for which P pGc, θroot,Z|M,Xq “ 0

also satisfy rP pZ|Gc, θrootq “ 0. Since the genealogy trees Gc do not restrict the population size and
migration rate parameters, we may define the conditional probability for these parameters based on their
prior probability underM, so that their terms cancel out in the RBF ratio:

rP pGΘ|M0q

P pGΘ|Mq
“

P pθ0 “ θroot|M0q P p rG “ Gc|M0, θ0 “ θrootq rP pZ|Gc, θrootq

P pGΘ|Mq

“
P pGc|M0, θ0 “ θrootq

P pGc,Gm|M,Θq

P pθ0 “ θroot|M0q
ś

p‰root
rP pθp|Gc, θrootq

ś

b
rP pmb|Gc, θrootq

P pθroot|Mq
ś

p‰θroot
P pθp|Mq

ś

b P pmb|Mq

rP pτ ,Gm|Gcq

P pτ |Mq

“
P pGc|M0, θ0 “ θrootq

P pGc,Gm|M,Θq

P pθ0 “ θroot|M0q

P pθroot|Mq

rP pτ ,Gm|Gcq

P pτ |Mq
. (14)

As in the case without migration, we are left to define the conditional probability distribution over the
restricting hidden variables, which are in this case the divergence times τ and the migration events Gm. The
complex dependence between divergence times and migration events makes this particularly challenging.
For instance, a migration event between populations p1 and p2 at time t implies that the divergence times
of all populations ancestral to p1 and p2 is at least t, but at the same time this migration event may also
relax the upper bound of these divergence times. Thus, bounds on divergence times cannot be determined
solely based on Gc, and the conditional rP pτ ,Gm|Gcq cannot be factored into a product of two separate
probability distributions for τ and Gm. In Appendix B we present a specification for the joint conditional
distribution rP pτ ,Gm|Gcq, which addresses this complex dependence and ensures that rP pτ ,Gm|Gcq “ 0
whenever P pτ ,Gm,Gc|Mq “ 0. This construction results in additional terms canceling out with terms in
the genealogy likelihood P pGc,Gm|M,Θq, to further reduce the variance of the RBF ratio.

2.5 The comb reference model

The null model has the unique advantage of being a valid reference for the comparison of any two models.
This advantage, however, comes at the cost of collapsing all population structure. In many cases we know the
population designation of the sampled individuals, and model uncertainty is restricted to the relationships
between the sampled populations. To capture this simple structure we use a population phylogeny with a
single ancestral population splitting simultaneously into all sampled populations. We refer to such reference
models as combmodels and denote them byM D, due to the comb-like structure of the population phylogeny
(Figure 5). A combmodel is defined by: (1) a set of sampled (leaf) populations,L; (2) an ancestral population,
comb; and (3) a set of migration bands BL between populations in L. The resulting demographic model,
M DpL,BLq, has |BL| ` |L| ` 2 parameters: rΘ “ pτcomb, rθ, rmq, where rθ “ tθp : p P LY tcombuu and
rm “ tmb : b P BLu.

Consider a demographic model, MpT , Bq, and its corresponding comb model, M DpL,BLq, defined
by L “ leavespT q and BL “ B X pL ˆ Lq. For brevity, we refer to M DpL,BLq simply as M D. The
model-pairing conditional distribution for M and M D is constructed by first defining a mapping between
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Figure 5. A mapping from hypothesisMhyp onto the reference modelMcomb.
Genealogies and model parameters aboveminpτq are mapped according to the
mapping into the null model (Subsection 2.3) and those belowminpτq are mapped as
is. The remaining parameter pcomb can be freely mapped in order to improve RBF
estimation.

the hidden variables of M (GΘ) and the hidden variables of M D ( rG rΘ). This mapping is derived from
the requirement that below the comb divergence time (τcomb) the comb model is identical toM and above it
M D is identical to the null modelM0. We thus set τcomb “ τmin

∆
“ minpτ q, to guarantee that all population

divergence events inM map to the comb population inM D. The migration rates of bands in BX pLˆ Lq
and effective sizes of populations in L are mapped into their counterparts in rΘ, and following the mapping
for the null model, a single ancestral population size parameter (θroot) is chosen to be mapped into θcomb. We
denote the set of mapped migration rate and population size parameters ofM collectively as Θ D. Mapping
between genealogies is obtained by removing from G all migration events above time τmin. The resulting
collection of local genealogies are denoted by G D and are directly mapped to rG. The remaining unmapped
hidden variables (Z) ofM consist of the following components:

1. Unmapped population size parameters: tθp : p R LY trootu u.

2. Unmapped migration rate parameters: tmb : b R Lˆ Lu.

3. The identity of the ancestral population in T with minimum divergence time: minAncPop “
argminpτ q. Note that this population may be any ancestral population with two leaf daughters, and
its identity is lost when mapping τ into τcomb.

4. The divergence times of all other populations: tτp : p ‰ minAncPopu.

5. Information on all migration events in G above time τcomb, which we denote by Gm|ąτmin .

A model-pairing conditional distribution forM andM D is thus established by applying the mapping de-
scribed above and specifying a conditional distribution over the unmapped parameters, rP pZ|G D,Θ D, τminq.
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The proof of the condition in Equation 4 is given below:

rP pGΘ|M Dq “ P p rΘ “ pΘ D, τminq|M Dq P p rG “ G D |M D,Θ D, τminq rP pZ|G D,Θ D, τminq . (15)

P pX|M Dq “

ż

P p rΘ|M Dq P p rG|M D, rΘq P pX| rGq d rG rΘ

“

ż

P p rΘ “ pΘ D, τminq|M Dq P p rG “ G D |M D,Θ D, τminq P pX|G Dq dG DΘ Dτmin

“

ż

P p rΘ “ pΘ D, τminq|M Dq P p rG “ G D |M D,Θ D, τminq P pX|G Dq

ˆ
ż

rP pZ|G D,Θ D, τminqdZ

˙

dG DΘ Dτmin

“

ż

P p rΘ “ pΘ D, τminq|M Dq P p rG “ G D |M D,Θ D, τminq rP pZ|G D,Θ D, τminq P pX|Gq dGΘ

“

ż

rP pGΘ|M0q P pX|Gq dGΘ . (16)

The conditional distribution rP pZ|G D,Θ D, τminq is defined similar to its specification in the null model.
The unmapped population size and migration rate parameters are distributed according to their prior prob-
ability under M to eliminate terms in the RBF ratio. The identity of the minimal ancestral population,
minAncPop, is distributed uniformly among all ancestral populations in T with two leaf daughters. We
denote the number of such populations in T by κpT q. The only unmapped variables restricted by G D and
τmin are the unmapped divergence times and migration events above time τmin. Their conditional distribution,
rP pτ ztτminu,Gm|ąτmin |Gcq, is defined using the process described for the null model (see Appendices A and
B). This specification thus guarantees the condition of Equation 5, as in the case of the null reference model.
The resulting RBF ratio is expressed as follows:

rP pGΘ|M Dq

P pGΘ|Mq
“
P p rΘ “ pΘ D, τminq|M Dq P p rG “ G D |M D,Θ D, τminq rP pZ|G D,Θ D, τminq

P pGΘ|Mq

“
P p rG “ G D |M D,Θ D, τminq

P pG|M,Θq

P p rΘ “ pΘ D, τminq|M Dq

P pΘ D |Mq

1
κpT q

rP pτ ztτminu,Gm|ąτmin |Gcq

P pτ |Mq
. (17)

As in the case of the null reference model, the above RBF ratio has several terms canceling out. First,
the conditional probabilities of the unmapped population size and migration rate parameters cancel out with
their priors underM. Second, if we assume identical priors in both models for the mapped parameters, then
these cancel out as well in the second term of Equation 17. Terms in the genealogy likelihood contributed by
migration events above time τmin also cancel out in the ratio (see Appendix B). Finally, the contribution of
all events below time τmin (coalescence and migration) also cancel out. If we denote the portion of G below
time τmin by Găτmin , and the portion above it by Gąτmin , then the contribution of Găτmin to the first term of
the RBF ratio cancels out as follows:

P pG D |M D,Θ D, τminq

P pG|M,Θq
“

P pG Dăτmin
|M D,Θ D, τminqP pG Dąτmin

|M D,Θ D, τminq

P pGăτmin |M,ΘqP pGąτmin |M,Θq

“
P pGăτmin

|M D,Θ D, τcomb “ τminq

P pGăτmin |M,Θ D, minpτ q “ τminq

P pGc|ąτmin |M D, θcomb “ θrootq

P pGąτmin |M,Θq

“
P pGc|ąτmin |M0, θ0 “ θrootq

P pGąτmin |M,Θq
. (18)

The RBF may thus be re-expressed as follows:

rP pGΘ|M Dq

P pGΘ|Mq
“

1

κpT q
rP pGąτmin , Θztτminu |M0q

P pGąτmin , Θztτminu |Mq

P p rΘztθcombu “ pΘ Dztθrootu, τminq|M Dq

P pΘ Dztθrootu|Mq
. (19)
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2.6 Constructing a reference model

Subsections 2.3-2.5 described two examples of reference models - the null reference model and the comb
reference model. During construction of both these reference models, the structure of the entire phylogeny
(sans a portion of the leaves in case of a comb mapping) is collapsed into a single population, and a mapping
is derived from this. However, in many cases of interest the modeling uncertainty is restricted to a certain
subtree in the population phylogeny. In such cases, we wish to consider a reference model where only a
subset of the sampled populations is collapsed into a clade or a comb submodel.
In general, a reference model Mref for hypothesis model M may be obtained by applying the following
three-step process:

1. First, choose a subtree of the population phylogeny of M. The subtree is associated with the
population p at its root.

2. Then collapse the subtree structure into either a clade structure, i.e. a single population pclade, or a
comb structure, i.e. an ancestral population pcomb and a set of leaf populations and migration bands
L,BL.

3. Finally, map the hidden parameters of M onto parameters of Mref , defining the model-pairing
conditional distribution rP such that the necessary conditions (4 & 5) are met. This mapping should
cancel-out as many terms of the RBF ratio as possible (equations (14) & (19)).

Identically mapping all structure and parameters outside the subtree of p during step 3 leads to canceling-
out of all corresponding terms in the RBF ofM relative toMref .

3 RBF Computational Scheme

Having defined the concept of reference models and formulated their relative Bayes factors, we now describe
the computational scheme we use to estimate RBFs as derived in subsection 2.2:

1

BFpM : Mref |Xq
«

1

N

N
ÿ

i“1

rP pGΘpiq|Mref q

P pGΘpiq|Mq
(20)

This RBF is further derived for clade and comb reference models (Equations 14 & 19). We now focus
our attention on the components making up the model pairing conditional. Consider for example the RBF
derivation for a null reference model in equation 14 -

rP pGΘ|M0q

P pGΘ|Mq
«

P pGc|M0, θ0 “ θrootq

P pGc,Gm|M,Θq

P pθ0 “ θroot|M0q

P pθroot|Mq

rP pτ ,Gm|Gcq

P pτ |Mq

The two denominators P pGc,Gm|M,Θq and P pτ |Mq are calculated as part of the G-PhoCS MCMC
flow. During RBF estimation these values are taken as-is from G-PhoCS and utilized as explained in section
3.5. In the derivation we suggest that the parameter priors P pθroot|Mq and P pθ0 “ θroot|M0q may share
the same distribution and thus cancel out. However, in theory and practice, any parameter prior or constant
value can be sused as P pθ0|M0q. In such a case, P pθroot|Mq is taken from G-PhoCS as-is and P pθ0|M0q

is plugged into the calculation in section 3.2. The condtional distribution rP pτ ,Gm|Gcq is calculated as
described in appendices A and B and utilized as described in section 3.5. Lastly, the genealogy likelihood
in the reference model P pGc|M0, θ0 “ θrootq is calculated from scratch under Kingman’s coalescent.
We consider this the main component of the model pairing conditional, as it represents the bulk of our
computational challenge. The rest of section 3 details its calculation in an efficient manner.
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3.1 Maximizing algorithm flexibility

A main objective of our computational scheme is allowing maximal flexibility in choice of reference model,
while attaining reasonable algorithm run time and space usage. Since the most time consuming step is the
MCMC sampling algorithm, we assume only a single MCMC chain per hypothesis. With this in mind,
we note that there exists a clear trade-off between flexibility in choice of reference model and amount of
data the MCMC process is required to emit. For example, if the reference model is predetermined before
MCMC execution (i.e. no flexibility is required), the RBF ratio can be calculated during MCMC iteration
and only the final RBF estimation need be emitted. Unfortunately, this approach would require another full
MCMC execution in order to estimate RBF of any other reference model. On the other hand, the RBF for
every reference model could be computed in post-processing if the MCMC would print out the full hidden
state GΘ in each iteration. This, however, would yield an unreasonable amount of traced information - in
proportion to the size of the model and to the number of loci.

Our computational scheme aims to find a reasonable middle ground between these two extremes. Our
objective is to maximize the number of reference models we can consider using a single MCMC sampling
chain without blowing up the output trace. This is accomplished by identifying a collection of sufficient
statistics for G that satisfy three conditions:

1. The sufficient statistics allow calculation of P pG|Θ,Mref q for a wide variety of reference model
structures, i.e. for any model structure obtained by applying a comb or clade collapse operation on an
ancestral population.

2. Given a reference model structure, the sufficient statistics allow calculation of P pG|Θ,Mref q for any
value of the freely parameter θroot.

3. The number of sufficient statistics depends on the complexity of the hypothesis model Mhyp, but not
on the size of the data (i.e. the number of individuals and of loci).

We then perform the RBF calculation in two phases. Phase 1, which is performed jointly with the MCMC
sampling process, emits intermediate summary statistics which meet the above three conditions. Phase 2
is then given a definition of specific reference model structure and mapping of free reference parameters.
This phase assembles the relevant statistics, plugs in the appropriate parameter priors and emits the final
estimate of 1

BFpM:Mref |Xq
. Phase 2 can be repeatedly rerun with different reference models, utilizing the

same sufficient statistics emitted by phase 1, thus calculating RBFs of different reference models.
Subsection 3.2 explains how to calculate sufficient statistics which meet conditions 2 & 3 for a single

model structure. Subsections 3.3 and 3.4 attain condition 1 by efficiently extending these statistics to all
comb and clade reference models. Later, section 3.5 explains how the intermediate sufficient statistics are
combined with other statistics into an RBF estimate for a specific reference model.

3.2 Efficient sufficient statistics for reference model genealogy likelihood

Sufficient statistics that satisfy conditions 2 & 3 are derived from the expression for the genealogy likelihood
P pG|Θ,Mref q under Kingman’s coalescent, which we briefly recall here. First, because the loci are
assumed to be freely recombining, then the local genealogiesG “ pG1, ...GLq are conditionally independent
given the model parameters and the likelihood may be expressed as a product of locus-specific likelihoods,
P pGl|Θ,Mref q. Each locus-specific likelihood is a product of exponentially distributed waiting times for
coalescent andmigration events. The rates of these exponential distributions depend on themodel parameters
(population sizes and migration rates) as well as the number of lineages considered for coalescence and
migration. We thus identify for each population the set of coalescent and migration events that change the
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number of lineages modeled in that population in Gl. Each time interval I between two consecutive events
is associated with the following properties:

• tpIq – the elapsed time of the interval.

• npIq – the number of lineages of Gl alive during that time in the target population.

• isCoalpIq , isInMigpIq – binary values that indicate whether the event above the interval is a
coalescent event or incoming migration event (respectively).

The contribution of population p to P pGl|Θ,Mref q can then be expressed as a product over the set of
relevant time intervals Ipp, lq:

fcoalpGl, p|Θ,Mref q fi
ź

IPIpp,lq

ˆ

2

θp

˙isCoalpIq

exp

ˆ

´
2

θp

ˆ

npIq

2

˙

tpIq

˙

. (21)

Similarly, the contribution of migration band b to P pGl|Θ,Mref q can be expressed as a product over the
set of time intervals Ipb, lq defined by events in the target population of the migration band:

fmigpGl, b|Θ,Mref q fi
ź

IPIpb,lq

m
isInMigpIq
b exp p´mb npIq tpIqq . (22)

Using these notations, the genealogy log likelihood can be expressed as follows:

ln pP pG|Θ,Mref qq “ ln

˜

ź

l

P pGl|Θ,Mref q

¸

“ ln

˜

ź

l

˜

ź

p

fcoalpGl, p|Θ,Mref q
ź

b

fmigpGl, b|Θ,Mref q

¸ ¸

“
ÿ

p

ÿ

l

ln pfcoalpGl, p|Θ,Mref qq `
ÿ

b

ÿ

l

ln pfmigpGl, b|Θ,Mref qq . (23)

The key to likelihood calculation is to sum over the log-likelihood contributions across time intervals
and across loci (Figure 6):

ÿ

l

ln pfcoalpGl, p|Θ,Mref qq “ ln

ˆ

2

θp

˙

ÿ

l

ÿ

IPIpp,lq

isCoalpIq ´
2

θp

ÿ

l

ÿ

IPIpp,lq

ˆ

npIq

2

˙

tpIq . (24)

ÿ

l

ln pfmigpGl, b|Θ,Mref qq “ ln pmbq
ÿ

l

ÿ

IPIpp,lq

isInMigpIq ´mb

ÿ

l

ÿ

IPIpp,lq

npIqtpIq . (25)

Note that the four double sums in these expressions depend on the local genealogiesG and the divergence
times tτpu, but they do not depend on the population size and migration rate parameters. We thus denote
these sums respectively as numCoalspG, pq, coalStatspG, pq, numMigspG, bq, and migStatspG, bq,
and the log-likelihood can be expressed as follows:

ln pP pG|Θ,Mref qq “
ÿ

p

ln

ˆ

2

θp

˙

¨ numCoalspG, pq ´
1

θp
¨ coalStatspG, pq (26)

`
ÿ

b

ln pmbq ¨ numMigspG, bq ´mb ¨migStatspG, bq . (27)

The summary statistics numCoalspG, pq, coalStatspG, pq, numMigspG, bq&migStatspG, bq ag-
gregate all genealogy state information, and postpone the plugging in of parameters θp andmb. This enables
computation of P pG|Θ,Mref q for different parameters in a later stage, when settling on a specific free
parameter mapping, as specified in our 2nd requirement from the sufficient statistics.
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Figure 6. The sufficient statistic coalStatpG, cladepABqq is calculated by
accumulating the Kingman Coalescent genealogy log-likelihod across loci. The
contribution of each locus is calculated via the set of intervals IpcladepABq, liq. The
sufficient statistic numCoalspG, cladepABqq is simply the sum across loci of the
amount of coalescence events inside cladepABq.

3.3 Sufficient statistics for all clade models

We now consider an example hypothesis and reference setting in order to describe all statistics required in
computing a single RBF estimation. The hypothesis model M has a set of leaf populations A,B,C and
ancestral populationsAB andABC, as well as possibly other irrelevant populations. To create the reference
model MCpABq we collapse the clade under population AB and associate θ0 with θAB . A snippet of the
clade population is seen in Figure 6. The hypothesis and reference model are identical everywhere outside
the AB clade, so to compute the RBF we need only calculate terms inside the clade -

rP pGΘ|MCpABqq

P pGΘ|Mq
«

P pGăτABC |MCpABq, θ0 “ θABq

P pGPA|θAqP pGPB|θBqP pGPAB|θABq

P pθ0 “ θAB|M0q

P pθAB|Mq

rP pτAB|GăτABC q

P pτAB|Mq

A similiar derivation can be done for all reference models generated by the reference construction
process (subsection 2.6). To support calculating RBF of all these models we must calculate all rel-
evant terms for each reference model. Fortunately, statistics heavily reappear in different RBFs; To
fulfill all hypothesis genealogy likelihoods we emit per iteration the genealogy likelihood of each pop-
ulation. These are already calculated during MCMC. This fulfils terms P pGPA|θAq, P pGPB|θBq and
P pGPAB|θABq in the above example. All theta values and theta and tau priors are also emitted in each
iteration. Reference tau priors are calculated as described in Appendix A and the rest are readily avail-
able from the MCMC process. This fulfils terms P pθAB|Mq, P pθ0 “ θAB|M0q, rP pτAB|GăτABC q and
P pτAB|Mq in the above example. Finally, sufficient statistics for all possible collapsed clades are emitted -
t numCoalspG, cladeppqq, coalStatspG, cladeppqq up

To efficiently calculate sufficient statistics for all clades, calculation of numCoals and coalStats is
done recursively down the population phylogeny of M as implemented in the pseudo-python code below.
This implementation uses a function for computing coalStats given a sorted list of intervals (function
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calculate_coal_stats), as well as accessors to data from G-PhoCS (functions num_coals_from_gphocs
and sorted_intervals_from_gphocs):

def recursive_num_coals(pop):
""" r e cu r s i v e l y ca l cu la t e and s to re num of coalescence
even ts in clade ( pop ) as wel l as a l l descendant clades """

pop_num_coals = num_coals_from_gphocs(pop)

if is_leaf(pop):
return pop_num_coals

left_num_coals = recursive_num_coals(pop.left)
right_num_coals = recursive_num_coals(pop.right)

current_num_coals = pop_num_coals + left_num_coals + right_num_coals

store(current_num_coals)

return current_num_coals

def recursive_coal_stats(pop):
""" r e cu r s i v e l y ca l cu la t e and s to re coalescence s t a t s
of clade ( pop ) as wel l as a l l descendant clades """

pop_intervals = sorted_intervals_from_gphocs(pop)

if is_leaf(pop):
return pop_intervals

left_intervals = recursive_coal_stats(pop.left)
right_intervals = recursive_coal_stats(pop.right)
merged_intervals = merge_sort(left_intervals , right_intervals)

clade_intervals = merged_intervals.append(pop_intervals)

clade_coal_stats = calculate_coal_stats(clade_intervals)

store(clade_coal_stats)

return clade_intervals

3.4 Recursive Sufficient Statistics for All Comb Models

Equation 18 shows how for a reference model created by comb-collapsing the root population, contribution
of the genealogy-likelihood to the model-pairing conditional is reduced to contribution of the portion of
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genealogies above τmin -
P pGc|ąτmin |M0, θ0 “ θrootq

P pGąτmin |M,Θq

When comb-collapse is applied to a subtree, we apply the same idea to the portion of the genealogy
contained in that subtree. Figure 7 illustrates the intervals relevant for genealogy-likelihood calculation in
the hypothesis and reference models.

As in the case for clade reference models, we wish to calculate statistics for all viable comb reference
models after only one MCMC chain. We do this by storing for every ancestral population p the log of
the denominator lnpP pGąτmin |M,Θqq and the two sufficient statistics involved in the calculation of the
enumerator - (t numCoalspG, combppqq, coalStatspG, combppqq up). This is again calculated recursively
down the population phylogeny ofM, but the function calculate_coal_stats now takes into account only
intervals inside the subtree of p and above τmin.

Figure 7. In comb reference models, genealogy-likelihood need only be calculated
strictly within the bounds of the comb population combppq. Outside this area of the
topology, genealogy likelihoods of the two models cancel out in the RBF.

3.5 Finalizing the RBF calculation using McRef

After the MCMC process is completed, we are left with sufficient statistics and parameter priors per iteration
for each clade and comb reference model. These are stored in multiple trace files (see example trace snippet
in appendix C). The remaining step is to calculate the estimated relative model fit P pX|Mref q{P pX|Mhypq

for a chosen reference model (or several). For this purpose we developed the McRef utility.
When setting up McRef, several parameters are configured. The main configurations is the chosen

reference model. This is specified by simply stating on what hypothesis population to perform a comb/clade
collapse operation. The remaining configuration options pertain to standard I/O (e.g. where the trace data
files are stored andwhere to store output), to G-PhoCS configuration (e.g. what alpha& beta to use for gamma
prior, what print multipliers were applied to trace data when emitted by gphocs etc.), to internal statistical
calculations (e.g. number of bootstrap iterations for confidence calculation and burn-in and sample-dilution
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to apply onMCMC traces) and to debugging (e.g. what debug calculations to run and visualizations to emit).
See appendix C for an example configuration file.

McRef finishes calculating Equation 27 by plugging in the chosen parameters for each configured
reference population. In our current implementation, θroot of the comb/clade population in the reference
model is set to the value of theta of the population at the root of the comb/clade in the hypothesis, but this can
be easily adjusted if ever we decide to consider other theta mappings. In addition to evaluating RBF, McRef
also roughly measures the accuracy of estimation using bootstrapping of traced samples. The bootstrapping
algorithm used is a simple monte-carlo case resampling. It’s results appear in the bar charts of section 4 as
the error interval.

With the goal of optimizing the practical run-time and usability of McRef, several techniques were
employed; trace data files, which are repeatedly read and used, are lazily loaded and cached in each mcref
process. Multiple McRef processes are launched using a single command-line tool and are cocurrently run
on different processors, eventually aggregating summary results to a single log file. See appendix C for an
example output.

To clarify results and to help understand and debug McRef runs, several visualizations are emitted. Each
McRef run emits plots of the genealogy-log-likelihood for the reference and hypothesis models, as well as a
plot of the RBF and harmonic mean estimations across G-PhoCS iterations. Multiple debug plots are also
emitted by mcref. Their goal is to help the researcher assert the experiment executed as planned. These plots
contain the kingman coalescence and migration likelihoods of every population and migration band in the
hypothesis and reference models. They also contain the aggregate coalescence stats of the hypothesis and
reference model. See appendix C for example debug graphs. The McRef code resides on Github, along with
an installation guide and examples - https://github.com/selotape/McRef .

4 Results

In order to evaluate our new method we designed a series of experiments which measure it’s strengths and
weaknesses. The experiments were set up to try to distinguish between different hypothesis structures;
Experiment 1 tries to decide whether a divergence between populations did or did not occur. Experiment 2
tries to decide the ancestral relationship between three leaf populations and an out-group, and experiment
3 tries to identify the true migration pattern between leaf populations. A secondary goal of the experiment
design is to learn how best to employ RBFs and how to choose a reference model for a given set of hypotheses.

4.1 General setup

We generated data sets under different demographic scenarios, using the following constant setup. In
experiments I and III, the generative population models (the "true" models) have 3 leaf populationsA,B and
C, an ancestral population AB and a root ancestral population ABC. In experiment II the true model has
another ancestor population ROOT which splits to ABC and an outgroup leaf population O. We use the
coalescent software ms (Hudson, 2002) to generate four haploid sequences per leaf population. Sequence
data contains 5000 loci of length 1000 bases. See appendix C for a samplems sequence generation script. For
each demographic scenario we generated two independent data sets (using the same generative hypothesis)
to examine replication of results. To further assess replication we ran 2 independent MCMC runs in each
G-PhoCS setting. See appendix C for an example G-PhoCS MCMC configuration file.

In each comparison instance we compared two hypothesis models M1 and M2 on a given data set.
Depending on the specific test, comparison was done using relative Bayes factors with a differing reference
model Mref and using the harmonic mean as a benchmark comparison. On each data set we ran G-
PhoCS twice with M1 and twice with M2, yielding four potential differences between the relevant stats
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(e.g.,HMpM1, dataq´HMpM2, dataq,RBF pM1,Mnull, dataq´RBF pM2,Mnull, dataq etc). The
differences represent the algorithms final "choice" between M1 and M2, i.e. which model has higher
estimated data likelihood relative to the reference model.

For each comparison we recorded the maximum and minimum of the 4 differences with their standard
error margins (which McRef computes via bootstrap). For the max value we recorded max ` ste and for
the min value we recorded min´ ste. Since these errors correspond to the difference between two values,
we took the square root of the sum of the two appropriate errors. As a result we attained 4 values for each
comparison ofM1 andM2 on a given data set and each method of comparison (e.g. HM , RBF with null
model, etc). We used these values to plot the confidence intervals seen in the figures of each experiment.

4.2 Experiment I - Identifying population separation

In this experiment we generated data sets in which populationABCs divergence time is fixed to 0.00300, and
perturbed ABs divergence time from 0 up to 0.00050. No migration was allowed between any population.
We considered 2 hypotheses:

1. M3pops - A model with 3 leaf populations A, B and C. This is the true model used to generate the
sequence data

2. M2pops - A model with 2 leaf populationsAB and C, where the sequenced individuals of the original
A and B populations are grouped into a single leaf population AB. This model coincides with the
true model in the data set with τAB :“ 0

and compared these two models using each of three techniques:

1. The harmonic mean

2. Relative Bayes factors with a reference model ofMnull

3. Relative Bayes factors with a reference model of McladepABq (the original model with a clade rooted
at population AB). Note that whenMhyp :“M2pops we getMref “Mhyp

We used these three techniques to compare models M3pops and M2pops (i.e., log
P pX|M3popsq

P pX|M2popsq
q) with

each variant of the data set.
We observe that when computing RBF pMhyp “M2pops,Mref “McladepABqq, we get values near 0

(ă 1e´6). This is because the reference and hypothesis models converge to the same model. We consider
this a simple validation of our RBF calculation. We also notice that both HM and the two RBFs are able
to determine the correct model (M3pops) for div50, and they don’t reject M2pops for div00 (although
null_RBF does give positive values). In div20 we see that both RBFs determine the correct model, while
the harmonic mean does not significantly rejectM2pops. We see that when we useMcladepABq, the estimates
of RBF are less noisy than when using Mnull. Lastly, Mnull appears to bias upward the RBF estimates,
resulting in false-positives for low divergence data sets (div00 and div10).

4.3 Experiment II - Determining model topology

In this experiment the true model contained an additional outgroup leaf population O. The divergence time
of populationROOT to populationsO &ABC was set to 0.01000. The divergence time ofABC was again
fixed to 0.00300 and the divergence time of AB was perturbed between 0.00300 and 0.00180. Again, no
migration was allowed between any population. We considered 3 hypotheses:

1. MAB_C_O - A model with four leaf populations A, B and C and O where A and B are siblings. This
is the true model used to generate the sequence data
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Figure 8. Results of experiments selecting betweenM3pops andM2pops using three
techniques - 1) RBF of the null reference model, 2) RBF of a cladepABq reference
model and 3) HM. Data sets are marked on the X-axis by divXX-a, where the value of
XX stands for τAB ˆ 10, 000 and a indicates the data replicate (1 or 2). The divergence
time of AB used in the generation of the data set increases between comparisons (left
to right). The bars heights are the values of the comparison metric log

P pX|M3popsq

P pX|M2popsq
.

Each experiment was repeated twice to assess reproducability. We see in the graph
that for τAB ď 0.00020 the harmonic mean does not confidently prefer the true
hypothesisM3pops over the competing hypothesis M2pops. RBFs, however, prefer
M3pops starting from τAB ě 0.00010, regardless of the chosen reference model.

2. MA_BC_O - A similiar model but in which B and C are siblings

3. MAC_B_O - A similiar model but in which A and C are siblings

Note that when τpABq “ 0.00300 “ τpABCq, the simulated model is one in which the three populations
instantaneously diverge, so we expect the three hypotheses to have similiar fit to data. We compared these
models using each of five techniques:

1. The harmonic mean

2. Relative Bayes factors with a reference model of MCladepROOT q (Mnull)

3. Relative Bayes factors with a reference model of MCladepABCq

4. Relative Bayes factors with a reference model of MCombpROOT q

5. Relative Bayes factors with a reference model ofMCombpABCq

Similiarly to experiment I, we used these techniques to compare the true model MAB_C_O against the
alternativesMA_BC_O andMAC_B_O. Figure 9 shows the results of the comparisons.
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Figure 9. Results of experiments selecting between three model structures using each
of multiple RBFs and HM. Data sets are marked on the X-axis by divAB_XX-a, where
the value of XX stands for τpABq ˆ 10, 000 and a indicates the data replicate (1 or 2).
The true gap between divergence times τpABCq and τpABq starts from zero on the
left -most bar (where τABC “ 0.00300 “ τAB) and increases between comparisons
(left to right). We see that the more informative reference models (CombpABCq
followed by CombpROOT q) successfully select the true model, whereas the more
general methods are very noisy and uncertain, even when the hypotheses should be
indistinguishable.
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We see that the two comb reference methods (first two panels of Figure 9) clearly and confidently choose
the true hypothesis model, MAB_C_O. The comb reference methods also correctly show no preference to
any model when the hypotheses are eqivalent. This is not true for the other methods. Amongst the two
comb reference methods, the more localized combpABCq provides a stronger and more confident signal.
However, when using the cladepABCq reference model (3rd panel) we see at most a gentle upward trend
in results, but no reproducable clear selection. In the remaining two experiments ,cladepROOT q and HM
(seen in 4th and 5th panels) we see no selection and a high degree of uncertainty.

4.4 Experiment III - Determining direction of gene flow

In this experiment we generated data sets where the divergence times are fixed to τABC “ 0.00300, and
τAB “ 0.00150 and simulated different migration rates from population C to population B. We considered
four hypotheses:

1. MmigCB - A model with a migration band from C to B (the true model)

2. Mnomig - A model with no migration bands

3. MmigALL - A model with migration bands between all pairs of sampled populations (6 migration
bands total)

4. MmigBC - A model with migration band from B to C

and examined two ways to compare these 4 models:

1. Using the harmonic mean estimator (HM)

2. Using RBF whereMref “Mnull

To present the results, we conducted a comparison between each of the three models with migration
against Mnomig as a base model (e.g. log

P pX|MmigBCq

P pX|Mnomigq
). We ploted for each hypothesis and each data set

the results when comparing using an RBF with the null modeland when using the harmonic mean (Figure
10). Because the conditional distribution for migration events is not fully implemented, we applied a small
shortcut and assumed migration priors of the hypothesis and reference models cancel out. We estimate that
this results in a relatively small correction, and believe it does not affect any trend in results.
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Figure 10. Results of experiments selecting between multiple migration patterns
using the null reference model (panel 1) and using HM (panel 2). Data sets are
marked by migXX-a, where XX stands for the migration rate from population C to B
and a indicates the data replicate (1 or 2). The migration rate from C to B used in the
generation of the data set increases between comparisons (left to right). The bars
heights are the values of the comparison metric againstMnomig, log

P pX|MmigBCq

P pX|Mnomigq
.

Each experiment was repeated twice to assess reproducability. We see that the
harmonic mean (2nd panel) does not consistently prefer any model over another,
whereas the null RBF (1st panel) prefers models with migration to the migration-less
base model.

We see that the harmonicmean scores the threemodels withmigrations similarly and it never significantly
prefers models with migration to Mnomig (Figure 10). RBFs however consistently score MmigCB and
MmigAL higher thanMnomig in the 4 data sets with migration. The preference is correlated to the simulated
migration rate. RBFs also score MmigCB and MmigALL higher than MmigBC . This shows that they are
able to identify the direction of migration (C Ñ B instead ofB Ñ C). There doesn’t seem to be a significant
difference between the scores of MmigCB and MmigALL. In principle, we would’ve liked to give a higher
score to the most "compact" model, but this is not attained.

4.5 Summary

We’ve utilized RBFs in answering three model selection questions; 1) whether a divergence event occured,
2) what is the true migration pattern and 3) what is the relationship between leaf populations. In all
three scenarios, model selection using relative Bayes factors significantly outperformed the harmonic mean
estimator. We saw in experiments 1 and 2 that the choice of reference model has a great impact on algorithm
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performance. Generaly speaking, the best performing reference model is the most informative reference
model that can be used, i.e. the one closest to all models being compared. We also see that, as expected, the
success of the algorithm is correlated with the true distance between models, but it’s estimations are not of
high certainty. Finally we note that in experiment 3 RBFs did not succeed in choosing the most parsimonious
hypothesis.
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A The conditional distribution rP pτ |Gq for models without migration

When the hypothesis model M has no migration, its model-pairing conditional distribution with the null
model M0 is determined by specifying a conditional distribution for the divergence times, rP pτ |Gq, such
that rP pτ |Gq ą 0 if and only if P pG|τ ,Mq ą 0 (see Equations 5 and 12). Let pT , τ q be a timed population
phylogeny and let G be a collection of coalescent trees in which every leaf is mapped to a leaf population in
T and every internal vertex v corresponds to a coalescent event at time tpvq. Then P pG|τ ,Mq ą 0 if and
only if the trees in G can be embedded in pT , τ q, as defined below.

Definition 1. An embedding of a collection of local genealogies G in a timed population phylogeny pT , τ q
is a mapping, pop : G Ñ T , which satisfies the following conditions for every coalescence event v P G:

1. poppvq is alive at time tpvq: τppoppvqq ă tpvq ď τpparentppoppvqqq .
(if p is a leaf population then τppq “ 0 and if p is the root population then τpparentppqq “ 8.)

2. poppparentpvqq is ancestral (or equal) to poppvq: poppparentpvqq ěT poppvq.

Note that if G is embeddable in pT , τ q, then this embedding is unique, because given a coalescent event
v with daughter u, there is only one population that is alive at time tpvq (condition 1) and ancestral or equal
to poppuq (condition 2). A similar argument is used to establish a sufficient and necessary condition for
embeddability below.

Definition 2 (mrcaPop). Given a coalescence event v in a local genealogy whose leaves are assigned to
the leaves of a population phylogeny T , letmrcaPoppvq denote the most recent common ancestor (MRCA)
in T of all populations to which leaves in the subtree rooted at v are mapped.

Lemma 1. A collection of local genealogies G has an embedding in a timed population phylogeny pT , τ q
iff for every v P G we have tpvq ą τpmrcaPoppvqq.

Proof.
ñ: Consider an embedding pop : G Ñ T , and let v be an arbitrary coalescence event in G. Condition 2
implies that poppvq ěT popplq for all leaves in the subtree rooted at v. We thus get poppvq ěT mrcaPoppvq,
and by condition 1: tpvq ą τppoppvqq ě τpmrcaPoppvqq.
ð: Let v be an arbitrary coalescence event inG, and assume that tpvq ą τpmrcaPoppvqq. This means that
there is a (unique) population, p˚, ancestral tomrcaPoppvq that is also alive at time tpvq (i.e., τpp˚q ă tpvq
ď τpparentpp˚qq). Define the embedding by mapping v to population p˚. Condition 1 is guaranteed
by construction. Condition 2 is proved by considering an arbitrary coalescence event v and its parent
u “ parentpvq. Both poppuq and poppvq are ancestral (or equal) tomrcaPoppvq, becausemrcaPoppuq ěT
mrcaPoppvq. Thus either poppvq ěT poppuq or poppuq ěT poppvq. Condition 1 implies that poppvq cannot
be strictly ancestral to poppuq via the following sequence of inequalities:

τpparentppoppuqq ě tpuq ą tpvq ą τppoppvqq .

Hence, poppuq ěT poppvq, establishing condition 2.

Lemma 1 directly implies a feasible range of every divergence time τp:
Claim 1. Let G be a collection of local genealogies whose leaves are mapped to leaves of a population
phylogeny T . Then for every ancestral population p, P pG|τp “ τ,Mq ą 0 iff τ P r0, uboundpp|Gqq, where
the upper bound of the feasible range for τp is given by:

uboundpp|Gq “ minttpvq : mrcaPoppvq ěT pu (28)

We thus define rP pτ |Gq as a product of uniform distributions for τ in their feasible ranges, as defined by
Claim 1.
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B The conditional distribution rP pτ ,Gm|Gc,mq for models with migration

As with the case without migration, the conditional distribution rP pτ ,Gm|Gc,mq is constructed by first
specifying the necessary and sufficient conditions under which a genealogy with migration events G “

pGc,Gmq is embeddable in a timed population phylogeny pT , τ q. Migration complicates these conditions
because of two main reasons: (1) migration breaks the fundamental assumption that genealogy branches
move from a population to its parent in the phylogeny, and (2) unlike coalescent events, migration events are
mapped to specific populations and thus pose strict constraints on the embedding. The first issue is addressed
by examining migration-free trees, obtained by cutting branches of the local genealogies in G at migration
events. We associate each migration event w P Gm with the branch in Gc on which it is placed, a specific
time along that branch, a source population for migration, and a target population for migration. Thus, each
migration event, w P Gm, is a root of one migration-free tree mapped to population targetpwq and a leaf of
another tree mapped to population sourcepwq. In each migration-free tree, leaves are mapped to populations
in T and branches move from a population to its parent, as assumed in condition 2 of Definition 1. Hence, we
can extend the operatormrcaPoppvq of Definition 2 as the MRCA of all populations to which the leaves of
the migration-free subtree rooted at v are mapped. The following lemma specifies embeddability conditions
based on this extendedmrcaPop operator and on the restriction that at the time of each migration event, the
source and target populations must be alive.

Lemma 2. A collection of local genealogies G consisting of coalescent trees Gc and migration events Gm

has an embedding in a timed population phylogeny pT , τ q iff the following four conditions are satisfied:

1. @v P Gc : tpvq ą τpmrcaPoppvqq

2. @w P Gm : targetpwq ěT mrcaPoppwq

3. @w P Gm : tpwq ą maxp τpsourcepwqq , τptargetpwqq q

4. @w P Gm : tpwq ď minp τpparentpsourcepwqqq , τpparentptargetpwqqq q

Proof.
ñ: Assume a collection of local genealogies G embedded in a timed population phylogeny pT , τ q. For
every coalescent event v P Gc, we know that tpvq ě τppoppvqq, and poppvq ěT mrcaPoppvq (considering
the migration-free tree that v belongs to), implying condition 1. Now consider an arbitrary migration event
w P Gm, which is a root of some migration-free tree in G . Because this root is mapped to population
targetpwq, we get that targetpwq ěT mrcaPoppwq (condition 2). Finally, conditions 3 and 4 are implied
by the fact that w is mapped to populations targetpwq (as the root of a migration-free tree) and sourcepwq
(as a leaf of a migration-free tree).
ð: Assume a collection of local genealogies G and a timed population phylogeny pT , τ q satisfying the
four conditions of the lemma. We embed G in pT , τ q by mapping every coalescent event to the population
ancestral to mrcaPoppvq that is also alive at time tpvq. This is the same mapping used in the proof of
Lemma 1, when no migration was assumed, and as in that case, we can show that such a population exists
(through condition 1) and that for each coalescent event v we have poppparentpvqq ěT poppvq. Hence, the
two conditions of Definition 1 are satisfied for all coalescent events. The same holds for all migration events,
because conditions 3 and 4 imply that each migration eventw is mapped to source and target populations that
are both alive at time tpwq, and condition 2 implies that targetpwq is ancestral to the population to which
the event at the bottom of the branch below w is mapped. Thus the mapping satisfies the two conditions of
Definition 1 with respect to all migration-free trees in G, implying that G is embeddable in pT , τ q.

Note that condition 2 of the lemma specifies constraints on migration events in Gm and conditions 1, 3,
and 4 define the feasible range for divergence times, as defined below.
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Claim 2. Let G be a collection of local genealogies with migration events. Then for every ancestral
population p, P pG|τp “ τ,Mq ą 0 iff for every w P Gm we have targetpwq ěT mrcaPoppwq and
τ P rlboundpp|Gq, uboundpp|Gqq, where the bounds of the feasible range for τp are given by:

lboundpp|Gq “ max ttpwq|w P Gm ^ pp ěT parentpsourcepwqq _ p ěT parentptargetpwqqqu (29)
uboundpp|Gq “ minpubound1pp|Gq, ubound2pp|Gqq (30)
ubound1pp|Gq “ min ttpvq|v P Gc ^mrcaPoppvq ěT pu (31)
ubound2pp|Gq “ min ttpwq|w P Gm ^ psourcepwq ěT p_ targetpwq ěT pqu (32)

We thus define the conditional distribution rP pGm, τ |Gc,mq “ rP pτ |Gq rP pGm|Gc,mq, where rP pτ |Gq
is the product of uniform distributions for τ in their feasible ranges, as defined byClaim 2, and rP pGm|Gc,mq
is defined using a probabilistic protocol for sampling migration events. This protocol mimics the true
migration model of M as much as possible without knowing the divergence times. Migration events
are sampled backward in time by holding for each branch pu, vq P Gc the set of populations it may
be embedded in (those ancestral to mrcaPoppvq), and allowing the branch to migrate back along any
migration band whose target population is one of those populations. The protocol starts by enabling
migration in all bands, and it removes a migration band b from consideration when the protocol reaches
time t “ min puboundpparentpsourcepbqq|Gq, uboundpparentptargetpbqq|Gqq, as defined by Equations
30-32. By doing this, the protocol ensures that the resulting G will be embeddable in some timed version of
the population phylogeny (see Claim 3 below).
Sampling protocol for rP pGm|Gc,mq:1. Initialization:

(a) Initialize set of living branches: Elive Ð tpu, vq P EpGcq|v is a leafu. Map each pu, vq P Elive
to the sampling population of the leaf v and all populations ancestral to it: popsppu, vqq Ð
tp|p ěT poppvqu.

(b) Initialize living migration bands: Blive Ð B.
(c) Initialize time: tÐ 0.

2. Determine current migration rates: Determine the number of branches currently mapped to each
population, nrps “ |te P Elive : p P popspequ|, and compute the effective rate of each living migration
band: λrbs “ mb ˆ nrtargetpbqs (the migration rate scaled by the number of potentially migrating
branches).

3. Sample time of next migration: Sample a waiting time ∆t for the next migration event according
to an exponential distribution with rate λ “

ř

bPBlive
λrbs. If there are no live migration bands with

positive rates, then λ “ 0 and the scan terminates (no more migration events to sample). Otherwise,
set tÐ t`∆t and compare t to the time of the next coalescent event back in time, v.

4. If t ă tpvq, then sample migration event:

(a) Sample a migration band b P Blive using a categorical distribution with pb “ λrbs
λ .

(b) Select a branch for migration e P Elive uniformly at random among the nrtargetpbqs branches
mapped to the target population of the selected migration band.

(c) Add a new migration event w to Gm on branch e from population sourcepbq to population
targetpbq at time t.

(d) Update the population mapping of edge e: popspeq Ð tp : p ěT sourcepbqu.
(e) Remove fromBlive all migration bands whose source or target population is a strict descendant of

either sourcepbq or targetppq. Formally, remove band b1 iff there is p1 P tsourcepb1q, targetpb1qu
and p P tsourcepbq, targetpbqu s.t. p ěT parentpp1q.
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(f) Go to Step 2.

5. If t ě tpvq, then encounter coalescence event:

(a) Let e1 and e2 be the two branches coalescing in v, and let e be the branch above v.
(b) Update current branches: Elive Ð Elivezte1, e2u Y teu.
(c) Map the new branch: popspeq “ popspe1q X popspe2q.
(d) Remove from Blive all migration bands whose source or target is a strict descendant of the most

recent population in popspeq. Formally, if p0 is the most recent population in popspeq, then
remove band b iff p0 ěT parentpsourcepbqq or p0 ěT parentptargetpbqq.

(e) Set tÐ tpvq and go to Step 2.

The following claim establishes the validity and completeness of the above protocol for rP pGm|Gc,mq:

Claim 3. rP pGm|Gc,mq ą 0 iff there exist τ s.t. P pGc,Gm|τ ,m,Mq ą 0.

Proof. First, note that the protocolmaps each branch pu, vq to the set of populations ancestral tomrcaPoppvq:
popsppu, vqq “ tp : p ěT mrcaPoppvqu. This is done by the appropriate initialization of the mapping in
leaf branches in step 1a and branches above migration events in step 4d, and by the appropriate intersection
update in branches above coalescent events in step 5c. Both directions of the claim are now proved using
this observation and the conditions of Claim 2
ñ

Let Gm be the set of migration events sampled by the protocol given Gc and m. To establish that there exist
τ s.t. P pGc,Gm|τ ,m,Mq ą 0 using Claim 2, we need to show that: (1) every sampled migration event in
Gm satisfies targetpwq ěT mrcaPoppwq, and (2) the resulting G satisfies lboundpp|Gq ă uboundpp|Gq
for every ancestral population p. Let w P Gm be an arbitrary migration event and denote by epwq
the branch in Gc on which w is sampled. Then, targetpwq Ď popspepwqq (step 4b), implying that
targetpwq ěT mrcaPoppwq, as required by Claim 2. Now, consider an arbitrary ancestral population p,
and denote for brevity lb “ lboundpp|Gq, ub1 “ ubound1pp|Gq, and ub2 “ ubound2pp|Gq (Equations
29-32). We will show that lb ă minpub1, ub2q “ uboundpp|Gq.

Let v be the coalescent event realizing ub1 and let w and w1 be the migration events realizing ub2 and lb,
respectively. Note that if one of these events does not exist, then the appropriate bound is set to its extreme
value (0 for lb and 8 for ub1 and ub2), and the inequality above holds. Otherwise, the definition of w1
and lb implies that either p ěT parentpsourcepw1qq or p ěT parentptargetpw1qq, and the definition of
w and ub2 implies that either sourcepwq ěT p or targetpwq ěT p. Hence, the condition of step 4e of
the protocol is satisfied for the migration band of event w1 (b1) when the protocol samples event w. This
means that migration band b1 is not alive after sampling w and lb “ tpw1q ă tpwq “ ub2. Similarly,
the condition of step 5d of the protocol is satisfied for migration band b1 when the protocol encounters
coalescent event v (p0 “ mrcaPoppvq). Hence, migration band b1 is not alive after encountering v and
lb “ tpw1q ă tpvq “ ub1, completing the requirements of Claim 2.
ð

Let pG, τ q be a collection of local genealogies and divergence times s.t. P pGc,Gm|τ ,m,Mq ą 0. We
will show that the migration events in Gm can be sampled by the protocol (with some positive probability).
Consider an arbitrary migration event w P Gm and assume that the protocol reached time tpwq in Gc after
having correctly sampled all events w1 P Gm s.t. tpw1q ă tpwq. To prove that event w can be sampled with
positive probability we need to establish that: (1) its migration band pps, ptq “ psourcepwq, targetpwqq
is alive at time tpwq, and (2) its branch, e, is mapped to the target population pt. The second requirement
follows from Claim 2, which implies that pt ěT mrcaPoppwq, and our observation on the mapping that
states that each branch is mapped to the set of populations ancestral to itsmrcaPop.

32



To establish the first requirement we need to prove that migration band b “ pps, ptqwas not removed from
Blive before time tpwq. The protocol removes migration bands from Blive either after sampling migration
events (step 4e) or after encountering a coalescent events (step 5d). Let w1 P Gm be an arbitrary migration
event sampled before w s.t. tpw1q ă tpwq. Claim 2 implies that for p1 P tsourcepw1q, targetpw1qu we have
τpp1q ă ubound2pp

1|Gq ď tpw1q ă tpwq, and for p P tps, ptu we have tpwq ď lboundpparentppq|Gq ď
τpparentppqq. Hence, τpp1q ă τpparentppqq, implying that populations sourcepw1q and targetpw1q are
not strictly ancestral to populations ps and pt, and so the migration band pps, ptq is not removed from Blive
after sampling event w1 (see step 4e).

Now, let v P Gc be an arbitrary coalescent event encountered before samplingw s.t. tpvq ă tpwq. Claim
2 implies that for p1 “ mrcaPoppvq we have τpp1q ă ubound1pp

1|Gq ď tpvq ă tpwq and for p P tps, ptu
we have tpwq ď lboundpparentppq|Gq ď τpparentppqq. This means that τpp1q ă τpparentppqq, implying
that population mrcaPoppvq is not strictly ancestral to populations ps and pt, and so the migration band
pps, ptq is not removed from Blive after encountering event v (see step 5d). Thus, migration band pps, ptq
is alive at time t “ tpwq, and the branch e is mapped to pt, allowing the protocol to sample w at time tpwq
with positive probability.

Computing the conditional probability

Now that we have fully defined the conditional probability distribution rP pGm, τ |G,mq, we turn to describe
how to compute it for given values of pG, τ ,mq. The divergence time conditionals, rP pτ |Gq, are defined
as a product of uniform distributions in the feasible space of every parameter, as defined by Claim 2.
The bounds lbound and ubound2 are easy to compute by traversing all migration events in Gm, and the
bound ubound1 can be computed by recursively computing mrcaPop for all coalescent events in Gc, as
described in the previous section. This is done by considering the migration-free trees defined by G. The
conditional probability for the migration events, rP pGm|Gc,mq is computed according to the sampling
protocol described above. As in a standard model of migration at constant rate, this probability can be
expressed as a product of contributions across migration bands:

ln
´

rP pGm|Gc,mq
¯

“
ÿ

b

´

lnpmbq ¨ numMigspGm, bq
mb ´mb ¨ ČmigStatspG, bq

¯

. (33)

Consequently, the contribution of migration band b to rP pGm|Gc,mq is very similar to its contri-
bution to P pG|Θ,Mq, and the ratio between these contributions is defined by the difference between
migStatspG, bq and ČmigStatspG, bq. Both migration statistics are defined as sum across time intervals
in population targetpbq across the life span of the migration band. In model M, the life span starts at
t “ maxpτpsourcepbqq, τptargetpbqqq and ends at
t “ minpτpparentpsourcepbqqq, τpparentptargetpbqqqq. In the sampling protocol the life span starts at time
t “ 0 and ends at t “ minpuboundpparentpsourcepbqq|Gq, uboundpparentptargetpbqq|Gqq. Note that
the life span in M is contained in the protocol life span, and in this time the lineages mapped to population
targetpbq are the same in both cases. Thus the residual difference, migStatspG, bq ´ ČmigStatspG, bq,
is computed by considering intervals mapped to targetpbq in the protocol and not in M. For instance,
if b is a migration band between two sampled populations, then its life span in M and in the protocol
starts at t “ 0, and the residual is computed by determining which branches of G are mapped to popu-
lation targetppq in the time interval between t “ minpτpparentpsourcepbqqq, τpparentptargetpbqqqq and
t “ minpuboundpparentpsourcepbqq|Gq, uboundpparentptargetpbqq|Gqq.

C Pipeline examples
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Listing 1. ms script used to generate data-sets in experiment III
# ! / b i n / bash

# M4 ´ f o u r p o p u l a t i o n model w i t h 26 i n d i v i d u a l s (8 per pop + 2 i n ou tg roup ) ,
# t h e t a = 0 . 001 , tau_AB = TAU , tau_ABC=0.0003 , tau_ABCD=0.001 , mig Ć >́A (M_CA)
# and mig A´́ >C (M_AC)
ms 26 5000 ´T ´r 0 .000001 1000 ´I 4 8 8 8 2

´n 1 100 ´n 2 100 ´n 3 100 ´n 4 100
ḿ 1 3 M_CA ḿ 3 1 M_AC
´e j TAU 2 1 ´en TAU 1 100 ´em TAU 1 3 0 . 0 ´em TAU 3 1 0 . 0
´e j 30 3 1 ´en 30 1 100
´e j 100 4 1 ´en 100 1 100
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Sample G-PhoCS MCMC configuration
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Sample G-PhoCS traces of sufficient stats
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Sample McRef config.ini for a comb reference model from experiment II
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Sample McRef Output from experiment II
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Sample McRef debug plot of reference population genealogy likelihoods
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 תקציר

 
ית האבולוציה יבזכות פריצות הדרך בריצוף גנטי בקצב גבוה השתפרה משמעותית יכולתנו לחקור את היסטור

של מינים באמצעות מודלים דמוגרפיים מפורטים. גישה פופולרית להסקת פרמטרים של מודלים דמוגרפיים אלו 

 קרלו-מרקוב מונטה-באמצעות אלגוריתמי שרשראות ,היא לדגום גנאולוגיות מעל לוקוסים קצרים ובלתי תלויים

(MCMC) מפורשים מקנה להם כוח רב בתהליך גנאולוגיות אלו במודלי התמזגות אלגוריתמים . השימוש של

מוגבלת. מטרת  הסקת פרמטרים דמוגרפיים, אך יכולתם לשערך את התאימות בין המודל לנתונים הגנטיים

גורמים בייסיאנים יחסיים, לניצול תהליכי דגימת הגנאולוגיות מחקרנו היא לבחון גישה חדשה, המבוססת על 

 הללו לטובת השוואה, בחינה ובחירה בין מודלים אבולוציונים שונים.

. מודלבחירת הדמוגרפיים ונתאר את בעיית בעבודה זו נסקור שיטות בייסיאניות להסקת פרמטרים 

(, המייצגים התאמה של מודל דמוגרפי לנתונים גנטיים, יחסית RBFsס יחסיים )לאחר מכן נגדיר גורמי ביי

 אלו טיפוסים. מודל ענף ומודל מסרק - מודלי השוואה טיפוסיעבור שני  RBFsנפתח  למודל השוואה.

, נתאר RBFsלאחר שנציג נוסחאות סגורות לחישוב  .המודל בחירתשימושיים עבור מופעים שונים של בעיית 

וף, נבחן את לבס .MCMCעל תהליך ה בפירוט איך אילו מחושבות באופן יעיל, תוך מזעור התקורה החישובית

טובים  RBFsניכר כי ביצועי השנציג בתוצאות  בסדרת השוואות מודלים בעזרת דנא מסומלץ. RBFsה

 משמעותית מאילו של התוחלת ההרמונית במבחן השוואת מודלים דמוגרפיים.
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