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Abstract 

Security vulnerabilities are one of the major threats these days to Applications and 

Web sites alike.  A report from May 2013[37] estimates that 86% of all websites had 

at least one serious vulnerability during 2012. This serious problem presents an 

opportunity for researchers and companies to investigate new techniques for the 

mitigation of these security issues. 

During the last couple decades there have been many publications of different 

techniques that try to deal with the rise of security issues in modern application. 

These techniques are usually divided into two categories: static and dynamic. Static 

techniques use Static Analysis methods to investigate code structure and find bugs. 

Dynamic methods try to analyze the runtime behavior of a piece of software and find 

bad behavior at runtime. In the last few years there has been a rise in papers 

combining both approaches. 

Researches in recent years have made great improvements in the effort to solve the 

problem we described. FindBugs [12] devised a method relying on software 

development best practices. Pixy [14] provides a Static Analysis based dataflow 

detection in PHP code. WebSSARI [13] and The Griffin Project [19] provide a Static 

Analysis with runtime analysis and program protection. These techniques have 

shown success in finding real bugs. Given that, these techniques usually suffer from a 

high rate of false positive results. 

In our work, we try to deal with the high false positive rates using a different 

approach. Our work relies on an old software testing technique called Fuzz Testing 

[20]. This technique tests an application with random or semi random input, trying 

to cause un-wanted behavior. We suggest using knowledge learned from Static Code 

analysis to the improvement of the Fuzzing process.  

The advantage of our approach is the ability to improve the performance and focus 

of ordinary fuzzing. A simple fuzzer has different input generation categories, for 

different testing scenarios. In each scenario, the fuzzer can generate numerous 

inputs for the testing phase. The knowledge of how the tested software operates can 
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help reduce the number of tests needed to be run, or on the other hand increase the 

number of relevant tests. For the "learning" of software structure and behavior, we 

built the SAF (Static Analysis Improved Fuzzing) framework. 

The SAF framework is designed to analyze Java written web applications. The 

purpose of our framework is to learn the program dataflow, specifically the flow of 

user input, and use this learned information to improve Fuzz Testing. The idea is to 

locate program sinks (like SQL command execution), and to find dataflow paths that 

lead user input (sources) to those sinks. This can provide us with a categorization of 

each user input parameter, where the category represents the possible attack vector 

that be used through that parameter. With this information we can improve the 

performance of Fuzz testers by reducing non-relevant tests, and increase relevant 

ones. 

We have performed an experimental run of our framework on three open source 

projects, one educational and two blog applications. These applications perform DB 

communication, File system access etc. We have managed to locate data flows that 

locate to sensitive program sinks, and have potentially reduced the number of 

parameters needed to be checked by up to 90% (at a given attack category, SQL 

injection for example). 
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1 Introduction 

Security vulnerabilities are one of the major threats these days to Applications and 

Web sites alike.  A report from May 2013[37] estimates that 86% of all websites had 

at least one serious vulnerability during 2012. The first step to deal with these 

application layer vulnerabilities is to detect the vulnerabilities that exist in the 

application before the application is being deployed and even at the development 

stage. This subject has gained a lot of interest both in the academy and the industry 

for techniques to discover security bugs (vulnerabilities) prior to application 

production deployment. One of the main techniques to discover application 

vulnerabilities is via Fuzz Testing. 

Fuzz Testing [20] (or Fuzzing) is a method to evaluate the ability of a program to 

handle illegal input by automatically generating inputs and passing them to the 

program. This technique have shown success in general bug detection [20, 21], and 

for security vulnerability detection [9, 24].  

Blackbox style fuzzing is the simpler form of fuzzing, and is basically generating 

inputs for a given program, without knowledge of what "goes inside" that program. 

This technique is rather simplistic, relatively easy to implement, and yet has shown 

success [20]. Given that, this technique has a major limitation. The size of the input 

space is enormous, and because of that, some (or probably most) of the possible 

inputs are not generated, because this will take a long time. To counter this problem, 

researchers turned to Whitebox style fuzzing. 

Whitebox fuzzing techniques are much "smarter", because they know how the 

software works, and try to use that information to their advantage. The basic idea is 

to analyze the source code, and try to extract valuable information for the testing 

phase. These approaches [7, 8] are based on Taint Analysis and Symbolic Execution 

and generate tests that are tailored to a specific code. The goal in these methods is 

to evade input validation and to change code execution paths, ultimately increasing 

code coverage. 

The downside of Whitebox techniques is their complexity, taking major time to 

execute and might even be impossible [18, 5]. These techniques also focus on code 
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coverage, and do not take into account the application surroundings (like 

communication to SQL DB). In most web application, there is a number of peripheral 

resources (DB, File System, etc.) used by the application, and therefore current 

Whitebox methods don't fit these types of application testing.  

In this work we aim at improving the results of Fuzz Testing techniques via source 

code Static Analysis. Our work utilizes White Box techniques in order to gain 

knowledge about application structure, and by so enhancing the performance of 

Fuzz Testing. The basis of our analysis is to improve the fuzzing of injection-type 

vulnerabilities (SQL-injection, XSS etc.) by finding relevant sinks in the program (for 

example, SQL command execution) and following the data flow to those sinks, until 

reaching a source (user input). After finding such data flows, fuzz testing can focus its 

attention to these flows.  

The advantage of our approach is the ability to improve the performance and focus 

of ordinary fuzzing. A simple fuzzer has different input generation categories, for 

different testing scenarios. In each scenario, the fuzzer can generate numerous 

inputs for the testing phase. The knowledge of how the tested software operates can 

help reduce the number of tests needed to be run, or on the other hand increase the 

number of relevant tests. 

The structure of this work is as follows: chapter 2 provides a general background on 

Static Analysis techniques and algorithms, with an emphasis on the methods we 

used. Chapter 3 describes the major prior work done in the area of security flaw 

detection. Chapter 4 presents the limitations of the presented techniques and lays 

out our solution proposal. Chapter 5 provides a detailed review of our solution. 

Chapter 6 reviews the experimental results, and chapter 7 summarizes the 

dissertation. 

2 Static Code Analysis  

Static Code Analysis techniques exist for a few decades now, and have evolved 

greatly.  These techniques have shown success in finding general software bugs [6, 

13], and specifically for finding security flaws [3, 19]. In the following sections we 
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review the main algorithms and data structures that are used in the field of Static 

Code Analysis, and in this work as well. 

2.1 Abstract Syntax Tree (AST) 

This structure holds the syntactical structure of a program's code. When parsing 

program code, the generated structure is an AST. This is the basic data structure for 

all code analysis techniques, as well as compilation techniques. 

Programming languages are usually described as Context Free Grammars, which 

represent the language's statement structure (grammar free). These grammars can 

be represented as a tree, where each node corresponds to an expression in the 

relevant language [11 (chapter five)]. 

2.2 Intermediate Representation (IR) 

Compilers and standard Static Analysis techniques usually transform the analyzed 

code from the source language (Java, Bytecode, etc.) into an equivalent 

representation in some mid-level language. This new representation is used in order 

to simplify the analysis phases, because the IR is supposed to be simpler and 

probably more suitable for analysis. 

2.3 Static Single Assignment (SSA) Form 

SSA form is a property of program representations that states that a variable can be 

assigned a value only once anywhere in the program. This means that multiple 

assignments to the same variable create new versions of that variable and practically 

new variables. This representation is usually part of the IRs that are used, and has 

great importance in simplifying some analysis algorithms, like constant propagation 

[36]. 

2.4 Control Flow Graph (CFG) 

A CFG represents the transfer of control in a given program. Usually, a CFG is built 

per method. The basic idea behind this data structure is to represent the possible 

execution paths a program can go through. For example, if we have an IF statement, 

then the predicate statement points to two blocks of code, the THEN statement and 

the ELSE statement. 
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This structure is very useful for program traversal, understanding program 

dependencies between statements, etc.  

2.5 Call Graph 

A Call Graph is a directed graph that holds the calling relationship between different 

methods in the program. Every method in the code is represented as a node, and an 

edge represents a call from method A to method B. In this work we talk about a 

Static Call Graph, which represents all calling relations between methods, as 

opposed to a dynamic call graph that represents calls that were performed in a 

single program execution.  

Call Graphs do not only hold caller-callee relationships, but might also hold a chain of 

method calls leading to a specific method. This is called the context. For each 

method, a node is created for each possible call stack (chain of method calls) leading 

to that method. The calculation of this graph is undecidable, and therefore existing 

algorithms use approximations.  

2.6 Dataflow Analysis 

This is one of the core techniques in code analysis for all applications. The purpose of 

dataflow analysis is to find at a given point in a program the set of possible objects 

that can reach that point (a constant, an object defined in a prior instruction). For 

example, Constant Propagation deals with the flow of constants to different 

variables in different program locations. Given a specific variable and a specific 

program location, does that variable at the given location point to some constant 

value? And if so, to which value? The analysis itself can be performed on a per 

method basis (intraprocedural), or on the entire program code, taking into account 

method calls (interprocedural). 

Dataflow analysis comes in many flavors, according to the desired application. The 

basic concepts in Dataflow are: 

- Flow sensitivity – does the analysis take into consideration the control flow of 

the program? In most cases, the analysis is flow sensitive. 
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- Context sensitivity – in the case of interprocedural analysis, is it aware of the 

actual method caller (the context) and the chain of calls, or all call contexts 

the same. 

2.7 Def-Use Graph 

A classical property calculated in Static Analysis is reaching definitions. Each 

assignment or calculation instruction defines a new value (definition). This definition 

is used in future calculation, and the desired property to calculate is at a given 

program point, which definitions is "live", meaning not been overridden by another 

instruction. The solving of this problem yields the data structure Definition-Use 

graph. The idea is to be able to find for each value defined its future uses (forward 

traversal), or at a given use which definitions might reach that point (backward 

traversal). This graph is normally built per method, and is very useful for data flow 

analysis. We use this data structure frequently in our analyses. 

2.8 Pointer and Alias Analysis 

Pointer Analysis (or Points-to) comes to answer the question to which area in 

memory a pointer points to. Alias Analysis answers the question when two pointers 

point to the same area in memory. As mentioned in prior analyses, these also have 

different configurations and precision levels: flow-sensitivity, inter-procedural, 

context-awareness. These analyses are some of the most advanced, and also most 

complicated. Most algorithms that exist use some sort of approximation [17]. 

3 Prior Work 

In the last couple of decades, there is a significant increase in research of software 

bug detection techniques and software protection. Bug detection techniques are 

used for general and security flaw detection. The main goal in this case is to locate 

security bugs prior to production deployment. Application code is analyzed and 

searched for different types of software bugs, from general coding errors (null 

pointer dereference) to security vulnerabilities (data leakage). Software Protection is 

meant to protect applications at runtime. In this case, the idea is to change the 

application behavior or environment in a way that will provide runtime protection. 
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Application manipulation is usually done by code instrumentation, where guarding 

code is inserted prior to sensitive instruction execution. Of course, there are some 

hybrid methods which incorporate the two types together. In this section we will 

provide a review of the major work done in the area, with an emphasis on security 

flaws. 

3.1 Static Analysis for Security Flaw Detection 

3.1.1 FindBugs 

FindBugs [12] define error prone Code Patterns (based on real-life bugs), and 

implement pattern searching mechanisms. These patterns include many types of bug 

classes, for example Thread Synchronization and Performance. They also incorporate 

security related patterns, like SQL Injection potential. FindBugs implements standard 

code analysis mechanisms in order to identify these patterns.  

The emphasis in the FindBugs paper is on best-practice code analysis, rather than on 

complicated analysis techniques. They implement a set of Bug Pattern Detectors, 

which look after very simple but unhealthy code structure. These detectors traverse 

the program code, making use of the Control Flow data analyzed by the framework, 

and some incorporate Intraprocedural Dataflow analysis. 

In the case of SQL injection, the authors of FindBugs implemented a simple pattern 

detector. The best-practice is to use constant SQL commands, or commands created 

from constant parts. Their analysis searched for SQL commands that were created 

from the concatenation of different strings that some of them were created on the 

fly. 

Their technique has a few advantages. The simple analysis allows them to scan major 

code bases without the need to worry about performance. One of the major 

drawbacks of static analysis is its potential running time. Their approach also allows 

the simple and easy writing of bug detectors.  

There are two major pitfalls with the FindBugs approach. One, each unique pattern 

has to be implemented in the tool, and small nuances might cause the tool to not 

recognize the actual pattern. Second, the lack of global information about 
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interprocedural interactions causes the tool to either provide false positives, or miss 

potential bugs.  

If we take a look at the SQL injection detector described above, we can see how their 

assumptions can lead to false positive and negative results. In their analysis, they 

treat dynamic SQL queries as bad – this means also configuration read queries. This 

will lead to enormous amounts of false positives in most software projects. In 

addition, they don't take into account information about the function context, and 

functions called. This also leads to false alerts, and can also lead to false negatives. 

3.1.2 The Griffin Project 

The Griffin project [19] provides a comprehensive static and runtime analysis of J2EE 

programs, in effort to find security vulnerabilities. In his work, Benjamin Livshits 

implemented a sound static analysis framework and combined it with program 

instrumentation that provides runtime analysis techniques. 

The static analysis phase in Livshits' work, is based on a source to sink lookup. The 

main concept behind this is to define program locations which are sensitive as sinks 

(SQL command creation, HTML page generation, etc.), and to define potential 

harmful inputs locations as the sources. After defining these sets of program 

location, the task is to find data flow transitions which cause data to propagate from 

a source to a sink. 

The output of the previously described analysis is a set of data flow paths. These 

paths might contain sanitization (input validation), but the problem is that in some 

cases it cannot be definitely asserted that a path is sanitized. Therefore, this might 

result in a false positive alert (a path might be falsely identified as dangerous, though 

the input is actually validated). 

In his work, Livshits provided some significant improvements to existing static 

analysis techniques, especially Pointer Analysis precision improvement and reflection 

analysis precision improvement. 

In addition to providing a static analysis framework, which has shown useful for 

finding security bugs in existing applications, The Griffin project also provides a 
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runtime analysis framework that complements some of the limitations that exists in 

static vulnerability detection (some were mentioned above). 

The runtime mechanisms in the Griffin project are composed of two parts. First, a 

data flow tracking mechanism which follows the data propagation between source 

and sink at runtime, and therefore knows the actual values at execution (as opposed 

to static analysis). At a given sink in the program, the analysis framework can verify if 

the arrived data was sanitized. For cases where the data was not correctly sanitized, 

comes the second part of the framework. This part provides "recovery" mechanisms, 

which are calls to sanitation functions. 

Sanitation is defined in Livshits' work as a set of methods that stop "taint 

propagation", meaning the output returned by these functions is considered to be 

valid. If a tainted data arrives at a sink, it means that data didn't go through 

sanitation (this precise analysis can only be done at runtime). In the static case, if 

there is a possible path by which data that is not sanitized arrives at a sink, that is 

considered a vulnerability, though it might be a false alarm because of static analysis 

approximations.   

 The Griffin project showed impressive results in the field of vulnerability detection. 

Despite these results, the work has its limitations. The Static Analysis has the 

inherent limitation of being intractable, and therefore is bound to be based on 

heuristics and approximations which lead to false positive/negative. On the other 

hand, the runtime analysis has an impact on performance, and can also introduce 

new bugs to the instrumented application. Livshits noted some of these limitations 

in his work. 

3.1.3 Scripting Languages 

In the field of web application scripting languages, there has been some 

advancement with the creation of Pixy [14] and WebSSARI [13], both projects 

currently analyzing PHP applications. 
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3.1.3.1 Pixy 

Pixy [14] provide a static analysis framework for security vulnerability detection in 

PHP code. The Pixy framework is designed to locate Taint-Style (Injection) 

vulnerabilities. One of the major challenges and limitations of the PHP language is its 

un-typed nature.  

Pixy is based on Dataflow analysis. Their implementation takes into consideration 

interprocedural relations, flow data, and context awareness. In addition to this 

powerful approach, they also implemented an alias analysis and constant 

propagation (also called literal analysis). These techniques improve the precision of 

their technique, basically reducing false positives. 

Pixy is a powerful analysis framework, but has its own limitations. The authors 

implemented only method analysis, and do not support the object oriented structure 

which became more powerful in version 5[4]. Pixy also suffers from false positive 

results. In their limitations section [14, 15] they refer to some false positive results 

that arise from a few different PHP coding scenarios. The general false positive ratio 

described is 50% [15], but the benchmark is of medium size, and perhaps needs 

some expansion to evaluate the methods precision. On the other hand, they don't 

provide information about false-negative, and don't categorize their analysis as a 

sound one. 

3.1.3.2 WebSSARI 

WebSSARI [13] is similar to Livshits' work, by incorporating static and dynamic 

techniques. The tool can be divided into two phases. Phase one analyzes the code 

for potential dangerous information flows. The mitigation to these dangerous 

information flows is provided via phase two, which inserts guards that somewhat 

protect the code analyzed. 

This approach has two major limitations, similar to Livsiths' work. The static analysis 

provides false positive alerts. This issue is more severe in this work due to the 

dynamic and un-typed nature of PHP. In order to provide a sound analysis, the 

authors had to make some approximations which provide many false positives. The 
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second limitation is production influence. The instrumentation phase can insert two 

unwanted behaviors – performance deterioration and software bugs.  

3.2 Dynamic Methods 

Dynamic analysis methods can somewhat be considered as complementary to static 

analysis. These methods are based on data examination at execution time, rather 

than compilation (or offline) time.  There are two major categories of Dynamic 

Analysis: Dynamic Taint Analysis and Fuzz Testing and Symbolic Execution. We will 

describe in brief these techniques and review some research results. 

3.2.1 Dynamic Taint Analysis 

Dynamic Taint analysis is incorporated into the source program, and examines the 

program behavior at runtime. The idea behind this technique is to observe the data 

propagation and manipulation of suspicious data (tainted data), for example user 

input or file content. These techniques were described above as part of 

WebSSARI[13] and Livshits'[19] work, and were researched extensively.  

Dynamic Taint Analysis (and other runtime methods) try to protect at runtime from 

possible attacks. This approach has advantages, for it lowers the possibility of a 

successful attack on a given application. On the other hand, the limitation to these 

approaches is the change in code behavior. These techniques can cause a serious 

performance impact, and even introduce new bugs and vulnerabilities. 

3.2.2 Fuzz Testing and Symbolic Execution 

Fuzz Testing or Fuzzing is a mechanism of software testing via random or semi-

random input generation. This technique was first introduced by [20], where random 

input strings were generated and passed to various UNIX utilities of different 

versions. Although the simplistic testing approach, this work have shown to be very 

effective in finding different kinds of bugs, in versatile UNIX tools. This work opened 

the door to automatic input generation techniques and automatic testing. 

Modern Black-Box fuzzers provide different kinds of inputs, that is divided into 

several application input categories, in order to try and "bubble up" the relevant 

software bug [25, 27]. For example, a fuzzer will try to generate inputs that might 
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cause an SQL injection bug appear, or a Cross Site Scripting relevant input. These 

different inputs have many nuances, so there are many inputs in each category.  

JBroFuzz [25] is based on categorized inputs. Each input category is related to a 

specific applicative behavior. For example, there is a SQL injection category, which is 

related to DB communication, and there is a numeric category that is related to 

numeric computations. These different categories are intended to allow the tester to 

check different application capabilities, and it is up to the tester to choose the 

correct categories. 

The major limitation with classical Black-box fuzzing (like JBroFuzz) is the need to 

specifically configure the tool for each parameter tested with the relevant 

categories. JBroFuzz, for example, has about 50 input categories, and running all 

categories for all input parameters is not relevant at best case and not feasible at 

worst. When correct input categories are selected for each parameter, it is possible 

to test more thoroughly each parameter, because we narrowed the search space. 

Besides the Black-Box fuzzing approaches, there is an increase in White-Box style 

fuzzing research in the last few years. White-Box fuzzing tries to bring the knowledge 

of code analysis into the process of application fuzzing. The aim is to provide 

"smarter" and more precise input generation that will provide better code coverage. 

In [8] a White-box fuzz testing framework was developed, called SAGE (Scalable, 

Automated, Guided Execution). SAGE receives a program to test, and performs an 

execution and analysis step over and over. The program is run on an input file for it. 

While the program is running, its behavior is observed. During execution trace logs 

are kept for the analysis phase. After the program finished running, and assuming no 

unusual events occurred, the trace logs are analyzed via Symbolic Execution which 

builds a constraint problem of input constraints. The last phase is to use a constraint 

solver to solve the generated problem, and the solution is the input for the program 

in the next iteration. The input generated by the constraint solver should cause the 

program to avoid some conditions or take branches which were not taken in the 

previous execution. The SAGE framework has shown to be effective in finding many 

bugs, including in some major commercial products.  



18 
 

4 Presented Analyses Limitations and Our Solution 

After reviewing the existing approaches and algorithms in the field of security flaw 

detection, we will try to summarize in this chapter the limitations and problems that 

exist in these solutions. The limitations will be divided to two categories: Static and 

Dynamic methods. 

4.1 Static Analysis Limitations: False Positive/Negative review 

Static Analysis tools have one major limitation. Due to the fact that most questions 

that can be asked about code are undecidable, common algorithms perform 

approximations and heuristics. This leads to two possible outcomes, false positive 

result and false negative result. A false positive is a warning that is not really a bug. A 

false negative is a true bug that was not caught.  

Most Static Analysis tools and frameworks (including the ones described here) 

usually provide sound analysis, meaning there shouldn't be false negatives but for 

the price of false positives.  

In [1] a review of the experimental results of FindBugs was performed, and at least 

30% percent of the warnings provided by the tool were irrelevant. Kupsch and Miller 

performed in [16] a thorough comparison of two of the best Static Analysis tools in 

the market and manual code review. They concluded that the existing tools are not 

strong enough to find all the serious bugs and moreover these tools provided an 

enormous amount of alerts that had "a serious impact on the effectiveness of the 

analysis". 

4.2 Dynamic Methods Limitations 

The different dynamic methods we presented in the previous chapter have a few 

serious drawbacks and limitations, as previously noted. First, let's discuss input 

generation. Fuzzing and other input generation techniques have the problem of 

large input space in which these application search for the correct "bug-bubbling" 

input. In the case of SAGE, these types of applications might suffer from a lack of 

"context" understanding, as can be shown in the following example: 
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SAGE looks at the code, trying to maximize code coverage with input generation. Any 

input in the Query parameter will cause this code to execute, which means SAGE will 

not try different inputs against the Query parameter. But this code is trivially faulted, 

because the query that is executed against the Database is provided by the user. This 

code will cause an exception or unintended behavior if the input provided will be an 

illegal SQL command or a legal but malicious SQL command. 

The second type of dynamic analysis we review was Dynamic Taint Analysis. These 

techniques were based on runtime input inspection and different types of remedies 

during runtime. This approach has two possible problems: performance impact and 

code behavior changing. Since these methods insert new instructions to the source 

code, the newly instrumented code has to run slower than the original. For example, 

in [2] their instrumentation (which works on C programs) can cause more than 12% 

impact on runtime performance, and other frameworks are worse than that.  

In the case of behavior changing, code instrumentation changes the actual program 

behavior (trying to fix bugs and protect the system), but can also introduce new 

bugs, to which the original system programs are not aware. This can be a real 

problem in production environments when trying to find out why a program is not 

working correctly. 

4.3 Our Solution – The SAF Framework 

In this chapter we have discussed the limitations of existing analysis methods and 

frameworks. Our work tries to enjoy both worlds (static and dynamic) and give a new 

solution to the presented problems. Our tool takes information learned by Static 

Analysis, and uses that information in order to perform Fuzz testing optimization. 

protected void doGet(HttpServletRequest req, HttpServletResponse resp) 
   throws ServletException, IOException {   
 Connection conn; 
 conn = makeConnection(); 
   
 Statement statement = conn.createStatement(); 
  
 statement.executeQuery(req.getParameter("Query")); 
} 
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We chose this hybrid approach for the following reasons. Although classical fuzzing 

has shown to be useful in finding many software bugs, it still has the limitation of 

going over all possible inputs, and this issue leads fuzzers to find some of the bugs, 

and most of the time the trivial ones. Static Analysis has shown to provide valuable 

information for different testing schemes, and therefore we believe this information 

can be useful to improve the searching algorithms of classical fuzzers. 

Our tool takes as input a web application written in the Java language. The tool 

follows these steps: 

a. Find program key points – This step goes over the code, and find interesting 

points which behave as data sinks or sources.  

b. Before doing a full code analysis, we make a rough analysis, which should find 

for each web page which sink groups it possibly has (SQL, XSS, etc.). 

c. The next step is to find source to sink data flows, which imply that program 

input (web request parameters) may arrive at the found sinks. 

The steps described here provide for each page the list of possible sink categories, 

and for each parameter the relevant sinks we found it to arrive to. This information 

can later be used in order to optimize web application fuzzers, to focus the testing 

effort effectively by providing relevant input only to the relevant page parameters. 

4.4 Analysis Challenges and Opportunities 

The purpose of our analysis is to locate the "route" each application parameter goes 

through, and for what it is used. This question has a few challenges hidden inside: 

- We need to find the actual path each sink derived data goes through. This 

means we not only need to find the existence of a possible harmful data flow, 

but to locate the actual parameter. Without knowing the actual parameter 

we will not be able to guide fuzz testers. 

- We need to perform a two phase flow analysis. Sources are usually a call to 

some API method that reads a specific parameter from the web request. The 

name of the parameter is passed to that API call. After finding a source-sink 

path, we need to locate the actual parameter used in that source. 



21 
 

On the other hand, our analysis approach has its advantages. Since the purpose of 

our approach is to reduce the amount of testing performed by an automated tester 

(the fuzzer), we are a bit less concerned with false positives. As will be discussed in 

the results chapter, there are levels of configuration that can lead to higher accuracy 

and less false positive results (at the price of performance). This means, we can scale 

better since it is less severe to have some false positives. 

A second advantage is the complexity of the performance. Eventually, we perform 

only data flow analysis on the analyzed program. Some of the approaches presented 

in chapter 3, have very computationally heavy parts (like constraint solving for input 

generation) which might cause the whole testing framework to not scale. The use of 

fuzzing with a more lightweight analysis might be more suited for large code bases.  

5 The SAF Framework 

In this chapter we introduce the SAF (Static Analysis Improved Fuzzing) framework. 

Our analysis framework is based on Static Code analysis algorithms together with our 

own heuristics which come to deal with the problems we encountered during the 

research. We will provide a review of the different stages of the analysis, with 

emphasis on our additions. Some of the algorithms and data structures we relied on 

are described with greater detail in the Static Analysis Appendix. 

The input to our analysis is a compiled web application written in Java [22] (1.6 or 

prior). Meaning, we evaluate Java Bytecode, and therefore don't require the source 

code. The entire analysis framework is based on the Wala [31] framework, provided 

by IBM T.J. Watson Research Center. 

5.1 Sink Locator 

Our Analysis starts with locating the program points which represent sinks. Sinks are 

locations which act as a data flow ending point, because of their sensitivity. For 

example, a SQL query creation statement is a sink, because any string that will arrive 

to that point will be sent to the DB. For our analysis purposes, possible sinks are 

specific API method calls.  We describe a sink as a three tuple       , where c a 
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Java class, m is a method inside that class and i is the instruction that describes a 

class to a sensitive API method, inside the method m. 

5.2 Request Parameter Locating  

The last issue we deal with is locating the actual user inputs – request parameters. 

When performing a call to a web page or a servlet, the user provides the name of the 

page and various parameters. These parameters are provided by key-value pairs 

through the URL. We wish to track the actual parameters that were propagated to 

the interesting sinks, rather than saying that some parameters arrived. This gives us 

better precision in focusing Fuzzers to the correct parameters.  

A request parameter read in Java is a simple API call on the ServletRequest object, 

passing it the actual parameter name. We can therefore treat this location as 

another sink, searching for the parameter name origin. We perform a traversal on 

the passed name object, and currently can find the actual parameter name if that 

was defined in the code (as a constant). We use all the methods described in the 

previous sections, and the points-to analysis provides us the actual constant value. 

5.3 Sink Elimination 

This stage is a simple one, and its intention is to clear out irrelevant testing 

categories for a given page. Meaning, if a page p has no SQL statement executing 

inside its possible execution paths than we need not check for SQL injection 

vulnerabilities. This analysis is done by constructing the program Call Graph (With 

Wala), and afterwards traversing the Call Graph backwards (from callee to caller) to 

locate possible pages it is located in. More on the Wala Call Graph data structure in 

Appendix B. 

5.4 SAF Dataflow Analysis 

This is the most complex and important phase in our analysis process. After locating 

relevant sinks inside the analyzed application, we wish to find if these sinks were 

provided input from outside sources, specifically web request parameters. The 

analysis is done from sink to source (backwards analysis), where for each sink found 

we perform a backward traversal on program instruction to find the different 

assignments that led to the sink. 
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Our analysis uses a few important constructs and algorithms implemented in the 

Wala framework. These constructs are: 

- Context-Sensitive Call Graph – we use the Call Graph data structure, and we 

use a version that is context sensitive. Meaning, for each method, every call 

stack that can lead to that method is saved inside the graph. We use a Call-

String context, as explained in Appendix B. Currently we use a 1-level call 

string context, as a higher (more precise) call string has a major performance 

impact, and currently impractical. 

- Def-Use Graph – we use the Definition-Use graph provided by Wala, which is 

constructed for each method. This allows us to perform a traversal inside a 

given method over definition chains. 

- Pointer-Analysis – we use the Wala provided context-sensitive pointer 

analysis. This provides us in some cases (due to analysis limitations, like call-

string context limitation) to which object a pointer is pointing to (actually 

where that object was created). 

5.4.1 Dataflow Algorithm 

Our analysis algorithm is a recursive one, and is composed of a few sub methods 

(algorithms). So we will provide the general flow, and describe in detail the inner 

parts later in this chapter. The general algorithm for sink-source path finding goes as 

follows: 

 

 

 

 

 

 

 

(1) foreach sink in sinks 

(2)  BackwardTraverse(sink) 

 

(3) BackwardTraverse(Instruction instruction) 

(4)  foreach use in GetUses(instruction) 

(5)   defs <- FindDefinitions(instruction, use) 

(6)    foreach definition in defs 

(7)     BackwardTraverse(def) 
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The general algorithm is very simplistic, because the basic idea behind it is very 

simple. If, for example, we would have had a graph describing precisely all data 

transitions possible in a given program, we need only to traverse that graph. The 

actual difficulty arises from the graph edge building, meaning to find for each object 

where it might have been defined or assigned. 

Get Instruction Uses (line 4 in the pseudo code) 

If we look back to SSA form described in the Static Analysis background, we noted 

that each value is defined once, and that each assignment to the same method 

variable creates a new value. The function of getting instruction values used, is to 

simply locate the value numbers that are used as arguments to the given instruction. 

Let's look at a simple example: 

 

 

 

The code provided above creates three values in SSA Form (which is used in our 

analysis), but uses only two method variables. Instruction 1 creates V1 which is the 

Integer value of 5. Instruction 2 creates V2 which is the Integer value of 10. The last 

instruction creates V3 (although it is assigned to variable a), which has the value of 

15. When analyzing instruction 3 we can see that it uses V1 and V2, and provided the 

right data structure, can go back to the defining instruction for these values. This is 

the actual method of locating instruction uses, and when using the Wala 

infrastructure it is simply calling a method [34]. 

Get Value Definitions (line 5 in the pseudo code) 

After we have located for a given method the different values used as parameters, 

we wish to locate the points in the program where these values were defined. We 

use two main mechanisms during this analysis, Points-to analysis and code traversal. 

(1) Int a = 5; 

(2) Int b = 10; 

(3) a = a + b; 
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The first step we try to perform in order to find to which value a program-variable 

points to is to run the points-to analysis provided via Wala. We use an 

interprocedural, context-sensitive configuration to get a more precise analysis. The 

answer this analysis gives us (if it can detect it) is a program instruction that defined 

the object we are referencing, or a few possible instructions. This could be a 

constant assignment, a call to get an input from the user, etc.  

If the points-to analysis was in-capable of locating where the current variable was 

defined in, we perform a traversal over the program code, locating the possible 

program instructions that defined our used values. This is done on two manners. 

Inside a given method, we go over the definitions-use graph described earlier, 

finding which instruction defined our value. If the current used value is a parameter 

passed to the current method being analyzed, we locate via the Call Graph data 

structure all the possible methods that called our method, locate the interesting 

parameter in that call, and go on with analyzing that parameter.  

After we have located the instruction or instructions that defined our interesting 

value, we continue analyzing that instruction's uses onward, until we reach a sink 

(request parameter get). At this point we continue code analysis with the same 

technique in order to locate which request parameter was read, and that is the real 

sink of interest. 

There is a limitation to the code analysis described here. If the points-to analysis fails 

in telling us where an object we might be pointing at by a given variable was defined, 

we perform a method based code traversal. But if data was passed via an object field 

or static field, and not via method parameters, we will be missing this data transfer. 

For this issue we have performed some analysis heuristics that locates where an 

object field was possibly initialized, and these points are the next phase for our 

analysis. We will describe these heuristics in the next section. 

5.4.2 Object Field Access Heuristics 

The object field analysis comes to mitigate a major drawback in the analysis 

described in the previous section. Given that we are handling an object oriented 
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language, most information is stored and transferred via object fields. Given this 

limitation, we came up with this simple but scalable heuristic. 

Assuming we perform the general traversal algorithm described earlier. And 

assuming we have reached an object field read, and want to traverse to the origin of 

that field. In this case we perform a lookup of all possible assignments performed to 

that field that were originated from the same call stack that we might be in. The field 

access operation is located in some method. Let's call the set of execution paths 

(method calls) that lead to the actual method executing the read p1, … , pn. Each pi 

is a path of method calls, from the entrance method up to the method calling the 

read from the object field. All these paths end up in the same method, so we can 

look at it as a reversed tree. Let's look, for example, at an assignment to the field 

occurring at a different method. We can build for that instruction the same reversed 

tree of possible call stack, called q1, … , qm. We say that there is a possible relation 

between the read and the write if two call-stacks intersect, meaning there is a 

method that called both the assigning and the reading methods (even if not calling 

directly). We perform this analysis by doing a Breadth-First Search on the call graph, 

starting from the method executing the field assignment, and after locating all 

possible field writes. 

The previously described algorithm gives us for a given read from a field the set of 

possible assignments to that field. These assignments are the next instructions we 

analyze in our traversal algorithm described above. 

5.4.3 String Manipulations 

During the building of our analysis framework, we come up with a serious limitation. 

We are not analyzing the behavior of the Java supplied framework elements. There 

are two types of manipulations: string manipulation objects – StringBuilder and 

StringBuffer, and string provided methods (substring, replace etc.). The purpose of 

these constructs is to handle string concatenation, replacement, trimming etc. Since 

we don't analyze the way these constructs work, we missed the data flow that 

occurs through the inner data structures of these objects.  
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First, we will show the improvements for StringBuilder and StringBuffer. Let's look at 

a short code example: 

 

 

 

The code above describes the appending of an input string into a StringBuilder 

object. The string that was contained in the input string variable is now 

concatenated into the inner structures of StringBuilder, and therefore that structure 

is now "tainted" with user input. When that data is read, the input will be passed 

along. 

We mitigated this problem, by treating the calls to StringBuilder methods as tainting. 

When we see that a value from a specific StringBuilder is reaching a sink, we try to 

find method calls on that StringBuilder that inserted input, and then traverse that 

input to see if it came from a user input. This way we avoid the analysis of the 

StringBuilder internals, but tackle the relevant behavior. The improvement shown 

here is the same in the StringBuffer's case. 

In the case of string provided methods, we have provided special treatment to 

methods that provide a part of a string as an output. For example, the substring 

method acts on a string instance, and return a part of that string. If the original string 

is tainted, then so is the returned string. We have identified these locations and 

followed the data flow through them. 

5.5 Algorithm Execution Example 

We wish to provide an example of all the algorithm steps, in order to better explain 

how the different phases interact and how each part works. We will be analyzing a 

small code section from an educational application called WebGoat [28], which we 

are also analyzing in the experimental part. 

The following code is taken from a simple servlet, which shows bad practices in the 

context of user authentication: 

StringBuilder builder = new StringBuilder(); 

Builder.Append(inputString); 
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(1) username = s.getParser().getRawParameter(USERNAME);  
   
(2) password = s.getParser().getRawParameter(PASSWORD); 
 
(3) String query = "SELECT * FROM user_system_data WHERE user_name 

= '" + username + "' AND " + "password = '" + password + "'"; 
 
(4) Statement statement = connection.createStatement(); 
 
(5) ResultSet results = statement.executeQuery(query); 

The scenario shown here is very simple. We have an object defined in WebGoat that 

reads request parameters, which is called ParameterParser. The instruction 

s.getParser() retrieves that object. The first two statements read two parameters 

from the request. The third instruction builds a SQL query with the read data. The 

fourth statement creates a new SQL statement, and the fifth instruction executes the 

created query against the DB. The vulnerability in this case is fact that user input 

goes un-checked to the DB, and this flaw can easily be attacked by even an un-skilled 

attacker. 

The following sections will go over all steps of the algorithm described earlier to 

show how all steps interact. 

5.5.1 Sink Locating 

When we talked about the sinks we defined them as specific method calls. In our 

case, the sensitive call is line 5: 

(5) ResultSet results = statement.executeQuery(query); 

The dataflow analysis phase will start from this point, and traverse the code 

backwards to locate all the interesting data locations. 

5.5.2 Dataflow 

The analysis in this simple example is based on the def-use graph we mentioned in 

the dataflow section. The def-use graph looks approximately like this (value numbers 

correspond to the instruction numbers): 
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The interesting part of the shown def-use graph is the flow from V1+V2 -> V3 -> V5. 

So, we are moving on the graph backwards. First, we analyze V5 and understand it 

uses V4 and V3. The next step is to analyze V4 and V3. V4 has no interesting uses in 

it, so we drop it. But, V3 has interesting uses, and we follow them. V1 and V2 were 

defined by a call to getRawParamter. The actual code inside reads a parameter from 

the web request (the parameter name is the one passed to getRawParameter). 

When we analyze the code for getRawParameter, we can conclude that there is an 

interesting path from a user defined value (parameter) to a SQL command. 

5.5.3 Request Parameter Locating 

After we concluded there is a dataflow between a parameter read and a SQL 

command execution, we need to find out the real parameter – the name of the 

request parameter. In the code example, this is the constants passed as a parameter 

to the getRawParameter method. It is very important to understand that there are 

actually two parameters being read, and to locate the two names. In this case it is 

rather straight forward since the parameter names are constants being used directly 

in the code. 

5.5.4 String Manipulation 

In this example we analyzed a string concatenation command – line (3). 

Theoretically, this can be performed by a special concatenation operator which 

creates a new string that holds the value of the strings provided to it. In the 

contemporary versions of Java compilers, these commands are compiled to the use 

of StringBuilder. This means that the simple command we showed is compiled to the 

following code: 

V1 

 

V2 

 

V3 

 

V4 

 

V5 
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(1) StringBuilder builder = new StringBuilder( "SELECT * FROM 

user_system_data WHERE user_name = '"); 

(2) builder.append(username); 

(3) builder.append("' AND " ); 

(4) builder.append("password = '"); 

(5) builder.append(password); 

(6) builder.append("'"); 

Since this is the real code we are analyzing, we need to take care of the usage of the 

StringBuilder object. What we do is to locate the operations that insert values into 

the string builder (all instructions in this example), and to traverse the parameters to 

these instruction. The more interesting ones are the parameters to instructions (2) 

and (5). This changes significantly the def-use analysis we described earlier. We need 

to locate the instructions that use the StringBuilder object (2-6), and check if these 

instructions are adding values to the builder object. Then we can continue as 

described earlier by searching the definitions of the values used in the append 

instructions.  

5.6 SAF Limitations 

The analysis framework we have built has a few limitations, and here we will list 

them and provide an explanation for each: 

- Non string parameter values – the analysis framework implemented handles 

only string value propagation. This is a minor issue because most injection 

vulnerabilities are related to string value handling, where non string values 

(mostly numeric) are less risky. 

- Constant parameter names – In order to locate the request parameters that 

arrive at a certain sink, we assume parameter names are constants in the 

code. There are other ways to map parameters, but we do not cover these in 

this paper. 

- Lack of array typed object members handling – array fields were more 

complicated to analyze, and given the fact that this type of fields is not 

common we have decided to postpone this issue to future work. 
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- Limited reflection handling – our analysis handles reflection partially. Some 

reflection usages have shown to not work, mostly from framework 

limitations. There are possibilities to improve precision, but these options are 

not scalable to even small applications. 

6 SAF Experimental Results 

In order to test the capabilities, accuracy and performance of the SAF framework we 

have devised a set of test cases. The test set is built of two parts. First, a set of 

synthetic cases we written to check the accuracy of our framework. Second, a set of 

applications taken from the Stanford Securibench [30] project.  

The synthetic test set is built of 23 tests that exhibit different data flow scenarios: 

- Intra-procedural data flow 

- Inter-procedural data flow, via parameters 

- Data flow through object fields 

- Flow through static object fields 

- Different control flow constructs (If, switch statement, loops, exception 

handling) 

- Object inheritance recognition 

We ran the SAF framework on these tests and found all data flow routes. In the next 

two chapters we will describe the real life benchmark and discuss its results. 

6.1 Stanford Securibench [30] benchmark 

The Stanford Securibench is a collection of various real life applications, grouped 

together to provide a benchmark of programs for code analysis techniques. This 

benchmark was collected by the researchers in Stanford and used in Livshit's 

doctoral thesis. 

We have performed our analysis on a portion of these applications, since we 

targeted Java web applications, specifically Servlet based.  
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6.1.1 OWASP WebGoat[28] 

WebGoat is an educational web site being developed for a few years. WebGoat is a 

deliberately vulnerable application that was built to teach and show all kinds of web 

vulnerabilities and how to avoid them. 

We have taken WebGoat's version 0.9 that comes with SecuriBench. This is a rather 

primordial version of WebGoat, but it serves our needs. 

6.1.2 Blueblog 

Blueblog is a blogging application, written in Java and based on the java servlet 

mechanism. It is a small application, designed to allow the creation and viewing of 

different blogs. Inside, the different blogs are stored on the server file system, in 

different folders for different blogs. 

We decided to include this application in our analysis because it is a real world open 

source application, and its design and technologies are relevant for our analysis 

framework. We are analyzing the version taken from Securibench. 

6.1.3 Personal Blog 

This is another blogging application taken from the Securibench benchmark. 

Personal Blog is a simple blog application written in Java with various frameworks in 

use. We focus on this application because it has a different kind of injection 

vulnerability that resembles SQL injection. 

6.2 Securibench Results 

In this section we will review the analysis results on the benchmark application 

described in the previous section.  

6.2.1 WebGoat 

As described before, WebGoat is an educational application, with different 

vulnerabilities embedded inside its code. The WebGoat project is divided into 

lessons, where each lesson is a different servlet. A lessons comes to show a specific 

web vulnerability (like persistent cross site scripting), but might hold more 

vulnerabilities. The version of WebGoat we are analyzing is composed of 12 lessons. 

We have performed two analyses on the WebGoat code. The first tried to locate 
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data flow from different user input to a SQL command. The second analysis tried to 

locate data flow to shell command execution statements. We will describe each 

shortly. 

6.2.1.1 SQL Analysis 

We have performed data flow analysis from web request parameters to SQL 

statements (not as parameters, but strings that were concatenated to SQL 

commands). The data flows we have been able to locate might be susceptible to SQL 

injection attacks, and therefore might put the application at risk. 

Out of the 12 lessons being analyzed, 5 of them were not using SQL at all, and our 

code recognized this correctly. Meaning, There is no need to try and execute SQL 

injection attacks on these pages. In the pages where SQL commands are executed, 

we have managed to locate all the parameters that lead to a SQL command, but 

some of the parameters that were not being used in SQL commands were wrongly 

outputted (33% false positive). This issue was mitigated by using a more precise Call 

Graph that took into account a greater call stack (more on call graphs in Appendix 

B.). This tweak solved the problem, but caused the analysis to run longer and might 

not be usable in large code bases. 

With regular analysis configuration we have come up with 0% false negative but 33% 

false positive. With greater analysis precision (Call Graph tweaks) we managed to get 

0% false positive. 

6.2.1.2 Command Execution 

Inside WebGoat there is a lesson showing Parameter Injection. This vulnerability 

class relates to a security bug that allows an attacker to run specific programs, or 

change the behavior of programs being run by the vulnerable application through 

passed parameters. This means that a user supplied parameter somehow reaches a 

shell script being run. The WebGoat lesson related to this vulnerability has a bug 

allowing the user to run any program. In our analysis we have been able to find the 

parameter reaching this vulnerability, and showed that other lessons are not 

vulnerable to this – meaning 0% false positive and 0% false negative. 
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6.2.2 BlueBlog 

As opposed to WebGoat, BlueBlog is a real application, and has a lot less 

vulnerabilities. Since there is no use of SQL, this application is not susceptible to SQL 

injection attacks, and as our analysis showed, not vulnerable to command execution. 

Given that, we have managed to find a potential vulnerability related to Path 

Traversal. This vulnerability type is described in Appendix A. 

We managed to locate two locations in the BlueBlog code that access a File object 

(representing file system file), and the path to that file is constructed from two 

locations: first, from the URL (which can be changed by an attacker), and second, 

from a specific request parameter. In this case we also had no false positive or 

negative results. 

6.2.3 Personal Blog 

Personal Blog uses different frameworks, and specifically Hibernate [10]. Hibernate is 

a Java implementation of an ORM, which a framework for DB communication. 

Therefore, Personal Blog doesn't use native SQL queries, but rather lets Hibernate 

handle all the messy stuff. Hibernate is considered rather secure, but it also has an 

injection vulnerability if not used correctly. This is called HQL (Hiberante Query 

Language) injection [23]. This is the case with Personal Blog. We have analyzed the 

application code and found two paths that lead from a user provided input to an 

HQL query – which is possible injection vulnerability. 

We have analyzed the entire Personal Blog source code, and located precisely the 

two request parameters that lead to an HQL query. In addition, we had no false 

positives or negatives. Out of the 29 request parameters read from user input we 

have located that only 2 were leading to HQL queries. This is a reduction of 93%. 

6.2.4 Performance Analysis 

We have performed the experimental phase on a standard laptop with the following 

specifications: 

- Intel Core i7 2.2 Ghz, Quad core CPU 

- 8GB RAM 
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- 64-bit Windows 7 

- Java SE 1.6 

These are the running time we achieved for the relevant benchmark applications: 

Application # sinks LOC Time 1(s) Time 2(s) Time 3(s) 

WebGoat 37 4827 53 100 561 

Personal blog 9 3423 9 18 48 

BlueBlog 12 2556 7 13 39 

Table 1: Performance results for the benchmark run 

The results in Table 1 describe the relation between source code size and running 

time, as well the relation to the precision. As we discussed earlier, we have the 

ability to tweak the algorithms precision with a Call Graph parameter which states 

the depth of the call string being remembered by the data structure. Time k relates 

to a depth of k. We can see that the running time increases rapidly as we increase 

the precision, somewhere between polynomial to exponential factor.  

The results show an increase in running time in relation to code size, close to linear. 

These running times are also affected by the number of sinks we have located, since 

each sink is analyzed separately.  

 

Chart 1: Relation between LOC to the running time of the least precise analysis  
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Chart 2: Relation between Call Graph depth To running time of each application 

6.3 Fuzzer Integration 

In this section we will provide a review of how to use the results we achieved in the 

experimental run, and discuss the possible improvement it can achieve. The 

experimental run included 3 applications, testing 4 types of application 

vulnerabilities. We showed that we can detect the "real" use of each parameter, 

specifically if it was used in different sensitive resource access. The ability to detect 

the actual data flow is the foundation to this section. 

The following table describes the applications we tested, specifying the number of 

servlets, total number of parameters, and the number of parameters relevant to 

each category we checked in the experimental analysis (SQL injection, Command 

Injection, Path Traversal and HQL Injection). 

Application # Servlets # Parameters # SQL # CMD #File #HQL 

WebGoat 12 22 10 1 0 0 

BlueBlog 1 6 0 0 2 0 

Personal Blog 12 29 0 0 0 2 

Table 2: Experimental run number summary 
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According to Table 2, we now have information that can help us improve the focus of 

a Fuzzer based test run. We can decide to avoid testing the parameters found non-

related to the categories we checked, and put more focus on those that are relevant.  

To calculate the percentage of tests that can be avoided, we propose a simple 

testing model. Assuming there is X tests a Fuzzer performs on a given parameter for 

a given category (SQL, HQL, etc.). Then the number of tests needed to be performed 

per application is: 

                                       

For the tested applications, these are the numbers: 

Application # Servlets # Parameters # tests # actual test % reduction 

WebGoat 12 22 88X 11X 87.5 

BlueBlog 1 6 24X 2X 91.6 

Personal Blog 12 29 116X 2X 98.2 

Table 3: total expected tests 

We also added the actual number of tests needed to be performed with our 

improvement (X tests per parameter found in each category). We can see the 

percentage of tests reduced is up to 98%.  

6.4 Results Summary 

We have managed to show that by analyzing data flow in different web application, 

we can reduce the possible parameters that a fuzzer should check for a specific 

vulnerability class. In the case of SQL injection in WebGoat we got a 50% reduction in 

parameters, and in the case of Command injection we got a reduction of about 95%. 

In the case of BlueBlog we got a reduction of about 50% in the Path Traversal 

category. And, in the case of Personal Blog, we have reduced parameters leading to 

HQL queries in 93%. Furthermore, we can say that there is no need to run 

sql/command injection tests on the BlueBlog or Personal Blog code. 

When analyzing the total results, and no per category, we showed the improvement 

is much more dramatic. In total we showed a reduction of up to 98% in the number 
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of tests needed. This is due to the ability to show that some testing categories are 

irrelevant in different parts of the applications we tested. This shows the true 

strength of our approach in reducing unneeded tests. 

Nevertheless, we have found some limitations during the experimental phase. We 

have seen that our framework might suffer from false positives as well. This issue 

can be addressed by a more precise analysis, but at the cost of performance.  

These results show that our analysis can be used to reduce the number of tests 

needed to be run in a standard fuzzing test, or increase the number of tests in the 

relevant areas provided by our tool. 

7 Summary 

The problem of web application security vulnerabilities analysis is a huge one. There 

are many nuances and complications to it. We have reviewed the major work done 

in the area and showed the complexities of the field. We have shown a method to 

improve the performance of existing testing mechanism, specifically Fuzz Testing, via 

the SAF framework. Our framework was built for Java web applications.  

The SAF framework relies on widely used Dataflow Static Analysis algorithms with a 

few changes. The Static Analysis implemented in this work tries to locate the flow of 

user provided data to sensitive program locations, and to leverage this acquired 

knowledge for the improvement of Fuzz Testing. We have reduced the number of 

fuzz tests needed to be run by up to 90%. 

In our opinion this work can be extended in various exiting and interesting 

directions: 

- Create integration with one of the existing fuzzers, and influencing its tests 

with the analysis results shown here. 

- Improve analysis precision by new heuristics, tackling the limitations 

mentioned above. 

- Improve analysis performance and scalability 
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- Learn more info from control flow – control flow graph holds data about 

program execution flow. Certain input validations can be identified and used 

to craft better input in order to bypass these input validations. In the 

previous work section we have shown a few papers that use this information 

(via symbolic execution), and there is a possibility to integrate these works 

with ours. 

- Handle newer technologies of Java web applications, and new types of 

threats 

The area of application security is increasing every year, and presents numerous 

challenges for contemporary computer science researches. We hope this work can 

help others in their efforts to solve some of these new problems. 

Appendix A. Web Application Security Vulnerabilities review 

Web applications have multiple types of security vulnerabilities, and each 

vulnerability type has its own special characteristics. We will provide a short review 

and description of Injection vulnerabilities, for they are the most relevant to our 

work. The description for these vulnerabilities is taken from the OWASP Top 10 [32].  

Injection related bugs provide an attacker the ability to run a command or a query 

against a backend service provider. For example, SQL injection flaw, provides the 

ability to execute some SQL command against a service provider, in this case a DB. 

These vulnerabilities are usually characterized by passing of unchecked user input as 

a part of a command to the backend service provider. We will review some major 

injection attack types. 

SQL Injection [29] 

SQL is a query language used in most modern Databases for the retrieval and update 

of data. Databases hold the organization's data, and are therefore a very interesting 

target for different attackers. A SQL injection is the creation and execution of a SQL 

command that was not intended to run against the data base. 
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Path Traversal [26] 

Path Traversal is a vulnerability type that allows an attacker to follow the directory 

structure of the application server. This is done by injection path values (like slashes 

and dots) into a specific parameter, and these values are concatenated to a file path 

in the application code. This constructed file path is later accessed by the application 

server, and possibly allowing the attacker to gain information about the server's file 

system, or even retrieve the contents of these files. 

Cross Site Scripting (XSS) 

The target of this attack is the browser itself, and not a backend service provider. A 

mechanism that is vulnerable to XSS allows an attacker to execute a script 

(Javascript, etc.) inside a victim's browser, as if it was a part of a legitimate website 

(the vulnerable site). These vulnerabilities look much like other Injection types, 

perhaps the exception that there is nuance called Persistent XSS in which injected 

text is first stored in some storage, and presented to the user in a different page 

than the one it was created on. 

Appendix B. Wala Data Structures and Algorithms Review [31] 

Wala (T. J. Watson Libraries for Analysis) is a Static Analysis framework promoted by 

IBM research. Wala is written in Java and is used to analyze different Java/JavaScript 

applications. Wala provides the data structures and implements the algorithms 

reviewed in the Static Code Analysis section. We will focus on the different features 

and tweaks of the major algorithms we used. 

Context Sensitive Call Graph [33] 

As mentioned in the Prior Work chapter, a call graph represents the caller-callee 

relations between all the methods of the analyzed code. Wala provides an abstract 

representation of a Call Graph, with a few implementations behind it. We will discuss 

the implementation we used which a Context-Sensitive Call Graph, based on call-

string context. 

A Call Graph node is a method together with its calling context (considering our 

graph is context sensitive). Let's look at a simple example. Assuming we have to 
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methods, main and foo, and main calls foo. In this case we will get two nodes in our 

graph and an edge between them, one for the main method (with null context, 

because no one calls it) and one for foo with the call in main as its calling context. 

We can complicate this example by saying that main calls foo twice. In this case, 

there will be two nodes for foo, one for each call from main.  

What we have shown in the previous paragraph is how Call Graphs hold the calling 

context inside a program. This context can grow exponentially if we take into 

account chains of method calls (main calls foo that calls bar). The information about 

the context is stored in a "call string" which is a stream of method + instruction (in 

the relevant method) that represent the calling sequence. For example, 

Main@25 ; foo@13 ; bar@32 

This example shows a sequence of three calls, from main to foo, from foo to bar and 

from bar to the method in the Call Graph node. The numbers represent instruction 

numbers inside the relevant methods. 

As expected, the greater the call string the more complex and time consuming the 

analysis is. We usually used a one method call string length, and this gave us 

reasonable results. As mentioned in the WebGoat analysis results, we changed this 

behavior, by increasing the depth to 4. This gave more precise results (reduced false 

positives completely), but increased significantly the running time. 

Pointer Analysis [35] 

Pointer Analysis tries to answer the question to which object a pointer points to. This 

issue relates heavily to the previous section, since the application's memory content 

is influenced by the previously run instructions (or the context).  

We use a version of Pointer Analysis that uses context sensitive Call Graph, and 

removed all optimizations to get the most precise result. Given that, the precision of 

this analysis is influenced by the precision of the Call Graph (as discussed in the 

previous section.  
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 תקציר

דו"ח בעיות אבטחה הינן אחד מהאיומים הגדולים בימינו על אפליקציות ואתרי אינטרנט. 

מכל אתרי האינטרנט חוו לפחות פרצת אבטחה  86% -מעריך ש [ 37] 2113שפורסם במאי 

. בעיה קשה זו מהווה הזדמנות לחוקרים וחברות לחקור 2112משמעותית אחת בשנת 

 שיטות חדשות לטיפול בבעיות אבטחה אלו.

התמודדות עם במהלך השנים האחרונות יצאו פרסומים רבים של טכניקות שונות ומגוונות ל

העלייה בבעיות אבטחה באפליקציות מודרניות. טכניקות אלו מתחלקות בעיקר לשתי 

קטגוריות: סטטיות ודינמיות. שיטות סטטיות משתמשות בניתוח סטטי אשר חוקר את מבנה 

הקוד ומוצא באגים. שיטות דינמיות מנסות לנתח את התנהגות האפליקציה בזמן ריצה 

 גות שגויה.ולזהות חריגות או התנה

בשנים האחרונות נעשו שיפורים גדולים ומשמעותיים במאמץ לפתור את הבעיה המוזכרת 

[ נוסחה שיטה אשר מבוססת על שיטות מומלצות בקרב מפתחים, על בסיס נסיון 12לעיל. ב ]

רא פיקסי, אשר מבוסס על ניתוח זרימת מידע ק[ מספק כלי שנ14(. ]best practicesעבר )

[ מימשו טכניקות ניתוח סטטי 19[ ו]13בשימוש בטכניקת ניתוח קוד סטטי. ] PHPבתוכניות 

ציות. טכניקות אלו הראו הצלחה רבה במציאת קעם ניתוח דינמי והגנה דינמית על אפלי

 באגים אמיתיים. עם זאת, שיטות אלו סובלות ברוב המקרים מיחס גבוהה של תוצאות שוא.

יית תוצאות השוא מכיוון שונה. עבודתנו נסמכת על בעבודתנו, אנו מנסים להתמודד עם סוג

[. שיטה זו בודקת אפליקציות 21] Fuzz Testingשיטת בדיקות תוכנה קלאסית שנקראת 

עבור האפליקציה הנבדקת, בנסיון לגרום  בעזרת ייצור קלטים רנדומליים )או חצי רנדומליים(

דע שנלמד על מבנה האפליקציה להתנהגות לא רצויה. אנו מעוניינים בעבודתנו להיעזר במי

 .Fuzzingלשפר את היכולות של תהליך הובעזרת ניתוח סטטי 

. כלי Fuzzingהיתרון של שיטתנו היא היכולת לשפר את הביצועים והמיקוד של שיטת ה

Fuzzing  ,פשוט מכיל מספר קטגוריות של ייצור קלטים, עבור מקרי בדיקה שונים. בכל מקרה

פור קלטים עבור שלב הבדיקה. מידע על מבנה התוכנה הנבדקת יכול הכלי יכול לייצר אינס

לעזור לצמצם את מספר הבדיקות שיש להריץ, או לחלופין להגדיל את הבדיקות הרלוונטיות. 

 .SAFלטובת למידת מבנה התוכנות הנבדקות כתבנו את תשתית 

רת התשתית מיועדת לניתוח של אפליקציות אינטרנט הכתובות בג'אווה. מט SAFתשתית 

היא ללמוד את זרימת המידע בתוכניות השונות, ספציפית זרימת קלט משתמש, ולהשתמש 

. הרעיון המרכזי הוא לאתר "בורות" בתוכנית )כמו הרצת Fuzzingבמידע זה לצורך שיפור כלי 

ולמצוא מסלולי זרימת מידע המביאים  שאילתא למול מבנה נתונים(, אשר אליהם מידע זורם,
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ממצאים אלו יכולים לספק סיווג עבור כל פרמטר  שתמש לאותן נקודות.מידע מהמ

שהמשתמש יכול להזין, ולייצג איזה וקטור תקיפה ייתכן ואפשר לנצל דרך אותו פרמטר. 

 .Fuzzingבעזרת מידע זה ניתן לשפר את הביצועים והמיקוד של כלי 

על שלושה פרוייקטי קוד פתוח, אחד חינוכי  SAFבמסגרת מחקרנו ביצענו בדיקה והרצנו את 

ושתי אפליקציות בלוג. אפליקציות אלו מבצעות גישה למבני נתונים, גישה למערכת קבצים 

וכדומה. אנו הצלחנו למצוא מסלולי מידע לנקודות רגישות בתוכנית, ובאופן פוטנציאלי 

טגוריה ספציפית את כמות הפרמטרים שיש לבדוק עבור ק 91%הצלחנו להקטין בעד כדי 

 למשל(. SQL)שאילתות 
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