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Abstract

Analyzing the network behavior of IoT devices, including which domains, protocols,

and ports the device communicates with, is a fundamental challenge for IoT security

and identification. Solutions that analyze and manage these areas must be able to learn

what constitutes normal device behavior and then extract rules and features to permit

only legitimate behavior or identify the device.

The Manufacturer Usage Description (MUD) is an IETF white-list protection scheme

that formalizes the authorized network behavior in a MUD file; this MUD file can then

be used as a type of firewall mechanism.

This thesis introduces MUDIS, a MUD Inspection System that inspects the network

behavior of devices, based on their formal description in the MUD file. We use MUDIS

to examine several use-cases that demonstrate why learning what is normal behavior

for an IoT device is more challenging than expected. For example, (i) how the same IoT

device, with the same firmware, can exhibit different behavior or connect to different

domains with different protocols, depending on the device’s geographical location; (ii)

the impact of a firmware update; (iii) the correlation of network behavior between

different devices of the same manufacture, and more.

MUDIS inspects two MUD files, clusters together and graphically visualize identical,

similar, and dissimilar rules. It then calculates a similarity score that measures the

similarity between them both. It also generalizes the two MUD files where possible,

such that the resulting generalized MUD covers all the permitted (Allowed List) network

behavior for both MUDs.

We demonstrate MUDIS comparison and generalization features, by processing

MUD files that originate in different locations, compare their rules to learn the im-

pact of the location over devices network behavior and generalize them to create a

comprehensive MUD file that is applicable for all locations.

Our open-source MUDIS tool and proof-of-concept dataset are available for re-

searchers and IoT manufacturers, allowing anyone to gain meaningful insights over

the network behavior of IoT devices.
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The research and its results were published and presented at the IEEE/IFIP Net-

work Operations and Management Symposium (NOMS) 2022 conference in Budapest,

Hungary [3], [4]
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1 Introduction

The Manufacturer Usage Description (MUD) is an IETF white-list protection scheme [10]

that formalizes the authorized network behavior in a MUD file. This MUD file can then

be used as a type of firewall mechanism that provides security for the highly diverse IoT

devices. MUD files consist of Access Control Lists (ACLs), each with several Access Control

Entries (ACEs). Each ACE is defined as a 5-tuple:

ACE = (legitimate_endpoints, protocol,

source_port, destination_port, direction)

(1)

The MUD file is fetched by the IoT device using DHCP or LLDP, and thus there is a single

MUD file for each firmware version, regardless of any other device or network factors.

The MUD can be provided by the manufacture or learned based on information captured

from the device network traffic (PCAP) using a MUD generator tool such as MUDGEE [8] or

MUD-PD [14]. Environmental variables can influence the network behavior of an IoT device

and hence, have a direct impact on IoT security, including the MUD file that is learned

[13, 15]. For example, a device’s location impacts its behavior [3], which makes learning

what is normal and secure behavior for an IoT device more challenging than expected. In

many cases, the same IoT device, with the same firmware, can exhibit different behavior

or connect to different domains/IPs with different ports and protocols, depending on the

device’s environment variables. This is even more challenging when learning the behavior of

IoT devices that have more than one different environment variable (e.g., internet connection,

DNS blocking, human interaction).

We present a novel and unique tool called MUD Inspection System or MUDIS for short.

MUDIS inspects and analyzes two MUD files by comparing their rules, and produces a single

generalized MUD file that is comprehensive, tight, and secure for both MUDs. MUDIS is

useful for many cases, including analyzing MUDs that were generated from different network
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traffic due to different environmental factors, analyzing the differences in MUDs between

different firmware versions, identifying anomalies based on their network behavior to spot

rare actions like firmware updates, find malware infected devices, and more.

MUDIS is a web application with a RESTful web service that is written in Python and

uses MongoDB for storage, following the Object-Oriented Programming approach. All the

code is open source and available for the use of other researchers and IoT manufacturers at

[21], together with our POC dataset [12] and an easy-to-use setup guide based on Docker.

Figure 1: MUDIS architecture

The MUDIS architecture, depicted in Figure 1, receives two MUD files as input and

performs four tasks, using a set of algorithms: parsing the input MUDs; comparing their

rules; generalizing them into one MUD file; and then graphically visualizing the results.

The MUDIS comparison task visualizes the differences between the two files and highlights

identical ACEs, similar ACEs, clusters of ACEs, and dissimilar ones. The number of ACEs
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may differ between the devices and the network behavior captured, and can range from

just a few ACEs to a few dozens of them. This emphasizes the importance of comparing

and visualizing the ACEs so we can easily spot similarities and differences between the two

MUDs. MUDIS also calculates a similarity score that measures and numerically represent

the similarity between the two MUD files. The comparison task helps us drill down and gain

insights about the origin of the differences, and analyze and emphasize their impact on the

device’s network behavior. For example, these may include domain differences, encrypted

vs. plain communication, different ports and protocols for the same endpoint, the use of

cloud services, and much more. The MUDIS generalization task outputs a generalized and

comprehensive MUD file that can white-list the network behavior of both MUD files, in a

tight and secure manner. The naive method would be to add both sets of rules to form a single

unified MUD. However, in MUDIS we use ranges in the domain (e.g. *.iotvendor.com) field

to create a generalized MUD with fewer rules. By doing this, we increase the explainability

of the resulting MUD and reduce implementation costs in the firewall, which is crucial for

network administrators and device manufacturers who need to support the devices’ MUDs.

We used MUDIS features to examines how a device’s location can influence its network

behavior. We found that, depending on its location, the same IoT device with the same

firmware behaves differently and communicates with different domains, protocols, and ports.

To the extent of our knowledge, this is the first work that defines device location as a factor

impacting device behavior.

Our dataset contains measurements for devices in our lab that were virtually connected

to different locations using VPN, or logically connected to different locations by registering

the device in the IoT application in different countries; this data was analyzed along with

information from Ren et al. [19] who captured devices that were both physically positioned

and logically connected in two locations. We show that, in many cases, the device location

of the IoT device will impact its network behavior for various reasons. These can range from

marketing reasons where the same IoT has different features while operating in different
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locations, to country requirements, to weak encryption, privacy regulations, CDN-like solu-

tions, and more. The only related work we are aware of deals with the influence of privacy

regulations (GDPR, FTC) on the network behavior of IoT devices in the United Kingdom

and the United States [19]. In contrast, our work investigates the impact of location in many

different countries and demonstrates that there exist other reasons for the differences.

2 Previous Works

A few tools were developed recently to help manufacturers and network administrators handle

MUD standards. [8] presents a tool, MUDGEE, that creates a MUD out of a network capture

(PCAP). [14] allows the characterization of IoT device network behavior and the creation and

definition of appropriate MUD files using a graphic interface. Andalibi et al. [2] introduces

a MUD visualizer tool for convenient viewing of MUD files. Our MUDIS tool introduces

comparison and generalization features, allowing users to investigate MUD files differences.

We use the MUDIS tool to check the impact of IoT location on... In addition, to the

extent of our knowledge, this is the first work that defines device location as a factor that

impacts a device’s network behavior. The only related work we are aware of deals with

the influence of privacy regulations (GPDR, FTC) on the network behavior of IoT in the

United Kingdom and the United States [19]. In contrast, our work investigates the impact

of location in many different countries and demonstrates that there exist other reasons for

the differences, such as cloud regions, country encryption policies, and more.
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3 MUD Background

In our approach, MUD plays two roles. First, the MUD file formalizes network behavior

at the flow level, enabling us to analyze it. Thus, the results and insights of MUDIS can

help here and in other use cases such as IoT identification (see Section 6). Second, MUD

methodology serves as a security solution and improving it is one of the basic motivations

for this work.

MUD is an Internet standard [10] that aims to reduce the attack surface for IoT devices

by describing their appropriate traffic patterns. Any traffic that does not comply with this

description is considered malicious and can be, for example, blocked. These descriptions are

provided by the IoT manufacturers in MUD files.

MUD files consist of Access Control Lists (ACLs), each with several Access Control

Entries (ACEs). Each ACE is defined as a 5-tuple, as depicted in Figure 5

ACE = (legitimate_endpoints, protocol, source_port,

destination_port, direction)

(2)

The legitimate endpoints are the endpoints with which the IoT connects; they are com-

monly defined by domain name or by a range of domains[10, 5] (e.g., *.iotvendor.com), IP

subnet (including *), or MAC for intra-LAN scenarios. We note that MUD [10] standard-

ization highly recommends avoiding the use of IP addresses and uses domains instead.

The corresponding action of the ACE is typically to either “accept” or “drop”. Because

the MUD file specifies a white-list, the default rule is to drop traffic that does not correspond

to any ACE. Throughout this paper, we write that a flow is matched by a MUD if there is

an ACE in the MUD that matches the flow.

The MUD framework itself consists of several components. A MUD manager, also known

as the MUD controller, is responsible for obtaining and processing the MUD information.

For each IoT device, the MUD manager first obtains the MUD file from its manufacturer’s

MUD server. The MUD server’s address for the IoT device is stored as a MUD URI in the
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device’s firmware. This URI can be obtained by the MUD manager in a variety of ways as

specified in [10]. Nevertheless, it is most commonly obtained through a dedicated option

in the DHCP protocol, which the IoT device executes to connect to the network. Thus,

the MUD file should be applicable to all possible locations in which the IoT device can be

situated. With the MUD file at hand, the MUD manager parses the file and installs the

corresponding ACL rules on a network security device, such as a firewall or AAA server, to

reduce the attack surface of the device.

Manufacturers are faced with the challenging task of creating a comprehensive and rep-

resentative MUD that takes into account many parameters, such as the use of third-party

libraries, the OS network behavior, the entire device’s operational functions, and more. To

overcome these challenges, there are tools that generate MUD files from network captures

[8, 14].

Another approach, is that a network security component [1] would acquired and learned

the MUD file from wild-traffic using big-data information. This helps cope with the situation

where IoT vendors lack the incentive or knowledge to create a MUD file.

Figure 2: MUDIS comparison visualization
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4 Main features

In the following subsections we present two main features of MUDIS: Comparison and Gen-

eralization

4.1 MUD Comparison

Given two MUD files, MUDi and MUDj, our tool compares them to find their differences

and similarities. Initially, it outputs a similarity score to measure and numerically represent

the similarity between the two MUDs. The similarity scale ranges from 0 to 1, where 0

means that there are no similar ACEs among the MUD files and 1 means the two MUDs are

identical. We define MUD similarity as the Jaccard similarity coefficient of the two MUDs

and divide the number of equal ACEs in both MUDs by their total number of ACEs. The

similarity measure of two MUDs is defined formally as:

Similarity(MUDi,MUDj) =
|MUDi ∩MUDj|
|MUDi ∪MUDj|

(3)

MUDIS then divides the ACEs of the two MUDs into four groups: identical ACEs, similar

ACEs, clustered ACES, and dissimilar ones. This separation highlights valuable connections

and patterns between the ACEs, enabling MUDIS users to gain meaningful insights. The

algorithm uses the following four steps, where each step output is visualized in a different

frame on the MUDIS visualization screen (see Figure 2):

1. Find identical ACEs. ACEs in which all of their fields are identical.

2. Find similar ACEs. MUDIS marks two ACEs of two MUDs as similar if they

have similar domain names and all other fields in the ACEs are identical (port, pro-

tocol, etc.). A similar domain name is defined as follows: let the domain name

be in the format subDomain-part.mainDomain.suffixTLD. The suffixTLD is the top

level domain (e.g., .com, .net or .us) or a combination of top level domains (e.g.,
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Figure 3: Ring Doorbell clustered ACEs

.com.tw). The subDomain part can be empty or include multiple sub-domains (i.e.,

sub1.sub2.sub3.mainDomain.suffixTLD). Two domain names are similar if and only if

their mainDomain part is equal. For example, In Figure 5 we compared two different

devices, the Bulb and Plug, of the same manufacture (Tp-link). MUDIS found similar

ACEs that differ only in their sub-domain parts: the Bulb uses n-devs.tplinkcloud.com

whereas the Plug uses devs.tplinkcloud.com.

3. Find Clustered ACEs. After the first two steps, if there are still unmatched ACEs

remaining, we cluster the ACEs with the same traffic directions into two types of

clusters: (1) ACEs with similar or equal endpoints but with different ports or protocols

(2) ACEs with the same ports and protocol but with different endpoints. Note that each

cluster type may contain several clustered ACEs and the same ACE can be clustered

with multiple ACEs of the other MUD.

For example, In Figure 3 we compared the Ring Doorbell device behavior in two

different locations (UK and US). MUDIS managed to automatically spot a difference

and clustered two ACEs that communicate with the same protocol and unique high

port, but use two different endpoints.

4. Find all dissimilar ACEs Finally, we gather all the non-clustered ACEs into the

dissimilar ACEs section. For example, in Figure 4 we compared two MUDS of the

same Xiaomi device, where one of the MUDs was generated out of a PCAP with a

rare action such as firmware update. MUDIS found a unique domain of Xiaomi that

downloads a new firmware version over port 80.
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Figure 4: The Xiaomi Bulb’s unique domain when downloading a new firmware version

4.2 MUD Generalization

The goal of this feature is to create a generalized MUD that is comprehensive, tight, and

secure. Comprehensive means that the generalized MUD should be applicable to the two

MUDs presented. It must also be tight and secure because a MUD’s main goal is to

whitelist only legitimate flows of the IoT and thereby reduce the device attack surface.

The generalization algorithm has three steps:

1. Add equal ACEs. All the identical ACEs that appear in both MUDs are added only

once to the generalized MUD.

2. Generalize similar ACEs by generalizing similar domains. As mentioned pre-

viously, MUDIS marks two ACEs as similar if they have similar domain names, and

all other fields are identical. MUDIS use ranges in domain (e.g., *.iotvendor.com) to

create a generalized ACE from two similar ACEs, as shown in Figure 5(b). MUDIS

only generalizes sub-domains where the whole domain is in the control of the main

domain owner i.e., the IoT manufacturer or the exact IoT service that the manufac-

turer uses. Moreover, to keep the generalized MUD tight and secure, MUDIS auto-

matically identifies problematic scenarios and does not generalize ACEs with different

domain suffixes (TLDs) and known cloud services that are shared across clients (e.g.,

*.s3.amazonaws.com). This is aligned with the IETF Operational Consideration for

the use of DNS in IoT [20].
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Figure 5: MUDs Comparison (a) and generalization (b) of two different devices of the same manu-
facturer

3. Adding dissimilar and clustered ACEs. Following previous steps, we are left with

any ACEs in both MUDs that are neither identical nor similar. These are added to

the generalized MUD as-is. However, to ensure fast convergence, if some ACEs share

a domain that can be safely generalized, we generalize it for all the ACEs in which it

appears to support future differences that we have not yet encountered.

A naive generalization algorithm that simply unifies all available MUDs, would also be

both comprehensive and tight. However, MUDIS generalization algorithm demonstrates

superior performance compared to the naıve algorithm in terms of converging velocity and

ACEs cardinality [3]. The generalized MUD is also more explainable and easier to implement

in a firewall, due to the reduced amount of rules.

5 MUDIS usage - device’s location impact analysis

In this section we will closely explore how MUDIS has helped us with the complicated

task of examine (our device location oriented dataset) how a device’s location can influence

its network behavior and how we have used the generalization feature that was presented

in the previous section to generalize different MUDs that were originated from different

geolocations.

Our dataset consists of network traffic data (pcap files) captured from the router in our

lab, and log files from Ren et al. [19]. Our captures comprise 31 IoT devices (e.g., plugs,

cameras, bulbs, and so on) that are physically or virtually located in up to 14 countries

using VPN [16], and use all of their device functionalities. We chose the countries in which
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the devices were activated according to those countries available for the registration and

provisioning process in the IoT user’s application 1 (see sub-section 5.3 for more details).

We found that the device network behavior in most cases does not depend on the physical

location (i.e., IP of the device as seen in the VPN) but rather on the device’s logical location,

which is the country chosen in the device provisioning process. Next, we generated MUD

files from the pcaps using MUDGEE [8]. The resulting MUD files per country and the full

list of tested devices are available at [12]2.

To compare and find the similarities between two MUDs, we used MUDIS similarity

measure that was explained earlier.

Let MUDd
i be the MUD of device d at location i, the similarity measure of two MUDs

for the same device d, at location i and location j is defined formally as:

Similarityd(MUDd
i ,MUDd

j ) =
|MUDd

i ∩MUDd
j |

|MUDd
i ∪MUDd

j |
(4)

Figure 6 shows the cumulative distribution function (CDF) of MUD similarity values for

the devices in our dataset, and compares their resulting MUD files for different locations. It

is clear that device location has a significant impact on the MUD, since 80% of the MUD

comparisons show similarity measure lowers than ∼ 0.7 .

1The IoT application is the user’s application that activate the IoT, and it is commonly installed on the
user’s mobile device

2In several cases such as cameras, the devices also use peer-to-peer protocols such as STUN [18] to
allow client connections. We omitted the ACEs of peer-to-peer flows that would show a synthetic difference
between MUDs that originated in client parameters (e.g., client device’s IP/MAC).
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Figure 6: Cumulative Distribution Function (CDF) of MUD files similarity scores for all the devices
in the dataset. Each similarity score is calculated by comparing two different locations MUD files
of a device. Each device was captured in up to 14 locations.

In Figure 7, we take a deep dive and focus on an individual device, investigate its MUD

similarity scores as a function of the geographical location. Figure 7 shows the MUD simi-

larity heat-map of the Yi camera MUD files as measured in ten countries. We ordered the

countries according to region. As can be observed, locations further away from each other

(cross-regions) have lower MUD similarity values.

Throughout our experiments, we observed that some device functionalities were not sup-

ported in all locations. For example, the Xiaomi camera face recognition features were

supported only in the Chinese region. The reasons range from local regulations to manufac-

turer marketing strategies. It is common that a manufacturer creates different versions of a

product, with each version having variants according to the regions in which it is sold, (e.g.,

[22]).
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Figure 7: Heat map of similarity measure for the Yi camera, across ten different logical locations.
The heat-map highlights that cross-region locations have lower similarity scores.

Figure 8: Heat map of similarity measure for the Xiaomi light bulb. The heat-map clearly highlights
that cross-region locations have lower similarity scores.
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5.1 MUDIS - MUD location Comparison

MUDIS comparison feature helps us to compare the different MUD files that was origi-

nated for the same device but in different location and gain meaningful insights over those

differences and their effect on the devices network behaviour.

By comparing different locations MUD files from our broad dataset of different devices,

we observed that the most common changes in ACEs involve the domain names of the al-

lowed endpoints. For 80% of the devices in our datasets, there are differences in the domains

that appear in the sub-domain. For example, the Samsung SmartThings Hub (see Figure 9a)

works with two different domains in the UK and US: dc-eu01-euwest1.connect.smartthing.com

and dc-na04-useast2.connect.smartthing.com, respectively. Nonetheless, 9% of the devices

in the dataset exhibited a difference in the top level domain (TLD). For example, the Yi cam-

era communicates with two different TLDs in Hong Kong and Germany: api.xiaoyi.com.tw

and api.eu.xiaoyi.com, respectively.

We assume that the usage of a few domain identifiers allows the manufacturer to support

different features and policies based on the logical location of the device, which was chosen

by the user in registration process. Note that the manufacturer can have physical location-

based decisions made by using a standard DNS server that is capable of connecting a single

domain to different servers, according to the geo-locations; but, in this case, the user would

not be able to choose a different logical location.

Figure 9: Two similar ACEs from the MUDs of SmartThings hub in two different locations: US
and UK. MUDIS created a generalized ACE in which the endpoint is ∗.connect.smartthings.com,
all other parameters remain the same.
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Figure 10: The Insteon Hub works with two different ports, depending on the device location (US
and UL)

Using MUDIS ACEs clustering method, We also found that 9% of the devices in the

dataset use different ports and protocols at different device locations. For example as shown

in Figure 10, MUDIS clusters two ACEs in which the Insteon Hub device exhibits similar

behavior using HTTP (unencrypted) or HTTPS (encrypted), depending on its location.

Another example is shown in Table 1 that presents the case of the Xiaomi camera, where

the location affects not only which port and protocols are used but also the IP resolution

and encryption methods that are used by the device.

China Israel
Domain Names Fixed IP sg.ots.io.mi.com
Port HTTP (80) HTTPS (443)
IP Resolution HTTP Request DNS
Encryption Self-signature Standard TLS

Table 1: Comparison of Xiaomi Camera network behavior (domains, ports, and protocols) in two
different logical locations.
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5.2 MUDIS - MUD location Generalization

In this section we are using MUDIS generalization feature to create a generalized MUD.

The generalized MUD should be comprehensive (applicable to each of the device locations),

tight, and secure.

The basic generalization algorithm works on two MUDs at a time. We can use the

algorithm to generalize n MUD files by using an iterative process, where we take the gener-

alization algorithm output from iteration n− 1 and process it with the n− th MUD file. We

aim to create a generalized and comprehensive MUD using a minimal number of iterations.

We show how our algorithm converges more quickly than the naive algorithm. Namely,

adding more MUDs from more locations will not change the generalized MUD.

As explained in the MUDIS generalization section, The naive generalization algorithm

would be comprehensive for all of the device location and it will also generate a tight and

secure MUD. However, when applying MUDIS generalization algorithm on MUDs that were

originated from different locations, MUDIS was able to create a faster convergence process

with a significant lower rules cardinality in comparison to the naive one.

In Figure 11 we present a convergence analysis of MUD files for the Yi Camera, while using

Figure 11: Performance comparison of generalized MUD and naïve unifying MUD files of the Yi
Camera. Each point on the x-axis corresponds to the unified or generalized MUD at the specified
locations. To evaluate a similarity score, each MUD is compared to the correlated global MUD,
consisting of all available locations.
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MUDs from 10 different locations. We order the locations, such that we first pick locations

from different regions, aiming to achieve fast convergence. As shown in Figure 7, cross-regions

locations have lower similarity scores and thus add more information to the generalized MUD.

We compared our MUDIS generalization algorithm with a naive algorithm that simply unifies

all available MUDs. Each point on the x-axis corresponds to the MUD generalization at the

specified locations. For example, the RU, IN point corresponds to the generalized MUD

after generalization of the RU (Russia) and IN (India) MUDs. For each generalized MUD,

we output its cardinality (number of ACEs) and its similarity score in comparison to the

correlated global MUD; this global MUD is defined as the output of the algorithms (naive, or

MUDIS) after processing all available locations. Our generalization MUD algorithm shows

superior performance compared to the naïve algorithm both in cardinality and convergence

time.

Figure 12: Performance comparison of generalized MUD and naïve unifying MUD files of the Xiaomi
light bulb.
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5.3 Device Geo-IP vs User Location Decision

To further explore and measure the impact of the device IP geolocation on its network be-

havior, we made the following measurement: we used 26 different devices network captures

that were captured with the same user-account 3 under two scenarios: (1) using local ISP

(preserving the network geo-IP) (2) using a VPN to a different country than the chosen

country in the registration process (actively changing the geo-IP of the device). This mea-

surement was repeated twice in two geo-locations (UK and US), for all devices, Then, we

formalized their network behavior by generating their MUDs (using the 52 captures we had)

and comparing them by using MUDIS similarity measure. Figure 13 presents the two graphs

side by side; the red graph is the CDF of the similarity measure for different geolocations that

was set manually by a user input at the registration process and the blue graph is the mea-

surement we just presented using a different geolocations that is determined automatically

by the device IP (given by the VPN connection).

As depicted in the figure, 80% of the device Geo-IP MUD comparisons (VPN, blue line)

show similarity measure higher than 0.8 (and rising fast) in contrast to the user location

decision (Registration, red line) that shows the opposite results where 80% of the MUD

comparisons show similarity measure lower than 0.7. The explanation for this behavior is

related to to the need of manufactures that regulatory obligated to support user location

decisions, which forces the manufactures to use different domains and no other mechanized

means such as Gro-IP, DNS, and client-subnet (eDNS). This allows the manufacture to

comply with privacy policies and other regulations according to the user location decision

and not by identifying its real location (using the device Geo-IP)

These measurements show some clear results and support our initial finding that the

device network behavior in most cases does not depend on the physical location but rather

on the device’s logical location, which is the country chosen in the device provisioning process.
3User-accounts for all devices were created in the same country in which they were deployed.
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Figure 13: Cumulative Distribution Function (CDF) of MUD files similarity scores for 26 devices
from our dataset under two different geolocation changing methods. The red graph is the CDF of
the similarity measure for different geolocations that was set manually by a user input at the reg-
istration process and the blue graph is the measurement of different geolocation that is determined
automatically by the device IP (given by the VPN connection)

6 Applications of MUD Generalization

In this section we describe the impact of the generalized MUD on the MUD and IoT identi-

fication.

Generalized domains require that the MUD manager know how to process them and

then insert them as firewall rules. We note that this is aligned with the RFC [10] and the

configuration of some routers [5].

Generalized domains are also important when building applications for IoT identification,

since many of them [6, 11, 9, 7, 17] also rely on the domain names. For example, [17] uses

domain information based on DNS network traffic that originated in one location (USA).

However, many of the devices in their dataset (including Echo Dot, FireTV, SmartThings

Hub, TP-Link Bulb, TP-Link Plug, and more) also appear in our dataset. These devices

showed major differences across locations, thus harming the accuracy of the IoT identification

algorithm. We suggest an approach such as MUDIS to use a generalized domain for more

accurate device identification across locations.
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7 Conclusions

This work introduces MUDIS, a tool for MUD inspection, comparison, and generalization.

Using MUDIS we demonstrate that device location has an impact on the network behavior

of IoT devices and their corresponding MUD values. Additionally, we present an efficient

generalization algorithm to create a single MUD that can work in all locations. We strongly

encourage the use of MUDIS to achieve better and deeper understanding over the network

behavior of IoT devices.
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Appendices

A MUDIS screens

Figure 14: Add a new MUD screen - gives users the ability to add new generated MUDs into the
system for further investigation
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Figure 15: MUDIS home screen - gives users the ability to choose two MUDs and to compare,
generalize and filter ACEs using the system
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Figure 16: MUDIS comparison screen - graphically visualize the similarity score together with the
identical, similar, clustered and dissimilar rules between both MUDs.
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Figure 17: MUDIS generalization screen - graphically visualize the generalized MUD that was
produced by generalizing both MUDs.
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 תקציר 
רכיבי   של  התקשורתית  ההתנהגות  אשר    IOTניתוח  הדברים(,  של  פרוטוקולים,  מ  מורכבת)אינטרנט 

הוא אתגר מרכזי ומשמעותי בהקשרי אבטחת הרכיבים    ים הרכיבים,תקשרפורטים בהם מו  דומיינים

ה  גלים ללמוד ממחייבים להיות מסו  ,הללו  יםהקשרפועלים בווהזיהוי שלהם. פתרונות אשר מנתחים  

  לייצר סט של חוקים ומאפייניםועל ידי כך  ״  תקינה ולגיטימית״-המוגדרת כ  רה רשתיתמורכבת תעבו

נוספים מאפשר  רשתיים  ת  שימוש  יםאשר  לגיטימית של  לזהות    בלבד  עבורה  ליכולת  סוגים  במקביל 

 שונים ומגוונים של רכיבים. 

 

MUD   ארגון ה    על ידי   פותחתסכמה אשר נחקרת ומ   הינה–  IETF,  סט  א להוות  תה העיקרית הירטשמ

וקשיחה של ההתנהגות    בתור הגדרה פורמליתמשמשים  ו  white-listשל חוקים המיושמים בתצורה של  

יכול למעשה לשמש כמעין סוג    MUD  -קובץ ה    .IOT  -על ידי היצרן של רכיב ה  התקשורתית המאושרת  

,  ל כל תקשורת אחרתעה שומני)  בלבד   בלעדי של תקשורת חוקיתמעבר    תשל חומת אש אשר מאפשר 

 . (המוגדרת לא חוקית לפי סט החוקים שהוגדרו

 

מ  תזה את  זו  ההתנהגות  MUDIS - Mud Inspection Systemציגה  את  מנתחת  אשר  מערכת   ,

  MUDבקובץ ה    (החוקים סט  )  ההגדרה הפורמלית שלהםבהתבססות על    IOTהתקשורתית של רכיבי  

ב    ואנ   המשויך אליהם. תהליך    מדועמדגימים  אשר    םלבחון מספר מקרי  מנת על    MUDISמשתמשים 

תקשו התנהגות  מהי  של  ולגיטימית"רתית  הלמידה  מהמצופה.  היא    "תקינה  יותר  ומאתגרת  קשה 

בחיבור    המתבטאתשחה, מייצר תקשורת רשתית שונה  עם אותה הק  IOTרכיב  ( איך אותו  1)  :לדוגמא

על  המהותית    ( ההשלכה2של הרכיב. )  גאוגרפיהקום  במיפורטים שונים כתלות  ו  פרוטוקולים,  לדומיינים

הרכיבים של  מעדכו  התקשרות  הרכיב הק  ניכתוצאה  של  )יםשחה  ההתנהגות    הקורלציה(  3.  של 

 בין רכיבים שונים של אותו היצרן, ועוד.  התקשורתית

 

MUDIS    קבצי  מנתחת החוקים    יחדיומקבצת  וכתוצאה    MUDשני  כל  את  ויזואלית  בצורה  ומציגה 

ממחשבת   היא  בנוסף,  והשונים.  הדומים  ההזהים,  אותם  בין  הדמיון  מדד  אשר  יםMUD-את  מדד   ,

ביןמגד המרחק  את  שלהתנהה  יר  התקשורתית  המערכת  הם גות  לבסוף,  ה  .  קבצי  שני  את    –מכלילה 

MUD  (אפשרבמידה ו)כך שה ,  -  MUD    על מנת לשמור  שיש לאפשר  את כלל החוקים  "מכסה"המוכלל  

 . למערכתשהוכנסו  MUD –וגדרים על ידי קבצי ה ולקיים את התקשורת התקינה של שני הרכיבים המ

 

שונים    MUDניתוח של קבצי  על ידי    ,שלה  וההכללהואת יכולות ההשוואה    MUDISמדגימים את    ואנ

רכ  רב   ממספר  נוצרואשר   שלהם  ,  ומדינות  יביםשל  החוקים  של  ולאפיין   על השוואה  ללמוד    את   מנת 

  MUDלכדי קובץ  הכללה שלהם  ולבסוף    שלהםשל מיקום הרכיב על ההתנהגות התקשורתית    ההשלכות 

 . מאופשרות על ידי הרכיביםינה בכלל המדינות האשר מאפשר לרכיבים תקשורת תקמוכלל 

 

חופשי עבור  נמצאים כקוד פתוח ומאגר    ,השונים  IOTמידע שהוקלט מרכיבי ה  הכל  ו  MUDISקוד של  ה

ל  ם חוקרי מאפשרים  ובכך  הרכיבים  בנושאומפתחי  העוסקים  על    כל  משמעותיות  מסקנות  להסיק 

 . ומדויקתמעמיקה   ת,לי אויזו  להם בצורה קלה, מהירה,ההתנהגות התקשורתית של הרכיבים ש
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