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Abstract 

This research revolves around the Logrank Test algorithm, a 
survival analysis and evaluation method. This thesis has two parts. 

In the first part, we present a secure multi-party protocol for the 
Logrank test and prove its correctness. The protocol can be 
implemented by known cryptographic tools, chosen according to a 
required level of security and an adversary model.  
Our protocol computes a value that is close to the Logrank test 
result under some reasonable assumptions. This approximation is 
empirically demonstrated. 
We discuss the problem of false inputs in MPC protocols and how 
these frauds can be avoided. We develop and analyze an additional 
version of the Logrank MPC protocol that provides partial 
protection against false inputs. 

In the second part, we analyze the uncertainty in the Logrank result 
that may arise from labeling errors. We present a novel algorithm 
for efficiently calculating a stability interval around the original 
Logrank p-value with the corresponding correctness proof.  
A stability interval contains all possible results that would be 
obtained under labeling errors with defined constraints.  
A paper describing this research was published in the journal 
Bioinformatics in 2021, and is attached to this thesis.



Contents

1 Introduction 6

1.1 Motivation And Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Logrank Test - Background . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.1 Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.2 The Survival Function . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2.3 The Logrank test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Secure Multiparty Computation - Background . . . . . . . . . . . . . . . . . 11

1.3.1 MPC Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3.2 The Adversary Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3.3 Security in MPC Protocols . . . . . . . . . . . . . . . . . . . . . . . . 12

I CoPPSA - Collaborative Privacy-Preserving Survival Analy-
sis 15

2 Previous Work 16

3 The Protocol 20

3.1 CoPPSA - An MPC Protocol For Logrank Test . . . . . . . . . . . . . . . . 21

3.1.1 Correctness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1.2 The Field Zp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1.3 CoPPSA Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4



3.1.4 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4 Statistical Analysis And Methods 29

4.1 Is Z∗ Equivalent To Z? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2 The Difference Between Z And Z∗ . . . . . . . . . . . . . . . . . . . . . . . 32

4.3 CoPPSA - Proof Of Convergence to Standard Normal Distribution . . . . . . 34

4.3.1 Intuition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.3.2 Preliminary Definitions And Claims . . . . . . . . . . . . . . . . . . . 36

4.3.3 Convergence To Standard Normal Distribution . . . . . . . . . . . . . 37

4.4 How Close Are Z And Z∗ ? . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5 Incentive For Veracity 45

5.1 What Is A lie? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.1.1 Deterministically Non-Cooperatively Computable Functions . . . . . 46

5.2 What Is An Incentive For Good Veracity? . . . . . . . . . . . . . . . . . . . 48

5.3 How To Add The Incentive To CoPPSA? . . . . . . . . . . . . . . . . . . . . 52

5.3.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.3.2 CoPPSA-V: CoPPSA With Randomization . . . . . . . . . . . . . . . 54

5.3.3 Does CoPPSA-V Have an Incentive for Veracity? . . . . . . . . . . . 57

II Statistical Stability For Logrank Test 60

6 Logrank Stability 61

III Summary And Discussion 73
6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.2 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5



Chapter 1

Introduction

This work revolves around the Logrank Test algorithm. Logrank is one of several survival

analysis tools, used to measure and compare performance and failures over time. The com-

parison is between several categories, typically two. An illustrative example is the comparison

between two competing treatments for a severe medical condition.

Logrank Test is useful for less dramatic comparisons as well: reliability of mechanical

devices, life span of electric bulbs, or the effectiveness of different website designs in keeping

the users engaged. Still, the most common use of Logrank Test for research purposes is in

the medical field.

1.1 Motivation And Overview

When conducting an experiment using Logrank Test to analyse data, it is best, from the

statistical point of view, to have the largest possible dataset. Therefore, if several parties

conduct the same experiment independently they can obtain better results by sharing their

data and performing the Logrank analysis on the merged dataset. By merging the data,

a significant p-value can be reached with relatively moderate (less radical) experimental
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results. In practice, however, research institutes may be reluctant to share any data, which

is considered to be a very valuable resource. Privacy considerations therefore can lead to

compromised accuracy.

In the first part of this thesis we present a secure multiparty computation (MPC)

protocol for Logrank Test. Such a solution can solve the conflict, not compromising on

either results accuracy nor on data privacy requirements. Such a solution can facilitate coop-

eration between institutes and organizations and thus lead to higher quality results without

risking exposure of valuable data.

The Logrank test is based on several assumptions that support the validity of the cal-

culations. It is naturally assumed, implicitly, that no errors occur in the labeling of the

samples. That is - that the mapping between samples and groups is perfectly correct. In

practice, however, test results are affected when considering some errors in the original la-

beling. To estimate this effect, we defined the Logrank Stability Interval which bounds

the uncertainty that arises from labeling errors in Logrank test.

In the second part of this thesis we present a methodology to compute stability intervals

for Logrank. A paper describing this work was published in July, 2021:

https://doi.org/10.1093/bioinformatics/btab693

1.2 Logrank Test - Background

1.2.1 Events

The most important concept in Survival Analysis is the event. There are two types of

events:

1. Failure - the ”sad point of no return”. It can be either a death of a patient, a break

down of electric device, or a burnout of a light bulb. A failure can also be a positive

event, such as achieving the goal of a lower-cholesterol diet.

7



2. Censorship - the point in time in which the instance track is lost. Censorship may be

due to connection loss, or due to a fixed termination date of the study.

An instance is considered at risk on time t if at this time neither failure nor censorship have

been yet observed for this instance.

1.2.2 The Survival Function

Consider a set of iid (independent and identically distributed) instances with a time-of-failure

attribute denoted by T.

P (T = t) is the distribution of T.

The survival function is defined as:

S(t) = 1− P (T < t) = 1− FT (t)

FT (t) is the cumulative distribution function of T.

Example: If t=100 years and events represent death, then S(t=100) denotes the probability

of living beyond 100 years. (see [6], Chapter 1.3)

1.2.3 The Logrank test

Logrank Test [14],[6]Chapter 2.6, is a hypothesis test procedure that compares the survival

distributions of two groups of samples. These two groups differ by the feature we would like

to inspect. For example, if the comparison is between two medical treatments, all patients

treated with treatment A are associated to one group, and all patients treated with treatment

B are associated to the other group.

Logrank test evaluates the p-value, the probability of the observations under some null

model. Usually this null model assumes that survival times are derived from independent

and identically distributed sampling.
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The data is organized in two groups of instances, group A and group B. In each group the

instances are iid and randomly selected (in order to avoid undesired bias). The assumption

we would like to test and then possibly reject is:

∀t : SA(t) ≡ SB(t) , when SA() and SB() are the respective survival functions in each

group.

In fact, the test evaluates the probability of an empirical observation, based on the assump-

tion that SA ≡ SB(t). This assumption is called Null Assumption and denoted as H0.

The Logrank Test presumes the probability for an event to occur in any given time

interval is equal for the two groups (directly follows from H0).

The following semantics and notation for the Logrank Test will be used throughout the

remainder of this thesis:

• Consider a time-and-event dataset D (survival data) such that each subject (entry)

has a partition labeling (groups A or B).

• Let j = 1, ..., J be the distinct times of observed failure events in either group.

• Let nA,j, nB,j be the number of subjects at risk (who have not yet failed nor have been

censored) at the time of occurrence of the j’th failure in each group, respectively.

• nj = nA,j + nB,j is the total number of subjects at risk at time j.

• Let OA,j, OB,j be the random variables representing the observed number of failures

in each group at time j.

• Let oA,j and oB,j denote the number of failures observed at time j in groups A and B,

respectively. Let oj = oA,j + oB,j denote the number of failures observed at time j in

both groups.

• Let T be the time of failure of a subject. P (T = t) is the probability distribution

function of T. The survival function is defined as S(t) = 1 − P (T < t) = 1 − F (t),

where F (t) is the cumulative distribution function.
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• As mentioned above, the null model in Logrank testing assumes that the survival

functions of the two groups are identical, SA(t) ≡ SB(t). The null model also assumes

that the variables OA,j (for all time intervals) are collectively independent.

• Under the null model the following applies: OA,j ∼ HG(nj, nA,j, oj), where HG stands

for Hyper-Geometric distribution [8] [1].

Similarly for group B we have OB,j ∼ HG(nj, nB,j, oj).

• The expected value and the variance of OA,j are given by:

EA,j = nA,j
nj

oj

V ariace = VA,j = nA,j
nj

oj

(
nj − oj
nj

)(
nj − nA,j
nj − 1

)

Similarly for group B.

• The Logrank statistic is defined as:

ZA = O − E√
V

Where:

O =
J∑
j=1

oA,j E =
J∑
j=1

EA,j V =
J∑
j=1

VA,j

If J is sufficiently large and the partition into A and B is reasonably balanced then ZA

is approximately distributed as N(0, 1). The p-value evaluated for the dataset D uses the

observed value of ZA and this stated normal approximation.
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1.3 Secure Multiparty Computation - Background

1.3.1 MPC Protocols

Generally, every secure multiparty computation (MPC)[12][22][18] protocol is designed to

address the following situation: Consider a set of parties such that each party has an input it

desires to keep private. The parties use a predefined protocol to jointly compute a function

of their inputs. As an example, consider 10 individuals, each having an input xi. All

participants wish to evaluate Σ10
i=1xi without exposing their own private inputs.

In MPC protocols a certain set of security properties must be preserved[11]:

• Privacy - no information about the inputs may be revealed except for the output and

quantities that directly follow.

• Independence of inputs - no party can choose it’s input according to other inputs

• Correctness - the protocol computes the function correctly

• Fairness - if one party is exposed to it’s output as defined by the protocol, all parties

must be exposed to their outputs we well.

While the privacy, correctness and independence of inputs are essential, the fairness require-

ment can be relaxed in some cases. This kind of compromise supports a more efficient

protocols in terms of performance.

1.3.2 The Adversary Model

Every secure MPC protocol is designed for a certain adversarial model. The adversary is

considered to be an entity that has full control over one or more parties in the setting. As

such, the adversary has the full knowledge and perspective (”point of view”) of the corrupted

parties. The adversary sees their inputs, their coin tossing results (when such are involved),

and the messages received during the protocol run.

11



Two different models of adversarial behaviour can be considered:

• Semi-honest - the adversary follows the protocol (i.e. ”plays by the rules”), while only

attacking the privacy and attempting to extract information about the inputs of the

other parties.

• Malicious - the adversary does not follow the protocol, and attempts to attack privacy

as well as correctness, independence of inputs and fairness.

The computation power of the adversary is also significant when designing a protocol.

The adversary can have either polynomial computation power or unbounded computational

power.

Another characteristic of the design is related to the timing of corruption. In a static

setting, the parties are corrupted before the protocol is initiated. In an adaptive setting,

the adversary can corrupt parties during the protocol’s run, based on past events.

These three assumptions - the adversary’s behaviour, the adversary’s computational

power and it’s ability to manipulate the setting - are the cornerstone of defining and evalu-

ating any secure MPC protocol.

1.3.3 Security in MPC Protocols

A secure MPC protocol is a protocol that preserves all security properties - privacy, correct-

ness, fairness and independence of inputs - with respect to the adversary model. Nevertheless,

in this work we present a modular protocol, which can be adequate for different adversary

models.

Every function f() can be evaluated by a secure protocol as was first demonstrated by

Yao in 1986 [22]. Yao’s construction showed how any function based on a boolean circuit

and calculated on the inputs of two parties can be securely computed.

BenOr, Goldwasser and Wigderson published in 1988 a protocol for securely evaluating any

function, under the assumption that the majority of the parties are not corrupted.
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In theory, these constructions can securely calculate any function. However, using them

as part of valid solutions to a concrete problem usually results in poor performance and high

complexity. In the real world, it is much more efficient to design dedicated protocols for

specific tasks.

Notation

Let X̄ = (x1, x2, ..., xN) and Ȳ = (y1, y2, ..., yN) be random vectors.

The notation X̄ ≡C Ȳ means that the distribution of vector X̄ and the distribution of vector

Ȳ are close.

Close can mean:

• Identical distributions. Insures perfect secrecy.

• Statistical Indistinguishability. The distributions are not identical, but for every sample

value C̄0 : Pr[X̄ = C̄0] ≈ Pr[Ȳ = C̄0] . Statistical closeness insures statistical secrecy.

• Computational Indistinguishability. For every PPT (probabilistic polynomial time)

algorithm A, the probability that A distinguishes between the distributions of the two

vectors X̄, Ȳ is negligible. Computational Indistinguishability insures computational

secrecy.

Definition

There are formal comprehensive definitions for a secure MPC protocol which are adequate

for different types of adversaries. But for the examples that will be presented in the following

chapters, a simplified informal definition will suffice. The simple case involves two parties in

a static setting and a semi-honest adversary.

So instead of presenting the formal definition, consider the following informal description[11].

A secure two party protocol against a semi-honest adversary:

Let f(x, y) =
(
f1(x, y), f2(x, y)

)
be a functionality that can be computed by a PPT algo-
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rithm. π is a two-party protocol of f(x, y). x is the input of party P1 and y is the input

of party P2. Similarly, f1(x, y) is the result exposed to party P1 and f2(x, y) is the result

exposed to party P2. The security parameter is n.

π securely computes f in the presence of a static semi-honest adversary if there exist PPT

algorithms S1 and S2 (Simulators) such that for every set of values (x, y, n) the joint distri-

butions of the vectors resulting from running the protocol and the simulators are close:


(
S1
(
1n, x, f1(x, y)

)
, f(x, y)

) ≡C

(
viewπ1 (x, y, n), f(x, y)

)
and 

(
S2
(
1n, y, f2(x, y)

)
, f(x, y)

) ≡C

(
viewπ2 (x, y, n), f(x, y)

)
where:

viewπi (x, y, n) = (input of party i, coin tosses of party i, messages received by party i)

Note that the above requirement also forces the following condition on the marginal dis-

tributions: {
S1
(
1n, x, f1(x, y)

)}
≡C

{
viewπ1 (x, y, n)

}

and {
S2
(
1n, y, f2(x, y)

) ≡C
{
viewπ2 (x, y, n)

}

The algorithms S1 and S1 can be thought of as Simulators. A simulator is an algorithm

that resembles a fair protocol run. Intuitively, a protocol is secure if a simulator with no

input could perfectly imitate any party during the protocol such that the other party will

never notice a difference.
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Part I

CoPPSA - Collaborative

Privacy-Preserving Survival Analysis
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Chapter 2

Previous Work

Survival analysis tools and Logrank Test in particular are used in clinical studies for diverse

measurements, such as the efficacy of medical treatments or for comparing life expectancy

between populations (see 1.2.2 and 1.2.3). Due to the important role of survival analysis

in medical research, several secure protocols for survival analysis were published in recent

years. In this section we review three state of the art published reports [17] [logrank˙prot]

[13].

Privacy Preserving is a general concept of protecting the privacy of the subjects analyzed

in a dataset. In 2017 Nguyen & Hui [17] suggested an efficient Differential Privacy solution

for survival analysis, under the assumption that the data follows the Weibull distribution.

Differential Privacy is a rigorous mathematical definition of privacy-preservation.

Consider a computation taken over some dataset. If a computation suffices differential

privacy then adding an individual’s information to the dataset (or removing one out of it)

cannot conspicuously change the distribution of the computation result. Differential privacy

does not achieve the level of security that a secure MPC protocol guarantees. While in MPC

protocol no information regarding the input (beyond what is known form the output) can
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leak, differential privacy only guarantees that the output does not reveal information about

any entry in the dataset.

In 2011 Tingting Chen and Sheng Zhong published an MPC protocol for Logrank Test

which is based on the Secure Sum operation[5]. However, the Secure Sum is not secure

against a setting with more than one corrupted party - as will be shown below. Since the

Logrank MPC protocol is based on this operation, the protocol is also not secure for settings

with more than one corrupted party.

Observation: Secure sum is not secure in a setting with more than one corrupted party.

Proof. Consider a set of K parties P1, ..., PK . Each party i has an input xi ,i = 0, 1, ...K.

Let C be a known parameter such that xi < C for i = 0, 1, ...K.

Let f(x1, x2, ..., xK) = x1 + x2 + ...+ xK

The Secure Sum operation is as follows:

1. P1 samples R1 ∼ Uni[0, CK − 1] and sends m1 = (x1 +R1) mod (CK) to P2

2. for j = 2, ..., K − 1: Pj Sends mj = (xj +mj−1) mod (CK) to Pj+1.

3. PK Sends mK = (xK +mK−1) mod (CK) to P1.

4. P1 sends output = (mK −R1) mod (CK) to all other parties.

For t > 1 this protocol is not secure.

For example, if the adversary corrupted parties P2 and P4, then it can calculate x3 with

full confidence:

P
[
X3 = (m3 −m2) mod (CK)|m3,m2

]
= 1

Which proves the observation.
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Furthermore, even though Chen-Zhong’s protocol is aimed to calculate Z-score, it reveals

additional information which should remain hidden.

Chen-Zhong’s protocol has two versions. In the first version both the total numbers of in-

stances ”at risk” and the total number of failures for each time interval are exposed. In the

second version of the protocol the total amount of failures in the target group is exposed.

Although this can be considered as a reasonable compromise in some cases, it is not true for

all scenarios.

On January 2021 von Maltitz et al described a high-performance implementation for a

secure MPC protocol for Logrank test[13]. Their implementation is based on FRESCO -

Framework for Efficient Secure Computation - a Java-based repository for writing applica-

tions based on secure computation.

Von Maltitz et al demonstrated that with a common hardware and networking framework,

a secure MPC protocol for Logrank can run within a reasonable time . Specifically, their

protocol took 20 minutes for 300 items merged dataset divided to 3 subsets. In their paper

they described the dataset merging process:

1. Each party defines a list of failure times.

2. All parties use MPC protocol to create one merged sorted list of all failure times. By

the end of this step the only intermediate information that was made available to all

parties was the merged list of failure times.

3. Each party creates a table with the Logrank data: the amount of subject ”at risk”, the

total amount of failures, and the amount of failures in the target group. Each entry in

the table is associated with a time in the merged list.

4. Each party encrypts it’s table, as generated above.

5. The parties use an additive MPC protocol to marge all ciphertext to one encrypted

table.
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The encrypted merged table is an encrypted Logrank timeline. The consequent operations

in the calculation are now executed straight forward on the encrypted data. Note that the

encryption therefore needs to support division and roots. In fact, for each time interval (for

each encrypted entry in the merged table) the expected value and variance are calculated

over encrypted data. That requires a number of division operations that is linear to the

number of failures.

Von Maltitz et al’s solution is accurate and fully secure, although it exposes the time intervals

of the merged tables to all parties. Their measurements show that the most influential factors

on time performance were the number of ”heavy” arithmetic operations (such as divisions),

and network latency.
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Chapter 3

The Protocol

The naive way to perform the Logrank calculation in MPC would be to first encrypt the

data table of each party, then to merge the encrypted data, and finally to perform all of the

Lograk process on encrypted dataset. Unfortunately this method is extremely inefficient.

Logrank calculation requires both sorting and division operations. The number of required

division operation is linear in the number of time intervals in the data; this has proven to

be a highly resource-demanding process, to a point of infeasibility when dealing with even

mildly large amounts of encrypted data.

We could provide a new MPC protocol designed for a specific adversary model, but

we would like to propose a more general solution for the efficiency problem. We offer an

alternative calculation for Logrank which is based on changing the Logrank process so that

the parties do most of the required operations before the data is encrypted. This way we

minimize the number of operations on the ciphertext.

Our solution actually computes a variant of the standard approximation. In section 4 we

discuss statistical aspects related to the difference between Logrank and CoPPSA
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In this chapter we present the CoPPSA protocol and discuss it’s correctness and it’s

security. CoPPSA can be implemented based on a variety of known MPC tools, like BGW,

Homomorphic Encryption, or others.

3.1 CoPPSA - An MPC Protocol For Logrank Test

The notations follow the notations of section 1.2.3. oA,j(i), EA,j(i), VA,j(i) represent oA,j, EA,j, VA,j

as calculated by party i.

Let Z be the result of a standard Logrank Test applied on a dataset D. CoPPSA

calculates a different quantity. Let Z∗ denote the CoPPSA protocol result on the same

dataset D.

Z∗ =
∑N
i=1 O(i)− E(i)√∑N

i=1 V (i)

Logrank calculations are performed over the field of real numbers. Therefore, the accuracy

of calculation is governed by the accuracy of the inputs. The parameter b represents the

number of decimal digits after the decimal point. For calculating Logrank results with a given

accuracy the parties must agree on the parameter b and calculate (O − E, V ) accordingly.

Since Logrank calculates Z-score, a reasonable value can be b = 2 or b = 3.
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1. For each party i, i = 1, 2...., N :

• The party calculates the vector
(
oA,j(i), EA,j(i), VA,j(i)

)
for each time interval j.

The time intervals 1 ≤ j ≤ Ji are associated with the party’s own dataset.

Ji denotes the number of time intervals in the dataset of the party.

• The party calculates over the field of the real numbers R:

O(i) =
Ji∑
j=1

oA,j(i) E(i) =
Ji∑
j=1

EA,j(i) V (i) =
Ji∑
j=1

VA,j(i)

• The party calculates O(i)− E(i) and V (i) as rounded integers:

m1(i) = b10b · (O(i)− E(i))c, m2(i) = b10b · V (i)c

The party then forms the message:

M(i) = (m1(i),m2(i))

2. The Parties use MPC to jointly calculate a value over a cyclic field Zp

(see Section 3.1.2):

D = (
N∑
i=1

m1(i))mod p

U = (
N∑
i=1

m2(i))mod p

(D,U) is the common output of all parties.

3. Each party calculates over R:

Z∗ = D · 10−b√
U · 10−b

Algorithm 1: CoPPSA protocol
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Note that all the secure MPC operations are in Phase 2, on calculating (D, U). All other

calculations are done locally by each party, without further communication.

In terms of MPC, phase 2 requires a secure calculation of sums. This can be implemented

by any MPC protocol that supports summing over Zp and is suitable for the required adver-

sary model.

Note that no sorting operations and no division operations are required.

3.1.1 Correctness

Now we show that Z∗ calculates the required value:

In phase 3 we get:

Z∗ = D · 10−b√
U · 10−b

= (∑N
i=1m1(i))mod p · 10−b√

(∑N
i=1m2(i))mod p · 10−b

=

(∑N
i=1b10b · (O(i)− E(i))c

)
mod p · 10−b√

(∑N
i=1b10b · V (i)c) mod p · 10−b

=

(∑N
i=1b10b · (O(i)− E(i))c

)
· 10−b√

(∑N
i=1b10b · V (i)c) · 10−b

≈
∑N
i=1O(i)− E(i)√∑N

i=1 V (i)

Where we use the construction of p (see section 3.1.2) and where the approximation sign ≈

is due to rounding.

3.1.2 The Field Zp

Now we show how to select the field size p .

Note that phases 1 and 3 imply the following requirements:

1. m1(i),m2(i) ∈ Zp

2. D =
(∑N

i=1b10b · (O(i)− E(i))c
)

mod p =
(∑N

i=1b10b · (O(i)− E(i))c
)

3. U = (∑N
i=1b10b · V (i)c) mod p = ∑N

i=1b10b · V (i)c

Let omax be the maximum number of failures possible in a party’s database. We will show

that if p > N · omax · 10b then the requirements are fulfilled.
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Consider a case where N parties wish to choose a cyclic field Zp for the protocol.

The input, to the protocol, of each party is
(
O(i)−E(i), V (i)

)
=
(∑Ji

j=1(oA,j(i)−EA,j(i)),
∑Ji
j=1 VA,j(i)

)
The required accuracy is 10−b (b decimal digits).

The common output: (D,U) =
(∑N

i=1b10b · (O(i)− E(i))c,∑N
i=1b10b · V (i)c

)
( N∑
i=1
b10b · (O(i)− E(i))c,

N∑
i=1
b10b · V (i)c

)
≤
(

10b
N∑
i=1

(O(i)− E(i)), 10b(
N∑
i=1

V (i))
)

D = (
N∑
i=1

m1(i))mod p ≤ 10b
N∑
i=1

O(i)− E(i)

U = (
N∑
i=1

m2(i))mod p ≤ 10b(
N∑
i=1

V (i))

1. o(i) - the number of failures of party i. The parties should agree over some value omax

such that ∀i = 1, .., N : o(i) ≤ omax.

2.

V ar(oA,j) = nA,jnB,j
n2
j

oj(nj − oj)
(nj − 1) ≤ 1

4
oj(nj − oj)

(nj − 1) ≤ oj(nj − 1)
4(nj − 1) ≤

oj
4

Therefore:

V (i) =
Ji∑
j=1

V ar(oA,j) ≤
1
4
∑

oj(i) = 1
4o(i)

Conclusion: O(i)− E(i) ≤ o(i) ≤ omax, V (i) ≤ 1
4o(i) ≤

1
4omax

3.

(O(i)− E(i)) · 10b ≤ omax · 10b , V (i) · 10b ≤ 1
4omax · 10b

U = (
N∑
i=1

m2(i))mod p =
N∑
i=1

V (i) · 10b ≤ N

4 · 10b · omax

D = (
N∑
i=1

m1(i))mod p =
N∑
i=1

(O(i)− E(i)) · 10b ≤ N · omax · 10b

So, we need to set the field Zp such that N · omax · 10b < p
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3.1.3 CoPPSA Security

As mentioned above, all the secure MPC operations are in phase 2.

The functionality that is being securely calculates is:

D = (
N∑
i=1

m1(i))mod p

U = (
N∑
i=1

m2(i))mod p

(m1(i),m2(i)) is the private input of party i and (D,U) is the common output of all parties.

The security of CoPPSA is therefore directly inherited from the security of the chosen MPC

protocol for phase 2. Since the MPC tool is not specified in the protocol definition, the

level of security is flexible, as well as the adversary model. The MPC tool should be chosen

according to the requirements. In that sense the level of security depends on the implemen-

tation.

For example, consider the following implementation of phase 2 with Homomorphic Encryp-

tion.

Consider an additively Homomorphic Encryption scheme π = (Gen,Enc,Dec,⊕) such that:

∀m,m′ ∈ Zp Decsk(Encpk(m)⊕ Encpk(m′)) = m+m′ mod p

Let Zp be the plaintext field. We assume that Encpk() is a function from Zp to some larger

field Zq.

Consider a case in which N hospitals conducted the same experiment, and they wish to

use CoPPSA to securely calculate Z∗. They use an implementation of CoPPSA in which

there is an evaluation server and a key-holder server. This implementation of the protocol

relies on the assumption that the adversary cannot corrupt both servers at the same time.
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Steps:

1. The key-holder server calculates Gen(1k) −→ (pk, sk) and publishes pk to all hospitals.

2. Each hospital i encrypts the message M(i) and sends the ciphertext to the evaluation

server.

Encpk(M(i))→ C(i), C(i) =
(
c1(i) mod q, c2(i) mod q

)
Note that c1(i) and c2(i) are both in Zq

3. The evaluation server performs the evaluation and sends the result to the key-holder

server.

D̃ = ⊕Ni=1c1(i) Ũ = ⊕Ni=1c3(i)

4. The key-holder decrypts D and U and sends the results to all hospitals.

From the construction of Zp:

Decsk(D̃) = Decsk
(
⊕Ni=1 c1(i)

)
=
( N∑
i=1

m1(i)
)

mod p = D mod p = D

Decsk(Ũ) = Decsk
(
⊕Ni=1 c3(i)

)
=
( N∑
i=1

m2(i)
)

mod p = U mod p = U

It is easy to see that under the assumption regarding the servers, the security is kept.

Discussion:

It is important to note that the common output (D,U) reveals information other than Z∗.

The output (D,U) is defined as follows:

D = (
N∑
i=1

m1(i))mod p

U = (
N∑
i=1

m2(i))mod p
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Using CoPPSA force the participants to share (D,U) instead of sharing Z. In some cases,

revealing (D,U) instead of Z may be considered as a ”deal breaker”.

For example, if there are only two parties participating, the output is

D = (m1(1) +m1(2))mod p

U = (m2(1) +m2(2))mod p

In this case, there is no advantage in using MPC tool for phase 2 at all. The inputs

m1(1),m1(2),m2(1),m2(2) that should have remained private can be directly calculated by

each party from the output. In Von Maltitz et al solution, or any other solution that define

Z as the common outputs, there is no such a problem, because the functionality that is being

securely calculated is Z and not (D,U).

3.1.4 Simulation

A simple example of phases 2 and 3 of the protocol is available at

https://github.com/asamohi/Logrank submodule.git

In this repository you can find a single-threaded simulation. The implementation is based

on Homomorphic Encryption (CKKS scheme). This example contains clients (parties) and

two servers. One server provides keys creation and decryption, and the other server provides

evaluation. We assume that the adversary does not corrupt both servers at the same time.

Space consumption

In our simulation each client sends encrypted data with size 750KB. The evaluation server

sends encrypted data to the key-holder server, which has the same size: 750KB.

We ran the simulation with several numbers of clients with the following running times:
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Number of clients Running time, in seconds

3 1

10 3.25

100 31

1000 307

As expected, the time is linearly proportional to the number of parties. Note that our

protocol is completely independent of the amount of instances.
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Chapter 4

Statistical Analysis And Methods

In this chapter we will discuss several statistical aspects of CoPPSA. We will present the

difference between CoPPSA and standard Logrank Test by experimenting with an actual

data and also by a thought experiment. We will justify the correctness of CoPPSA as

a Survival Analysis comparison tool. We will empirically demonstrate that the results of

CoPPSA converge to those of Logrank test.

4.1 Is Z∗ Equivalent To Z?

As mentioned in the previous chapters, CoPPSA evaluates Z∗ – which is a different function

than the standard Logrank result Z. Figure 4.1 will assist in better understanding the

source of the differences between the two protocols. The top histogram in the figure shows

a simulation of a dataset of size 200 (corresponding to 200 patients). The dataset is the

MAINZ cohort [19]. We divided the data according to the sub-type - Luminal A vs not

Luminal A - and define the target group to be Luminal A. A standard Logrank calculation

on this dataset results with a p-value of 0.0142. This result is marked with a red line

The 200 subjects of the dataset were then uniformly randomly split into 5 subsets. Then
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Figure 4.1: The same simulation over 3 datasets. Different patients allocation results in
different p-values. See text for details.
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Z∗ was calculated assuming each subset is owned by different party. A new p-value was

calculated from this Z∗.

This process was repeated 500 times to generate 500 new p-values based on Z∗ values for

500 random partitions. The top histogram of Figure 4.1 consists of the 500 p-value results.

In the middle histogram we can see the same simulation performed on a different dataset

of 850 patients generating a p-value of 3.7066e-07 (marked in red). The bottom histogram

presents the same simulation with a third dataset or 249 patients. The Logrank p-value

is 7.6e-05 (in red). The three datasets are taken from different breast cancer cohorts -

MAIZ[19], UPSA[2] and STAM[4].

Observing the histograms we can clearly see that evidently the proposed protocol doesn’t

comply with the standard Logrank test: Z 6= Z∗. The underlying reason for this is a loss

of information: the sorting procedure in standard Logrank Test holds larger amount of

information (timing comparisons) compared to the partial sorting procedures performed by

each party locally on smaller portions of the original dataset. At first glance it may look like

a major drawback. However, we will argue that Z∗ is an alternative approach which also

represents adequate significance testing for survival analysis.

In particular, we will take two steps:

1. Proving that Z∗ ∼ N(0, 1) (see section 4.3)

The reliability of the p-value calculation in CoPPSA is not based on the correctness of

the Logrank test, but rather on the strong version of the Central Limit Theorem. We

will prove that, assuming a sufficiently large number of subjects, Z∗ has an approx-

imately N(0, 1) distribution under the null model, which presumes that the survival

function is independent of the class.

2. Empirically demonstrating that with high probability |Z∗ − Z| is small.

As can be observed in the histograms 4.4-4.11, the p-values calculated from Z and Z∗

are relatively close. In section 4.4 we will investigate the distance between Z and Z∗.
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4.2 The Difference Between Z And Z∗

For further intuition about the difference between Z and Z∗, consider the following synthetic

example.

Consider a case in which two hospitals, Hospital1 and Hospital2, wish to measure the

efficiency of new blue medicine called ”The Blue Cure”. The two hospitals started the

following experiment at the exact same time, separately. Each hospital collects a group of

volunteers within the patients and divides them to two groups. One group is given ”The

Blue Cure” and the other is given a placebo. Each hospital measures the time of patients’

death (note that in this example all events are failures, that is: no censorship). Eventually,

the two hospitals merge the collected data into one timeline of failures.

The merged timeline is presented in Figure 4.2. A blue dot denotes a death of a patient

that was given ”The Blue Cure”. A blank dot denotes a death of a patient that was given a

placebo.

Figure 4.2: The merged data from both hospitals. The blank dots denote failures of patients
from the placebo group. The blue dots denotes failures of patients from ”The Blue Cure”
group.

We can see that the first three patients to fail were given a placebo, and the five patients who

survived the longest were given ”The Blue Cure”. Note that we cannot tell the association

between patients and hospitals.

Observing the timeline, we see that the patients that were given ”The Blue Cure” tended to

live longer. Without any calculations we can clearly deduce Z is negative if the target group

is the ”blue” group (that was given the blue medicine).

O =
J∑
j=1

oblue,j E =
J∑
j=1

Eblue,j V =
J∑
j=1

Vblue,j
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Zblue = O − E√
V

< 0

Let Z0 be Logrank Test result as calculated from this timeline. Z0 = Zblue < 0 . Our next

step is to show that for different allocations to subsets, Z∗ changes while Z0 is the same.

What would have happened if the dataset collected in each hospitals weren’t merged?

In Figure 4.3 we can see two distinct patient allocations for the same merged timeline as

presented in Figure 4.2. The two allocations are labeled ”Division A” and ”Division B”. The

timelines in Figure 4.2 labeled ”Merged Data” denotes the merged timeline, and they are

identical, as expected. The purple square denotes the patients allocated for Hospital 2 in

division A. They appear also on the separate timeline labeled ”Hospital2” under ”Division

A”. The orange square denotes the patients allocated for Hospital 2 in division B. They

appear also on the separate timeline labeled ”Hospital2” under ”Division B”.

In both allocations Hospital2 dataset consist of 6 patients, 3 of which are given ”The Blue

Cure” and 3 in are given placebo.

Figure 4.3: Two distinct patient allocations for the same merged timeline results in two
different values of Z∗

The CoPPSA result based on Division A is denoted by Z∗A, and the CoPPSA result based

33



on Division B is denoted by Z∗B. The standard Logrank Test result is equal to Z0 < 0 for all

possible divisions, because they are all merged to the same identical dataset.

Observations:

1. In both allocations Hospital2 has the same timeline, and therefore the same values

O(2)A = O(2)B, E(2)A = E(2)B, V (2)A = V (2)B.

2. Hospital1 has different timelines, so the values are different:(
O(1), E(1), V (1)

)
A
6=
(
O(1), E(1), V (1)

)
B

.

From the observations we can therefore conclude that Z∗A 6= Z∗B. Therefore: Z0 6= Z∗A or

Z0 6= Z∗B.

Conclusion:

The protocol calculation result Z∗ is not necessarily equal to the Logrank result Z.

4.3 CoPPSA - Proof Of Convergence to Standard Nor-

mal Distribution

4.3.1 Intuition

To validate the correctness of the protocol we need to prove the following claim:

Z∗ =
∑N

i=1 O(i)−E(i)√∑N

i=1 V (i)
Then under the null model: Z∗ ∼ N(0, 1).

Let (OA,1, ..., OA,k) be the set of random variables defined in the Logrank process over the
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dataset D of some party.

OA,j ∼ HG(nj, nA,j, oj)

The observed value of each random variable Oj is oj.

The expected value and the variance of OA,j under the null model:

EA,j = nA,j
nj

oj, VA,j = nA,j
nj

oj

(
nj − oj
nj

)(
nj − nA,j
nj − 1

)

Under the null model (OA,1, ..., OA,k) are collectively independent. By the Logrank process

we define:

O =
k∑
j=1

OA,j E =
k∑
j=1

EA,j V =
k∑
j=1

VA,j

Assuming that k is large enough we get the Gaussian (O − E) with the variance V

Before we describe the proof, Let’s try an intuitive (informal) approach and extend the

above to a case with multiple datasets.

{D(1), D(2), ...D(N)} is a set of N datasets of N parties respectively.{
OA,1(i), OA,2(i), ..., OA,ki

(i)
}

are the random variables defined from dataset D(i) in the Lo-

grank process.

O(i) =
k∑
j=1

OA,j(i) E(i) =
k∑
j=1

EA,j(i) V (i) =
k∑
j=1

VA,j(i)

Consider the set of all random variables from all datasets:

{
OA,1(1), OA,2(1), ..., OA,k1(1), ..., OA,1(N), OA,2(N), ..., OA,kN

(N)
}

Under the null model all these RVs are collectively independent. Therefore, the Gaussian

random variables ∀i = 1, ...N : (O(i)− E(i)) are also collectively independent.
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Therefore, ∑N
i=1(O(i)− E(i)) is a Gaussian with variance ∑N

i=1 V (i)

By this we get that Z∗ =
∑N

i=1(O(i)−E(i))√∑N

i=1(V (i))
∼ N(0, 1)

In the next sections we will give the complete proof of the convergence.

4.3.2 Preliminary Definitions And Claims

Theorem 4.3.1. (Lindeberg-Feller Theorem)

Let (Y1, ..., Yn) be a set of independent RVs s.t. ∀i ∈ [1, n] : E(Yi) = 0.

• Tn = ∑n
k=1 Yk

• V ar(Yk) = σ2
k

• s2
n = V ar(Tn) = ∑n

k=1 V ar(Yk) = ∑n
k=1 σ

2
k

If for every ε > 0 limn→∞
1
s2

n

∑n
k=1E

(
Y 2
k · I{|Yk| ≥ ε · sn}

)
= 0

then: Tn

sn

D−→ N(0, 1)

The Condition ∀ε > 0 limn→∞
1
s2

n

∑n
k=1E

(
Y 2
k · I{|Yk| ≥ ε · sn}

)
= 0 is called Lindeberg’s

Condition.

Lemma 4.3.2. Let (Y1, ..., Yn) be a set of discrete independent random variables s.t.

1. ∀i ∈ [1, n] : −M ≤ Yi ≤M for some constant M > 0

2. ∀i ∈ [1, n] : E(Yi) = 0

3. ∀i ∈ [1, n] : V ar(Yi) > 0

4. limn→∞
∑n
i=1 V ar(Yi) =∞

Then: (Y1, ..., Yn) complies with Lindeberg’s condition.

Proof. Notations:

• Tn = ∑n
k=1 Yk
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• V ar(Yk) = σ2
k

• s2
n = V ar(Tn) = ∑n

k=1 V ar(Yk) = ∑n
k=1 σ

2
k

Now, we show that Lindeberg condition holds:

1
s2
n

n∑
k=1

E(Y 2
k · I{|Yk| ≥ ε · sn}) = 1

s2
n

n∑
k=1

M∑
y=−M

P (Yk = y)y2 · I{|y| ≥ ε · sn}dy ≤

≤ 1
s2
n

n∑
k=1

M2
M∑

y=−M
P (Yk = y) · I{|y| ≥ ε · sn}dy = 1

s2
n

n∑
k=1

M2P (|Yk| ≥ ε · sn) ≤

Chebyshev′s,λ=ε·sn−−−−−−−−−−−→≤ 1
s2
n

n∑
k=1

M2
(
σ2
k

ε2s2
n

)
= M2

s2
n

· 1
ε2s2

n

n∑
k=1

σ2
k = M2s2

n

s2
nε

2s2
n

= M2

s2
nε

2

limn→∞
∑n
i=1 V ar(Yi) = limn→∞ s

2
n =∞ , so for every ε > 0 :

lim
n→∞

M2

s2
nε

2 = 0

0 ≤ 1
s2
n

n∑
k=1

E(Y 2
k · I{|Yk| ≥ ε · sn}) ≤

M2

s2
nε

2

Therefore, for every ε > 0 :

lim
n→∞

1
s2
n

n∑
k=1

E
(
Y 2
k · I{|Yk| ≥ ε · sn}

)
= 0

Conclusion: (Y1, ..., Yn) complies with Lindeberg condition.

Lemma 4.3.3. Let D be a Logrank dataset. Let
(
OA,1, OA,2, ..., OA,k

)
be the set of random

variables defined in the Logrank process over the dataset D.

then: limk→∞
∑k
j=1 V ar(OA,j) =∞

4.3.3 Convergence To Standard Normal Distribution

In this section we use theorem 4.3.1, lemma 4.3.2 and lemma 4.3.3 to prove that Z∗ ∼ N(0, 1).

Let D(1), D(2), ...D(N) be a set of survival time-and-event datasets used by CoPPSA.
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Define the set of new random variables (Y11, Y21, ...., YnN ,N) s.t. For each i,j Yji = OA,j(i)−

EA,j(i).

Claim 4.3.4. (Y11, Y21, ...., YnN ,N) is a set of discrete RVs (trivial)

Claim 4.3.5. (Y11, Y21, ...., YnN ,N) is a set of collectively independent RVs.

Proof. Each party i = 1, ..., N calculates the vector
(
oj(i), EA,j(i), VA,j(i)

)
for each time

interval j. Just like in the standard Logrank, OA,j(i) is a random variable with hyper-

geometric distribution. And similarly to Logrank (OA,1(i), OA,2(i), ..., OA,Ti
(i)) is collectively

independent. Since each party conducts a separate independent experiment, we can assume

that (
OA,1(1), OA,2(1), ..., OA,k1(1), ..., OA,1(N), OA,2(N), ..., OA,kN

(N)
)

are collectively independent. Therefore (Y11, Y21, ...., YnN ,N) are also collectively independent.

Claim 4.3.6. −1 ≤ Yji ≤ 1

Proof. In both standard Logrank Test and CoPPSA, each failure time defines a new time

interval. OA,j(i) > 1 meas that several failures occurred at the exact same time. In a

theoretic, experiment in which time measurement resolution is infinite, we get:

∀i, j : 0 ≤ OA,j(i) ≤ 1 =⇒ 0 ≤ EA,j(i) ≤ 1 =⇒ −1 ≤ OA,j(i)−EA,j(i) ≤ 1 =⇒ −1 ≤ Yji ≤ 1

(In practice, we can tune the time measurement resolution of the experiment according to

an arbitrary M, and say OA,j(i) ≤M).

Claim 4.3.7. E(Yji) = 0 (trivial)

Claim 4.3.8. V ar(Yji) > 0

Proof. By the definition of Hyper-geometric distribution we know:

V ar(Yj) = VA,j = nA,j

nj
oj

(
nj−oj

nj

)(
nj−nA,j

nj−1

)
By definition: ∀i, j : 0 < nA,j(i) oj(i) < nj(i) 2 ≤ nj(i) =⇒ V ar(Yji) > 0
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Claim 4.3.9. limn→∞
∑N
i=1

∑n
j=1 V ar(Yji) =∞

Proof. From Lemma 4.3.3 we assume: limTi→∞
∑Ti
j=1 V ar(OA,j(i)) =∞

=⇒ lim
Ti→∞

Ti∑
j=1

V ar(Yji) =∞ =⇒
N∑
i=1

lim
Ti→∞

Ti∑
j=1

V ar(Yji) =∞ =⇒ lim
n→∞

N∑
i=1

n∑
j=1

V ar(Yji) =∞

We see that (Y11, Y21, ...., YnN ,N) is set of discrete independent variable s.t.

1. ∀i, j : −1 ≤ Yji ≤ 1

2. ∀i, j : E(Yji) = 0

3. ∀i, j : V ar(Yji) > 0

4. limn→∞
∑N
i=1

∑n
j=1 V ar(Yji) =∞

So by lemma 4.3.2 and theorem 4.3.1:

lim
n→∞

∑N
i=1

∑Ti
j=1 Yji√∑N

i=1
∑Ti
j=1 V ar(Yji)

∼ N(0, 1)

By the original definition of Yji :

Ti∑
j=1

V ar(Yji) =
Ti∑
j=1

V ar(OA,j(i)) = V (i),
Ti∑
j=1

Yji = (O(i)−E(i)) =⇒ lim
n→∞

∑N
i=1O(i)− E(i)√∑N

i=1 V (i)
∼ N(0, 1)

4.4 How Close Are Z And Z∗ ?

To justify the usage of the newly proposed algorithm we must show that Z and Z∗ are

close with high probability as the number of subjects increases and under some assumption

related to partitioning the cohort of subjects. We defer a formal proof to future work (see

discussion) and herein provide some empirical evidence. The histogram in Figure 4.4 is based
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on the data from the MAINZ cohort [19]. This dataset has 200 entries, corresponding to 200

patients with breads cancer. As mentioned above, we divided the data according to cancer

sub-type - Luminal A vs not Luminal A - and define the target group to be Luminal A. The

standard Logrank calculation on this dataset results with a Z = −2.19.

The 200 values dataset was then uniformly randomly split into 5 subsets. Then Z∗ was

calculated assuming each subset is owned by different party.

This process was repeated 500 times to generate 500 new Z∗ values for 500 random

partitions. The histogram in Figure 4.4 consists of the 400 values of Z∗ − Z.

In the following histograms, shown from Figure 4.5 up to Figure 4.11 we can see the output

of the same simulation taken over different datasets (UPSA[2], STAM[4] and SCANB[3],

different merges between them and with additional synthetic data). Each histogram consists

of the 500 results of the calculation Z∗ − Z, according to 500 random partitions. The

comparison is between Luminal A and not Luminal A. The target group is always Luminal

A.

Let S(D) be the size of the dataset D. The shapes of histograms are close to a normal

distribution shape. This indicates that Z∗ − Z may have a normal distribution such as

(Z − Z∗) ∼ Normal
(

0, V
(
S(D)

))
for an unknown function V (). An interesting pattern

emerges: the larger the dataset is, the smaller the variance of the Gaussian becomes. Let

s be the size of the merged dataset, the pattern may indicate that: lims→∞ V (s) = 0 and

therefore lims→∞ Z
∗ = Z

Assuming that this conjecture is true, a generalization may have the following form:

Conjecture 4.4.1. for every k, ε and δ there exists an N such that for every dataset of

size n such that N ≤ n, if the dataset is randomly and uniformly divided into k subsets with

similar sizes, then:

P (|Z − Z∗| > ε) < δ
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Figure 4.4: Z∗ − Z values for different partitions, 200 subjects

Figure 4.5: Z∗ − Z values for different partitions, 249 subjects
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Figure 4.6: Z∗ − Z values for different partitions, 850 subjects

Figure 4.7: Z∗ − Z values for different partitions, 1000 subjects
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Figure 4.8: Z∗ − Z values for different partitions, 1500 subjects

Figure 4.9: Z∗ − Z values for different partitions, 2000 subjects
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Figure 4.10: Z∗ − Z values for different partitions, 2500 subjects

Figure 4.11: Z∗ − Z values for different partitions, 3069 subjects
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Chapter 5

Incentive For Veracity

5.1 What Is A lie?

In the MPC field a false input is not considered as an attack. A secure MPC protocol is not

necessarily protected against deceptions.

For example, let π be a secure MPC protocol for calculating the function

f(x1, x2, x3) = x1 + x2 + x3

such that each party Pi owns the input xi.

The protocol output f(x1, x2, x3) is sent back to all three parties. If P1 provides a false

input z1 6= x1 then the output of π will be f(z1, x2, x3) = z1 +x2 +x3. By the end of the run

P2 and P3 have the value f(z1, x2, x3), meaning they got a false output. But P1 can easily

calculate the desired and true value f(x1, x2, x3):

f(z1, x2, x3)− z1 + x1 = z1 + x2 + x3 − z1 + x1 = f(x1, x2, x3)

Now, let’s consider a similar scenario in CoPPSA:

Party Pl ”lies” (i.e. provides a false input), while all other parties use their true results
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(see section 3.1).

The true input of Pl:

m1true = b10b · (O(l)− E(l))c, m2true = b10b · V (l)c

Pl maliciously uses fake input.

Mfake = (m1fake
mod p,m2fake

mod p)

All parties receive the result

Dwrong = (
N∑
i=1

m1(i))mod p

Uwrong = (
N∑
i=1

m2(i))mod p

Pl calculates

Dfixed =
(

(
N∑
i=1

m1(i))−m1fake
+m1true

)
mod p = (

N∑
i=1

m1(i))−m1fake
+m1true

Ufixed =
(

(
N∑
i=1

m2(i))−m2fake
+m2true

)
mod p = (

N∑
i=1

m2(i))−m2fake
+m2true

Party l calculates the true result Z∗ = Dfixed·10−b√
Ufixed·10−b

Eventually Pl is the only party who knows the correct Z∗ value.

5.1.1 Deterministically Non-Cooperatively Computable Functions

Y. Shoham and M. Tennenholtz presented in 2005 the concept of deterministically non-

cooperatively computable functions (D-NCC)[20]. They defined a boolean function to be
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D-NCC as follows:

Assume a set of n agents (parties) {1, 2, ..., n} and a special agent termed ‘the center’.

For each agent i: vi ∈ {0, 1} is the type (input) of agent i. The vector of agent types

v = (v1, ..., vn) has a joint probability distribution P . P assigns positive probability to all

configurations, i.e. P (v) > 0 for every v ∈ {0, 1}n.

Given a function w : {0, 1}n → {0, 1}, we consider the following protocol:

1. For any vector v ∈ {0, 1}n, each agent i declares his type ṽi to the center. It can be

either true (ṽi = vi) or false (ṽi 6= vi)

2. The center computes w(ṽ) = w(ṽ1, ..., ṽn) and send the value w(ṽ) to all agents.

3. Each agent i computes w(v) based on w(ṽ) and vi (his true input).

A pair of functions (fi, gi) represents the strategy for agent i .

• fi : {0, 1} → {0, 1} is the declaration function. It sets the input sent to the center

based on the true input. fi(vi) = ṽi

• gi : {0, 1}2 → {0, 1} is the interpretation function. It is used by the agent to ”fix”

the output based on the center’s announcement and his own true input. gi(w(ṽ), vi)

Notations:

• v−i = (v1, v2, ..., vi−1, vi+1, ...vn)

• For b ∈ {0, 1}: (b, v−i) = (v1, ..., vi−1, b, vi+1, ...vn)

Definition 5.1.1. Let n, P, w be as defined above . Then w is deterministically non-

cooperatively computable (D-NCC) if:

For any agent i, every strategy (fi, gi) and every vi ∈ {0, 1}, the following holds.

Either there exists v−i ∈ {0, 1}n−1 such that gi(w(fi(vi), v−i), vi) 6= w(vi, v−i),

or else for every v−i ∈ {0, 1}n−1 we have w(fi(vi), v−i) = w(vi, v−i).
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Simply put, if an agent can impact the center’s output value, then for every false value

it produces, there are types of the other agents, that will result in an output he can not fix.

The definition is powerful and intuitive, but it applies for boolean functions only, and it

also assumes P (v) > 0 for each v.

For our purpose - incentive for honesty in CoPPSA - we propose our own new definition.

This definition is very similar to the definition of D-NCC, but it also holds for non-boolean

functions and inputs.

5.2 What Is An Incentive For Good Veracity?

We would like to construct a protocol that motivates the parties to provide true input values.

We call this feature ”Incentive for good behavior” or ”Incentive for veracity”.

Before we start, let’s recall the definition of conditional entropy.

Consider two random variables X, Y with images X,Y respectively.

For discrete variables the conditional entropy is defined as:

H(Y |X) = −
∑
x∈X

P (X = x)
∑
y∈Y

P (Y = y|X = x) logP (Y = y|X = x)

Definition 5.2.1. (A function with an incentive for veracity with respect to one input)

Let {X1, ..., Xn} be a set of independent random variables, ∀i ∈ {1, .., n} Xi : Ω→ R.

Let f(x1, ..., xn) be a function f : Rn → F.

Consider l ∈ {1, ..., n}. We say f(X1, ..., Xn) has an incentive for veracity with re-

spect to input Xl if for every couple of sample values τ, ϕ ∈ R s.t. P (Xl = τ) > 0, P (Xl =

ϕ) > 0 and τ 6= ϕ:

H(f(X1, ..., Xl = τ, ..., Xn)|f(X1, ..., Xl = ϕ, ..., Xn)) > 0
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Where H(·|·) denotes the conditional entropy and the probability is taken over the distribu-

tion of the inputs (X1, ..., Xl−1, Xl+1, ..., Xn).

Claim 5.2.2. Let g : F→ F be an injective function. f : Rn → F. Let {X1, ..., Xn} be a set

of collectively independent random variables.

If f(X1, ..., Xn) has an incentive for veracity with respect to Xl then g ◦ f(X1, ..., Xn) has an

incentive for veracity with respect to Xl.

Proof.

H(f(X1, ..., Xl = τ, ..., Xn)|f(X1, ..., Xl = ϕ, ..., Xn)) > 0→

→ H(f(X1, ..., Xl = τ, ..., Xn)|g ◦ f(X1, ..., Xl = ϕ, ..., Xn)) > 0→

→ H(g ◦ f(X1, ..., Xl = τ, ..., Xn)|g ◦ f(X1, ..., Xl = ϕ, ..., Xn)) > 0

Definition 5.2.3. (A function with an incentive for veracity )

Let {X1, ..., Xn} be a set of independent random variables, ∀i ∈ {1, .., n} Xi : Ω→ R.

Let f(x1, ..., xn) be a function f : Rn → F.

We say f(X1, ..., Xn) has an incentive for veracity if f(X1, ..., Xn) has an incentive

for veracity with respect to input Xl for every l ∈ {1, ..., n}.

Example:

Let X1, X2, X3 be iid random variables, Xi ∈ {−1, 1} , P (Xi = 1) = P (Xi = −1) = 0.5

f(x1, x2, x3) = x1x2 + x2x3 + x3x1

Claim 5.2.4. f(X1, X2, X3) has an incentive for veracity.
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Proof. Notice that f(X1, X2, X3) =
{ 3 if X1 = X2 = X3

−1 else

If a = 1 and f(a,X2, X3) = 3 then we know that X2 = 1 and X3 = 1 and we can cal-

culate f(−1, X2, X3) = −1. But if a = 1 and f(a,X2, X3) = −1 then X2 and X3 are

unknown and f(−1, X2, X3) can be either −1 or 3.

In the same way, If a = −1 and f(a,X2, X3) = 3 then we know that X2 = −1 and X3 = −1

and we can calculate f(1, X2, X3) = −1. But if a = −1 and f(a,X2, X3) = −1 then X2 and

X3 are unknown and f(1, X2, X3) can be either −1 or 3.

Notations:

f(1, X2, X3) = f̃1(X2, X3) in short: f̃1()

f(−1, X2, X3) = ˜f−1(X2, X3) in short: ˜f−1()

Assume a = −1, b = 1.

P (f̃1() = −1| ˜f−1() = 3) logP (f̃1() = −1| ˜f−1() = 3) = 1 · 0 = 0

P (f̃1() = 3| ˜f−1() = 3) logP (f̃1() = 3| ˜f−1() = 3) = 0 · −∞ = 0

P (f̃1() = −1| ˜f−1() = −1) logP (f̃1() = −1| ˜f−1() = −1) = 2
3 log 2

3

P (f̃1() = 3| ˜f−1() = −1) logP (f̃1() = 3| ˜f−1() = −1) = 1
3 log 1

3

H
(
f̃1()| ˜f−1()

)
= −

∑
˜f−1()=3,−1

P ( ˜f−1())
∑

f̃1()=3,−1

P (f̃1()| ˜f−1()) logP (f̃1()| ˜f−1()) =

= −P
(

˜f−1() = 3
)
· 0− P

(
˜f−1() = −1

)
· [23 log 2

3 + 1
3 log 1

3] = −3
4
(2

3 log 2
3 + 1

3 log 1
3
)
> 0

The calculation is the same for a = 1, b = −1:

H
(

˜f−1()|f̃1()
)

= −
∑

f̃1()=3,−1

P (f̃1())
∑

˜f−1()=3,−1

P ( ˜f−1()|f̃1()) logP ( ˜f−1()|f̃1()) > 0
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We showed that f has an incentive for veracity with respect to X1. Due to the symmetry of

the function, and since the the inputs are iid, f has an incentive for veracity with respect to

X2 and X3 .

Conclusion: f has an incentive for veracity.

Example: Let X1, X2, X3 be random variables, Xi ∈ {1, 2} , P (Xi = 1) = P (Xi = 2) =

0.5

f(x1, x2, x3) = x1
x2

+ x2
x3

+ x3
x1

f(X1, X2, X3) has an incentive for veracity.

Definition 5.2.5. (A function set with an incentive for veracity with respect to a set of

inputs)

Let {X1, ..., Xn} be a set of independent random variables, ∀i ∈ {1, .., n} Xi : Ω→ R.

Let f(x1, ..., xn) be a function f : Rn → F.

Consider (l1, ..., lk) ∈ {1, ..., n}. We say f(X1, ..., Xn) has an incentive for veracity with

respect to the inputs (Xl1 , ..., Xlk) if for every couple of vectors (ϕ1, ..., ϕk), (τ1, ..., τk) ∈ Rk

s.t ∀i ∈ (1, ..., k) P (Xli = ϕi) > 0, P (Xli = τi) > 0 and (ϕ1, ..., ϕk) 6= (τ1, ..., τk):

H(fl(X1, ..., Xl1 = τ1, ..., Xlk = τk, ..., Xn)|fl(X1, ..., Xl1 = ϕ1, ..., Xlk = ϕk, ..., Xn)) > 0

Where the probability is taken over the distribution of the inputs {X1, ..., Xn}/{Xl1 , ..., Xlk}.

Definition 5.2.6. (Protocol with incentive for veracity )

Let {k1, ..., kn} be a set of positive integers.

Let x̄1 = (x1,1, ..., x1,k1), x̄2 = (x2,1, ..., x2,k2)..., x̄n = (xn,1, ..., xn,kn) be vectors of variables.

Let f(x̄1, x̄2, ..., x̄n) =
(
f1(x̄1, ..., x̄n,), f2(x̄1, ..., x̄n), ..., fn(x̄1, ..., x̄n)

)
be a function f : Rk1+...+kn → Fn that can be computed by a PPT algorithm.

π is a secure MPC protocol for f(x̄1, x̄2, ..., x̄n) s.t x̄l is the input vector of party Pl and

fl(x̄1, ..., x̄n) is the output of party Pl.
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Let {X̄1, X̄2, ..., X̄n} be a set of independent random vectors, X̄i : Ω→ Rki.

Each random vector represents a set of secret inputs.

We say protocol π has an incentive for veracity if for every l ∈ {1, ..., n}:

fl(X̄1, ..., X̄n) has an incentive for veracity with respect to the inputs X̄l = (Xl,1, ..., Xl,kl
).

5.3 How To Add The Incentive To CoPPSA?

To add incentive to CoPPSA we need to change the value that is being calculated in phase

2 of the protocol.

Notations: D2 = (∑N
i=1m1(i))2, U = ∑N

i=1m2(i) (see section 3.1)

D2 and U are integers. By the end of CoPPSA D2 and U are known to all parties. Each

party then calculates Z∗ =
√

D2

U
· 10−b.

CoPPSA with incentive outputs two values Γ,∆ s.t. D2

U
= Γ

∆ .

In particular, we choose the output to be:

(Γ,∆) =
(

D2

gcd(D2, U) ,
U

gcd(D2, U)

)

(gcd = greatest common divisor)

In CoPPSA with incentive each party gets the output (Γ,∆), but not necessarily (D2, U).

5.3.1 Notations

• Let p be a prime number.

Zp = {0, ..., p− 1} Z∗p = {1, ..., p− 1}

∀x ∈ Z∗p there exists ∀y ∈ Z∗p such that x · y = 1 mod p. y is a multiplicative
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inverses of x. x−1 = y mod p

• Extended Euclidean Algorithm – EEA – is a deterministic polynomial-time ex-

tended version of the Euclidean algorithm. Given two integers 0 < a, 0 < b EEA(a,b)

outputs (g,x,y) s.t.:

1. g = gcd(a, b)

2. xa+ yb = gcd(a, b) (x and y integers, may be negative).

Denote: (g, x, y) = EEA(a, b)

• ∀a ∈ Z∗p we can calculate (a−1 mod p) with EEA as follows:

EEA(a, p) outputs (gcd(a, p), x, y) . Since p is prime gcd(a, p) = 1.

xa+ yp = gcd(a, p) = 1→ (xa+ yp)mod p = 1→ xa mod p = 1

Therefore: a−1 = x+ p mod p

(+p mod p) is added because x may be negative.

• Let (n,m) be positive integers. n < m

The Rational Reconstruction [15] Problem:

Given (n,m) one should find u s.t. there exist integers (r, 0 < s) s.t.:

ns = r mod m, u = r

s

A deterministic algorithm for solving this problem in polynomial time was given by S.

Wang in 1981 [21]. His solution use the Extended Euclidean Algorithm.

This solution applies under the condition that there are 2 known constants R and S

s.t. |r| < R, 0 < s < S and 2RS < m . Under this condition the solution u is unique.

Notations: (a, b) = RaRe(n,m,R, S), u = a
b

= r
s
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5.3.2 CoPPSA-V: CoPPSA With Randomization

The notations in this section follow the notations of Section 3.1.

1. All Parties consent on some value omax.

omax is the maximal umber of failures possible in any of the parties.

R = (10b · omax ·N)2

S = (10b · omax

4 ·N)

The parties agree on some value p s.t. 2RS < p

2. For each party i, i = 1, 2...., N :

• The party calculates: O(i), E(i), V (i)

• The party round the real numbers to integers.

m1(i) = b10b · (O(i)− E(i))c, m2(i) = b10b · V (i)c

• The party samples a random number uniformly distributed): ri ∈ [0, p− 1]

3. The parties use MPC to jointly calculate the following over Zp:

• D̃ =
(

(∑N
i=1 ri) ·

(∑N
i=1m1(i)

)2
)

mod p

• Ũ =
(

(∑N
i=1 ri) · (

∑N
i=1m2(i))

)
mod p

• (D̃, Ũ) is the common output of all parties.

4. If Ũ = 0: Abort and start over. (happens when (∑N
i=1 ri) = 0)

5. Each party calculates Z∗:

• Calculates (Ũ−1 mod p) over Z∗p using EEA

• Calculates over Zp: n = D̃ · Ũ−1 mod p

• Calculates (γ, δ) = RaRe(n, p,R, S), u = γ
δ

• |Z∗| =
√

10−bu over R.

Algorithm 2: CoPPSA-V
54



Correctness Proof

Claim 5.3.1. 2RS < p⇒ 2 · (∑N
i=1m1(i))2(∑N

i=1m2(i)) < p

Proof. R = (10b · omax ·N)2, S = (10b · omax

4 ·N)

From section 3.1.2 we know: ∑N
i=1m2(i) < N

4 · 10b · omax,
∑N
i=1m1(i) < N · omax · 10b

2 · (
N∑
i=1

m1(i))2(
N∑
i=1

m2(i)) < 2(10b · omax ·N)2(10b · omax4 ·N) < 2RS < p

Claim 5.3.2. n =
(∑N

i=1m1(i)
)2

(∑N
i=1m2(i))−1 mod p

Proof. Ũ 6= 0 so Ũ has multiplicative inverse in the group Z∗p

n = D̃ · Ũ−1 mod p =
(

(
N∑
i=1

ri) ·
( N∑
i=1

m1(i)
)2
)(

(
N∑
i=1

ri) · (
N∑
i=1

m2(i))
)−1

mod p

=
( N∑
i=1

m1(i)
)2

(
N∑
i=1

m2(i))−1 mod p

Claim 5.3.3. (γ, δ) = RaRe(n, p,R, S) → u = γ
δ

is correct and unique solution for the

rational reconstruction problem, and u = (
∑N

i=1 m1(i))2∑N

i=1 m2(i)
.

Proof. From claim 5.3.1 we know:

2 · (
N∑
i=1

m1(i))2(
N∑
i=1

m2(i)) < p

From claim 5.3.2 we know:

n =
( N∑
i=1

m1(i)
)2

(
N∑
i=1

m2(i))−1 mod p
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Therefore by the correction of Wang algorithm we know

u = γ

δ
= (∑N

i=1m1(i))2∑N
i=1m2(i)

and the value of u is unique.

Claim 5.3.4. |Z∗| ≈
√

10−bu over R

Proof. From claim 5.3.3 we know:

u = (∑N
i=1m1(i))2∑N
i=1m2(i)

= (∑N
i=1b10b · (O(i)− E(i))c)2∑N

i=1b10b · V (i)c

√
10−bu =

√√√√(∑N
i=1m1(i))210−b∑N

i=1m2(i)
=

√√√√(∑N
i=1b10b · (O(i)− E(i))c)210−b∑N

i=1b10b · V (i)c
≈

≈

√√√√(∑N
i=1 10b · (O(i)− E(i)))210−b∑N

i=1 10b · V (i)
=

√√√√10b(∑N
i=1O(i)− E(i))2

10b∑N
i=1 V (i)

= |
∑N
i=1(O(i)− E(i))|√∑N

i=1 V (i)
= |Z∗|

Comments:

• All the secure MPC operations are in phase 3:

F
(

(m11,m21, r1), (m12,m22, r2), ..., (m1N ,m2N , rN)
)

=

(
(
N∑
i=1

ri) ·
( N∑
i=1

m1(i)
)2
, (

N∑
i=1

ri) · (
N∑
i=1

m2(i))
)
mod p

• The common output does not include the sign (positive or negative) of Z∗. The parties

can only calculate the absolute value |Z∗|.

If |Z∗| indicates a insignificant p-value (if |Z∗| < 1.65 then 0.05 < p-value), then the

result has no statistical clarity and the sign is less relevant.
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If |Z∗| indicates a significant p-value each party can conclude the sign of Z∗ from it’s

own dataset. For sufficiently large dataset the sign of Zlocal is in coherence with the

sign of Z∗

5.3.3 Does CoPPSA-V Have an Incentive for Veracity?

Notations: D2 = (∑N
i=1m1(i))2, U = ∑N

i=1m2(i)

As mentioned, by the end of CoPPSA-V each party knows two values Γ,∆ s.t. (Γ,∆) =(
D2

gcd(D2,U) ,
U

gcd(D2,U)

)
.

In this section we show that if gcd(D2, U) has an entropy, then CoPPSA-V has an incentive

for veracity.

Claim 5.3.5. CoPPSA-V has incentive for veracity.

Proof. First scenario:

Consider a scenario in which party Pl uses m2,false instead of m2,true as the value communi-

cated in the MPC stage. To calculate the desired value the party should ”fix” the protocol

result as follows:

(Γ,∆)fixed =
(
Γ, (∆ · gcd(D2, U)−m2,false +m2,true)

1
gcd(D2, U)

)

Alternatively, Pl may want to ”fix” Z∗ directly:

Z∗fixed =
√√√√ Γ(

∆ · gcd(D2, U)−m2,false +m2,true
)

1
gcd(D2,U)

To calculate (Γ,∆)fixed or Z∗fixed, Pl should know the value of gcd(D2, U). gcd(D2, U) is a

function of the random variablesm1(1),m2(1),m1(2), .... Simply put, sincem1(1),m2(1),m1(2), ...

are random variables with a given distribution, gcd(D2, U) is also non-deterministic random

variable, with distribution that is directly derived from the inputs distribution (see discussion
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below).

∆fixed = (∆ · gcd(D2, U)−m2,false +m2,true)
1

gcd(D2, U)

H(∆fixed|∆false) = H
(

(∆false · gcd(D2, U)−m2,false +m2,true)
1

gcd(D2, U) |∆false = δ
)

= H
(

(δ · gcd(D2, U)−m2,false +m2,true)
1

gcd(D2, U)

)
> 0

Similarly:

H(Z∗fixed|Γ,∆) = H
(√√√√ Γ(

∆ · gcd(D2, U)−m2,false +m2,true
)

1
gcd(D2,U)

|Γ = γ,∆ = δ
)

= H
(√√√√ γ(

δ · gcd(D2, U)−m2,false +m2,true
)

1
gcd(D2,U)

)
> 0

Second scenario:

Consider a scenario in which Pl uses m1,false instead if m1,true. The ”fix” should be as follows:

(Γ,∆)fixed =
(
(
√

Γ · gcd(D2, U)−m1,false +m1,true)2 1
gcd(D2, U) ,∆

)

Like in first scenario we can show that to calculate (Γ,∆)fixed Pl should know the value of

gcd(D2, U), which is a random variable.

So we see that Z∗ =
√

10−b γ
δ

is a function with incentive for veracity and that CoPPSA-V

has an incentive for veracity.
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Discussion

Could gcd(D2, U) have no entropy?

To show that gcd(D2, U) must have an entropy, we will show that:

Pr(gcd(D2, U) = 1) > 0

Pr(gcd(D2, U) 6= 1) > 0

In this case (X, Y ) = ( D2

gcd(D2,U) ,
U

gcd(D2,U)) = (D2, U). To estimate the probability that

gcd(D2, U) = 1 consider Euler observation regarding Coprimality[16]:

Theorem 5.3.6. Let N be a positive integer. a, b are random variables with uniform distri-

bution in the range {1, ..., N}. Let PN be the probability that a and b are coprime integers.

Observation:

lim
N→∞

PN = 6
π2 ≈ 0.607

Simply put, the probability of two integers uniformly sampled from sufficiently large

range to be coprime integers is approximately 6
π2 = 0.607.

The two integers (∑N
i=1b10b · (O(i)−E(i))c)2,

∑N
i=1b10b ·V (i)c are large enough and close

to uniform in some arbitrary range. We can rely on this approximation and assume that

Pr(gcd(D2, U) = 1) > 0 and Pr(gcd(D2, U) 6= 1) > 0 . Therefore gcd(D2, U) is not a

constant.
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Part II

Statistical Stability For Logrank Test
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Chapter 6

Logrank Stability

When applying the log-rank test to a set of data, we are implicitly assuming that the labels

of the subjects are correct. In reality, however, this assumption is often compromised. In

some cases the label assignment is, indeed, rather straight forward. This is typically the

case in the assignment to treatment arms and when actual compliance is verifiable. In other

cases it may be much less well defined.

This is the case when label assignment is determined by a human judgment, for example

based on inspection by pathologists, which is often prone to errors.

As a second example consider labeling that follows a machine decision. Three recent

studies [10, 9, 7] introduce machine learning models to determine breast cancer sub-types.

They all reported around 70% accuracy.

In the context of survival analysis, wrong sample labels can lead to dramatically differ-

ent statistical assessments. Consider the MAINZ cohort, [19], that describes survival data

for breast cancer patients. As can be seen in Figure 6.1, Luminal A patients have better

prognosis than the other types. We note a significant difference in the Luminal A prognosis

with p-value = 0.014. Now, what will the effect be, on the resulting p-value, of changing
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one Luminal A label out of the 200 samples (0.5%) in the MAINZ cohort. Figure 6.1 shows

the Kaplan-Meier graphs, before (left) and after (right) the change, and the corresponding

p-values. While the plots themselves seemed very similar, the p-value changed from 0.014

to 0.029.

In this work we address the uncertainty that arises from general labeling errors and label

instability. Given survival data with n samples and an error rate, α, we find the minimum and

maximum log-rank p-values that can result from changing the labels of at most αn samples.

These minimum and maximum p-values, PL and PU , define a stability interval [PL,PU ]. To

make our analysis less sensitive to extreme cases we support the use of a confidence level,

1− δ, to further narrow our interval. The main contributions of our work are as follows:

• A definition of labeling errors stability intervals for statistical tests.

• A procedure that, given data and a bound on the labeling error, calculates a stability

interval for the log-rank test.
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Abstract

Motivation: Log-rank test is a widely used test that serves to assess the statistical significance of observed differen-
ces in survival, when comparing two or more groups. The log-rank test is based on several assumptions that support
the validity of the calculations. It is naturally assumed, implicitly, that no errors occur in the labeling of the samples.
That is, the mapping between samples and groups is perfectly correct. In this work, we investigate how test results
may be affected when considering some errors in the original labeling.

Results: We introduce and define the uncertainty that arises from labeling errors in log-rank test. In order to deal
with this uncertainty, we develop a novel algorithm for efficiently calculating a stability interval around the original
log-rank P-value and prove its correctness. We demonstrate our algorithm on several datasets.

Availability and implementation: We provide a Python implementation, called LoRSI, for calculating the stability
interval using our algorithm https://github.com/YakhiniGroup/LoRSI.

Contact: benga9@gmail.com or anatsamohi@gmail.com or zohar.yakhini@gmail.com

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The comparison of different treatments or, more generally, policies or
protocols, in terms of survival rates or in terms of success rates is a
central aspect of investigating these regimes and of taking related
decisions. There are two approaches that are generally taken in ana-
lyzing survival data. The first uses a permutational null distribution
(Heimann and Neuhaus, 1998; Vandin et al., 2015) and is more ap-
propriate for imbalanced data. The second, more popular approach,
uses a conditional null model, based on the hypergeometric distribu-
tion. This second approach is also the focus of this article. The log-
rank test was introduced by Mantel (1966) and is extensively used
since then. It is a standard tool in survival analysis, e.g. Kleinbaum
and Klein (2012). In Tourneau et al. (2015), reporting on the SHIVA
study, the log-rank test was used to determine whether the use of sev-
eral targeted therapies outside their intended indications will improve
progression-free survival in cancer. In Pitt et al. (1999), the authors
used log-rank test to conclude that the use of Spironolactone is effect-
ive to lower the risk of death in patients who suffered from severe
heart failure. Galili et al. (2021) investigate efficient gene signatures
that characterize a breast cancer subtype related to the patient’s im-
mune response. The signature is optimized using a survival criterion
based on the log-rank test. Levy-Jurgenson et al. (2020) report how
cancer intratumor heterogeneity can affect patient survival.

When applying the log-rank test to a set of data, we are implicit-
ly assuming that the association of a subject, or, more generally, a
sample, to one of the two labels, is not in doubt. In reality, however,

this assumption is often compromised. In some cases, the label as-
signment is, indeed, rather straight forward. This is typically the
case in the assignment to treatment arms. In other situations, it may
be much less well defined.

This is the case, as a first example, when label assignment is deter-
mined by a human judgment, e.g. based on inspection by pathologists,
which is often prone to errors. Literature explicitly reports inconsist-
ency in pathology. Jackson et al. (2017) report a study that found that
the decision of the same pathologist varied when examining the same
samples in different times. They showed that two diagnostic calls of
the same pathologist, separated by at least 9 months, on the same bi-
opsy, have an agreement rate of 92% (95% CI 88–95%) for invasive
breast cancer and even less for other breast cancer types. Jackson et al.
(2017) also showed that for different pathologists testing the same bi-
opsy the agreement rates dropped by additional 3–10%. Elmore et al.
(2017) reported similar results. In a different context, any subjective
scoring approach, such as the Eastern Cooperative Oncology Group
(ECOG) score, as used in Loprinzi et al. (1994), depends, based on the
same principles, on the individual making the calls.

As a second example consider labeling that follows a machine
decision. Three recent studies (Ha et al., 2019; Islam et al., 2020;
Jaber et al., 2020) introduce machine-learning models to determine
breast cancer subtypes. They all reported around 70% accuracy.

Finally, consider sample labeling, which is based on the results of
some molecular measurement assay. Ebbert et al. (2011) showed
how intrinsic errors in the laboratory process, specifically in gene

VC The Author(s) 2021. Published by Oxford University Press. 4451

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/),

which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact

journals.permissions@oup.com

Bioinformatics, 37(23), 2021, 4451–4459

doi: 10.1093/bioinformatics/btab495

Advance Access Publication Date: 13 July 2021

Original Paper

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/37/23/4451/6320780 by guest on 25 D
ecem

ber 2021



expression profiling, affect the final results. They test this on
PAM50 results and reported around 5% error in the classification.

In the context of survival analysis, wrong sample labels can lead
to dramatically different statistical assessments. Consider the
MAINZ cohort, Schmidt et al. (2008), that describes survival data
for breast cancer patients. As extensively reported, including in
Fallahpour et al. (2017) and Howlader et al. (2018), Luminal A
patients have better prognosis than the other types. This can be seen
also in the MAINZ cohort, see the left panel in Figure 1. We note a
significant difference in the Luminal A prognosis with P-value
¼0.014. Now, what will the effect be, on the resulting P-value, of
changing one Luminal A label out of the 200 samples (0.5%) in the
MAINZ cohort? Figure 2 shows the original data and the data after
one label change. Figure 1 shows the Kaplan–Meier graphs, before
(left) and after (right) the change, and the corresponding P-values.
Examining Figure 1 shows a dramatic change in the P-value from
0.014 to 0.029, when it is not so simple to notice any change in the
plots themselves. Expanding this observation to the actual labeling
error, e.g. as reported in Ebbert et al. (2011) for breast cancer sub-
types, can lead to even more dramatically changes in the P-value.

Previous investigations addressed several aspects of uncertainty in
survival analysis. Heterogeneity between individuals is not taken into
account in the basic form of log-rank test. To address this bias,
Hougaard (1995) introduced the concept of frailty models for survival
analysis. Under this approach, the null model does not assume that the
distribution of time to event is the same for all subjects. In order to
overcome the unobserved heterogeneity in the survival data the frailty
models use random effect to create different time to event distributions.

Addressing a different issue, it is common to report (and plot) confi-
dence intervals for each of the observed hazard ratios, resulting in a
confidence envelope around the survival lines. In Vandin et al. (2015),
the authors demonstrated that asymptotic approximation, as in log-
rank test, can be misleading when the two groups under consideration
have very different sizes. They introduced a novel approach to accur-
ately calculate the log-rank P-value regardless of the group sizes.
Splitting subjects to two groups, in order to determine an association
between the split and, potentially, low risk and high risk, is an import-
ant task in the context of survival analysis. Standard studies use treat-
ment types, protocols etc. When studying a quantitative potential
determinant of survival, we are often interested in splitting according
to that quantity. For example, the expression level of some gene or
maybe BMI. Trying all possible cut-points (thresholds) is not practical
due to multiple testing problems. In an important paper treating this
issue, Hothorn and Lausen (2003) developed a method for calculating
an upper bound on the log-rank test P-value, which efficiently takes
into account multiple testing. This approach checks different label
assignments, similar to our work, but limits the splits being considered.
In addition, it focuses on finding the best split. In this work, we address
general labeling and not necessarily such which is driven by a quantita-
tive feature. Our study also considers completely general labeling
changes and not ones related to consistent threshold splits.

In this work, we address, for the first time, the uncertainty that
arises from general labeling errors and label instability. Given sur-
vival data with n samples and an error rate, a, we find the minimum
and maximum log-rank P-values that can result from changing
the labels of at most an samples. These minimum and maximum

Fig. 1. Kaplan–Meier curve and log-rank P-value on the MAINZ cohort—Luminal A versus not Luminal A. On the left the original data and on the right the data after one

change

Fig. 2. MAINZ cohort data, before and after one change in the labels

4452 B.Galili et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/37/23/4451/6320780 by guest on 25 D
ecem

ber 2021



P-values, PL and PU, define a stability interval [PL, PU]. To make
our analysis less sensitive to extreme cases, we support the use of a
confidence level, 1� d, to further narrow our interval. The main
contributions of our work are as follows:

• A definition of labeling errors stability intervals for statistical

tests.
• A procedure that, given data and a bound on the labeling error,

calculates a stability interval for the log-rank test.
• A software implementation of the above procedure.
• https://github.com/YakhiniGroup/LoRSI.
• Applications to several example cases.

2 Materials and methods

2.1 The statistical framework for log-rank stability
2.1.1 Preliminaries

We first set the notation for the log-rank test, in the context of the
conditional null distribution (Mantel, 1966), as will be used in the
rest of the manuscript.

• Consider time and event data D (survival data) with a partition

labeling k0 [a binary vector mapping subjects into the groups

A (0) & B (1)] over n subjects.
• Let j ¼ 1; . . . ; J be the distinct times of observed events in either

group.
• Let nA;j; nB;j be the number of subjects ‘at risk’ (who have not yet

had an event nor have been censored) at the time of occurrence

of the jth event in the two groups, respectively.
• Let OA;j; OB;j be the random variables representing the observed

number of events in each group at time j.
• Denote nj ¼ nA;j þ nB;j, the number of at-risk subjects at time j.
• Denote oj ¼ OA;j þOB;j, the number of actual events observed at

time j.
• Let T be the time of failure of a subject. PðT ¼ tÞ is the probabil-

ity distribution function of T. The survival function is defined as

SðtÞ ¼ 1� PðT < tÞ ¼ 1� FðtÞ.
• In log-rank testing, we are working under the null model that

assumes that the two groups have identical survival functions,

SAðtÞ � SBðtÞ
• We then have

OA;j � HGðnj; nA;j; ojÞ:

Similar for group B (HG stands for Hypergeometric).
• The null model also assumes that the variables OA;j are (collect-

ively) independent.
• The expected value and the variance of OA;j under the null model

are:

EA;j ¼
nA;j

nj
oj

VA;j ¼
nA;j

nj
oj

nj � oj

nj

� �
nj � nA;j

nj � 1

� �
:

Similar for group B.
• Putting everything together, for all j ¼ 1; . . . ; J, the log-rank stat-

istic compares OA;j to their expected values EA;j under the null

model. The statistic is defined as:

ZA ¼
O� Effiffiffiffi

V
p ;

where:

O ¼
XJ

j¼1

OA;j E ¼
XJ

j¼1

EA;j V ¼
XJ

j¼1

VA;j:

Similar for group B.

If J is sufficiently large and the partition into A and B is reasonably
balanced (see e.g. Vandin et al., 2015) then, Z is approximately dis-
tributed as N(0, 1). This allows us to compute a P-value for the com-
parative survival data D, using the value actually observed for O,
which we denote o ¼ oðDÞ. This P-value is denoted by LRðD; k0Þ.
By extension LRðD; kÞ will denote the log-rank P-value that would
be obtained for any different partition labeling k.

2.1.2 Definition of the log-rank stability interval

We now define a log-rank stability interval for given survival data
and two parameters a > 0 and d � 0.

• Again, consider time and event data D with a partition labeling

k0 (mapping subjects into the groups A & B) over n subjects.

Recall that LRðD; k0Þ is the log-rank P-value computed for this

data.
• Let 0 < a < 1. Given a different binary labeling k, we say that

k is an a-modification of k0 if the labels have changed in less than

a fraction a of the samples.
• Formally, Hðk; k0Þ � a � n, where H is the Hamming distance.
• Let Bðk0; aÞ be the set of all possible labeling partitions k that are

a-modifications of k0.
• Let 0 � d < 1. We want to compute a tight interval ½pL; pU� in

the following sense: pU should be the smallest number for which

LRðD; kÞ 2 ½pL; pU� holds for a 1� d fraction of k 2 Bðk0; aÞ.
Note that under this definition, we require tightness on the right

hand side, which is, in practice, taking a conservative approach,

the more interesting case (see Section 4).
• The interval defined above is the stability interval for the two

parameters a > 0 and d > 0 and the input data. We write:

SIðD; k0; a; dÞ ¼ ½pL; pU�: (1)

For example, given data D with n ¼ 100 (100 samples), d ¼ 0:05
and a ¼ 0:01, we want to compute an interval SI so that for 95% of
the single label changes (1% change) the log-rank P-value will fall
in SI.

2.2 Computing stability intervals for log-rank test
In this section, we describe our algorithmic approach and prove its
correctness.

2.2.1 Algorithm: LoRSI

We start by some definitions and notations.
Let:

• D� the dataset. Consisting of three vectors of length n:

a. e: event/censored descriptor. Indicates whether event or cen-

sored occurred.

b. t: time. The time from the beginning of an observation period

to an event, censored or end of the study.

c. l: group. Indicates the group of the subject.
• d ¼ ðlðdÞ; tðdÞ; eðdÞÞ represents a single instance: an instance d 2

D is defined by three quantities—the group label l(d), the time

t(d) and the event/censored descriptor e(d).
• F : the set of interest (the Focus set).
• B : the other set (the Background set).
• The set F is typically the one that has a better survival rate. That

is: ZF < ZB. In this article, we also take this approach and

Log rank stability interval 4453
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therefore F is the set that has the better survival rate in the input

data, D.

We further define the following subsets of F and B:

• EF: the events of the group F, ordered from the earliest to the

latest.
• CF: the censored samples of the group F, ordered from the ear-

liest to the latest.
• EB: the events of the group B, ordered from the earliest to the

latest.
• CB: the censored samples of the group B, ordered from the ear-

liest to the latest.

Note that F ¼ EF [ CF and B ¼ EB [ CB.
Now define the prefixes and sufixes of these ordered subsets as

follows:

• EFLðiÞ ¼ the samples EFð1Þ; . . . ;EFðiÞ
• EBLðiÞ ¼ the samples EBðjEBj � iþ 1Þ; . . . ;EBðjEBjÞ
• CBLðiÞ ¼ the samples CBðjCBj � iþ 1Þ; . . . ;CBðjCBjÞ
• EFUðiÞ ¼ the samples EFðjEFj � iþ 1Þ; . . . ;EFðjEFjÞ
• EBUðiÞ ¼ the samples EBð1Þ; . . . ;EBðiÞ
• CFUðiÞ ¼ the samples CFðjCFj � iþ 1Þ; . . . ;CFðjCFjÞ:

Following standard notation for the set of types of denominator
k over a three letter alphabet (Cover, 1999), we denote:

Tðk;3Þ ¼ fði1; i2; i3Þ : i1 þ i2 þ i3 ¼ kg:

Note that:

jTðk; 3Þj ¼ kþ 2
2

� �
:

Definition 1. The set of PU candidates is defined by:

CU ¼ fðEFUði1Þ [ EBUði2Þ [ CFUði3ÞÞ : ði1; i2; i3Þ 2 Tðk;3Þg:

We will show that this is the collection of candidate sample sets
of size k, amongst which we will identify the set of samples that, if
swapped, will lead to the most extreme positive change in the
P-value. Note that the size of CU is the same as that of Tðk; 3Þ,

namely
kþ 2

2

� �
.

Similarly:

Definition 2. The set of PL candidates is defined by:

CL ¼ fðEFLði1Þ [ EBLði2Þ [ CBLði3ÞÞ : ði1; i2; i3Þ 2 Tðk; 3Þg:

Algorithm 1 describes the Log-Rank Stability Interval Algorithm

(LoRSI) for finding PL and PU, where a ¼ k
n. For PU, the idea of the

algorithm is to iterate over the set of all relevant sets of k changes.

The size of this collection is relatively small, namely
kþ 2

2

� �
, due

to the monotonicity effect on the z-score in each one of the groups
EF;CF & EB as proven below in Section 2.2.2. In each iteration, our
procedure calculates the P-value after changing the labels of the cur-
rent k subjects. Finally, it selects the max P-value among the

kþ 2
2

� �
candidates. Note that, if we consider only one label

change (k ¼ 1), then, the SI (both sides) is determined by only six
candidates, three for PU and three for PL (see Fig. 3). In the
Supplementary Material, we describe the LoRSI algorithm, where

a ¼ 1
n and for any d > 0.

2.2.2 Correctness

In this section, we prove the correctness of Algorithm 1. This, in es-
sence, is the content of Theorem 1, stated at the end of this section.
We start with some definitions and notations.

• Let z0 be the original Z-statistic obtained from the input labeling.
• Now consider a labeling swap for the instance d. That is, if in k0,

the instance d is in the group F, then, it is swapped to B and sym-

metrically otherwise. This swap will affect the value of Z calcu-

lated for the new data. Let

znewðD; dÞ ¼
onew � Enewffiffiffiffiffiffiffiffiffiffi

Vnew

p ;

where onew, Enew and Vnew are obtained for the swapped data as

described in the preliminaries.
• We are specifically interested in the resulting change in the

observed value of Z, which we denote

DzðD;dÞ ¼ znewðD;dÞ � z0:

Let ðY1; . . . ;YnÞ be a set of RVs. We say that ðY1; . . . ;YnÞ is an inde-
pendent hypergeometric set (IHS) if:

1. Y1; . . . ;Yn are (collectively) independent.
2. 8i Yi � HGðNi;Bi; niÞ:
3. 8i VarðYiÞ > 0:

For a single RV X let

ZðXÞ ¼ X� EðXÞffiffiffiffiffiffiffiffiffiffiffiffi
VðXÞ

p
and then, for a set of independent RVs,

ZðX1; . . . ;XnÞ ¼ Zð
Xn

i¼1

XiÞ:

We note that if ðY1; . . . ;YnÞ is an IHS and if n is sufficiently large
then the distribution of ZðY1; . . . ;YnÞ is approximately standard

Algorithm 1: LoRSI pseoducode.

Log-Rank Stability Interval

input: Dataset—D, a ¼ k
n

output: Stability Interval ½pL;pU�
pL candidates ¼1
pU candidates ¼1
//each of these sets will hold all

kþ 2
2

� �
relevant P-values

for current_set_of_changes in CU do

//see Definition 1 for CU

p ¼ log-rank P-value after swapping the labels of all the k

samples in current_set_of_changes

pU candidates.append (p)

end

for current_set_of_changes in CL do

//see Definition 2 for CL

p ¼ log-rank P-value after swapping the labels of all the k

samples in current_set_of_changes

pL candidates:append (p)

end

pU ¼ maxðpU candidatesÞ
pL ¼ minðpL candidatesÞ
return pL, pU
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Fig. 3. Log-rank stability analysis for single label changes. The figure represents results for three datasets, as described in the text. Each of the depicted datasets consists of two

groups (F)—the (actual, as per the original data) group of patients with good prognosis, and (B)—the bad prognosis group. Each data point is either an event or a censored

point. The combination of the group and the event type leads to four categories of patients. The scatter plots provide a visual representation of the effect, on the P-value, that

follows from changing the label of a single sample (i.e. a ¼ 1
n). We can observe the monotonicity of the effect, with a direction depending on the category, as proven in Section

2. For each dataset, we indicate the original (non-swap) P-value (solid black lines on the right panel), the numbers PL and PU (solid red lines) for d¼0 and the number PU for

d ¼ 0:05 (dashed red lines). Sample categories, in the scatter plots are represented by shape and color: blue dots—event swap from (B) to (F), red dots—event swap from (F) to

(B), cyan Xs—censored sample swap from (B) to (F) and purple Xs—censored sample swap from (F) to (B). The green and red circles represent PL and PU candidates, respect-

ively, at d ¼ 0

Log rank stability interval 4455
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normal (Lindeberg, 1922). We also note that, as stated above, the
variables OA;j, where 1 � j � J, constitute an IHS.

For an observation x, derived from an RV X, we further define
the Z-transformed value:

zðxÞ ¼ x� EðXÞffiffiffiffiffiffiffiffiffiffiffiffi
VðXÞ

p :

For a set observation we now define

zðX1 ¼ x1; . . . ;Xn ¼ xnÞ ¼ zð
Xn

i¼1

xiÞ:

For a random variable X and a number x 2 R, we use the nota-
tion CDF(X, x) to represent the cumulative distribution of X at x.
Or, in other words: CDFðX;xÞ ¼ PðX � xÞ.

Claim 1. Given two RVs X, Y where:

X � HGðN;B; nÞ;Y � HGðN;B;mÞ

and

n < m

then

8b � n; CDFðY; bÞ < CDFðX;bÞ:

See Supplementary Material for a proof.
Claim 2. Consider two RVs X, Y where:

X � HGðN;B; nÞ;Y � HGðN;B;mÞ:

Let T1; . . . ;Tk be k RVs where both ðX;T1; . . . ;TkÞ and
ðY;T1; . . . ;TkÞ are IHS. Denote li ¼ EðTiÞ and ri ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
VðTiÞ

p
.

Let:

Z1 ¼ ZðY;T1; . . . ;TkÞ; z1 ¼ zðY ¼ a;T1 ¼ t1; . . . ;Tk ¼ tkÞ
Z2 ¼ ZðX;T1; . . . ;TkÞ; z2 ¼ zðX ¼ a;T1 ¼ t1; . . . ;Tk ¼ tkÞ

If

n < m

then:

1. CDFðZ1; z1Þ < CDFðZ2; z2Þ
2. For sufficiently large values of k (which is the interesting case, in

the context of log-rank, see comment after the proof), we also

have:

z1 < z2:

See Supplementary Material for a proof.
As noted above, we are interested in working with large values

of k in the context of log-rank. Without this assumption, the second
part of Claim 2 is not necessarily true. For example, for k ¼ 1,
consider:

• T1 � HGð90;2; 1Þ with observed value t1 ¼ 1
• X � HGð100; 1;50Þ with observed value a ¼ 1
• Y � HGð100; 1; 99Þ with observed value a ¼ 1,

which yields: z1 ¼ 5:554; z2 ¼ 2:835:
Claim 3. Let dj1 and dj2 be censored samples in D from group F.
Let z1 ¼ znewðD;dj1Þ and z2 ¼ znewðD; dj2Þ.
If timeðdj1 Þ < timeðdj2 Þ then z0 < z1 < z2, and therefore:

0 < DzðD; dj1Þ < DzðD; dj2Þ:

Similarly, if the censored samples, dj1 and dj2 , come from group
B then if timeðdj1 Þ < timeðdj2 Þ then z0 > z1 > z2, and therefore:

0 > DzðD; dj1Þ > DzðD; dj2Þ:

Proof. We use the fact that the random variables OF;j as defined in the

log-rank setup constitute an IHS. Swapping dj1 from F to B leads to a

change in the at risk numbers nF;j 8j � j1. More specifically each one of

them is decreased by 1. Nothing changes for the later indices. Assuming

that J is sufficiently large, we now iteratively use Claim 2. In every iter-

ation, we decrease nF;j by 1, starting at j ¼ 1 and ending at j ¼ j1. At

every index j let OF;j and ~OF;j be the hypergeometric variables represent-

ing the number of events at time j before and after a hypothetical swap

at j, respectively. Claim 2 therefore applies, at every iteration j, with OF;j

and ~OF;j playing the role of Y and X, respectively, and ~OF;i with 1 �
i � j� 1 and OF;i with jþ 1 � i � J playing the role of the Tis. We,

thus, get z0 < z1.

Similarly, since j1 < j2 the swap of dj2 will affect all at risk num-
bers above as well as several others nF;j s:t j1 < j � j2. Continuing
the above iterations, we therefore have z1 < z2.

When swapping away from group B, the effect of the swap
will be to increase the at risk numbers, leading to the reverse
inequalities. �

Claim 4. Consider the RVs X1, X2 and Y 1, Y 2 where:

X1 � HGðN;B; lÞ;Y1 � HGðN;B; lÞ
X2 � HGðM;C; nÞ;Y2 � HGðM;C;mÞ:

Let T1; . . . ;Tk�1 be k �1 RVs where both ðX1;X2;T1; . . . ;Tk�1Þ
and ðY1;Y2;T1; . . . ;Tk�1Þ are IHS. Denote li ¼ EðTiÞ and
ri ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
VðTiÞ

p
.

Let:

z1 ¼ zðY1 ¼ a1 � 1;Y2 ¼ a2;T1 ¼ t1; . . . ;Tk�1 ¼ tk�1Þ
z2 ¼ zðX1 ¼ a1;X2 ¼ a2 � 1;T1 ¼ t1; . . . ;Tk�1 ¼ tk�1Þ:

If

n < m

then

z1 < z2

Proof. First, we write explicitly:

Z1 ¼
Y1 � lY1

þ Y2 � lY2
þ T1 � l1 þ � � � þ Tk�1 � lk�1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2
Y1
þ r2

Y2
þ r2

1 þ � � � þ r2
k�1

q

Z2 ¼
X1 � lX1

þX2 � lX2
þ T1 � l1 þ � � � þ Tk�1 � lk�1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2
X1
þ r2

X2
þ r2

1 þ � � � þ r2
k�1

q

z1 ¼
a1 � 1� lY1

þ a2 � lY2
þ t1 � l1 þ � � � þ tk�1 � lk�1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2
Y1
þ r2

Y2
þ r2

1 þ � � � þ r2
k�1

q

z2 ¼
a1 � lX1

þ a2 � 1� lX2
þ t1 � l1 þ � � � þ tk�1 � lk�1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2
X1
þ r2

X2
þ r2

1 þ � � � þ r2
k�1

q :

By definition lY1
¼ lX1

and rY1
¼ rX1

. Let b1 ¼ a1 � 1. We rearrange

the term to get:

z1 ¼
b1 � lY1

þ a2 � lY2
þ t1 � l1 þ � � � þ tk�1 � lk�1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2
Y1
þ r2

Y2
þ r2

1 þ � � � þ r2
k�1

q

z2 ¼
b1 � lY1

þ a2 � lX2
þ t1 � l1 þ � � � þ tk�1 � lk�1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2
Y1
þ r2

X2
þ r2

1 þ � � � þ r2
k�1

q :
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We now apply Claim 2, with: b1 ¼ tk; lY1
¼ lk; rY1

¼ rk; a2 ¼
a; lY2

¼ lY ; rY1
¼ rY ; lX2

¼ lX; rX2
¼ rX and get z1 < z2. �

Claim 5. Let dj1 and dj2 be events in D from group F.
Let z1 ¼ znewðD;dj1Þ and z2 ¼ znewðD; dj2Þ.
If timeðdj1 Þ < timeðdj2 Þ then z1 < z2, and therefore:

DzðD; dj1Þ < DzðD;dj2Þ:

Similarly, if the events, dj1 and dj2 , come from group B then if
timeðdj1 Þ < timeðdj2 Þ then z1 > z2, and therefore:

DzðD;dj1Þ > DzðD; dj2Þ:

Proof. We once again use the fact that the random variables OF;j as

defined in the log-rank setup constitute an IHS. Swapping dj1 from F to

B leads to a change in the at risk numbers nF;j 8j � j1. More specifically

each one of them is decreased by 1. Similarly, since timeðdj1 Þ <
timeðdj2 Þ the swap of dj2 will affect all at risk numbers above as well as

several others, namely nF;j s:t j1 < j � j2. In addition, oF;j1 becomes

oF;j1 � 1 when swapping dj1 and oF;j2 becomes oF;j2 � 1 when swapping

dj2. Therefore, oFnew ¼ oF � 1 in both swaps.

Now, let Y1 and Y2 be OF;j1 and OF;j2 after swapping dj1 from F
to B, respectively. In addition, let X1 and X2 be OF;j1 and OF;j2 after
swapping dj2 from F to B, respectively. By iteratively using Claim 4
and assuming that J is sufficiently large, we get z1 < z2.

In the case of swapping away from group B, the effect of the
swap will be to increase both the at risk numbers and the observed
oFnew, and therefore we get the reverse inequalities. �

In summary, we proved that changing one sample will lead to a
monotonic effect on the z-score and therefore on the log-rank
P-value.

Now consider the case of k swaps. We claim that the k instances
that yield the most extreme positive change in the P-value is one of
the candidates in CU. Let k	 be the labeling that, indeed, yields the
largest LRðD; kÞ within Bðk0;

k
n Þ. To see why the above claim holds

assume, WLOG, that k	 swaps some instance EBUðjÞ but does not
swap EBUðiÞ for some i< j. By the monotonicity proven above
(Claim 5), we can swap EBUðiÞ instead of EBUðjÞ and get a larger
Dz. A similar argument holds for an assumed usage, by k	, of a non-
continuous suffix of EF and CF, respectively. Furthermore, a similar
argument holds for the left side of the interval.

We conclude that:

Theorem 1. For any k (counting label swaps in a data D),

max LRðD; kÞ : k 2 Bðk0;
k
nÞ

� �
is attained by swapping the labels in one

of the sets listed in CU and therefore determined by a triplet

ði1; i2; i3Þ 2 Tðk; 3Þ. Similarly, min LRðD; kÞ : k 2 Bðk0;
k
nÞ

� �
is attained

by a set in CL and therefore also determined by some (other) triplet

ði1; i2; i3Þ 2 Tðk; 3Þ.

3 Results

We now demonstrate the calculation of stability intervals on three
different datasets (see Kaplan-Meier curves in Figs 1, 4 and 5). In
calculating the interval, we use our efficient LoRSI algorithm, which
is considering only a small set of relevant swaps, depending on the
value of a, as described above. To provide a more complete informa-
tion on how labeling errors can affect a given dataset, we also pre-
sent the full P-value distribution. In order to do this, we calculate
the log-rank P-value for all possible swaps according to a. The P-
value distributions for a ¼ 1

n, pertaining to the n þ 1 swaps (includ-
ing the non-swap original data) are depicted in Figure 3B, D and F.
In addition, we present, in Figure 3A, C and E, for each dataset, the
P-value as a function of the time and type of the swapped sample.
For the first dataset, we also calculated the interval for 2 and 3
changes (Fig. 6). It should be noted that the calculation of the full
distribution introduces a prohibitive time complexity. A more
detailed comparison to our efficient approach is given below.

The first dataset is the MAINZ cohort (Schmidt et al., 2008).
We divided the data according to the subtype—Luminal A versus
not Luminal A. It is well known that the breast cancer subtype
Luminal A has better prognosis than the rest of the subgroups
(Fallahpour et al., 2017; Howlader et al., 2018). As expected and as
stated in the introduction, a log-rank test demonstrates this differ-
ence with P-value ¼ 0.014 (see the left panel in Fig. 1). The stability

interval calculated given a ¼ 1
n & d ¼ 0 is [0.006, 0.029], see Figure

3A and B. This interval represents a 57% and 107% decrease/in-

crease from the original P-value, respectively. We note that a ¼ 1
n in

this dataset is only 0.5%. Using d ¼ 0:05, the effect is still dramatic:
a 101% increase to the inferred maximum P-value (SI ¼ [0.006,

0.0282]). We further investigate the effect of a ¼ 2
n and a ¼ 3

n. The

stability interval calculated for a ¼ 2
n is [0.0029, 0.055] and when

using d ¼ 0:05, we got PU ¼ 0:034. The stability interval calculated

for a ¼ 3
n is [0.0013, 0.095] and when using d ¼ 0:05 we got

PU ¼ 0:043. Here, again, we calculated the full P-value distribution
to provide the complete information (see Fig. 6), a time consuming
process. In order to find the stability interval, using the full P-value

distribution for a ¼ k
n, one needs to perform

Pk
i¼1

n
i

� �
log-rank calcu-

lations. Our LoRSI algorithm needs only 2
kþ 2

2

� �
such calcula-

tions, as described in Section 2. It took 2.5 min to calculate the SI

using the full P-value distribution, for a ¼ 2
n, where LoRSI took 0.5

s. For a ¼ 3
n, the gap is much larger: almost 3 h to calculate the SI

using the full P-value distribution and only 0.75 s for LoRSI.

Fig. 4. Kaplan Meier curve and log-rank p-value according to ECOG score of

patients with advanced colorectal or lung cancer - ECOG¼0 Vs ECOG > 0

Fig. 5. Kaplan Meier curve and log-rank p-value according to expression of the gene

MSH2 in ovarian cancer patients - MSH2 expression>-0.7 Vs MSH2 expression �-0.7
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Furthermore, setting a ¼ 0:04, which represents the error rate
according to Ebbert et al. (2011), we need to investigate k ¼ 8
changes, which is totally impractical. LoRSI will take seconds to do
the SI calculation.

The second dataset came from a study that was developed to
compare descriptive information from a patient-completed question-
naire to that obtained by the patient’s physician Loprinzi et al.
(1994). All the patients suffered from advanced colorectal or lung
cancer. We consider the ECOG score calculated by a physician that
assess the patients as a label for assessing survival differences. The 0
score represents fully active, able to carry on all pre-disease activities
without restriction. Higher ECOG means less ability to perform
usual daily activities, where 5 is the highest score. We divided the
data according to ECOG ¼ 0 and ECOG > 0. The statistical differ-
ence in survival between the groups is significant with log-rank
P-value ¼ 0.0021 (Fig. 4). The stability interval calculated given
a ¼ 1

n & d ¼ 0 is [0.0004, 0.0079], see in Figure 3C and D. This
interval represents a 81% and 276% decrease/increase from the ori-
ginal P-value, respectively.

The third and last dataset comes from an investigation of the
gene expression in ovarian cancer patients, using the TCGA data
(Network et al., 2011). The MSH2 gene was shown to be associated
with survival in ovarian cancer (Borcherding et al., 2018). We took
the relevant part of the TCGA dataset and split the samples into two
groups according the optimal cutoff suggested by Borcherding et al.
(2018). This cutoff is (standardized) MSH2 expression >�0.7 and it
yields a log-rank P-value of 0.0347 (Fig. 5). The resulting SI at a ¼ 1

n
is [0.009275, 0.0947], see in Figure 3E and F. Here, the SI represents
a 73% decrease from the original P-value to the minimum P-value
and a 273% increase to the maximum P-value. This PU results from
swapping only one single sample (the latest censored sample in CF),
which is 0.24% of the samples in the cohort. Moreover, increasing d
to 0.05 will change PU to 0.06, still a dramatic effect. To obtain
PU < 0:05, we need to set d to 0.1. The meaning of this result is
that 10% of the single sample labeling swaps, applied to a dataset
that originally had a significant survival signal, result in a non-
significant P-value.

4 Discussion

In this work, we introduce the novel concept of stability interval for
log-rank test. This interval represents the possible effects of perturb-
ing the labels from the original survival analysis data. We show that
even a small error rate in the labels can lead to dramatically different
statistical conclusions. Our calculated stability interval bounds these
differences, thus allowing an assessment of the stability of the statis-
tical test, under labeling errors. We focus on the definition of the sta-
bility interval for log-rank and develop an algorithm for efficiently
calculating the interval for any a.

We present a deterministic approach for addressing the labeling
error issue, where we consider all possible label swaps that affect
different sample sets representing exactly a fraction of the samples.
One can also take a stochastic approach, wherein instances are gen-
erated, in which each sample label is swapped with probability a.
The number of labels actually swapped will then have a Binomðn; aÞ
distribution. Sampling sufficiently many instances, or analytically
characterizing the resulting sample space, will lead to a new way of
calculating the stability interval from the resulting P-value distribu-
tion. While in the deterministic approach, we (in effect) assume a
uniform error distribution, in this stochastic approach we can, the-
oretically, use any error distribution. This includes, e.g. models that
would assign confidence to individual labels, making swaps less or
more likely for individual subjects in the cohort. The study of this
interesting and potentially useful extension is a topic for future re-
search. Our approach is also extended to address a confidence par-
ameter d. Specifically, we find the smallest number pU for which
LRðD; kÞ 2 ½pL; pU� holds for a 1� d fraction of possible labeling
changes k 2 Bðk0; aÞ. This represents a conservative approach to tak-
ing d into account. Namely, one that focuses on the desired signifi-
cance threshold, as may be determined, by the user, in the study
design.

We note that in the proof of our algorithmic approach, we distin-
guish between working with the CDFs of sums of hypergeometric
distributions and working with their standardized versions. Our re-
sult, pertaining to how the ends of the log-rank SI can be obtained

by calculating the results of 2
kþ 2

2

� �
sets of k swapped, holds for

large Js as it requires a normal approximation. If differences in sur-
vival are directly assessed against the underlying sum of hypergeo-
metric variables null model, then some of our results hold for any J.

We investigated the advantage of using our efficient LoRSI ap-
proach as compared to calculating the stability interval by generat-

ing the full P-value distribution. While LoRSI performs Hðk2Þ log-
rank calculations to address k changes, the exhaustive approach

takes H
n
k

� �
such calculations. This complexity gap leads to sec-

onds versus hours difference for small values of k and to LoRSI
being the only practical approach in higher values.

We provide a Python implementation of the LoRSI algorithm.
Current work focuses on the development of more efficient and user

Fig. 6. p-value distribution on the MAINZ cohort (Luminal A versus not Luminal

A), when a ¼ 2
n, panel A, and when a ¼ 3

n, panel B. The black line is the original

p-value. The solid red lines are the PL and PU when d¼0. The dashed red line

represents the PU when d¼0.05
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friendly implementations of the methods described herein as well as
on visualization tools. All will be made available through future
releases. We hope that such efforts will make statistical stability ana-
lysis more accessible and useful for the community.
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Figure 6.1: Kaplan Meier curve and log-rank p-value on the MAINZ cohort - Luminal A Vs
not Luminal A. On the left the original data and on the right the data after one change.

72



Part III

Summary And Discussion
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6.1 Summary

This work has two parts.

In the first part we suggest a statistically motivated design of a secure MPC Logrank Test

protocol. If the goal is to satisfy MPC security, and the problem is the complexity of the

Logrank process, the problem can be dramatically simplified by minimizing the number of

operations on the ciphertext.

In CoPPSA the only operations done on encrypted data are sums and multiplications of

integers, and the amount of messages sent is linearly proportional to the number of parties.

Moreover: the complexity of the protocol is detached from the dataset size. Comparing to

von Maltitz et al solution, the advantages of our protocol are simplicity and flexibility, which

leads to significantly higher performance on large datasets.

CoPPSA is simple and modular. It can be implemented based on a variety of known

MPC tools like BGW, Homomorphic Encryption, or others. The security properties are

inherited directly from the chosen MPC tool. Potential users can therefore implement an

MPC version of Logrank according to their adversary model and complexity requirements.

CoPPSA has another significant advantage over the alternative solutions: it encourages

the parties to use their true values instead of false values (see chapter 5). Consider a case in

which some party decides to ”lie” , that is to provide values which are not coherent with it’s

actual dataset. By doing so the party risks a loss of the required Logrank result. Assuming

that obtaining the Logrank result is more desirable than prevent it from the other parties,

this is a strong incentive to comply.

It is important to note, however, that CoPPSA calculates a slightly different function

than the original Logrank, due to a loss of information. The distance between the calcu-

lations decay as the merged dataset’s size increases (see section 4.1). By proving CoPPSA

converge to standard normal distribution we showed that the result our protocol provides is

equivalent to the standard Logrank result, and therefore reliable.
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In the second part we demonstrate the uncertainty that arises from labeling errors. Given

survival data with n samples and an error rate, α, we define a stability interval and a

procedure that calculates a stability interval for the log-rank test.

6.2 Future Directions

As a proof of concept, we provide a single threaded simulation of CoPPSA. In the implemen-

tation given at https://github.com/asamohi/Logrank submodule.git . Optional extension for

this project can be implement the protocol as a multi-process web application with a user

interface.

In our simulation we assume that the adversary does not corrupt both servers at the

same run. This assumption is taken for simplicity, since this project is not focused on the

cryptographic aspects. This assumption is not mandatory, the protocol can be implemented

according to any adversary model.

In our research we provided a proof that CoPPSA converges to standard normal distribu-

tion. We also provided an empirical results showing that for database large enough Z∗ ∼ Z.

Optional progress can be providing a full analytic proof that Z∗ ∼ Z. First step would be

to identify the characters of database partitions that leads to radical results

RadicalPartition = argmaxpartitions|Z∗ − Z|

The next step would be to analyze the probability for such radical cases.

In chapter 5 we present a new definition for a function with an incentive for veracity. We

are currently developing this subject as a separate research.
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תקציר 

מחקר זה עוסק במבחן לוגרנק (Logrank Test) - אלגוריתם ממשפחת 
האלגוריתמים הסטטיסטיים המשמשים לניתוח שרידות. חיבור זה כולל שני 

חלקים. 

 multi party) בחלק הראשון נציג פרוטוקול לחישוב משותף בטוח רב-משתתפים
computation) של קירוב תוצאת מבחן הלוגרנק. נוכיח את נכונות הפרוטוקול 
ונראה שניתן לממשו בכל רמת בטיחות קריפטוגרפית נדרשת וכנגד כל מודל של 
תוקף, וזאת על בסיס שימוש בכלים קריפטוגרפיים קיימים. נראה את אמינות 
הקירוב המחושב ביחס לתוצאת מבחן הלוגרנק המקורי. בהמשך נציג אופן טיפול 
חדש בבעיית קלט שיקרי (false input) וכן גרסה ספציפית של הפרוטוקול 

שמספקת הגנה חלקית כנגד מתקפה זו. 

בחלק השני ננתח את השפעתן של טעויות תיוג בקבוצת הנתונים על תוצאת 
המבחן (Logrank). נציג פתרון חדש להתמודדות עם הבעיה ע״י אלגוריתם 
המחשב תחום יציבות קטן ככל האפשר (stability interval) לתוצאת המבחן 
בהתחשב בשיעור שגיאות אפשרי בנתונים. מאמר אודות הפתרון המוצע פורסם 

במגזין Bioinformatics ביולי 2021 והוא מצורף לחיבור זה. 



עבודה זו בוצעה בהדרכתם של פרופ' זוהר יכיני מבי"ס אפי ארזי למדעי המחשב, אוניברסיטת 
רייכמן, ודר׳ עדי עקביה מהמחלקה למדעי המחשב, אוניברסיטת חיפה. 
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