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Abstract

We address the problem of visual storytelling, i.e., generating a story

for a given sequence of images. While each sentence of the story should

describe a corresponding image, a coherent story also needs to be con-

sistent and relate to both future and past images. To achieve this

we develop ordered image attention (OIA). OIA models interactions

between the sentence-corresponding image and important regions in

other images of the sequence. To highlight the important objects,

a message-passing-like algorithm collects representations of those ob-

jects in an order-aware manner. To generate the story’s sentences,

we then highlight important image attention vectors with an Image-

Sentence Attention (ISA). Further, to alleviate common linguistic mis-

takes like repetitiveness, we introduce an adaptive prior. The obtained

results improve the METEOR score on the VIST dataset by 1%. In

addition, an extensive human study verifies coherency improvements

and shows that OIA and ISA generated stories are more focused,

shareable, and image-grounded.



0 Contents

1 Introduction 1

2 Related Work 4

2.1 Image Captioning . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Multimodal Attention . . . . . . . . . . . . . . . . . . . . . . . . 4

2.3 Visual Storytelling . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Method 7

3.1 Image Representation . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.2 Ordered Image Attention (OIA) . . . . . . . . . . . . . . . . . . . 8

3.2.1 Attention Belief . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2.2 Pairwise Messages and Factors . . . . . . . . . . . . . . . . 12

3.2.3 Interaction factors . . . . . . . . . . . . . . . . . . . . . . 12

3.2.4 Local factor . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.3 Image-Sentence Attention (ISA) . . . . . . . . . . . . . . . . . . . 14

3.4 Story Decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.4.1 Bag-of-words (BOW) prior . . . . . . . . . . . . . . . . . . 15

3.4.2 Intra-repetition regularization . . . . . . . . . . . . . . . . 16

4 Results 18

4.1 Training Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

iii



CONTENTS

4.1.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.1.2 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.2 Quantitative analysis . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.2.1 Evaluation metrics . . . . . . . . . . . . . . . . . . . . . . 19

4.2.2 Comparison to state-of-the-art . . . . . . . . . . . . . . . . 19

4.2.3 Ablation study . . . . . . . . . . . . . . . . . . . . . . . . 21

4.3 Factors Importance Analysis . . . . . . . . . . . . . . . . . . . . . 22

4.4 Human Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.5 Qualitative evaluation . . . . . . . . . . . . . . . . . . . . . . . . 27

5 Discussion 29

5.1 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

References 39

iv



0 List of Figures

1.1 We propose Ordered Image Attention (OIA) to form the structure

of a sentence and to encourage coherency. Each row shows the spa-

tial attention of the five images created when generating a specific

sentence. We find important objects by collecting directional in-

teractions. The relative order to the sentence-corresponding image

determines the connection type, illustrated as the blue and orange

edges for preceding and proceeding connections. The attended im-

ages’ border indicates the image attention importance formed by

the Image-Sentence Attention (ISA). E.g ., red indicates a high at-

tention score, meaning the image is essential for generating that

sentence. Our model performs this step for all five images in paral-

lel, creating a total of 25 spatial attention maps, that are fed into

the decoder to create the sentences in order. . . . . . . . . . . . . 2

2.1 Our architecture for Visual Storytelling synthesis. . . . . . . . . . 5

v



LIST OF FIGURES

3.1 Illustration of Ordered Image Attention. Each node represents

an image attention belief. For each sentence, we connect all the

images with the sentence-corresponding image. The relative posi-

tion to this image determines whether the connection is modeled

with the  bwd factor (for preceding images) or the  fwd factor (for

subsequent images). We infer the attention belief by collecting in-

teractions and local object information within the image. We use

scalars to calibrate the importance of each factor. In total, we

generate 25 attention maps, one per image for every sentence. . . 11

3.2 Illustration of ISA. The attention selects the attended image rep-

resentation per sentence. We model interactions between attended

images of the same sentence to compute each image’s importance.

Note, each node represents a sentence attention belief over the

attended images. . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.1 OIA scalar values (i.e., ↵s
i and ↵s

i,s in Sec. 3.1.1). The top map

corresponds to the first sentence (i.e., s = 1) and bottom one to

the last sentence (i.e., s = 5) . . . . . . . . . . . . . . . . . . . . . 24

4.2 Human-like property comparison. . . . . . . . . . . . . . . . . . . 25

4.3 Coherence property comparison. . . . . . . . . . . . . . . . . . . . 25

4.4 An illustration of an image sequence along with three di↵erent

stories generated by: (1) AREL baseline [1], (2) No History: a

model without intra-repetition regularization and BOW prior (see

Sec. 3.4); and (3) With History: the final model. Repeated sen-

tences are highlighted with a yellow colored marker. Repeated

words in a sentence are emphasized in red color. . . . . . . . . . . 27

vi



LIST OF FIGURES

4.5 Illustration of OIA and ISA attention maps, the ground-truth story

and the final generated story. Each row corresponds to a story

sentence and shows objects OIA highlights. The attended images’

border specifies the relevancy to sentence generation, from red (im-

portant) to blue (not important). . . . . . . . . . . . . . . . . . . 28

5.1 Example of image for metrics discussion . . . . . . . . . . . . . . 30

vii



0 List of Tables

4.1 Quantitative results on the VIST dataset for METEOR, BLEU-

1. . .4, ROUGE-L and CIDEr. The primary metric is METEOR.

The ‘Img Feat’ column describes the pretrained image features.

All models utilize a ResNet [2] backbone except CS&T which em-

ploys an Inception v3 model [3]. FC and Spatial refer to features

extracted from the penultimate layer and the preceding one ac-

cordingly. F-RCNN are bottom up features [4]. . . . . . . . . . . 20

4.2 Components ablation analysis. . . . . . . . . . . . . . . . . . . . . 21

4.3 Story generation ablation analysis. . . . . . . . . . . . . . . . . . 22

4.4 Factor ablation analysis. . . . . . . . . . . . . . . . . . . . . . . . 22

4.5 Human evaluation results for rating survey (scores are between 1-5). 26

viii



1 Introduction

Visual Storytelling (VST) [5; 6] – the task of generating a story based on a

sequence of images – goes beyond a basic understanding of visual scenes and can

be applied in many real-world scenarios, e.g ., to support the visually impaired.

Moreover, VST reflects on the creative ability of intelligent systems. Although

similar in concept to other cognitive tasks such as image captioning and visual

question answering, VST di↵ers as it requires to reason over a sequence of images

while simultaneously ensuring coherence across multiple generated sentences. To

achieve this, VST methods need to address two major challenges: the first is

visual and relates to grounding the story’s text to the images. The second is

linguistic and relates to the quality of the story. Both challenges can be described

in terms of coherency: the story should be coherent by itself, and coherent with

the images.

Prior research on VST started to address the aforementioned challenges. Early

works expand captioning [7; 8; 9], focusing sentence generation mainly on the

current image [10; 11]. This limits the ability to incorporate complex semantic

information, which is necessary for visual reasoning. Prior work also makes lim-

ited use of temporal dependence and history, e.g ., sentences that have already

been generated are not used. Consequently, the output lacks narrative consis-

tency and is prone to linguistic errors such as repetitiveness and incoherence [12].
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The table was
set for the party. 

The cake 
was delicious.

We had a lot of food.

The man is having
a good time.

We ended our night 
with a few drinks.

1.

2.

3.

4.

5. 51 4

2 3

41 5

2 3

31 4

2 5

21 4

5 3

15 4

2 3

Figure 1.1: We propose Ordered Image Attention (OIA) to form the structure of a sentence
and to encourage coherency. Each row shows the spatial attention of the five images created
when generating a specific sentence. We find important objects by collecting directional interac-
tions. The relative order to the sentence-corresponding image determines the connection type,
illustrated as the blue and orange edges for preceding and proceeding connections. The at-
tended images’ border indicates the image attention importance formed by the Image-Sentence
Attention (ISA). E.g ., red indicates a high attention score, meaning the image is essential for
generating that sentence. Our model performs this step for all five images in parallel, creating
a total of 25 spatial attention maps, that are fed into the decoder to create the sentences in
order.

To mitigate these issues, later works strive to generate more meaningful stories

via adversarial and reinforcement learning [1; 13], which remain delicate to train.

Importantly, images are not independent. For example, if the first image in a

sequence shows a protest, the model may want to focus on signs in later images.

Conversely, if the last image shows a ring on a finger, then the model should pay

attention to wedding-related objects and activities in the preceding images. This

is important for VST because sentences are created per image but are part of

a story. Hence, objects that the model is focusing on in one image should be

conditioned on the selection in other images.

To do this we develop a novel model which (1) implicitly reasons over ob-

jects, activities, and their temporal dependencies in each image; and which (2)

improves the coherency of the narrative. To reason over objects and activities in

each image, i.e., to understand their dependencies and their temporal ordering,

we introduce ordered image attention (OIA). As illustrated in Fig. 1.1, for each
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image, OIA accumulates representation information from objects detected within

the corresponding image into an attended image representation. Importantly, ac-

cumulation factors depend on whether the image precedes or succeeds the image

for which we are currently generating the sentence, which permits to establish

an order. The attended image representations are subsequently summarized into

a context embedding via an Image-Sentence Attention (ISA) unit, before being

used for sentence decoding.

In addition, to alleviate common linguistic mistakes like repetitiveness and to

promote coherence in the story, we incorporate information from the story gener-

ated up to the current sentence into the sentence generation decoder. Specifically,

the decoding strategy decays the probability of a word if it has already been used

in the story. The decoder also maintains a separate prior over the output prob-

ability distribution, independent from the language generation unit. This prior

is based on counts of the words that were already predicted in the story. Both

the prior, and the Recurrent Neural Net (RNN) decoder output are combined to

predict the next word in the sentence.

Empirical results on the challenging VIST dataset [6] demonstrate that the

proposed method generates stories with an improved narrative quality. The

method outperforms prior state-of-the-art by 1% on the METEOR score. Exam-

ples of stories generated by the approach are shown in Fig. 1.1. We also present

a user study demonstrating the advantage of the model in terms of coherency.
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2 Related Work

Vision+Language has been an active area of research for many years, addressing

tasks such as image/video captioning, paragraph generation, and visual question

answering. We briefly review those related areas in the following.

2.1 Image Captioning

Bernard et al . [14] first explored annotating images with text. Since then, im-

age/video captioning has seen a surge of research activity. Initial work utilized

pre-trained image embeddings from a CNN network. The success of attention

mechanisms for language translation quickly transferred to image captioning as

well [8]. Later work leveraged advances in object detection and proposed a

bottom-up/top-down attention approach to attend to specific objects in the im-

age instead of fixed spatial regions [4]. Di↵erent from image captioning, for visual

storytelling, both story coherency and visual grounding are important.

2.2 Multimodal Attention

Multimodal problems are characterized by input data that comes from di↵erent

domains, e.g ., visual and linguistic. This raises two challenges: 1) how to model

4



2.2 Multimodal Attention
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Figure 2.1: Our architecture for Visual Storytelling synthesis.

interactions between di↵erent domains, and 2) how to manage the large input

data. Considering those challenges, attention has been a prominent tool as it

models interactions to select the important elements. In early work, Xu et al . [8]

used interaction-based attention with the image at each caption generation step.

This idea was later extended to visual question answering [15]. To imitate multi-

step reasoning, Yang et al . [16] stacked attention modules sequentially. Later,

many works concentrated on better vector-fusion modeling [17; 18; 19; 20]. Im-

portantly, Lu et al . [21] suggested attending to the visual and textual modalities

separately. Afterward, Kim et al . [22] proposed a bilinear module that e�ciently

generates attention for every pair. Following Lu et al . [21], Schwartz et al . [23; 24]

suggested a general framework that extends attention to any number of utilities

via local and interaction-based factors. We improve upon those ideas by suggest-

ing an ordered attention. This ensures that interaction modeling is a↵ected by

the image position in a sequence.
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2.3 Visual Storytelling

2.3 Visual Storytelling

Huang et al . [6] introduced the Visual Storytelling task. Initially, Gonzalez et

al . [10] adapted work by Vinyals et al . [7] used for captioning. Kim et al . [25]

presented a Seq2Seq [26] approach with a decoding sampling strategy aimed to

reduce the amount of repetition based on a word list. We improve their strategy

by using a data-driven approach, penalizing each word di↵erently based on its

average counts. Wang et al . [1] employ adversarial learning to improve output

stories. Huang et al . [13] utilize a reinforcement learning (RL) approach based on

inter-image relations. Later works by Li et al . [27] and Zhang et al . [28] rely on

preprocessing the data to better ground visual elements to the text while Yang

et al . [29] and Hsu et al . [30] enrich the data with an external word common-

sense knowledge graph. Our approach captures inter-image relations via ordered

attention and is trained in an end-to-end manner alleviating the computational

drawbacks of preprocessing or RL. Recently, state-of-the-art results were obtained

by generating scene graphs for each image in the sequence [31]. Conversely, our

image representations are dependant on all the images in the sequence.
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3 Method

The goal of visual storytelling is to generate a story, composed of N ordered

sentences {ys|1  s  N}, given an ordered sequence of images I = {Is|1  s 

N}. Each sentence ys = (ys,0, . . . , ys,t, . . . ) is composed of words ys,t 2 Y from

vocabulary Y.

The order in which the images are given is essential as it defines the plot

line of the story. The story should be focused, i.e., each sentence should be

related to the remainder of the story. Importantly, the sentences should form a

coherent body of text describing the set of images, and not only a set of related

information. For instance, the story “The church was beautiful. The bride and

groom walk down the aisle. The cake was amazing.” is less coherent than: “We

went to the church for the wedding today. The bride and groom were excited for

the day. Both cut the cake together.”

Overview: To address this challenge, we develop the model illustrated in Fig. 2.1.

It infers conditional probabilities p0(ys,t|ys,t�1, cs) for the t-th word ys,t 2 Y in sen-

tence ys given the previous word ys,t�1 and the context embedding cs for sentence

s. The context embedding cs summarizes region representations ri,k (Sec. 3.1 of

all K object regions across all N images Ii (i 2 [1, N ], k 2 [1, K]) via Ordered

Image Attention (OIA) (Sec. 3.2) and Image-Sentence Attention (ISA) (Sec. 3.3).

Specifically, when generating sentence s, OIA computes an attended image rep-
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3.1 Image Representation

resentation asi for every image Ii by attending to the K region representations ri,k

(Sec. 3.2). These attended image representations asi are subsequently summarized

into the context embedding cs via an image-sentence attention (Sec. 3.3).

Below we first discuss our initial image representation. We then describe the

computation of the attended image representation asi (Sec. 3.2), before detail-

ing computation of the context embedding cs (Sec. 3.3) and computation of the

conditional probabilities p0(ys,t|ys,t�1, cs) (Sec. 3.4).

3.1 Image Representation

An initial pre-processing step represents each of the input images Ii viaK regional

features ri,k 2 Rd, 1  k  K. For this we use bottom-up attention features [4].

Specifically, for each image Ii we first extract the top K region features ei,k 2 Rm.

Hereby, ei,k is anm-dimensional feature vector extracted from a pre-trained image

classification network [2] along with their respective bounding boxes bi,k 2 R4,

and classes ci,k 2 N. The final d-dimensional representation ri,k 2 Rd, of each

region is defined by a combination of the extracted semantic features. Formally,

ri,k = Wr[Weei,k +Wbbi,k + Ec(ci,k)], (3.1)

where Wr 2 Rd⇥d, We 2 Rd⇥m, Wb 2 Rd⇥4, and Ec are trainable parameters

shared between all images. We set K = 36 in our proposed model. Biases and

normalization are omitted for readability.

3.2 Ordered Image Attention (OIA)

Ordered Image Attention (OIA) is designed to 1) form a structure across ordered

images and to 2) select the relevant objects per image. For this we model preced-

8



3.2 Ordered Image Attention (OIA)

ing and proceeding interactions separately using di↵erent attention factors. We

calibrate each factor’s importance with trainable scalars, which forms a graph

of dependencies between the images. For each sequence of N images, the model

infers a total of N2 attention maps, one per image for each sentence. We detail

this module next.

3.2.1 Attention Belief

For each image Ii = {ri,1, . . . ri,K} we consider a set of K regions, represented

by their feature vectors ri,k 2 Rd, where d is the objects’ embedding dimension.

Suppose we are currently generating sentence ys (1  s  N). To do this we first

compute an attended image representation asi as follows

asi =
KX

k=1

bsi,kri,k, (3.2)

where bsi,k � 0 is the attention belief highlighting the importance of the k-th

object in the i-th image when generating the s-th sentence. Importantly, for

every image Ii we require bsi,k to be a valid probability distribution, i.e., we also

enforce
PK

k=1 b
s
i,k = 1 8s, i.

The object attention belief bsi,k is dependent on all the input data, i.e., other

objects and images. To avoid complex computation, we factorize the belief bsi,k

into two pairwise dependencies that preserve the order, and a local term. For

the pairwise terms we use µbwd
j!i, which is a message from a preceding image Ij,

or µfwd
j!i, which is a message from a subsequent image Ij. We also use µi!i for

self-messages. Additionally, we include a local factor  i(ri,k) that considers the

object representation. Unlike the messages mentioned before, the local factor

does not rely on interactions with other objects. We aggregate all the messages

along with the local factor as illustrated in Fig. 3.1. For normalization we employ

9



3.2 Ordered Image Attention (OIA)

a softmax.

Formally we compute the attention belief bsi,k by distinguishing three cases. If

i = s we have

bsi,k / exp(↵s
i i(ri,k) + ↵s

i,iµi!i(ri,k) + (3.3)
X

j<i

↵s
i,jµ

bwd
j!i(ri,k) +

X

j>i

↵s
i,jµ

fwd
j!i(ri,k)).

If i < s we use

bsi,k / exp(↵s
i i(ri,k) + (3.4)

↵s
i,iµi!i(ri,k) + ↵s

i,sµ
bwd
s!i(ri,k)).

If i > s we obtain

bsi,k / exp(↵s
i i(ri,k) + (3.5)

↵s
i,iµi!i(ri,k) + ↵s

i,sµ
fwd
s!i(ri,k)).

In all three cases ↵s
i ,↵

s
i,i,↵

s
i,j 2 R are scalars used to calibrate the importance

of di↵erent messages for a given sentence. These scalars form a dependency

structure between images for each of the generated sentence indices. Intuitively,

when we generate the first sentence, the attention belief might depend more on

subsequent images, to correctly identify the story event, e.g ., a wedding, a parade,

etc. Thus, the scalars will promote interaction with later images. An analysis of

these scalars is provided in the Sec. 4.3. Next, we define the di↵erent types of

messages.

10



3.2 Ordered Image Attention (OIA)

... ...
...... ...

... ...

...

... ...

... ...

Figure 3.1: Illustration of Ordered Image Attention. Each node represents an image attention
belief. For each sentence, we connect all the images with the sentence-corresponding image.
The relative position to this image determines whether the connection is modeled with the
 bwd factor (for preceding images) or the  fwd factor (for subsequent images). We infer the
attention belief by collecting interactions and local object information within the image. We
use scalars to calibrate the importance of each factor. In total, we generate 25 attention maps,
one per image for every sentence.
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3.2 Ordered Image Attention (OIA)

3.2.2 Pairwise Messages and Factors

A message aggregates interaction scores from an image to an object. The three

messages µbwd
j!i, µ

fwd
j!i and µi!i(ri,k) are computed as follows:

µbwd
j!i(ri,k) =

KX

k0=1

 bwd(ri,k, rj,k0), (3.6)

µfwd
j!i(ri,k) =

KX

k0=1

 fwd(ri,k, rj,k0), and (3.7)

µi!i(ri,k) =
KX

k0=1

 i,i(ri,k, ri,k0). (3.8)

Importantly, these messages collect three di↵erent types of order-dependent in-

teraction factors: (1) A backward image interaction, namely  bwd(ri,k, rj,k0). This

interaction models relations to the preceding j-th image in the sequence. (2) A

forward image interaction, namely  fwd(ri,k, rj,k0). This interaction models re-

lations to the subsequent j-th image in the sequence. (3) The self interaction

factor, namely  i,i(ri,k, ri,k0), which takes into account interactions between ob-

jects within the image. We formally define the di↵erent factors next.

3.2.3 Interaction factors

A commonly used practice to capture interactions across attention mechanisms

is to first embed the elements into a joint Euclidean space followed by a dot-

product [23; 24; 32; 33]. While we follow the same practice, we define three types

of interaction factors to preserve the order. Consider two objects, ri,k 2 Ii from

the sentence-corresponding image and rj,k0 2 Ij from the interacting image. We

describe three types of interactions: for interactions with subsequent images (i.e.,

12



3.3 Image-Sentence Attention (ISA)

j > i) we use

 fwd(ri,k, rj,k0)=

✓
Lfwdri,k

kLfwdri,kk2

◆>✓ Rfwdrj,k0

kRfwdrj,k0k2

◆
. (3.9)

For interactions with preceding images (i.e., j < i) we use

 bwd(ri,k, rj,k0)=

✓
Lbwdri,k

kLbwdri,kk2

◆>✓ Rbwdrj,k0

kRbwdrj,k0k2

◆
. (3.10)

For interactions within the image (i.e., j = i) we have

 i,i(ri,k, ri,k0)=

✓
Li,iri,k

kLi,iri,kk2

◆>✓ Ri,iri,k0

kRi,iri,k0k2

◆
. (3.11)

Note, Lfwd, Rfwd, Lbwd, Rbwd, Li,i, Ri,i 2 Rd⇥d are trainable shared weights across

the entire image sequence. Also, the object from the sentence-corresponding

image will always be on the left side of the factor equation. Thus, the factor

embeddings preserve the order.

3.2.4 Local factor

Di↵erently from the previous interactions the following factor captures how im-

portant an object is based solely on the object representation. Given an object

ri,k 2 Ii, we define the local factor as,

 i(ri,k) = v> ReLU(V ri,k), (3.12)

where v 2 Rd, V 2 Rd⇥d are trainable weights.

13



3.3 Image-Sentence Attention (ISA)

... ...

Figure 3.2: Illustration of ISA. The attention selects the attended image representation per
sentence. We model interactions between attended images of the same sentence to compute each
image’s importance. Note, each node represents a sentence attention belief over the attended
images.

3.3 Image-Sentence Attention (ISA)

In a next step we summarize the attended image representations asi produced by

OIA to compute the context embedding cs for the sentence s that we wish to

generate. For this we use the Image-Sentence Attention (ISA) unit. It picks the

relevant image context for generating the specific sentence. Formally we obtain

the context embedding via

cs =
NX

i=1

b̂s,ia
s
i , (3.13)

where attention factors

b̂s,i / exp
⇣
↵̂s ̂i(a

s
i ) + ↵̂s,sµ̂s!s(a

s
i )
⌘
, (3.14)

and where ↵̂s, ↵̂s,s 2 R are scalars. To avoid spurious correlations between sen-

tences, we consider only self interactions and a local factor. This is illustrated in

Fig. 3.2. The self-message of the attended image representation asi is

µ̂s!s(a
s
i ) =

NX

j=1

 ̂(asi , a
s
j). (3.15)

Finally, the self and local factors are defined with a di↵erent set of weights fol-

lowing Eq. (3.11) and Eq. (3.12) respectively.
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3.4 Story Decoding

3.4 Story Decoding

The goal at each timestep of decoding is to compute the conditional probability

p(ys,t|ys,t�1, cs) where ys,t 2 Y is the t-th word in sentence ys, Y is the vocabulary

and cs is the context embedding detailed in Sec. 3.3. For this we use a GRU recur-

rent unit, tasked with generating probabilities over the vocabulary conditioned

on the context embedding cs and the previously generated token ys,t�1:

p(ys,t = w|ys,t�1, cs) / exp(�s,t · gw(ys,t�1, hs,t�1, cs)

+(1� �s,t) · fw(�s,t)), (3.16)

where gw is the output of a GRU unit for the word w. We set the GRU hidden

dimension to d. hs,t�1 2 Rd is the hidden state at timestep t � 1 for sentence s.

f : R|Y| ! R|Y| is a learned prior over the vocabulary based on a bag-of-words

prior histogram �s,t, which we describe in the next paragraph. The purpose of f

is to reduce text repetitions. fw denotes the value of f for a word w. We also

incorporate a calibration gate �s,t : Rd ! [0, 1] for functions f and g using

�s,t = �
�
v>� tanh(Gghs,t +GfW1(�s,t))

�
. (3.17)

Here, Gg 2 Rd⇥d and Gf 2 R�⇥d are trained projections of the GRU hidden state

and the bottleneck layer respectively, v� 2 Rd are learned weights and � is the

sigmoid function. W1 is obtained from the prior as discussed next.

3.4.1 Bag-of-words (BOW) prior

Remembering history during storytelling permits to stay on topic and advance the

story in the desired direction. Although quite intuitive, mimicking this ability is
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3.4 Story Decoding

not trivial. E.g ., most approaches for VST generate all the sentences in parallel.

Converting the parallel sentence generation into a sequential one implies a major

computational overhead during training.

To address this, we propose a simple yet e↵ective learnable framework that

does not require sequential training while still exploiting information found in

prior sentences. The history is represented via a bag-of-words histogram �s,t,

which includes all words that have been used until timestep t for the s-th sentence.

During training, we initialize �s,t=0 with the ground truth history counts found

in the previous s � 1 sentences. We update the statistics at each timestep with

the predicted word ys0,t for s0 < s, and produce the next state of the counter

�s,t+1. At inference we generate sentences sequentially and update �s,t with the

predicted words. �s,t is fed through a shallow bottleneck network to obtain the

prior f , composed of two layers W1 2 R|Y|⇥� and W2 2 R�⇥|Y| without activation,

where � is the bottleneck dimension:

f(�s,t) = W2(W1(�s,t)). (3.18)

Also note the use of W1(�s,t) in the gate (Eq. (3.17)).

3.4.2 Intra-repetition regularization

To regularize intra-repetitions, we decay the probability of previously used words

during sentence generation. A critical aspect of this approach is to exclude words

that appear frequently in the language (e.g ., was, were, am). For this we pre-

process the training set to calculate the average story frequency ⇢(w) of a word

w via ⇢(w) = # appearances of word w
# stories w was used . The final count for word w at timestep t is

calculated as �0
s,t(w) = max[0, (�s,t(w) � ⇢(w) + 1)]. Intuitively, a word will not

be penalized before it is used more than the prior belief average ⇢(w). The final
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3.4 Story Decoding

probability for word w being used is given by

p0(ys,t = w|ys,t�1, cs) =
p(ys,t = w|ys,t�1, cs)

⇡ · �0
s,t(w) + 1

, (3.19)

where ⇡ � 0 is a constant hyper-parameter. A penalty of 2 proved to work best

on the validation set.
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4 Results

4.1 Training Setup

4.1.1 Dataset

To train and test the model we use the VIST dataset [6]. This dataset is composed

of stories. Each story has 5 images and N = 5 corresponding sentences. All

images were collected from Flickr albums. Sequences of images belong to the

same album. Each image sequence is annotated with 5 ground-truth reference

stories. On average, around 2.5 stories are based on the images, and the rest are

rewrites. The overall numbers are 40,098 training stories, 4,988 validation stories,

and 5,050 test stories.

4.1.2 Training

We extracted the image features using a pre-trained F-RCNN model with a

ResNet152 backbone [2; 4; 34]. We set the number of extracted objects K = 36.

Bounding box coordinates were normalized between 0 and 1. Words that ap-

pear less than 3 times in the training set are represented by an <UNK> token.

The vocabulary size is 12,210 words. Word representations were initialized using

GloVe embeddings [35]. We set the decay parameter ⇡ = 2 and the image rep-
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4.2 Quantitative analysis

resentation dimension d = 512. We set the dropout parameter to 0.3. We use

cross-entropy loss to maximize likelihood of ground-truth stories. At decoding

time we employ a beam search algorithm, with beam width set to 3. We use

Adam [36] optimizer with a learning-rate of 0.0004, which is decayed by a factor

of 0.8 if the validation score (METEOR) does not improve after 4 epochs. The

total amount of trainable parameters is 13,092,194. Training converges after ⇠20

epochs. Each epoch needs 20 minutes on an Nvidia V100 GPU.

4.2 Quantitative analysis

4.2.1 Evaluation metrics

As suggested by the creators of VIST [6], METEOR [37] correlates best with

human judgement. The METEOR metric assesses unigram precision and recall

based on matchings between candidates and references. Following their example,

we use METEOR as the primary metric. We also compute BLEU [38], which mea-

sures the e↵ective overlap between a reference sentence and a candidate sentence.

ROUGE [39] (Recall Oriented Understudy of Gisting Evaluation), a recall-based

metric that measures the longest common subsequence of tokens, and CIDEr [40]

the Consensus-based Image Description Evaluation which measures the similarity

of a sentence to the consensus over the test split and compare to prior work where

available. For evaluation we use the evaluation script of Yu et al . [41]1.

4.2.2 Comparison to state-of-the-art

In Tab. 4.1 we compare the method to recent baselines. Early methods did not

take into account visual-spatial information, which harms the performance (e.g .,

1http://github.com/lichengunc/vist_eval - Codebase for commonly used evaluation
scripts.
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4.2 Quantitative analysis

Method M B-1 B-2 B-3 B-4 R C Img Feat

seq2seq [6] 31.4 - - - 3.5 - 6.84 FC
h-attn-rank [41] 33.9 - 29.8 - - 29.8 7.4 FC

Contextualize, Show & Tell [10] 34.4 60.1 36.5 21.1 12.7 29.2 7.1 FC
AREL [1] 35.0 63.8 39.1 23.2 14.1 29.5 9.4 FC

KnowledgeableStoryteller [29] 35.2 66.4 39.2 23.1 12.8 29.9 12.1 FC
HSRL [13] 35.2 - - - 12.3 29.5 8.4 Spatial

StoryAnchor [28] 35.5 65.1 40.0 23.4 14.0 30.0 9.9 FC
SGVST [31] 35.8 65.1 40.1 23.8 14.7 29.9 9.8 F-RCNN

Ours - ResNet 36.3 66.3 41.5 23.7 14.5 30.0 9.8 Spatial
Ours - Full 36.8±0.1 68.4±0.7 42.7±0.3 25.2±0.2 15.3±0.2 30.2±0.1 10.1±0.2 F-RCNN

Table 4.1: Quantitative results on the VIST dataset for METEOR, BLEU-1. . .4, ROUGE-L
and CIDEr. The primary metric is METEOR. The ‘Img Feat’ column describes the pretrained
image features. All models utilize a ResNet [2] backbone except CS&T which employs an
Inception v3 model [3]. FC and Spatial refer to features extracted from the penultimate layer
and the preceding one accordingly. F-RCNN are bottom up features [4].

35.5% vs . 36.8% on METEOR) [1; 6; 10]. Wang et al . [31] utilize image repre-

sentations similar to our approach but do not consider relations between di↵erent

images, resulting in a 1% drop on METEOR, showing that ordered structure

encoding with OIA is beneficial. SGVST and StoryAnchor [28; 41] use di↵er-

ent methods for mapping the image sequence to distinct topics. Di↵erently, our

approach is trained end-to-end. Finally, Yang et al . [29] utilize an external com-

monsense dataset to enrich the input. Their CIDEr score is significantly higher,

yet this improvement does not translate to all other metrics. The approach

improves upon the current state-of-the-art by a margin (36.8% vs . 35.8% on ME-

TEOR). Note, the ROUGE-L metric is based on finding the longest subsequence

matched to human generated stories. However, this score is almost identical for

all prior works, indicating that this metric doesn’t capture story generation im-

provements. We also report the performance with spatial ResNet152 features [2],

which outperforms the state-of-the-art as well. This shows that the method is

stable irrespective of image features.
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4.2 Quantitative analysis

4.2.3 Ablation study

In Tab. 4.2 we show the importance of di↵erent components via an ablation study.

In ‘w/o OIA,’ we replace the OIA module (Sec. 3.2) with simple averaging of the

K object representations of image Ii, resulting in a 0.8% drop on METEOR.

Similarly, in ‘w/o ISA,’ we replace the ISA unit (Sec. 3.3) with averaging, leading

to a 0.9% drop on METEOR. In ‘w/o attention,’ we removed both OIA and ISA,

which dropped the METEOR score to 35.8%. For the method referred to as ‘no-

direction,’ we use the same factor for preceding and proceeding interaction (i.e.,

Lbwd = Lfwd and Rbwd = Rfwd). Here, METEOR results drop by 0.7%. Hence,

ordered interactions are beneficial. Next, we assess the decoding components

(Sec. 3.4). We first remove the intra-repetition regularization (i.e., ⇢(w)), which

causes METEOR score to drop by 0.8%. Removing the popular words count

(�0
s,t), results in a 0.7% drop on METEOR. The METEOR score drops by 0.6%

when we remove the BOW prior. Next, we evaluate the e↵ect of the decoding

strategy for reducing repetitions directly.

Model METEOR B-4 #Params

w/o OIA 36.0 14.1 11M
w/o ISA 35.9 14.2 11M

w/o attention 35.8 13.6 11M
no-direction 36.1 14.5 12M

w/o rep. regularization 36.0 14.2 13M
w/o count norm 36.1 14.6 13M
w/o BOW prior 36.2 14.5 13M

Full model 36.8 15.3 13M

Table 4.2: Components ablation analysis.

In Tab. 4.3, we show the ability to reduce repetitions. As proposed by Bertoldi

et al . [42], text repetitiveness is measured by the repetition rate of non-singleton

n-grams within each story. In our experiment, we use up to 4-grams. The use of
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4.3 Factors Importance Analysis

intra-repetition regularization reduces text repetition (0.14 to 0.04). Combined

with the trainable bag-of-words prior module, we further improve this measure

(0.008 vs . 0.14). We also report sentence repetitiveness, i.e., the average number

of repeated sentences in a story.

Model Text Rep. Sent. Rep.

AREL [1] 0.16 0.4

BOG prior Intra-repetition reg.

No No 0.14 0.33
Yes No 0.10 0.18
No Yes 0.04 0.04
Yes Yes 0.008 0.0

Table 4.3: Story generation ablation analysis.

In Tab. 4.4 we show an ablation of the di↵erent factors. We found that each

factor contributes to the model’s performance, and the directional factors (i.e.,

 fwd and  bwd) have the biggest impact.

Model Metric

Local Self Directional R C B-1 B-2 B-3 B-4 M

⇥ X X 30.0 9.3 67.4 42.4 24.2 14.5 36.2
X ⇥ X 29.8 9.2 67.8 42.3 24.2 14.4 36.0
X X ⇥ 29.9 8.5 67.6 42.2 24.0 14.2 35.9

X X X 30.2 10.1 68.4 42.7 25.2 15.3 36.8

Table 4.4: Factor ablation analysis.

4.3 Factors Importance Analysis

In Fig. 4.1, we illustrate for each sentence, the value of the importance calibration

scalars (i.e., ↵s
i and ↵s

i,s in Eq. 2,3, and 4). Intuitively, these values indicate the

importance of di↵erent image-to-image messages. We focus our analysis on the

sentence-corresponding image (i.e., i = s in Sec. 3.1). We observe that the self-

message scalars (i.e., µi!i) of the sentences in the middle of the sequence, i.e.,

sentences (2,3, and 4), are low. This indicates that the images in the middle of
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4.4 Human Evaluation

the sequence rely more on the other images. The beginning and the ending of the

story depend more on the local factors. Notably, the most substantial influence

is given to the following image (i.e., ↵i
i,i+1). This means that while generating

the current sentence, the OIA decision is based mostly on the next image. This

is intuitive as it helps to advance the narrative in a desired direction.

4.4 Human Evaluation

The subjective nature of the VST task calls for a human evaluation. We use

a sample of 150 image sequences and test di↵erent story qualities by asking 3

MTurk annotators to rank or compare them to other methods. We compare

our results to the AREL baseline since none of the more recent baselines are

publicly available. Note that we also compare coherency against a model without

ordered-factors, which already improves upon the prior state-of-the-art.

In Fig. 4.2 we provide the results when asking annotators to pick the most

human-like story. We use the majority vote to decide the best model per story.

The generated stories outperform the AREL baseline (73.87% vs . 22.53%). Sur-

prisingly, in many cases, the annotators found the generated stories to be more

human-like than the ground truth stories (41% vs . 48.57%).

In Fig. 4.3, we assess coherency. An important aspect of our work are the

directional factors for coherency. To validate their e↵ectiveness, we compared

to a model that does not incorporate direction into the attention representation

(i.e., we use the same factor for preceding and proceeding interactions). The

comparison shows a significant coherency improvement (64.2% vs . 28.7%). Also,

a comparison against the AREL baseline demonstrates a more significant im-

provement (70.24% vs . 25.32%).

To further evaluate the quality of the stories, we follow the criteria set by the
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4.4 Human Evaluation

Figure 4.1: OIA scalar values (i.e., ↵s
i and ↵s

i,s in Sec. 3.1.1). The top map corresponds to
the first sentence (i.e., s = 1) and bottom one to the last sentence (i.e., s = 5)

.
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4.4 Human Evaluation

Figure 4.2: Human-like property comparison.

 

Figure 4.3: Coherence property comparison.
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4.4 Human Evaluation

Visual Storytelling Challenge1 and conduct a survey where judges are asked to

rate six categories between 1-5:

1. Focused : the story contains information that is “naturally” relevant to the

rest of the story;

2. Coherence: the sentences in the story are related and consistent;

3. Share: the inclination to share the story;

4. Human-like: the story was likely written by a human;

5. Grounded : the story directly reflects concrete entities in the image; and

6. Detailed : the story provides an appropriate level of detail.

To obtain the final score, we average the annotators’ scores per sample, followed

by averaging across the entire sample set. From Tab. 4.5 we observe: the model

improved on all the criteria compared to the AREL model. Importantly, the

generated stories are comparable to the ground-truth stories, indicating success

in reducing the shortcomings found in prior methods. Nonetheless, the level of

detail is still lacking, supporting the observation of Holtzman et al . [43] that

current decoding strategies tend to generate well-formed yet somewhat generic

text.

Method Focused Coherent Share Human-like Grounded Detailed

AREL 3.49 3.18 3.18 3.26 3.32 3.15
Ours 3.67 3.52 3.20 3.56 3.54 3.32
GT 3.72 3.57 3.34 3.64 3.56 3.53

Table 4.5: Human evaluation results for rating survey (scores are between 1-5).
1http://visionandlanguage.net/workshop2018
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4.5 Qualitative evaluation

AREL The kids had a great time at the pool. The little boy was excited to see the kids. We had a 
great time at the park. We had a great time at the pool. We had a great time at the park.

No 
History

The kids had a great time at the beach. The baby was happy to see the baby. We had a great 
time at the park. The had a great time at the pool. We had a great time at the park.

With 
History

The family went to the pool. The baby was very happy. The kids had a great time. The kids 
played in the pool. The little girl is having a good time.

Figure 4.4: An illustration of an image sequence along with three di↵erent stories generated
by: (1) AREL baseline [1], (2) No History: a model without intra-repetition regularization
and BOW prior (see Sec. 3.4); and (3) With History: the final model. Repeated sentences are
highlighted with a yellow colored marker. Repeated words in a sentence are emphasized in red
color.

4.5 Qualitative evaluation

In Fig. 4.4, we show the ability of the method in reducing repetitions. We observe

the AREL baseline to repeat the same sentences, for example, “...had a great time

at...”. We also observe this repetitiveness when we remove the bag-of-words prior

and the intra-sentence regularization (i.e., No History column). Nevertheless, the

method remains on topic, i.e., family in the pool.

In Fig. 4.5 we sketch the attention maps along with the generated story.

The first sentence, “We went to the mountains,” sets the theme for the story,

which requires the processing of subsequent images. Notably, the ISA module

picked the proceeding images. In contrast, for the second sentence, the attention

focuses mostly on the second image resulting in a description of the lake observed

exclusively in this image. The third sentence relates to the scenery. Hence the

attention focuses on preceding and proceeding images.
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4.5 Qualitative evaluation

Ground 
Truth

The clouds compliment the mountain peak. They find a lovely forested mountain with a 
lake. The misty clouds roll in and obscure the scene. The height of the mountains can be 

seen by the snow covering them. On the road again moving towards another place.

Ours
We went to the mountains for a hike. The view of the lake was amazing. The scenery 

was breathtaking. We saw some old buildings. The view of the mountain was 
spectacular.

Figure 4.5: Illustration of OIA and ISA attention maps, the ground-truth story and the
final generated story. Each row corresponds to a story sentence and shows objects OIA high-
lights. The attended images’ border specifies the relevancy to sentence generation, from red
(important) to blue (not important).
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5 Discussion

5.1 Metrics

Di↵erent evaluation metrics have been used to assess the quality of generated

stories. In their introduction of the Visual Storytelling task and dataset [6], the

authors assess the correlation between the two metrics (BLEU and METEOR)

and human judgements. These metrics were originally developed to measure the

quality of human translation. As noted in Hu et al . [44], these metrics compare

the n-gram overlap between the reference sentence and the generated sentence.

As such, they treat each word in the sentence equally, without considering the

semantic relevance of the words to the image. For storytelling semantics are

very important, two sequences can be completely di↵erent in language yet have

the very high semantic similarity. For example, the sentences “The bride and

groom are ready...” (e.g. reference) and “The wedding was about to begin”

(e.g. generated sentence) have a low overlap yet are semantically very similar.

Intuitively, the generated sentence should obtain a high score compared to the

reference, yet BLEU and METEOR fail to capture the similarity. Hu et al. chose

METEOR as the automatic metric as it has a higher correlation with human

judgement than BLEU (⇢=0.2 vs. ⇢=0.08), yet the low correlation of both is a

clear indicator to their shortcoming in assessing the overall performance. Later
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5.1 Metrics

Figure 5.1: Example of image for metrics discussion

works evaluate the output based on CIDEr (Consensus-based Image Description

Evaluation) [40] as well. CIDEr is the prominent metric used for assessing the

quality of image caption, where the goal is to describe the image. The metric

assumes image description is an objective task and as such both reference and

generated text should concur on the main concepts to describe in an image. For

example in Fig. 5.1, most would agree that given the following image, a correct

description should include concepts such as drinks, glass, flowers, table, menu

etc. The sentence “Glasses with drinks and a vase with flowers on top of a table”

would therefore achieve a high score in CIDEr. Though highly descriptive, this

plain description is unlikely to begin a story based on the image. A more fitting

beginning to the story could be ”My wife and I went out to eat” yet this sentence

would score very low in CIDEr as it does not describe any of the objects in the

image. To address the shortcoming described above, many works, including ours,

perform a qualitative analysis. Though rigorous qualitative analysis is a good

estimator for the performance of the model, it is unscalable and more importantly

harms the ability to compare di↵erent research approaches. It is evident from the

critique above that a better automatic metric is necessary to benchmark model

performance. This theoretical metric should be able to capture the semantics of
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5.2 Future Work

the generated text as well as the relation (again semantic) between the image

and the generated text. Although some work has been performed to define such

metrics, it is still an open question, currently being researched.

We present a novel approach for VST, which encourages coherency of gen-

erated story. We incorporate structure between images with a new attention

method that selects the important objects in an ordered image sequence. Human

evaluation and quantitative analysis demonstrate that the approach outperforms

existing methods. Further, we perform ablation and qualitative analysis to show

e↵ectiveness.

5.2 Future Work

In this work we focused on incorporating order into an attention mechanism and

investigating its e↵ect by employing simple models. We did not experiment with

large transformer-based [32] models. This type of models have achieved great

success recently in vision+language tasks such as captioning and VQA yet have

not been tested for Visual Storytelling. Although the VIST dataset is a great

initial step towards storytelling, there are many shortcomings in it. First, many

sequences are not true stories, for instance, 5 images of fireworks. For these types

of sequences, the task of storytelling is hard for humans as well. Consequently,

we suggest that filtering out such sequences could benefit future models. Another

limitation of the dataset is the creative freedom given to the judges. This freedom

leads to widely di↵erent stories between judges given the same sequence, many

times lacking any common patterns. We believe that constraining the task per

judge with specific topics, themes (i.e. positive story, sad story), points of view

(i.e. first/third person) or other constrains, could benefit the dataset generation

as it will improve the consistency between di↵erent judges. Video storytelling is
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5.3 Conclusions

extremely similar to VST, as such, we believe that many of the lessons learned

in this research could be applied to the task given a high-quality dataset. We are

not aware of such dataset at the time of this publication.

5.3 Conclusions

We present a novel approach for VST, which encourages coherency of generated

story. We incorporate structure between images with a new attention method

that selects the important objects in an ordered image sequence. Human evalu-

ation and quantitative analysis demonstrate that the approach outperforms ex-

isting methods. Further, we perform ablation and qualitative analysis to show

e↵ectiveness.
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ריצקת 6  

 לכ לע .תונומת ףצר לע ססובמה רופיס רצוימ הב ,visual storytelling תייעבב קוסענ וז הדובעב

 ןה סחייתהלו יבקע תויהל ךירצ יטנרהוק רופיס ףסונב ,המיאתמב הנומתה תא ראתל שי רופיסב טפשמ לכ

    Ordered Image ןונגנמ םיעיצמ ינא ,וז הרטמ גישהל תנמ לע .רבעהמ תונומתל ןהו תוידיתע תונומתל

.Attention (OIA) OIA תונומתה ראשמ םיבושח םירוזא ןיבל טפשמל תמאותה הנומתה ןיב םירשק לדממ 

 דגאמ רשא םירסמ תרבעהל המודה םתירוגלא םיעיצמ ונא ,הנומתב םיבושח םיטקייבוא םיגדהל ידכב .ףצרב

 ונא ,רופיסה יטפשמ תא רוציל ידכב .ףצרב הנומתה םוקימל עדומ רשא ןפואב םיטקייבואל ולאכ םיגוציי

 ידכב ,ףסונב .Image Sentence Attention (ISA) םשב םיירטקוו םיגוציי רציימ רשא ףסונ ןונגנמ םיעיצמ

 תואצותה .יביטפדא prior םיגיצמ ינא ,תויטנרהוק רסוחו תויתרזח ןוגכ תוצופנ תוינושל תואיגש עונמל

 ינתוכיא רקחמ םיעצמב םג ונא וניתואצות תא ששאל ידכב .תומייקה תואצותה תא 1%ב תורפשמ תולבקתמה

 .םייטנרהוקו םיסקופמ רתוי םה עצומה ןורתפה י"ע םירצונה םירופיסה ןכאש םיארמ ךכו ףיקמ
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