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Abstract 

One of the major advantages of whole brain fMRI is the detection of large scale 

cortical networks. Dependent Components Analysis (DCA) is a novel approach 

designed to extract both cortical networks and their dependency structure. DCA is 

fundamentally different from prevalent data driven approaches, i.e. spatial ICA, in 

that instead of maximizing the independence of components it optimizes their 

dependency (in a tree graph structure, tDCA) depicting cortical areas as part of 

multiple cortical networks. Here tDCA was shown to reliably detect large scale 

functional networks in single subjects and in group analysis, by clustering non-noisy 

components on one branch of the tree structure. We used tDCA in three fMRI 

experiments in which identical auditory and visual stimuli were presented, but 

novelty information and task relevance were modified. tDCA components tended to 

include two anticorrelated networks, which were detected in two separate ICA 

components, or belonged in one component in seed functional connectivity. 

Although sensory components remained the same across experiments, other 

components changed as a function of the experimental conditions.  These changes 

were either within component, where it encompassed other cortical areas, or 

between components, where the pattern of anticorrelated networks and their 

statistical dependency changed. Thus tDCA may prove to be a useful, robust tool that 

provides a rich description of the statistical structure underlying brain activity and its 

relationships to changes in experimental conditions. This tool may prove effective in 

detection and description of mental states, neural disorders and their dynamics.  

Keywords: Data driven analysis, fMRI, probabilistic graphical models, Functional 

connectivity, dependent component analysis, ICA 

 

. CC-BY-NC 4.0 International licensenot peer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was. http://dx.doi.org/10.1101/066282doi: bioRxiv preprint first posted online Jul. 27, 2016; 

http://dx.doi.org/10.1101/066282
http://creativecommons.org/licenses/by-nc/4.0/


Hertz et al. 

fMRI Dependent Components Analysis 

3 

 

1. Introduction 

One of the major advantages of whole brain fMRI is the detection of large scale 

cortical networks encompassing different and distant brain regions. These 

functionally defined networks rely on temporal correlations in spontaneous and task 

related activity (Friston, 1994; Horwitz, 2003). Both data driven analysis and 

hypothesis driven analysis tools are used to characterize and detect these networks . 

These cortical networks and their interactions have been found to reflect different 

cognitive states, developmental stages and neural disorders (Greicius et al., 2003; 

Seeley et al., 2009; Rubia, 2012). However, although current tools are effective in 

identifying functional connectivity within one cortical network, these tools ignore or 

overlook the dependencies and interactions between these networks. The ability to 

detect such dependencies is especially important when examining adult brain 

plasticity and network- related changes induced by learning, as well as in the 

treatment of neural disorders.  

 The main data driven method used to detect functional large scale networks is 

independent component analysis (ICA), and specifically its application in the spatial 

domain (sICA), in which each voxel’s time course is treated as an example for the 

algorithm, and linear decomposition of temporal filters is sought (McKeown et al., 

1998). This method has been used extensively in the detection of neural disorder 

related changes in resting state functional connectivity (Greicius et al., 2004; 

Calhoun, Eichele, et al., 2009; Krajcovicova et al., 2011; Gallo et al., 2012).In sICA, 

spatial independence of the cortical networks is assumed, and the algorithm is 

directed at maximizing this independence (McKeown et al., 1998; Formisano, 2002). 

This assumption has been challenged in the context of interpreting brain activity 

data (Friston, 1998; Smith et al., 2012), and some alternative approaches have been 

suggested. However, these either compromise the data driven nature of ICA by using 

a semi-blind approach (and not overcoming the problem) (Calhoun et al., 2005), or 

undermine the robustness of ICA by examining temporal ICA, which introduces a 

dimensionality problem since number of voxels is much larger than number of time 

points sampled in fMRI (Calhoun et al., 2001a).  
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In DCA it is assumed that the components underlying the observed dataset are 

dependent on each other. Thus DCA allows cortical areas to be part of multiple 

cortical networks, and provides a dependency structure between these networks. 

This method was initially suggested and applied to examine the statistical features 

underlying natural images (Zoran & Weiss, 2009) by assuming a tree graph structure 

describing the inter-dependencies between the components (tDCA). 

Here we applied this method to fMRI data, as it allows detection of overlapped 

networks, while still using the spatial domain and not the temporal domain and 

avoids the dimensionality problem.  Moreover, this method uncovers not only large 

scale networks, but also their statistical relations and dependencies; i.e., information 

that is missing completely from other functional connectivity approaches. We used 

DCA to detect changes in cortical networks and their relations in three audiovisual 

experiments. In all the experiments, the auditory and visual stimuli were kept intact, 

but their novelty, information and task relevance were modified. This was enabled 

by using a visual to auditory sensory-substitution-algorithm (SSA), which is usually 

employed as a rehabilitation tool for the blind (Meijer, 1992). In SSA, visual 

information is captured and transformed to auditory soundscapes according to a set 

of principles. Subjects were scanned in a passive paradigm before learning SSA, in 

the same passive paradigm after learning SSA, and while performing an audiovisual 

integration task. DCA was thus used to examine how the changes in experimental 

context affect functional networks and their interactions. 

2. Methods 

2.1. tDCA algorithm 

tDCA takes a similar approach as spatial ICA in assuming that the data, i.e. the voxel’s 

time course of fluctuations in the BOLD (blood oxygen level dependent) signal, is 

generated from a linear mix of basis function (which can be referred to as "causes" 

or “sources”). The mixing coefficients reflect how strongly each source is manifested 

in a specific voxel’s time course. These can be depicted as a cortical parameter map 

showing which cortical regions are associated with a specific source. In sICA these 
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components are assumed to be statistically independent, and the spatial overlap 

between components is minimized. By contrast, in tDCA, components are assumed 

to be statistically dependent, in a tree dependency structure. The algorithm's 

objective is to determine these basis functions or sources (or their inverses, the 

filters) along with the distribution of mixing coefficients and their dependency 

structure. We followed the methodological steps proposed by Zoran and Weiss 

(Zoran & Weiss, 2009) used in the context of natural images. Their method includes a 

preprocessing step of whitening the data, followed by an iterative process of 

learning the set of linear filters, the density model for the pair-wise statistics and the 

dependency structure itself. These steps are detailed below. 

The first step is whitening the data. This is a common preprocessing operation which 

discards all second order correlations in the data. This allows us to focus on higher-

order dependencies which are the outcome of the non-Gaussian structure of fMRI 

signals (Dinov et al., 2005). The whitening process is described briefly below. 

Let the time courses of all voxels be arranged in columns to form a matrix X  . The 

first step is to whiten matrix X such that: 

Eq. 1 Z VX   

where V is: 

Eq. 2 1/2V D E  

and where E   is the eigenvector matrix of the covariance of X (PCA matrix), and D  

is a diagonal matrix with the corresponding eigenvalues on its diagonal. In this stage 

we also reduce the dimension of X , using only a subset of the PCA components. 

Next, in order to learn the complete model we need to learn a set of linear filters, 

the density model for the pair-wise statistics, and the dependency structure itself. All 

three are learned in iterative manner. Starting with a random initialization of the 

parameters we repeat the following steps in iterative manner. 
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Learning the filter matrix: Given whitened, dimensionally reduced time courses z , 

the current estimate for the tree structure T and the pairwise density model 

 ,i jp y y  (both described below), we learn an orthonormal matrix W   such that: 

Eq. 3 y Wz  

 where y is the resulting coefficient vector. The distribution of the components of y   

is described using a tree-dependent model of the form: 

Eq. 4 
root

,

( ) ( ) ( | )i j

i j T

p p y p y y


 y  

 where root denotes the root node, ,i j in T are the node pairs that are connected in 

the learned tree structureT . W is learned by performing a gradient ascent on the log 

likelihood of the model over all patches in the dataset – see Zoran and Weiss for 

more details. 

The resulting matrix W can then be used to extract response maps by correlating its 

columns with the dataset, as is normally done in ICA. 

Learning the tree structure: after updating the filter matrix W we learn the optimal 

tree structure using the Chow-Liu algorithm by relying on the pairwise mutual 

information (MI) between the mixing coefficient matrix  (Chow et al., 1968). This 

guarantees that we learn the optimal tree with respect to the current estimate of 

the parameters. 

Learning the pairwise density model: since we restrict the dependency structure to 

trees, we are faced with the challenge of handling nodes that are connected by the 

tree, but are in fact independent, or less dependent on one another. In order to 

allow for this, our pairwise density model comprises a linear mix of a factorial 

distribution (i.e., the coefficients are independent) and a radial non-Gaussian 

distribution (the coefficient are maximally dependent in our model). The mixing 

parameter   is learned for each of the edges in the tree independently.   
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2.2 fMRI Experiment  

2.2.1 Experimental design 

Subjects were scanned in fMRI before and after learning SSA (1 hour learning 

session) in three experimental conditions, in order to examine the dynamic and 

context- dependent nature of the audiovisual integration system. All experiments 

included blocks of auditory stimuli and blocks of visual stimuli, delivered with 

different presentation rates (e.g. auditory blocks repetitions and visual blocks 

repetitions were not the same), in a semi-overlapped manner (Hertz & Amedi, 2010). 

In the first experiment ('Pre') blocks of visual images repeated 21 times while 

auditory blocks repeated 14 times. Visual blocks included three shapes (a circle, a 

horizontal line and a staircase); each was repeated 4 times, totaling 12 seconds per 

block. Auditory blocks included 3 soundscapes, which were the SSA translation of a 

circle, a horizontal line and a staircase. Each soundscape repeated 4 times, totaling 

12 seconds per block. The rest between auditory blocks was 15 seconds, and was 6 

seconds between visual blocks. In this experiment subjects were instructed to 

maintain fixation on a red cross in the middle of the screen and passively attend to 

the stimuli.  

After learning, an active ('Plus') experiment was carried out. In this experiment 

auditory soundscape blocks and visual image blocks were presented to the subjects, 

auditory blocks repeated 20 times and visual blocks repeated 15 times. Auditory 

blocks included 4 soundscapes, each repeated 3 times, totaling 12 seconds per 

auditory block, which was followed by 6 seconds of rest. Visual blocks included 6 

images, each repeated 3 times, totaling 18 seconds per visual block, which was 

followed by 6 seconds of rest. Subjects were instructed to press a button when they 

perceived a combination of a vertical line and a horizontal line, one via a visual 

image and the other via an auditory soundscape that together formed a 

multisensory "plus" (+) sign. These "plus" events occurred 10 times during this 

experiment as shown in the green rectangle in Figure 1D.  
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The final experiment was a repetition of the 'Pre-Passive' experiment described 

above, after learning SSA ('Post'). The same visual and auditory blocks as in the 'Pre' 

experiment were delivered, and no active response was required. Subjects were 

instructed to maintain fixation on a red cross in the middle of the screen and 

passively attend to the stimuli. 

The SSA used in this study was 'the vOICe' developed by Peter Meijer (Meijer, 1992).  

This is a sensory substitution algorithm designed to provide visual information to the 

blind via auditory input. Time and stereo panning constitute the horizontal axis in 

the sound representation of an image, tone frequency makes up the vertical axis, 

and loudness corresponds to pixel brightness. It is hard to decipher visual 

information from soundscapes (SSA translation of images to sounds) before learning 

the principles of SSA, but even a short learning period is enough to extract visual 

information and detect simple objects (Kim & Zatorre, 2008; Striem-Amit et al., 

2011). 

2.2.2 Subjects 

A total of 11 healthy subjects (5 males, 6 females) aged 22-30 with no neurological 

deficits were scanned in the current study. The Tel–Aviv Sourasky Medical Center 

Ethics Committee approved the experimental procedures and written informed 

consent was obtained from each subject. We had to reject the data from one 

subject's post learning passive experiment because of a technical failure of the 

scanner’s auditory system.  

2.2.3 Functional and anatomical MRI acquisition 

The blood-oxygen-level-dependent (BOLD) BOLD fMRI measurements were 

conducted with a GE 3-T echo planar imaging system. All images were acquired using 

a standard quadrature head coil. The scanning session included anatomical and 

functional imaging. 3D anatomical volumes were collected using a T1 SPGR 

sequence. Functional data were obtained under the following timing parameters: TR 

= 1.5 s, TE = 30 ms, FA = 70°, imaging matrix = 64×64, FOV = 20×20 cm. Twenty-nine 
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slices with slice thickness = 4 mm and no gap were oriented in the axial position, for 

complete coverage of the whole cortex and scanned in an interleaved order. Each 

experiment had 254 data points. The first eight images (during the first baseline rest 

condition) were excluded from the analysis because of non-steady state 

magnetization. Functional and anatomical datasets were normalized and aligned to 

standard Talairach space. Cortical reconstruction of anatomical data included the 

segmentation of the white matter by using a grow-region function embedded in the 

Brain Voyager QX software package.  

2.3 tDCA of fMRI data 

2.3.1 single subjects 

tDCA and ICA were carried on single subjects' data. The BOLD signal over time (time 

course) from each voxel was used as a sample for tDCA analysis, with ~100000 time 

courses per subject. All scanned voxels were used, even if they were sampled 

outside of the brain, as they help estimate non-neuronal noise (see Results). 

Preprocessing steps included head motion correction, linear trend removal, slice 

time correction and high pass filtering (> 4 cycles per experiment), and spatially 

smoothed (spatial Gaussian smoothing, FWHM = 4mm). Functional data were 

spatially normalized and aligned to standard Talairach space. All these steps were 

carried out using the BrainVoyager QX software package. Further analysis steps were 

carried out using code developed in the lab in Matlab (MathWorks, Natick,MA). 

These steps included whitening of the data using PCA and a dimensionality reduction 

step in which only the first 30 PCA components were kept. 

 tDCA was carried out on the whitened and dimensionality reduced dataset as 

described above, yielding 30 filters along with their dependency tree. Each filter was 

used to construct a response map. The time course was used as in a standard GLM 

analysis (Friston et al., 1994), and was calculated on the original dataset. Note that 

the sign of the filters is arbitrary because the density model is symmetric around 0. 

Furthermore, negative responses should not be confused with deactivation or 
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negative BOLD responses since they describe the relation to the corresponding 

component and were not compared to baseline activity (as in GLM, for example). 

Two indices were devised to quantitatively estimate the temporal characteristics of 

the components and detect noisy components (McKeown, 2003). The first was a 

spike index, detecting whether a component's time course contains a spike in time: 

Eq. 5     

The higher this index, the higher the spike the time course contains, and the less 

likely it derives from neuronal activity. Spikes higher than 5 standard deviations from 

the baseline activity are related to head movement or scanner noise.   

The second index quantified the relations between the high and low frequency 

energies of a component's time course. The functional BOLD signal is characterized 

by high energy in low frequencies (<0.1Hz), whereas physiological noise is 

characterized by high frequencies (McKeown, 2003). The energy index measures this 

relation: 

Eq. 6    

where A(f) stands for the Fourier coefficient in frequency f. When the energy index is 

negative, most of the energy is concentrated in high frequencies, and the time 

course is less likely to represent neural activity. The higher this index from zero, the 

more low frequencies dominate the time course spectrum, and it is more likely to 

derive from neural activity.    

We ran ICA on single subjects’ datasets after the same preprocessing steps. The 

FastICA algorithm implemented in Brain Voyager software (Formisano et al., 2004) 

was used to obtain 30 components and their response maps. In order to identify 

similar components across the analysis results, a cross correlation matrix was 

calculated between all the response maps of the two sets of components. These 

correlation matrices were then ordered using hierarchical clustering based on the 
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Euclidean distance between rows of the matrix, resulting in a dendrogram depicting 

the most similar components (using standard Matlab functions dendrogram). This 

enabled identification of paired components across analyses. 

2.3.2 Group tDCA  

In order to examine the group level results we followed the concatenation method 

introduced by Calhun et al. (Calhoun et al., 2001b). In this approach tDCA is 

performed on a dataset created from the concatenation of all single subjects’ 

datasets, which results in group components and a dependency structure. 

Afterwards a dimensionality reduction was carried out similar to the single subject 

case described above. We used the first 30 PCAs from each subject, thus remaining 

with a whitened, dimensionally reduced time course length of 30 (this is the same as 

the whitened time course z described above). These time courses were 

concatenated, creating one time course length [Number of Components]*[Number 

of Subjects], in our case 30*11 = 330. tDCA was conducted on the concatenated 

dataset as was done  on the single subjects. This step resulted in 30 components and 

their dependency structure. We dissected the group filters to get the individual 

filters, and reconstructed the single subjects' response maps for each component. 

These were used to create a random effect measure of the components' response 

maps (similar to GLM random effect analysis (Friston et al., 1999)). These were also 

the basis for comparisons of components between experimental conditions, using 

student t-tests between the components. Group ICA was also carried out on the 

concatenated dataset in the same manner. The FastICA algorithm implemented in 

Brain Voyager software was used to obtain 30 components and their response maps. 

Group results were compared between experimental conditions and between 

analysis methods. As described above, the cross correlation matrix was calculated 

between all the response maps of the two groups. These correlation matrices were 

then ordered since paired components between groups were identified.  

3. Results 
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3.1 Simulation 

To validate this new method, well-controlled simulated data needs to be used to test 

how well it can recover the correct tree structure, and the different “activity maps” 

corresponding to the regions from which we created the sample. We created a 

simple “brain” consisting of seven different areas. Each of the areas had different 

characteristics, so the “time courses” generated by the voxels in this area differed. 

To simulate this, we created a basis of 8 time courses and 5 noise components, all 

connected by a tree dependency structure (because the noise is independent, it is 

disjoined from the tree). Each of the regions generated activations from 2000 voxels 

using a pair of connected nodes in the tree sampled from the density model, as well 

as independent Gaussian noise. We then ran the analysis steps on the simulated 

data, learning the tree structure, the basis functions and their corresponding 

component (“activity maps”), so these could be compared with the predefined 

underlying structure the sample was created from. 

Figure 1 shows the results of the entire experiment. On the left, the generating basis 

functions as well as the noise components can be seen, connected by the tree. 

Below are the “response maps” for all components.  Each row in the matrix 

corresponds to the activity of a single component, and each column is a different 

voxel. It can be seen that in different areas different components are active. In the 

middle, we show some actual time courses from the sample set subjected to the 

algorithm. On the right the learned structure can be seen. Both the tree and 

components were learned correctly, along with the 5 disconnected noise 

components. We set the gray level of each edge in this plot to be proportional to the 

value of beta for the edges, where the white indicates a beta very close to 0, and 

black very close to 1. Note that the noise components are in fact part of the learned 

tree, but because their   values (which, as noted above, measure the degree of 

dependency of two coefficients connected by an edge) are very close to 0, they can 

barely be seen. In addition, when applying the learned filters on the sample set, the 

same response maps are approximately recovered, with a small amount of noise. 
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3.2 tDCA of Single subject fMRI data 

We began the close inspection of how tDCA performs on real fMRI dataset with 

single subject datasets from an audiovisual experiment. In this experiment visual 

images and auditory soundscapes (visual transformation to sounds via sensory 

substitution  algorithm, see methods) were presented while the subjects lay in the 

scanner and were instructed to maintain fixation on a red cross in the middle of the 

screen. tDCA resulted in 30 components for the subjects and their dependency 

structure. Each component was characterized by a temporal pattern (the 

component's time course) and a component response map (each voxel's response to 

the component's time course).  

Two indices were used to characterize the components' time courses based on their 

temporal features: an energy index and a spike index (see Methods). Figure 2A show 

the components of one subject in index space. Components with negative energy 

index have more energy in high frequencies than in low frequencies (Component 13 

in figure 2A,B), and are related to physiological noise such as heart rate and 

respiration (McKeown, 2003). These were color coded in grey. The higher the energy 

index, the more low energy it contains (Component 6 in figure 2A, B), and the more 

likely it is to derive from neural activity. These were color coded from white (zero 

index) to yellow. The second index was a spike index, measuring how high a spike 

was above baseline. Time courses dominated by spikes (Components 12, 17 in figure 

2A,B) usually derive from head movements or scanner related noise (McKeown, 

2003). Components were color coded based on their spike index: yellow components 

had spike index of one, and faded as the index increased.  

The nodes of the tree structure learned using tDCA (each represents a component) 

were colored based on the temporal indices as described above (single subjects in 

figure 2C, and 11 subjects in Supplementary Figure 1). Remarkably, all the yellow 

components, which are likely to derive from neural activity, were clustered together 

on a subset of the tree, and the grey components (noisy) were in the fringes of the 

tree. Typically, a white component (low energy index or high spike index) was 
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adjacent to the noisy components (in grey), and a core of functional components 

were surrounded by white components whereas the grey components were farther 

away. This was the case in all the tree structures examined in this study, both in 

single subjects and in group analysis (Supplementary Figure 1, figure 4).  This is 

especially remarkable since the tree structure was based on the components' 

response maps, and did not take into account any temporal feature of the 

components' time courses. This thus strengthens the argument that the tree 

structure can capture a meaningful representation of detected components, in that 

adjacent components share temporal characteristics. 

 We compared the single subject tDCA components with the most spatially similar 

ICA components of the same subject (see Methods). Some components showed a 

high similarity between methods; for example the auditory component (R  = 0.72, 

component 9 in Figure 3) and default mode network (DMN) component (R = 0.75, 

component 26 in Figure 3. Interestingly, both ICA and DCA detected a highly similar 

CSF (cerebrospinal fluid) component localized in the ventricles and sinuses. This 

component had temporal characteristics similar to the neural derived components, 

and could only be identified as noise based on its response map. Other components 

that most closely resembled the ICA components did not show such high similarities. 

For example, the Parieto-frontal tDCA most similar ICA component correlation 

coefficient was only 0.46 (component 21, Figure 3). One possible explanation for this 

variation is the fact that tDCA allows for spatial overlap between components. This 

subject's Parieto-frontal component and DMN component highly overlapped, and 

were also adjacent in the tree structure (Figure 2C, components 21 and 26). ICA is 

aimed at minimizing spatial overlap, and therefore cannot provide two components 

to pair with the two overlapped DCA components. Allowing spatial overlap between 

components led to a dramatic change in the resulting components revealing a 

broader range of functional cortical networks. 

3.3 tDCA of group fMRI data 
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Group analysis is extremely valuable in fMRI studies, because it overcomes individual 

subject variability and noise, and increases the signal to noise ratio. It is especially 

useful when trying to compare populations, for example in diagnosing clinical 

conditions, or in our case with the same group before and after learning novel 

audiovisual coupling principles. However, group analysis of ICA in general, and our 

approach in particular, is still a topic of debate in the literature (Calhoun, Liu, et al., 

2009). Because components are learned independently for each subject, they vary in 

temporal structure and in cortical maps. This is because one subject’s cortical 

component map may be detected as two separate components and maps in another 

subject. Moreover, each subject has his/her own tree dependent structure, based on 

individual components. We chose to follow the approach described in Calhoun et al. 

(Calhoun et al., 2001b)  for group analysis of ICA data, using concatenation of data 

across subjects (see Methods). 

We carried out group tDCA on datasets of 11 subjects who participated in the three 

audiovisual experiments. These experiments were designed to examine the effect of 

context, e.g. task relevance, information and novelty, on audiovisual processing. This 

was achieved by using visual to auditory sensory-substitution-algorithm (SSA), which 

transforms visual images to auditory soundscapes according to a set of principles. In 

all three experiments auditory soundscapes and visual images were kept the same, 

but experimental context was modified.  A ‘Pre’ condition was carried before 

learning SSA using a passive paradigm. A ‘Post’ condition used the same passive 

paradigm after learning SSA. In a third condition, ‘Plus’ condition, carried after 

learning SSA, subjects had to integrate auditory and visual information. They were 

asked to press a button when a specific combination of auditory and visual stimuli 

was presented ('Integration') (for further details see Methods).  . We conducted a 

group analysis for each experiment separately to detect common components across 

experimental conditions and context dependent changes.  

tDCA generated   components and statistical dependency structures for each of the 

three experiments (Figure 4). Group components were dissected to reveal the 

individual components' time courses and response maps (see Methods). Average 
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temporal noise indices (energy index and spike index) were calculated for each 

component based on the single subjects' time courses. This enabled color coding of 

the nodes in the tree structures, similar to the way this was done in the single 

subject case. Here again, the algorithm placed the noisy components in the fringes of 

a sub-tree containing non-noisy components, in all three experiments (Figure 4). 

Single subjects' response maps were evaluated statistically (random effect analysis, 

see Methods), and group response maps were obtained. We were able to label some 

of the components, e.g. auditory, visual, somatosensory, DMN and Parieto-frontal, 

based on the areas highlighted in their response map (described below).  

First we compared ICA and tDCA visual components detected in the 'Post-Learning' 

experiment (Figure 5). Both ICA and tDCA detected components with response maps 

localized in the visual cortex. The ICA component maps had mostly positive 

responses, delineating one functional network, for example a component depicting 

primary visual area V1, from another component related to higher visual areas V2 

and V3 (Figure 5A). These components tended not to overlap, as expected from ICA. 

tDCA components contained two anticorrelated components, with positive 

responses depicting one area and negative responses in other areas (Figure 5B). One 

tDCA component had positive responses in primary visual cortex V1 and negative 

responses in higher visual areas, while another had positive responses in areas with 

a preference for  the periphery of the visual field and negative responses in areas 

with a preference for a foveal retinal location (Figure 5B top and middle maps) 

(Sereno et al., 1995). These results differed from the ICA components in two 

respects. First, networks that were detected in two different components in the ICA 

were detected together with the opposing response signal in tDCA. Second, the tDCA 

components showed high overlap, where one delineated visual cortex according to 

the retinal location, the other according to the processing hierarchy. This is the result 

of maximizing the MI between dependent components, rather than minimizing MI 

which is the case in ICA.  

We further examined these anticorrelated responses within one component by 

sampling time courses from peaks of positive and negative responses (in the circles 
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in Figure 5B). The sampled time courses were correlated with the component's time 

course and with each other. As expected, samples from positive responsive areas 

showed positive correlations with the component's time course and samples from 

negative responsive areas showed negative correlations (Figure 5C, left and middle 

graphs). However, correlations between the two samples were positive (Figure 5C, 

right graphs). This shows that if one of the samples was used in a seed functional 

connectivity analysis, both areas would be part of the same functional network. 

tDCA components therefore managed to best spread two parts of the same network 

– by finding the features where two otherwise correlated areas differ the most . This 

is qualitatively different from ICA which finds the component best fitted a specific 

network. The tDCA component seems to best describe (or span) the relation 

between two components. 

We compared components across experiments to examine which components 

remained the same and which experimental condition dependent changes emerged. 

In all three experiments, components related to sensory networks remained the 

same (Figure 6). The visual component, with anticorrelations between primary visual 

areas and higher visual areas was detected in all three experiments (p < 0.005, Figure 

6 top row). Auditory components also remained constant across experiments (p < 

0.005, Figure 6 bottom row). Auditory components did not demonstrate 

anticorrelations within the auditory cortex. Both in the auditory and visual cases, no 

significant differences between experiments were found when these were 

contrasted directly. This consistency across experiments was expected since the 

auditory and visual stimuli were the same (or very similar) across experiments. This 

consistency suggests that overall, the sensory areas were less affected by changes in 

experimental conditions and the context in which sensory inputs were delivered. 

Moreover, it demonstrates that tDCA reliably uncovered sensory components in 

three independent analyses of three datasets. It is important to uncover similar 

results using non-overlapping datasets, when establishing a novel data analysis 

method 
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Context dependent changes were found in the Parieto-frontal network components 

(Figure 7). The Parieto-frontal network is associated with control of attention and 

task related activity (Corbetta, 1998),  and includes the  bilateral Intraparietal Sulcus 

(IPS) and prefrontal areas (Frontal eye field FEF). The Parieto-frontal network was 

detected in all three experiments, including IPS and FEF (p < 0.005 Figure 7A). 

However, context dependent changes were detected, in that other areas became 

functionally connected to this network, and some areas became more or less 

pronounced. Direct comparison between the 'Pre' and 'Post' learning experiments 

revealed how the bilateral Insula became functionally connected to the Parieto-

frontal network after learning SSA (p < 0.005 Figure 7B left map). This could have 

been  the result of the translation of auditory soundscape to visual framework in the 

Insula (Bushara et al., 2001), which is possible only after learning SSA principles. 

Comparison between 'Post' and 'Plus' conditions showed that in the absence of the 

task, the network was more left lateralized, whereas when the active audiovisual 

integration task was introduced the network was more symmetric (p < 0.005 Fuigure 

7B right map). This is in line with reports that there is a more  left lateralized network 

for object detection (Amedi et al., 2007), and that the right hemisphere is more 

involved in active control of attention (Corbetta & Shulman, 2002). All the changes in 

the Parieto-Frontal network were within the network; i.e., through inclusion or 

exclusion of areas to the network or changes in area responses, but not in its relation 

with other networks. Such context dependent changes can be expected in the 

responses of associative areas outside sensory areas, given that the experimental 

context changed. 

Finally, context dependent changes were detected in the DMN network (Figure 8). 

The DMN network includes the Precuneus, bilateral Temporal- Parietal Junction (TPJ) 

and mid-frontal cortex, and is associated with intrinsic cognitive processes, in 

contrast to activity related to extrinsic stimuli and task (Raichle et al., 2001; Goldberg 

et al., 2008). Moreover, the DMN was shown to be dissociated from a network of 

areas oriented toward extrinsic processes, in studies applying data-driven clustering 

approaches (Golland et al., 2008), GLM analysis (Golland et al., 2007) or  
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anticorrelations (Fox et al., 2005). As our analysis examines relations between 

cortical networks the DMN and its related networks are of great interest to us. DMN 

components were detected in all three experiments (p < 0.005, Figure 8A – negative 

responses). Although the DMN network itself did not change significantly between 

experiments, its associated network, i.e., the network anticorrelated to the DMN in 

each component, changed significantly.  In the 'Pre' condition it was anticorrelated 

with the bilateral Insula, in the 'Post' condition it was anticorrelated with Parieto-

frontal network which is related to attention and object detection, and in the active 

'Plus' experiment it was anticorrelated with somatosensory areas and the insula 

which is related to the motor response to target detection. These changes were also 

observed when the components were contrasted between experimental conditions 

(p < 0.005, Figure 8B).  These context dependent changes were not within the 

network detected in the component as was the case for the Parieto-frontal network, 

but rather were found in the relations between networks, in that the DMN was 

associated with different extrinsic process in each experiment. These changes 

followed the changes in task relevance, information and novelty of the sensory 

input.  

4. Discussion 

In this study we introduced a novel data driven approach to extract both 

components and their statistical dependency structure underlying fMRI data, 

following the algorithm introduced by Zoran et al. (Zoran & Weiss, 2009). First we 

demonstrated the feasibility of this method using a simulation (Figure 1), and 

showed that the algorithm revealed the filters and dependency structure underlying 

the simulated data. We then applied tDCA to study changes in cortical networks and 

their dependencies in audiovisual fMRI experiment datasets. We characterized 

temporal features of the components' time course associated with the noisy, non-

neural related signal. tDCA clustered together the non-noisy components on a subset 

of the tree structure, whereas the  noisy components were located in the fringes of 

the tree, even though the tree structure was based on a spatial distribution of the 

components' response maps (Figure 2, Supplementary Figure 1). When group tDCA 
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results were compared with group ICA results, interesting characteristics of tDCA 

components were revealed. The first was that tDCA learns pairs of anticorrelated 

networks within a functionally connected network. While the ICA finds components 

which best characterize one area, tDCA extracts components that best spread over 

the two networks. This was shown in the case of visual components (Figure 5). This 

pair detection also results in a high overlap between components' response maps, 

which was not found in the ICA, in that the algorithm tries to minimize spatial 

overlap between components. Finally, tDCA was used to examine how changes in 

the experimental context in which auditory and visual stimuli are delivered affect 

sensory processing in the brain. Sensory components did not change throughout the 

experiments because the stimuli themselves remained the same, showing that tDCA 

reliably detected sensory networks (Figure 6). Two types of context dependent 

changes were found. The first was changes within a functional network, such as the 

one that was found for the Parieto-frontal network, in which some areas were 

excluded or included in the network in different experimental conditions (Figure 7). 

The second type was changes in the relations between functional networks as a 

function of changes in the network pairs. This was seen in the case of DMN, which 

changed its anticorrelated networks according to the experimental condition (Figure 

8). This level of information; namely, relations between functional networks, is 

completely absent from ICA.  These results show that tDCA is a viable and 

meaningful data driven approach to fMRI data, and can characterize the components 

and dependency structure it obtains. 

The use of data driven approaches to detect large scale functional networks in the 

brain is part of a growing interest in this phenomenon as fMRI has become an 

established functional brain imaging tool.  In fMRI the entire brain is scanned over 

time, with relatively high spatial resolution. This differs considerably from 

electrophysiology studies that are constrained to a small area of the brain in which 

the electrode is inserted. This allowed for the detection of relations between distant 

cortical areas, and introduced the notion of functional and effective connectivity 

(Friston, 1994; Horwitz, 2003). Functional connectivity relates to the similarity 
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(correlation) in temporal fluctuations in the signal between two distinct areas. The 

most common use of this approach is in seed analysis, in which a time course is 

sampled from a pre-defined cortical area, and the 'seed', is compared with brain 

activity throughout the brain. The areas which show a high correlation with the seed 

time course are defined as functionally connected to the seed.  This approach has 

been especially useful in the detection of altered functional connectivity in different 

populations, such as during development (Rubia, 2012), in different neurological 

disorders (Greicius et al., 2004; Krajcovicova et al., 2011), and in different 

experimental conditions(Kim & Zatorre, 2011). 

 Spatial ICA has been suggested as a tool to extract such 'seed' time courses, which 

represent different functional networks, in a data driven manner, and hence 

overcome the problem of seed selection (McKeown et al., 1998). It has become a 

popular tool in detection of functional networks, especially when using a resting 

state paradigm (Greicius et al., 2004; Calhoun, Eichele, et al., 2009; Krajcovicova et 

al., 2011; Gallo et al., 2012). However, its maximization of spatial independence has 

been criticized as not reflecting the brain's complexity and connectivity (Friston, 

1998; Smith et al., 2012). Moreover, it was argued that ICA fails to maximize spatial 

independency (Daubechies et al., 2009). Temporal ICA does not make a spatial 

independence assumption, thus allowing for spatial overlap between components. 

However, since there are orders of magnitude more voxels than sampled time points 

in fMRI data, and ICA requires a large number of samples, this approach is not 

commonly used. Recently Smith et al. (Smith et al., 2012) were able to carry out a 

temporal ICA by employing an advanced fast fMRI protocol and pooling data across 

subjects, and successfully revealed temporal functional modes of activation. Even 

though sICA is more robust, alternatives are being sought which more accurately 

depict large scale cortical networks. 

tDCA overcomes the spatial independency demands of sICA,  without falling into the 

dimensionality problem of temporal ICA in that it uses voxels as samples, as does 

sICA. This means that tDCA can be used even in standard fMRI acquisition protocols, 

and can be carried out at the single subject level. tDCA reveals components that are 
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characterized by pairs of conjugated, anticorrelated cortical networks. These may 

reflect functional connections between pairs of cortical networks.  Anticorrelations 

between large scale cortical networks have been discussed in the context of the 

default mode network (DMN) and resting state fMRI (Fox et al., 2005). 

Anticorrelation was also found between a task oriented network involved primary 

sensory areas and attention areas, and an intrinsic network overlapping the DMN in 

the resting state. Other studies on this effect have reported the importance and 

reoccurrence of these anticorrelations as a descriptive characteristic of the relation 

and interactions between large scale cortical networks. For example, different 

anticorrelation patterns for different parts of the DMN have been identified, which 

suggests different roles for DMN nodes (Uddin et al., 2009). Another study found  a 

disruption of anticorrelations patterns in sleep deprivation, and argued that proper 

interactions between large scale networks are crucial (De Havas et al., 2012). 

Although it has been claimed that anticorrelations are introduced by the effect of 

global signal regression (Murphy et al., 2009), the fact remains that some temporal 

components can spread two opposite signal responses in two cortical networks. Our 

results bear remarkably close resemblance to the temporal functional modes 

identified by Smith et al. (Smith et al., 2012) using temporal ICA (mentioned above), 

who found components that contain two anticorrelated networks. Conjugated pairs 

of large scale cortical networks may therefore reveal an important characteristic of 

large scale networks interactions and relations. Furthermore, the changes in 

conjugated pairs and dependency structure shown here provide a unique view on 

the dynamic nature of these interactions, in that the anticorrelations between two 

networks are replaced by anticorrelations with another network as experimental 

conditions are modified. 

tDCA was used here to describe consistent and dynamic sensory processing as a 

function of changes in experimental conditions that affected information, novelty 

and task relevance of the sensory inputs. tDCA was able to uncover context 

dependent changes in the networks paired with a DMN component subsequent 

tothe changes in experimental conditions. This is a good example of the kind of 
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information revealed by examining the relations between functional networks, 

which is the core idea in this analysis. Changes within functional networks, as was 

found in the Parieto-frontal network, could also have been found using seed analysis 

or ICA (however the restriction on overlapped networks can sometimes lead to 

failure to detect some network components). Moreover, ICA appears to be especially 

useful in describing one specific network, as was seen in the detection of visual 

components, whereas tDCA tends to find pairs of networks. It is important to 

acknowledge that different tools, with different assumptions and biases, lead to 

different descriptions of cortical activity. These should be used appropriately 

according to the question at hand, and are not mutually exclusive. It is important to 

continue to explore the statistics and features underlying fMRI data, since changing 

the assumptions and models may lead to novel insights, better understanding and 

characterization of  large scale cortical activity. This may prove useful in future 

detection of 'modes' of activity, cognitive states and functional effects of neural 

disorders.  
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Figures 

 

Figure 1 – Tree dependent component analysis  

 (A) Simulation results. Left: the generating tree, including basis functions and noise 

components. Black edges in the tree correspond to β = 1 and white edges (which are 

invisible) correspond to β = 0, grays are in- between values. Below it are the 

response maps in the brain generating the “time courses” for the simulation. Middle: 

some of the samples generated. Right: the learned tree model and components. 

Note that both the tree structure and components (including the separation from 

noise) were correctly learned. Below are the response maps of the non-noise 

components where each row of the image represents a response map to one 

component. Note that the ordering (and sign) is arbitrary, but that the resulting 

response maps indeed correspond to the “real” ones. (B) The density model used for 

describing the bivariate statistics of the model. Left: marginal histogram (log scale) of 

the 10th PCA component from one of the datasets used. Note the heavy tail 

compared to the depicted Gaussian. Middle and Right: joint and conditional 
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histograms of a pair of ICA components from the dataset - note the “bow-tie” shape 

in the conditional histogram, showing the kind of dependence we need to capture 

with the density model. Also note that these are ICA component responses that 

illustrate the failure of the ICA to remove all dependencies from the data. 

 

Figure 2 - Single subject fMRI results – temporal noise index and tree dependent 

dependencies 

(A) The resulting DCA components of one single subject were analyzed to detect 

temporal noises. Two indices were assigned to each component. Theenergy index 

(on the y axis) is the contrast between the energy in low frequencies (f < 0.15 Hz) 

and in high frequencies. The spike index (on the x axis) divides the maximum value of 

the component with the standard deviation of the signal, and a high spike index 

indicates the component is dominated by one or more spikes. The circles are the 

detected DCA, which were color- coded based on their index values – all components 

with a negative energy index were colored grey, and positive energy indices were 

color coded on a sliding scale from white to yellow, with the brightest yellow 

indicating the highest energy index and lowest spike index (top left corner), and 

white indicating a decrease in the energy index and an increase in the spike index. 

(B) 4 components illustrate the different temporal characteristics associated with the 

temporal noise indices. These components are marked with magenta circle in the 

index graph in A. Component 6 had a high energy index and a low spike index, and 

overall low temporal noise. Components 12 and 17 had high spike indices, and 

presented single or several spikes in the temporal domain associated with head 
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movements. Component 3 had a negative energy index, and demonstrated a high 

temporal frequency which is associated with physiological noise (breathing, heart 

rate). (C) The resulting tree dependent structure between components. The tree 

structure relies on the mutual information between the component response maps. 

The lines connecting the components are color coded (black to white) based on their 

mutual information (MI), normalized according to the maximum MI value detected 

(here maximum MI was 0.12). The components are colored based on their temporal 

noise indices, as shown in A. Interestingly, the temporally non-noisy components are 

clustered together on a branch of the tree, with lower indices towards the fringes of 

this branch, even though tree structure was determined by the spatial relation 

between component response maps. This clustering was evident in all the datasets 

examined in this study (see 10 more single subjects results in Supplementary Figure 

1, and group results in Figure 4). 

 

 

Figure 3 – Single Subject fMRI results – tDCA and ICA components 
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All component response maps were thresholded at t(280) > 3, p < 0.005 ). The top 

two component maps, 9 (auditory) and 26 (default), were highly correlated to an ICA 

component map (R = 0.72 and R = 0.75 respectively), and demonstrated high spatial 

similarities. Third component map – 21 (fronto-parietal) most similar ICA component 

map was not as highly correlated (R = 0.46), showing that ICA failed to detect this 

network. This could be explained by the fact that components 21 and 26 have high 

MI (0.12), and are in adjacent nodes in the tree model (Figure 2C), and the ICA 

algorithm is aimed at minimizing MI between components. Lowest component maps 

– 7 (CSF)  demonstrate that even though some components did not demonstrate 

temporal noise, as detected by temporal noise indices, they were not derived from 

neural activity because they are localized in areas without neurons,  in the CSF 

demonstrated here or in white matter. ICA also detected the CSF component 

(pairwise R = 0.72). CSF proximity to cortex may be the basis for its MI with non-

noisy components (albeit relatively low MI). 

 

Figure 4 – Group fMRI results – Indices, tree structures and Positive- Negative 

index 

(A) Order of Experiments - This study consisted of three sessions of data acquisition, 

interspersed by a short (1 hour) learning session outside the scanner. During the 

passive paradigm, visual images and auditory soundscapes were presented to the 
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subjects in a semi-overlapped manner, while subjects were asked to maintain 

fixation at a cross in the middle of the screen. This paradigm was administered 

before learning SSA ('Pre'), and was repeated after the learning session ('Post'). 

During the  audiovisual integration ('Plus') experiment subjects were instructed to 

press a button when they perceived a combination of a auditory soundscape and 

visual images depicting vertical line and a horizontal line, and forming a multisensory 

plus (+) sign. (B) Tree dependency structures of group results from three audiovisual 

experiments. The nodes are colored based on their average temporal node indices 

(see Methods), and the lines connecting the nodes are colored based on the MI 

between the two adjacent component maps. Here, as in the single subject case, 

components with less temporal noise are clustered together on a branch, even 

though the tree structure was determined by the spatial relations between 

components. Some of the nodes are also color- coded based on their corresponding 

visual, auditory, somatosensory, default mode and Parieto-frontal networks. In all 

tree structures visual nodes are adjacent.  

 

Figure 5 – Anticorrelations within visual system 

A number of component response maps, detected in the Post-Learning experiment 

using tDCA and ICA included parts of the visual cortex. (A) ICA component response 

maps (p < 0.005). Top row depicts components that mostly include areas which 

prefer the periphery of the visual field, primarily in V1. Middle row depicts a 
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component that includes a preference for the fovea. The bottom row component 

shows a preference for the Precuneus, outside the visual cortex. (B) tDCA 

component response maps (p < 0.005). Top row shows a component that elicited 

positive responses in periphery areas and negative responses in foveal areas. These 

were detected in two different ICA components. The component in the middle row 

elicited positive responses in V1 and periphery areas, and negative responses in 

higher visual areas (V3). In the bottom row is a component with negative responses 

in retinotopic areas and positive responses in the Precuneus. All pairs of 

anticorrelated responses were comprised of different dissections of the visual areas 

based on retinal location or processing hierarchy. (C) Time courses sampled from 

positive and negative responsive areas (marked with circles in B) for each 

component were correlated with the component time courses and with each other. 

In all cases the sampled time courses showed the opposite sign to the correlation 

with the component’s time course, but were positively correlated. The component 

time courses could subdivide (or spread) one functional network into two. These 

subdivisions were overlapped, so the visual cortex could be divided according to 

different features. A seed analysis would overlook these subdivisions, and ICA 

penalizes overlapped components.  
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Figure 6 – Consistent auditory and visual components across experiments 

(A) Similar visual components in all three experiments, which include anticorrelated 

responses in periphery and foveal areas (p < 0.005). No significant differences were 

detected between these maps. (B) Maps for the auditory components detected in all 

three experiments (p < 0.005). Here only positive responses were detected, which 

cover HG and PT. No significant differences were detected between these maps.  

Components of sensory cortices were consistently detected in all three experiments. 

Auditory and visual stimuli were kept the same throughout these experiments, while 

task, novelty and information changed.  
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Figure 7 – Context dependent changes within networks: Parieto-Frontal 

components 

(A) Parieto-frontal networks were detected in all three experiments, including IPS 

and FEF (p < 0.005). However these differed as a function of the changes in 

experimental conditions and the task, novelty and information conveyed by sensory 

inputs. (B) These changes are shown by contrasting components between 

experiments. The Parieto-frontal network was correlated with bilateral insula after 

learning but not before learning (left map, p < 0.005). It was also more pronounced 

in the left hemisphere after learning in the passive paradigm than in the active 

audiovisual detection experiment (right map, p < 0.005).  
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Figure 8 - Context dependent changes between anticorrelated networks: DMN 

components 

(A) DMN was detected in all three experiments (p < 0.005). Whereas negative 

responses in DMN, including the Precuneus, TPJ and mid-frontal areas remained 

constant between experiments, it was anticorrelated with different networks in each 

experiment. Before learning, it was anticorrelated with the bilateral Insula, after 

learning in the passive experiment it was anticorrelated with the Parieto-frontal 

network and bilateral Insula, and in the active audiovisual detection experiment it 

was anticorrelated with left motor cortex and bilateral insula.  (B) This pattern was 

also detected when these components were directly contrasted between 

experiments, showing significant changes in DMN conjugated networks, but not 

between DMN. This is evidence of context dependent changes in the relations 

between cortical networks which does not necessarily involve changes within these 

networks. This information is unique to tDCA. 
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Supplementary Figure 1 – 10 single subjects' temporal noise indices  and tree 

dependency structures 
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