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Abstract

Dynamic events are often photographed by a number of people from different viewpoints at different
times. Finding the corresponding moving features in each of the resulting images allows us to extract
information about objects of interest in the scene. Computing correspondence of moving features in
such a set of images is considerably more challenging than computing correspondence in video, as
the prediction methods used in video are not applicable to an unconstrained set of still images. In
this thesis we propose a novel method which improves the accuracy of feature matching algorithms
by predicting valid locations of a feature point, given a small subset of correspondences. Our method
utilizes epipolar geometry to divide images into valid and invalid regions, termed Temporal Epipolar
Regions. These regions determine which features are consistent with the order of image captures and
an approximately linear trajectory of the point. We prove that none of the feature points in invalid
regions can be candidate correspondences. We demonstrate the effectiveness of our method to reduce
the search space for correspondence on both synthetic and challenging real world data, and show the

improved matching.
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Chapter 1

Introduction

Given is a set of still images which capture a moving object from multiple viewpoints at different times.
Can we predict the location of this object in each of the images if we only know its location in three?
The general answer to this is no. In this thesis, we propose a solution to this problem when the object
is assumed to have approximately linear, unidirectional motion. Before describing our method, we first
explain the motivation for solving this problem.

The popularity of smartphones today ensures that most of us always have a camera within reach,
and therefore, interesting dynamic events may be captured by many cameras. The collection of such
cameras, is termed a crowd-based camera (or CrowdCam for short). CrowdCam captured scenes do not
require any coordination among the photographers, and therefore the viewpoints and timing between
images differs. However as all the photographers capture the same event, the dynamic object is captured
in all the images over a relatively short time interval. Tagging in social media facilitates quick retrieval
of CrowdCam captured data from exciting events. To extract information about what happened in
CrowdCam captured scenes, we need to look beyond data retrieval and analyze the scene itself. One
such analysis involves examining the motion of the dynamic objects in the scene. Tracking an object
through a set of frames in video is considered a fundamental problem of computer vision. However,
videos of dynamic scenes are not always available. In such cases, we can analyze the motion of an
object through still images by finding the corresponding object in each image.

Computing correspondence of points in images of a static scene can benefit from the use of epipolar
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constraints. Given the epipolar geometry and the location of a matching static point in at least two
images, it is a relatively simple task to identify the location of said point in the rest of the images. In
this case, epipolar constraints guarantee that in each image for which the correspondence is unknown,
the point must lie on epipolar lines calculated from the location of the static point in other images.
Therefore, the location of the point is the intersection of these epipolar lines.

However, if the scene is dynamic and the point moves, the location of the point is no longer lim-
ited to just the epipolar lines, and the epipolar constraint is no longer applicable. As such, analysis
of moving objects in CrowdCam image sets, as in tracking in video, often requires computing corre-
spondence through direct matching of features. Finding corresponding dynamic features in a set of
CrowdCam images is challenging, as strategies which directly match features rely entirely on the fea-
tures themselves and do not take into consideration the geometry between cameras or the timing of
image captures. CrowdCam images are captured without any coordination between the photographers,
and as such each image may be shot from a different viewpoint and the time between image captures
may be inconsistent. As a result, feature matching must be able to overcome viewpoint variations,
obstructions, noise, or changes in illumination while still differentiating between features and selecting
the correct match.

In this thesis we proposed a new geometric constraint for reducing the search space for candidate
correspondence of the moving feature point through the set of images. For a general set of images with
an object moving arbitrarily, the feature point can be projected to any location in each image, depending
on the camera position at capturing time. Furthermore, each projected feature is independent of the
location of corresponding features in the other images. As such, additional information (3D trajectory,
speed, precise timing between image captures, etc.) is required in order to predict its location. Our
work does not require this type of knowledge, which may be difficult to obtain. Instead, we assume
that each dynamic point is moving in an approximately linear trajectory and that the temporal order
in which the images were captured is known (if it is unknown, photo sequencing [ 1] may be used to
calculate it). Similar assumptions are often used in video for feature or object prediction in tracking

algorithms.
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Image 6 Image 3

Figure 1.1: An example (from dataset g1) of limiting the search space for correspondence using tempo-
ral epipolar regions. The epipolar lines on image 3 are calculated using the set of correspondences from
images 2, 4, and 6 (yellow stars) in the set. These lines are used to define temporal epipolar regions
which limit the search space for correspondence in image 3 (only areas not colored in red should be
considered for correspondence). The valid regions are consistent with the order of image captures and
the unidirectional linear motion of the point.

Our method: Given the correspondence of the moving feature in a small set of images, we utilize
epipolar geometry in order to predict the location of the point in the remainder of the images . To do so,
we calculate epipolar lines from all known corresponding points in an image for which correspondence
is unknown. As shown by Dekel et al. [11], the order of the intersections of these epipolar lines with
the projection of the 3D trajectory of the point onto the image, must match the order of image capture
times. While we do not know the trajectory of the point, we can utilize this concept in order to define
Temporal Epipolar Regions, TERs, bounded by a set of epipolar lines and their parallels (Figure 1.1).
We prove, using geometric considerations, that all points in each TER are either consistent or
inconsistent with the order of capture timings of the set of images. All points in consistent regions

are valid candidates for correspondence, while all points in inconsistent regions are invalid. Therefore,
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Figure 1.2: An example (from dataset d1) of finding correspondence with and without the use of TERs.
In this image we see that the match found without using TERs (the red circle) is incorrect while the
same matching algorithm with use of TERs successfully finds the corresponding point (green star),
given a set of 4 correct correspondences in other images.

TERs define an area in the images in which the point must reside. TERs can be computed efficiently
and limit the search space for candidate points, thus improving matching results of feature matching
algorithms. We show an example of prediction using TERs in Figure 1.2 (best viewed on a computer
screen). We demonstrate, through experimental results on a variety of datasets, that TERs restrict the
search space within images and thus improve the matching of feature points in a number of image sets.
Any matched feature increases the set of known corresponding points, thus decreasing the size of the
valid TERs in the rest of the images.

The main contributions of our work are (i) the introduction of the novel problem of predicting the
location of moving points in a CrowdCam setting, (ii) the proposed extension of epipolar geometry in
order to constrain the location of moving feature points in a set of images.

The remainder of this work is organized as follows: We begin by discussing works related to our
research (Chapter 2). We then define spatial-temporal consistency and explain how it is used to define
valid and invalid temporal epipolar regions in an image (Chapter 3). Subsequently we propose an
algorithm to utilize TERSs in order to predict the location of a corresponding point in a set of CrowdCam
images (Chapter 4). Finally, we evaluate the effectiveness of our method on both simulated and real

data (Chapter 5).
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Related Work

Crowd-based cameras capturing a dynamic scene have recently become the focus of a number of stud-
ies. Some studies focus on CrowdCam video sequences, such as Ballan ef al. [4], who presented an
algorithm for navigating around a dynamic performer using background reconstruction, camera pose
calculation, and segmentation of the performer. Other studies utilize features found in still images cap-
tured by CrowdCam to extract information about the cameras and images. For instance, Dekel et al.
[10, 11], provided a way to determine the time order between image captures using photo sequencing.
Kanojia et al. [17] offered an alternative approach to determining the time order of the images using
homography and identified which camera captured which image by recovering camera matrices using
shared static points. Instead of ordering images in time, a recent work by Averbuch-Elor er al. [1]
assumes that all images were captured at approximately the same time and uses the dissimilarity of
objects to find the order of the images in space. While these works extract much information regarding
the capturing of the scene, our work focuses on extracting information about the points captured in the
scene, specifically how to predict their corresponding locations in the set of images.

Finding corresponding features among images is a topic which has been well studied and varies
in its approaches based upon the specific goal of the work. Different types of feature descriptors may
be used for different tasks, and the algorithms for finding matching features differ accordingly. For
instance, while SIFT [20] or SURF [5] features work well when online calculation is not required, they

are considered computationally expensive when compared to binary feature descriptors such as BRISK
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[18] or ORB (rBRIEF) [30]. Each descriptor offers its own benefits and drawbacks and comparisons
of many popular descriptors are available [23]. A common strategy for finding corresponding features
involves searching for the nearest neighboring feature. For high dimensional features such as SIFT,
libraries, such as FLANN [25], which select the best algorithm and parameters for efficient search for
approximate nearest neighbors, have been developed. Algorithms which have been found to be effi-
cient for approximate nearest neighbors search include randomized k-d forest or the priority k-means
tree [24]. Binary descriptor nearest neighbor search is often done using variants of locality sensitive
hashing, using Hamming distance for matching [30, 18, 8]. As described in the introduction, matching
this way is descriptor dependent and does not take into account timing between image captures or the
geometry between cameras. Our proposed method is orthogonal to direct feature matching as we utilize
geometry to limit the search space. As such, each of these feature descriptors and matching strategies
may be used in conjunction with our method for improved accuracy in matching.

There are approaches which consider more than the descriptors themselves in order to match fea-
tures. One such approach is using bounded deformation models, as in Lipman et al. [19], to ensure that
matched features are geometrically consistent between pairs of images. This work selects the candidate
correspondences only if they can be aligned without too great a distortion of a triangular mesh. This
method may be applied for matching features in CrowdCam captured data assuming that the dynamic
objects captured do not deform greatly. As it does not take into consideration the timing between im-
age captures, using our method to first remove temporally inconsistent candidate correspondences, may
improve the accuracy of matched features, even in cases which look beyond the descriptors themselves
for matching.

Another well known approach for finding correspondence is utilizing the geometry between cam-
eras in order to limit the search space for matching points. This is not a new concept, in fact works
dating back to the 1970’s [14] detailed such procedures. Over the years many works have utilized
epipolar constraints in order to determine correspondence of points in images for a number of applica-
tions [34, 13, 7]. A recent work by Shah er al. [31], uses epipolar geometry between images to limit the
search space for correspondence in order to better find matches in the presence of repetitive structures.

However, works which utilize epipolar constraints in order to search on or around epipolar lines for
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correspondence, only apply to static points.

Finding correspondence in still images may also be accomplished by triangulating the 3D trajectory
of moving points and then using this trajectory to project the point to each of the images. Avidan
et al., [2], described a method for trajectory triangulation for points moving along straight lines or
conic sections. Kaminski and Teicher [16] extended this concept by building a general framework for
trajectory triangulation of points which may move along more complex trajectories. However, both
these methods require a full calibration of all the cameras and that a minimum of five correspondences
(in the case of a precisely linear trajectory) be given. Park ef al., [28, 29] reconstruct the 3D trajectory
of a moving point using a linear combination of compact trajectory basis vectors. This work assumes
that camera positions, camera matrices and the precise timing of image captures are given. Our method
does not require precise timing of image captures, only the order between the image capturing times.
Additionally, our work requires a weaker calibration than these works (only fundamental matrices), and
only three corresponding points as initialization. Note that using a forgiveness parameter (described
in Chapter 4), our method relaxes the precisely linear trajectory assumption, allowing for predicting
points moving approximately linearly.

In video, limiting the search space in order to find correspondence of a moving point or object has
been studied in approaches for tracking utilizing a prediction of motion [32]. One prediction strategy
which has helped trackers limit the search space for correspondence in successive frames is to search
a window around the location of the point or object in a previous frame (e.g., [0, 3, 15, 33]). Another
approach is to utilize a motion model in order to predict where an object will be based on its locations in
previous frames. This approach often utilizes Kalman or Particle filters (e.g., [26, 9, 21,22, 27]) in order
to build the motion models. However, as these strategies for prediction assume short, consistent, time
intervals between frames as well as no significant viewpoint change between frames, such strategies do

not apply to CrowdCam image sets.
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Spatial-Temporal Consistent Regions

Assume a 3D point () travels along a unidirectional linear trajectory and is projected to the set of
images Z = {I;} at a set of unknown times T = {t(I;)}. Let, S, = {g;} be the unknown projection
of @ onto the set Z such that g; is the projection of ) onto image I; at time ¢(/;). Given a known
corresponding subset S; C S*q, our goal is to find the remainder of the set. Finding ¢, in I,, requires
overcoming possible ambiguities and may be computationally intensive. To narrow the search we
propose a method for defining valid and invalid image regions where g, can or cannot be located. We
assume the fundamental matrices F;; between pairs of image I; and I; can be calculated.

In order to define the said regions, we use the epipolar geometry between pairs of images and
the temporal order of the set of images given by the permutation o of the indices of Z. As such,

o: {1 .. N} — {1 .. N}, such that t(Ia(l)) < t(IU(Q)) . < t(IO'(N)>'

3.1 Consistency Definitions

To best describe our method, we begin by defining the spatial-temporal consistency, STC, of a set of

points. We then propose a method to determine valid and invalid regions using STC.

Definition 1: The set of points S, is spatial-temporally consistent (STC) with a linear motion and o iff

the following conditions hold:

1. There exists a set of capturing times 7" = {t(I;)} which is consistent with the temporal order, o.
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Figure 3.1: (a) As ¢ is unknown, candidate locations of «,, are limited to a region between the parallel
lines. (b) With two nonparallel lines, there always exists an ¢ crossing «,,, which preserves o (e.g.,
o= (j,u,k)oro=(u,jk)).

2. There exists a set of 3D points Sg = {Q;} along a 3D line, L, such that g; is the projection of

(); onto image I; at time t(I;).

3. The relative spatial locations of each point in Sg along L correspond to the temporal order

defined by permutation o.

Note that if ¢(1;) < t(I;) < t(I), then Q; € L(Q;, Q). That is, Q; is located on the interval of L
between (Q; and (. Therefore, (1) can be verified using the relative spatial locations of S¢ along L.

Assume that we are given S, and we search for its unknown correspondence ¢, in an additional
image I,,. A point «, € I, is a candidate location for g, only if S; U {ay,} is a STC set. Such a o, is
named a valid spatial-temporally consistent point with respect to S, and o or, for short, a valid point.
We would like to consider the validity of a point while avoiding direct computation of the 3D set Sg
(and therefore L) and the timing set 7". Instead, we propose a way to determine the validity of a point
without computing L.

We note that it is possible to compute L through trajectory reconstruction, when at least five cor-
respondences are known, and a full calibration of all cameras is available (e.g., [2, 16]). Our method
requires a weaker calibration (only fundamental matrices), and only three corresponding points as ini-
tialization.

Consider the set of 2D points, S* = {p;}, the projections of S onto a single image, I,,. That is, p;
is the projection of (); onto I,,. Note that the spatial order of Sg along L is identical to the spatial order

of the corresponding set S“ along ¢, the projection of L onto [,,. Therefore, the temporal consistency
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of S, can be verified by the spatial order of S along ¢“. However, S* and ¢“ are both unknown.

That being said, as we know that p; € I, corresponds to the given ¢q; € S;, we can limit the
location of p; € I, to the epipolar line ¢; on I,,, given by £; = F,,;q; (where k are the homogeneous
coordinates of k). As such, let us consider the order of the intersections of a line ¢ with the epipolar
lines defined by S, and the point c,,. If the order of the crossings matches o, we say that ¢ conserves
o. The point «, is valid if there exists a line £ which conserves o. Conversely, «, is invalid if no such

line exists.

Definition 2: (i) A valid temporal epipolar region is the set of all valid points in an image [,, with
respect to S; and o. (ii) An invalid temporal epipolar region is the set of all invalid points in an image
I,, with respect to S, and 0.

In order to demonstrate how TERs and their validity are calculated efficiently, we take a closer look

at the epipolar lines corresponding to S, on I,,.

3.2 Two Epipolar Lines

First, let us discuss the degenerate case where we are given two parallel epipolar lines, ¢; and ¢, on I,,
and o = (j,u, k). Consider a point c, in the section between ¢; and £}, and any line /, not parallel to
¢;, passing through it. Let a; and oy, be the intersections of ¢ with the lines ¢; and ¢;,. Clearly, c, is on
the interval between «; and oy, on /; hence the order of o is preserved by £ and therefore «, is a valid
point (Figure 3.1a). This is true for all points in this section. However, this is not true for any points
outside this section, and thus these two sections are invalid.

We note that in the more general case, in which the epipolar lines are not parallel, all candidate
points in the image are valid (Figure 3.1b). We next show that, given more than 2 epipolar lines, it is

possible to limit the valid regions.

3.3 Three Epipolar Lines

Given three epipolar lines, ¢;, £;, and £}, and a temporal order defined by o, we can split the image

plane of [, into sixteen distinct temporal epipolar regions of five types (Figure 3.2). To do this, we

10
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/7 R4 k) \\
(R4) (R5)

Figure 3.2: Three epipolar lines (¢;, £;, £};) and their parallels “;, fj, 1) split an image space into
sixteen distinct regions of five types. Each region type is shown in white. The labels for each region
are either contained within the region or point to the region using arrows.

consider an additional set of lines parallel to the epipolar lines. We define the line / ; as a line parallel to
¢; and passing through the intersection of ¢; and /. The lines ?; and {}, are defined similarly. We will
prove that in a given region either all points are valid or all points are invalid and that this classification
is dependent not on the epipolar lines but on 0. We will show that for a given ¢ half of the 16 regions
are valid TERs, while the other half are invalid. Table 3.1 summarizes the classifications of TERs as
valid or invalid given o, defined without loss of generality as having the suborder ¢/ = (3, j, k) and
four possible locations of .

In practice, much of the efficiency of our method is derived from this classification scheme. As we
know which TERs will be valid given a certain o, there is no need to search for ¢ for every point o, in
each region. Instead, we can simply label regions as valid or invalid using Table 3.1.

We formally define all five region types here and prove their validity given different permutations.

11
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The proofs consist of case analysis of standard geometric considerations. The reader may skip to
Section 3.4 in a first reading, and check Table 3.1 and Figure 3.2 for region type reference.

Given epipolar lines ¢;, £;, and /},, let us label the intersection of ¢; and ¢; as ;; and label points
ik and ;. similarly. (Note that 7;; = 7;.) Furthermore, for each epipolar line /;, let /; (Yij» Vik)
be the interval along ¢; from ~;; and 7;,. There are 4!/2 possible orders up to direction that must be

considered. We will show that 6 of them are valid and the other 6 are invalid for each region type.
Definition 3: R/ is defined as the triangular region whose points are ;;, vk, and ;5 (Figure 3.2).
Claim 1: R1 is a valid TER iff u is not at an endpoint of .

Proof of Claim 1: Assume without loss of generality that o = (i, u, j, k). Consider the line ¢ which
connects any point o, € R1 and a point g, on £, <’yjk, oo) that does not contain 7, (i.e., ax ¢ R1). Let
a; and o be the intersection of £ with ¢; and /; respectively. As R1 is defined as a closed convex shape
(triangle), line ¢ passing through it must cross two of the lines which border R1. Additionally, the lines
which are crossed at the borders of R1 must be ¢; and /;, as ¢ intersects ¢}, at oy, ¢ R1. Furthermore,
o, must be on the interval defined by «; and o, as «; and «; lie on borders of the region. Finally, as
ay, is on the interval ¢ (71, 00), beginning at 7, the line intersected between «,, and oy, must be ¢;.
As such, ¢ conserves the order defined by ¢ and thus R1 is considered valid.

Assume w.l.g. that o defines an order which has u at an endpoint. Consider the line ¢ passing
through o, € R1. As R1 is a closed convex shape, any line which passes through it must intersect two
of its borders. Assume without loss of generality, it intersects with ¢; and ¢; at the intervals ¢;(y;;, Vir)
and ¢;(;;,v;x). However, such a line must have o, between «; and «, contradicting the order defined
by o, and thus this region must be invalid. QED.

We next consider another region type. Without loss of generality, two non-parallel lines dividing a
2D space split that space into four sections. A third line which is not parallel to either of the first two and
does not intersect their intersection point must pass through three of these sections. The unintersected

section is defined as the section through which the third line does not pass.

Definition 4: R2(3, j) is defined as the unintersected section comprised of ¢; and ¢; through which ¢,

does not pass. (See Figure 3.3).

12
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Figure 3.3: This figure shows the notations used in the proof of claim 2, R2(i, j) marked in grey. The
black line corresponds to an ¢ consistent with o = (4, u, 7, k).

Claim 2: R2(i,7) is a valid TER iff u is not adjacent to k in o.

Proof of Claim 2: Let us first consider the 6 orders for which R2(3, j) is invalid. Each of these orders
has u adjacent to k. Assume without loss of generality that o = (7, u, k, j). Consider a line £ connecting
any point o, in R2(7, j) and a point a;.. As ay, is outside the region R2(3, j), any ¢{cay, o) must cross
either ¢; or /;. Hence, a; or o; must be between «,, and oy, which contradicts orders having v adjacent
to k.

We next consider orders in which R2 is valid (see Figure 3.3). Given a point a,, € R2(1, j), define
Bo € ¢ to be the intersection of the line connecting «,, and +;;. For all o, € £, (Bp, 00) that do not
contain v;x, «; is between a,, and oy, as «; is on the border of R2. Hence a, is consistent with the
suborder o/ = (u, i, k). We next show that there exists a line £ for every o containing the suborder ¢”.

Consider a line ¢ that connects o, with any point 31 € ¢(f8o,v;x). As 31 resides on a border of the
triangle (R1), the interval (31, o;) must cross ¢; at a point bordering R1 (as c; is on the border of R2,
it does not reside on the border of R1). Therefore, or; must be between «; and 31. This line is therefore
consistent with the full order o = (u, i, j, k).

Consider a line fj, parallel to £; and passing through «,. Let %, be the intersection of fj with /.
Consider a line ¢ that connects «,, with any point 35 € €(;x,¥;i). As 2 is on an interval between the
two parallel lines, /; and 0}, it follows that 35 € £{ay,, a;).

Finally, consider a line ¢ that connects c,, with any point 33 € £(¥;, co) that does not contain ;.

As o, resides on the intersection of ¢ and ﬁj and (33 is at a point on £(;;,, 00), o; must be on the border

13
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o | Valid TERs \
win gk | Ra(i ), Ralis k), Rs (i j, k), Ra(i, ),
Ry(j, k), Rs (i i, k), Rs (4, j, k), Rs (k. k., j)
iu, g,k | Ra(i, j, k), Ra(4, ), R3(]7%7€7)’R3(k7%7j>7
Ru(i, J), Rs (i, i, 5), Rs (i, 1, k), Rs(4, J, 1)
iy k| Ra(is s k), Ra(3, k), R0, ), Ra(is . ),
R4(]>k> R5( j k)7R5(k7k’Z)7R5( 7k7j)
ik | Ra(i k), Ra(j, k), Ry(k, i, 7), Ra(i, ),
R4(Z k) R5( Z7j)>R5(j7jvi)7R5(kak7£)

Table 3.1: This table defines, without loss of generality, the valid regions given a suborder of o, 0/ =
(i, 7, k), and the location of u € o, all other regions are invalid.

of R2. As o; and a; must be on borders of Ry, the interval £(c;, ;) must cross c,. Therefore, ¢ must
be consistent with the full order o = (j, u, 7, k). This case is shown in Figure 3.3. The symmetric cases
where we switch ¢ and j are proven similarly. QED.

Note that in the above proofs, we define o, as any point within each region, and thus these proofs
apply to all points within each region. Region types 3, 4, and 5 are proven in similar ways in Ap-

pendix A.

3.4 Beyond Three Epipolar Lines

When |S,| > 3 (more than three images with known correspondences), we calculate valid TERs on
I,, for each subset of three images with known correspondences, then find the intersection of all the
valid TERs. Note that for each subset we use a subpermutation of ¢ that conserves the relative order
between S, and u. The intersection of all the valid TERs defines an overall valid region. Note that this
overall valid region does not guarantee that there exists a line which conserves o. Instead, it guarantees
the correctness of the invalid regions. For an optimal computation of the valid region, it is necessary to
define additional region types for each size of S,. This is left for future work. While our method is not

optimal, it yields good results, as can be seen in the experiments (Chapter. 5).
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TERs and Feature Matching

Now that we have defined TERs, we focus in this section on how to utilize them to improve feature
matching algorithms, and to propose correspondence verification using prediction. As a first step of our
method, image features are extracted from all images (we use SIFT features [20]) and the fundamental
matrices F;; between images I; € Z and I; € 1 are computed (we use the BEEM algorithm [12]).
Furthermore, if the temporal order of the images is unknown, it is possible to utilize photosequencing
[11, 10] as an additional preprocessing step to calculate it. We also assume that a set of at least three

correspondences is given, otherwise we can run a simple initialization to calculate it.

Matching using prediction: In each image, we extract feature points and run an initialization to
calculate ;. Given S; and the set of fundamental matrices F;;, we define TERs in each image for
which correspondence remains unknown. For |S,| = 3, the valid regions in each image are defined
using Table 3.1. For larger |.S,|, the method described in Section 3.4 should be implemented to label
the regions. The corresponding point, «,, € I,,, is chosen as the nearest neighbor to all features in
Sy from valid regions in all images (note that any other matching criteria may be used). Then, S, is
updated to S; = S; U {a,}. The valid TERs in the remaining images are updated according to the
additional constraints defined by «,,. This reduces the size of the valid regions in the remainder of the
images. This process is repeated until all images are assigned correspondence. We present an example

of matching using prediction in Figure 4.1.
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Image 4 Image 8 Image 7 Image 6 Image 3

Figure 4.1: Given correspondences in the first, second, and fifth images of a scene (dataset c5), we run
our method and find corresponding points in the remaining five images of the set using simple matching
(red circles) and matching with TERs (green stars). Note: we labeled the images based on their order
in time but presented them in the order, from left to right, in which best nearest neighboring matches
were selected by the TER algorithm. Also, as matching with TERs is run independently of matching
without TERs and each finds matches based on previously found correspondences, incorrect selections
by standard matching may still fall within valid regions (as in image 7).

Correspondence verification: In some cases no valid regions exist in the image. This can be regarded
as a dead end, since S; cannot be extended. If we encounter such a dead end, we deduce either that
one of our assumptions does not hold (linear motion, correct fundamental matrices and temporal order)
and we can do no better than matching without TERS, or that one of the candidate correspondences is
incorrect. This is demonstrated in test 3 in Chapter. 5. If we successfully assign points to all images
without hitting a dead end, it is likely that points were selected correctly. Note that the more images

we have, the higher the confidence that the matching is correct.

Unreliable TERs: The valid regions may be unreliable when the motion deviates from linearity or
when the fundamental matrices are not accurate. To compensate for this, a simple forgiveness param-
eter may be used. Such a parameter allows for the consideration of points in invalid TERs as long as
they are within a short distance to the border of a valid TER. The larger the forgiveness parameter, the
more robust our method is in handling deviations from our assumptions, but the weaker the prediction.
A demonstration of the effects of various forgiveness parameters on matching accuracy may be found
in test 6 in Chapter 5.

Other cases of unreliability occur when the TERs are within the noise level due to the small sep-
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aration between epipolar lines, for example, when the maximal distance between a pair of epipolar
lines within the image is smaller than e or when the distance between intersections of epipolar lines is
less than €. In these cases, we may declare the TERs to be unreliable, and thus match without using
them (by any standard matching algorithm). We propose the following workaround for these cases,
only when there are n > 3 epipolar lines (otherwise, we declare unreliability). Given n epipolar lines,
every valid point in the image is also valid in TERs built from every subset of n — 1 epipolar lines.
We consider all subsets of epipolar lines in which no intersections are closer than ¢’ and the distance
between each pair of lines is greater than e. We calculate TERs for each such subset and use the union
instead of the intersection of the resulting valid TERs. While this method may not restrict the overall

valid region as with well separated epipolar lines, it does allow us to reliably restrict the search space.
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Experiments

To study how our method performs in practice, we implemented it in MATLAB and tested it on syn-
thetic and real data. Quantitative results were obtained by evaluating the reduction in search space. We

also compared our method to one that does not use prediction.

5.1 Simulated Data

The simulated scenario consisted of a set of 4-8 cameras capturing a moving point. The cameras
were positioned along a semisphere, all pointed approximately at the origin, through which a randomly
generated line passes. Images were generated by projecting onto each image a randomly selected 3D
point along the line, thus generating Sq. The FOV of each camera was set to 30° in both x and y and

the distance to the origin was approximately 550 units. Each image was 512 by 512 pixels.

Test 1: We tested the effectiveness of our method in reducing the percent of the image which is valid
(PV). We ran 50,000 simulations, split into five groups of 10,000. Each group had a different number
of cameras generated (between 4 and 8), all but one of which was given initial correspondences, such
that |S,| = |S,| — 1. The image I,,, which was not assigned a correspondence, was selected at random.
In each simulation we computed valid TERs in I, using .S, and calculated the PV.

The results are summarized in Figure 5.1(a) as cumulative histograms of PV, one for each number

of initial correspondences, |S;|. Our data shows that for |S,| = 3, approximately 27% of the 10000
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Figure 5.1: (a) and (b) show, given different numbers of initial correspondences, the cumulative per-
centages of the area of valid TERs in each image, for simulated and real data, respectively.

simulations have images of which up to 20% is valid. When considering |.S,| = 4, approximately
42% of the simulations fall into this category. When [S,| = 7, over 65% of our simulations restrict
the search space to 20 % of the image or less. Thus, as expected, for a larger |.S,|, it is more likely
that the search space for an additional correspondence will be smaller. Indeed, when more information
about the moving point is available through a larger number of correspondences, the more accurate the
prediction is. We do not present the cases in which |S;| >> 7, as each additional image added to S,

can only further restrict the search space, therefore the trend presented is expected to continue.

Test 2: We tested the robustness of our method to noise in pixel locations, which may be caused by
deviation from linear movement. We ran 5,000 simulations, using 6 generated cameras, three of which
were given initial correspondences. We built TERs in the remaining images and selected one of them
at random. If the point projected onto this image was in a valid region, we added it to S, for the next
iteration. Otherwise, if all the images had points in invalid regions, we stopped, as no match could be
used for further iterations. Similarly, if an image reached a dead end, we stopped.

In each simulation we tested 4 noise levels per point on each image for which correspondence was
unknown. The first was the original projected location, and the rest were the original projection shifted
by a small random amount selected from a normal distribution with a mean of 0 and standard deviations
of 1, 3, and 5 respectively. We set an upper bound on the noise such that no shift could be more than

twice the standard deviation.
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For each noise level used, we considered the number of simulations which successfully assigned
a point to each image, the number of simulations which stopped as no further valid matches could
be made, and the number of simulations in which a dead end occurred. We found that dead ends only
occurred in 2 trials when the standard deviation was 5. At standard deviations of O and 1, all simulations
were successful in assigning points to every image. When the standard deviation rose to 3, 0.54% of
simulations had no candidate matches in valid regions and when the standard deviation was 5, 3.34%

of simulations had no valid matches. Note that for this test no forgiveness parameter was used.

Test 3: We tested whether detections of dead ends can be used to identify incorrect correspondence.
We ran 30,000 simulations, using between 4 and 6 cameras (10,000 simulations each) in which we
initialized S, with projections from the generated line (as in test 2), but selected random points for the
rest of the images. For this test we used a forgiveness parameter (as described in Chapter. 4) of 2 pixels.
We calculated valid TERs and proceeded through the images as in Test 2. The results are as follows:
using 4 cameras we found 46.2% had no points in valid regions and 0.0% dead ends in the remaining
simulations. With 5 cameras 74.81% had no matches, and of the remaining 26.38% were dead ends.
With 6 cameras 70.98% had no matches, and of the remaining 66.37% were dead ends. As such, we
note that given enough images, it is increasingly likely that incorrect correspondences will yield a dead

end case.

5.2 Real Data

We evaluated our method on novel datasets captured at eight locations, by up to six smartphone cameras
(e.g., Samsung Galaxy S4, Apple iPhone 5S). At each location between 1 and 7 datasets were captured
from different viewpoints and at different times. Each dataset consists of between 5 and 15 images.
In each dataset, we searched for correspondence for between 1 and 9 dynamic points, which were
visible in all images. The locations, datasets, and points varied greatly in our experiments. Scenes
were captured indoors and outdoors; some had many moving objects, while others had just one; and
features considered for correspondence were on rigid (e.g., cars or soda cans) and non-rigid (e.g.,

people or dogs) objects. In addition to these novel datasets, we include in our results the rock climbing
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Figure 5.2: The three graphs presented show the average percent correct matching per dataset with
and without using TERs. In (a) no forgiveness is used, while in (b) and (c) the forgiveness parameter
used is 25 pixels. In (a) and (b), S, is given by ground-truth points, while (c) calculates S, using an
initialization. We see that using a forgiveness parameter improves the correctness of matching. Note
that in these graphs, datasets are grouped by location, and each location is assigned a letter id (a-i). Each
dataset in each location is also assigned a number, such that al-a4 are presented in the first leftmost
bars of each chart.

dataset supplied by [28]. From this dataset, we selected a partial set in which we consider only the
unidirectional movement of the climber. Examples of finding correspondence in different datasets are
presented in Figs. 5.5 - 5.11. Note that the examples shown were selected in part based on the size of
their valid regions, as in many cases, the size of valid TERs is considerably smaller than can be easily
viewed in a figure. In all datasets, the ground-truth correspondences (Sq) and the time order among the

images were identified manually.

Test 4: We repeated Test 1 in order to examine the percent of valid regions in natural still images as
opposed to simulated data. The initial corresponding set of size |.S;| = 3 was given by the ground-truth.
We ran our method and for each experiment selected at random a fourth image for which we calculated
the valid TERs and PV. We followed a similar procedure given an initial set of |S;| = 4, |S,| = 5,
|Sq| = 6, and |S,| = 7. We selected at random 1000 samples of TERs calculated given each number
of correspondences. The results (Figure 5.1(b)) show that on average, as in the simulated data, we see
smaller valid regions when the number of correspondences increases. However, in the real data, for
more than four correspondences, we found that over 85% of our samples had a PV of less than 40%. In
general, natural image datasets restricted the search space better than simulated data, with the exception

of when |S,| = 3.
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Test 5: We tested the robustness of our algorithm in finding correspondence and compared the results
to the same matching algorithm without prediction by TERs. Matching was done by finding the nearest
neighboring SIFT to those in Sy, using the scalar product between feature vectors.

Our method cannot restrict the search space of an image if dead ends and unreliable TERs occur.
When these cases were detected, we stopped, having concluded that we could do no better than standard
matching. We only present the cases in which no dead-ends or unreliable TERs were detected as those
cases offer a fair comparison. However, we present statistics relating to dead ends in Appendix B,
Table B.1. Note that for this test no forgiveness parameter (as described in Chapter. 4) was used.

As TERs are dependent on epipolar geometry, their effectiveness in restricting the search space is
very dependent on the geometry between the images captured. Thus, we present the results of this
test per dataset. Figure 5.2(a) shows the average percent of correct matchings using standard matching
with and without our prediction. Each dataset consists of a number of experiments; the exact number
depends on the number of points to be tracked in the scene and the number of combinations of initial
correspondences. There are between 9 and 221 experiments in each dataset. In all datasets, we see
that our TER assisted matching equals or outperforms standard matching on average, with an average

improvement of 7.1% over all datasets. More detailed results are presented in Appendix B, Table B.1.

Test 6: We tested the effect of utilizing different forgiveness parameters (as described in Chapter. 4)
using a similar method as in test 5 (given |.S,| = 3). We ran this test using four forgiveness parameter
values: 10 pixels, 25 pixels, 50 pixels, and 100 pixels. Any SIFT feature which was within the number
of pixels specified by the forgiveness parameter of a valid region is treated as valid and, therefore,
considered for correspondence. In Figure 5.2(b) we present a comparison of matching with and without
the use of TERs similarly to test 5, this time using a forgiveness parameter of 25 pixels. An example
of such a case in which forgiveness was required for finding a correct match is presented in Figure 5.7
(Image 5).

It is important to note that forgiveness does not always improve matching correctness. For instance,
if all our assumptions hold and the point moves precisely linearly, there is no need to use forgiveness.
In such a case forgiveness may actually hurt matching accuracy when invalid points located close to

valid regions are nearer neighbors to S, than those within the valid regions. The effect of the tradeoff
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between relaxing the assumptions (eg. accounting for slightly nonlinear movements) by increasing the
forgiveness and the correctness of matching is shown for three datasets in Figure 5.3.

In our data, when comparing the results of a using forgiveness parameter to those of test 5 (no
forgiveness), we found that adding even a small 10 pixel forgiveness improved the overall performance
of our method. When considering the average percent of improvement (comparing correct matching
with and without using TERs) over all trials in all datasets the we found that given no forgiveness, the
average improvement was 2.77%. Using a 10 pixel forgiveness the average improvement was 5.18%,
with a 25 pixel forgiveness 6.75%, and with a 50 pixel forgiveness 6.96%. Further increasing the
forgiveness to 100 pixels results in a significant drop of the average improvement to 2.07%, highlighting
the tradeoff discussed above.

We present a side by side comparison of the correct matching results for no forgiveness versus
25 pixel forgiveness per dataset in Figure 5.4. In this graph we see that in most of our datasets using
forgiveness increases the matching correctness when comparing the use of TERSs to standard matching).
We note that as the number of correct matches changes, the number of dead ends encountered when
using forgiveness changes as well. Therefore the results presented with and without forgiveness may
compare different numbers of trials. In Appendix B, Tables B.2, B.3, B.4, and B.5, we present detailed

results per dataset for each forgiveness parameter tested.

Test 7: We tested the effectiveness of our method similarly to test 5, given |S;| < 3 and a forgiveness
parameter of 25 pixels. To initialize S, we selected a point and found its two nearest-neighbors in the
image set.

As the initial correspondences were built using matching alone, we expected the results to show
more errors in the initial set. This expectation held true, as 222 of the 404 attempted experiments
resulted in detection of dead ends. The remaining results are shown in Figure 5.2(c). Note that in this
figure we do not consider the correctness of the .S, but the correctness of the correspondences found
from it. For each dataset represented in this figure, between 1 and 24 experiments were performed.
Here we see that whether or not TERs are used, the percent of correct matchings drops significantly
due to the lack of correct initial matches.

While our initialization method is not the state-of-the-art for matching, this test highlights that given
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Figure 5.3: This graph shows compares the average percentage of correct matches with (wide bars) and
without (narrow blue bars) using TERs for three datasets, when using different amounts of forgiveness
(0, 10, 25, 50, 100 pixel forgiveness). In these cases we see that while a small forgiveness increases the
accuracy of matching with TERs, the trade-off between forgiveness size and correct matching causes a
drop in accuracy given larger forgiveness parameters.
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Figure 5.4: This graph shows compares the average percentage of correct matches with and without
using TERs per dataset, when using no forgiveness and when using a forgiveness parameter of 25
pixels. Note that the percent of correct matches is calculated after removing dead ends (as those cannot
be utilized for TER calculation). We see that in most datasets using forgiveness improves upon the
percent correct matches.
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Image 4

Image 1 Image 3

Figure 5.5: Example results of finding correspondence in dataset a2. The top row of images are the
given correspondences, the remainder of the images show the chosen correspondences. Correspon-
dences selected using TERs are shown as yellow stars while those selected without are cyan circles.
Note: images are labeled based on their order in time but presented in order, of best nearest neighboring
matches as selected by the TER algorithm.

any initialization, we can still calculate TERs in order to improve matching. The average improvement

over all the datasets is 1.8%. We present the detailed results of test 7 in Table B.6.
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Image 1 Image 2 Image 4

Image 6

Figure 5.6: Example results of finding correspondence in dataset b2. The top row of images are the
given correspondences (the side mirror of the car), the remainder of the images show the chosen cor-
respondences. Correspondences selected using TERs are shown as yellow stars while those selected
without are cyan circles. In this example we see that an improvement over matching without TERs in
image 3 and an incorrectly chosen matches both with and without TERs in image 6.
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Image 2 Image 5 Image 6

Figure 5.7: Example results of finding correspondence in dataset cl1. This example demonstrates the
utilization of a forgiveness parameter. The woman in the scene takes an awkward step, and thus her
foot lands just outside of the valid region in image 5. However, as forgiveness is used, a correct match
is still found. The top row of images are the given correspondences, the remainder of the images show
the chosen correspondences. Correspondences selected using TERs are shown as yellow stars while
those selected without are cyan circles.
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Image 4 Image 6

Image 3

Figure 5.8: Example results of finding correspondence in dataset d1. The top row of images are the
given correspondences, the remainder of the images show the chosen correspondences. Correspon-
dences selected using TERs are shown as yellow stars while those selected without are cyan circles.

28



Chapter 5 / Experiments

Image 5 Image 4 Image 6

Figure 5.9: Example results of finding correspondence in dataset el. This example uses data from
the rock climber dataset supplied by [28]. The top row of images are the given correspondences, the
remainder of the images show the chosen correspondences. Correspondences selected using TERs are
shown as yellow stars while those selected without are cyan circles.
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Image 3

Image 7 Image 1

Figure 5.10: Example results of finding correspondence in dataset f1. This data has manually manipu-
lated, nearly identical objects (Sprite Cans), and highlights the improvement of using TERs over naive
matching given similar features. The top row of images are the given correspondences, the remainder
of the images show the chosen correspondences. Correspondences selected using TERs are shown as
yellow stars while those selected without are cyan circles.
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Figure 5.11: Example results of finding correspondence on a non-rigid object (dog) in dataset hl.
The top row of images are the given correspondences, the remainder of the images show the chosen
correspondences.
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Chapter 6

Conclusions and Future Work

We proposed a method for improving feature matching accuracy when searching for correspondence
of moving points in CrowdCam image sets. To that end, we introduced temporal epipolar regions
which are used in order to predict correspondence of moving points by limiting the search space. We
demonstrated on both simulated and varied real world data that this prediction improves the results of
matching algorithms. Additionally, we showed how our method may be used to verify the accuracy of
our assumptions and correspondence using dead ends. We note that the specific matching algorithm
we used is relatively simple and by no means state-of-the-art, however, the proposed correspondence
prediction can benefit any feature matching algorithm.

While this thesis introduces the basic concepts of TERs and utilizes them for finding correspon-
dence, we note that there are many possible improvements to our method which we leave for future

work, some of which are listed below.

e While our method limits the search space for correspondence well when |S;| = 3, we do not
define TERs for every |S;| > 3 and instead consider all combinations of subsets of size 3. As
discussed in Section 3.4, this yields regions in which every invalid point is inconsistent with o,
but there may be valid points which are inconsistent as well. Finding optimal regions for |S,| > 3
is expected to yield better search space reduction, and therefore, better matching and dead end

detection.
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e The method we introduced builds TERs in an image I, for which correspondence is unknown
using information in all images for which correspondence is known. We note that it is possi-
ble to further restrict the valid region of I, given another image I, for which correspondence is
unknown (and TERs are calculated). As we know that one of the valid points in I, is the corre-
sponding point, we can check the effect of all the valid points on I, on the TERs of I,,. If we
consider all the valid points in [,, treating each as if it were the correct correspondence and thus
use it to generate TERs on [,,, we can check if there are any points in [, which are invalid for all
possible candidate points from I,,. Such points can therefore be labeled as invalid as they cannot
be consistent with any point from I,,. Similarly, we can consider all valid points in [, to further
restrict the valid TERs in [,,. This process is computationally expensive, and we leave finding an

efficient implementation of this additional restriction for future work.

e In our implementation, we assumed that there were no occlusions in any of our images and
always selected the best match regardless of how poor a match it was. However, as described
above, we may be able to utilize the information in images for which correspondence is unknown
to further restrict the search space in the remainder of the images. As such, removing poor
matches which may reflect occlusions by using thresholding can prove very useful in combination
with the previous item. Implementation improvements such as poor match removal are left for

future work.

In addition to the proposed future work to enhance and improve our method, there are a number of

additional uses for TERs which are left to future work, examples of which are listed below.

e In this thesis, we applied our method to CrowdCam image data, however, we can extend the
usage of TERs to both static and dynamic video data. We note that it is fairly straightforward to
extend our method to video, however, we note that when the cameras are static as the geometry
between cameras does not change, and thus, the preprocessing is significantly more efficient.
Assume we are given four static video cameras and correspondences in at least one frame in
three of the cameras. As in still images, we calculate and use TERs to predict correspondence in

a frame of the fourth video. To proceed in predicting the location of correspondence, we would
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consider sets of frames from three videos at a time to predict the location of the point in a frame
from the fourth. Note that we may use multiple correspondences from each camera to restrict the
search space, however, a maximum of two will suffice as the object moves linearly. Using TERs
in this way may improve upon tracking methods in video but is beyond the scope of this thesis

and is thus left for future work.

e In this thesis we only consider finding correspondence of single points. An important extension
to our method involves predicting the location of whole objects, superpixels, or patches, as op-
posed to individual feature points. Note that a simple implementation to accomplish this task
is to find the union of valid TERs from all feature points of the object. Nevertheless, such an

implementation often results in a very large valid regions.

e In addition to predicting correspondence, TERs may be used for a number of other tasks. For
instance, in calculating segmentation of a dynamic object in the scene, TERs may be used in
order to remove noise. All areas which are invalid to all points on the foreground object may be

ruled out for segmentation and thus may be removed.

e Using dead ends for additional tasks is also left to future work. For instance, developing algo-

rithms that may utilize the dead end detection for improving correspondence.

Finally, we leave a number of open questions relating to overcoming the assumptions which our
method relies on to future work. For instance, how to detect non-unidirectional motion of the point
using spatial-temporal inconsistency.

To summarize, the method we introduced in this thesis provides a foundation for an expanded usage
of epipolar geometry to analyze the motion of dynamic objects through scenes. While this foundation
lays the groundwork for improvements and optimizations of TERs, the method presented to predict
correspondence already improves upon any feature matching algorithm. We feel that this work is the

start of an exciting new chapter in motion analysis.
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Proofs Continued

Here we complete the formal definition and proofs of region types R3, R4, and RS.
Definition 5: R3(k, i, j) is defined by the triangle whose points are ~y;x, v;x, and 7;; (see Figure 3.2).

Definition 6: R4(5, 5) is defined as the unintersected section comprised of yand 0 ; through which no

other line passes (see Figure 3.2).

Definition 7: R5(7, i, j) is defined as the open section bordered by /;, 0;,and ¢ ;j through which no other

line passes (see Figure 3.2).

We now prove the validity of each region given different permutations of o. We begin these proofs
by considering the cases in which the regions of R3(k, 1, j), R4(1, j), R5(4,1%, j), and R5(j, 7, ) behave
similarly. We term the union of these regions R345.

Note that given any set of three nonparallel lines which do not intersect at the same point, there are
three regions which can be defined similarly to 2345. Here we prove only one of the three as the others

are be proven similarly.
Claim 3: All points in R345 are invalid given o = (u, 1, j, k).

Proof of Claim 3:
We have to show that there exists no £ which crosses all the epipolar lines through any point

oy € R345 in the order defined by o. For reference, see Figure A.1.
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R2(j, k) Yik Y\

(Claims 3, 5) (Claim 8)

Figure A.1: The invalid cases. R345 is shown here in white and the two cases for choosing «;, de-
scribed in the proof of claims 3, 5, and 8 are shown in blue and yellow dashed arrows.

(i) Consider a line £ which connects any o, in R345 and o; € £;(7;, 00) not containing ;;. As «;
is on the border of R2(i,k), o; must either be the last (or first) point on ¢, or it must be adjacent to

oy, as £ does not pass through R2(i,k). Both cases are not consistent with the given o.

(i) Consider a line ¢ connecting v, in R345 and a; € ¢; (7, 00) containing 7;;. Given such a «;,

ay, must be between «,, and «; along ¢ as o; and «,, are defined on opposite sides of ¢j.

These two considerations show there is no point on ¢; which does not contradict o. QED
Claim 4: All points in R345 are valid given o = (i, u, j, k).

Proof of Claim 4:

We have to show that for any point «,, € R345, there exists a line ¢ which crosses the epipolar
lines and «,, in the order defined by o. For reference, see Figure A.2.

Define the line lz to be a line parallel to ¢; passing through any point «,, € R345. If the intersection
of tz with £ is on a border of R1, define the point a; € €k<fyjk, 00) not containing ;. Otherwise
define the point oy € £, @ x £}, 00) not containing -y;;. Consider the line £ connecting o, and cv,. As
ay, is on the border of R2(j, k) but not on the border of R345, o; must be between «;, and v, along .
Furthermore as a;; must be outside of the strip defined by lz and /; and «; borders 2345, o, must be

between «; and «;.
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(Claim 7) (Claim 9)
Figure A.2: R345 is shown here in white, and the black line is one possible ¢ which demonstrates that
the point «, is valid as described in proof of claims 4, 6, 7, and 9, respectively.

Claim 5: All points in R345 are invalid given o = (4, j,u, k).

Proof of Claim 5:
We have to show that there exists no ¢ which crosses all the epipolar lines through any point

o, € R345 in the order defined by o. For reference, see Figure A.1.

(i) Consider a line ¢ which connects any «,, in R345 and a; € £;(;x, 00) not containing ;. As
«; is on the border of R2(i,k) and R345, c; cannot be adjacent to «; along £ as £; does not pass

through R2(i,k), and «,, must be adjacent to «; as c,, € R345.
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(ii) Consider a line ¢ connecting «, in R345 and o; € £;(;x,00) containing -y;;. As in proof 3,

must be between «,, and «;.

These two considerations show there is no point on ¢; which does not contradict o. QED
Claim 6: All points in R345 are valid given 0 = (i, j, k, u).

Proof of Claim 6:

We have to show that for any point «,, € R345, there exists a line ¢ which crosses the epipolar
lines and «,, in the order defined by o. For reference, see Figure A.2.

Define the line Zz to be a line parallel to ¢; passing through any point «,, in R345.

Iflz- intersects £; in ;(y;x, 7i;), then define the point o; € ¢; <l§Z x{;,7j). Otherwise oj € £;(Vji,Vij)-

Consider a line £ which connects any «,, in 2345 and «;. As o, € lz and «; is within the strip
defined by lZ and /;, a; must be between o; and «,,. Furthermore «; is on a border of R1 and «; is
outside of R1, vy, must be on the border of R1. Furthermore, as «; and «; are outside 1345, oy, must
be on the border of 2345, between v, and cvj. Such an £ is consistent with the order defined by o.

For each of the above R345 proofs, the symmetrical cases (in which ¢ and j are swapped in o)
are proven similarly. We now proceed to define cases in which not all regions of R345 are labeled the

same.
Claim 7: The region R4(i,7) U R5(i,1,7) is valid given ¢ = (u, i, k, 5).

Proof of Claim 7:

We have to show that for any point a, € R4(i, j) U R5(4, 1%, ]), there exists a line £ which crosses
the epipolar lines and «,, in the order defined by o. For reference, see Figure A.2.

Define the line é ; to be a line parallel to ¢; passing through any point o, € R4(7, ) U R5(i,1, ).

Consider the line ¢ which connects «,, and o; € £;(Vik, Ej X £;). As «; is on a border of the
triangle whose points are v;, V5 and Vi and o is in the strip defined by ¢; and Ej, aj must also be
on the border of the triangle. As both «; and a, are within the strip they must also be between «,, and
;. Furthermore, a; must be between «,, and oy, as «; resides on a border of R345 and R2(i, k) while

ay, is only on the border of R2(i, k).
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Claim 8: The region R3(k, E,}) U R5(j,§', %) is invalid given 0 = (u, 1, k, 7).

Proof of Claim 8:
We have to show that there exists no ¢ which crosses all the epipolar lines through any point

oy € R3(k,1,7) U R5(j,7,1) in the order defined by o. For reference, see Figure A.1.

(i) Consider a line ¢ connecting any o, in R3(k,,7) U R5(j, ,4) and a point a; € £;(;5, 00) not
containing ;;. As «, is within the strip defined by ¢; and @j and q; is outside of this strip, ay,

must be between «; and «;.

(ii) Consider a line ¢ connecting «,, and o; € ¢;(7;x, 00) containing y;;. Given such a «;, o must
be between «,, and «; along £ as «; is defined on ¢; from the intersection point ;. therefore, «,

and «; are on opposite sides of /.

These two considerations show there is no point on ¢; which does not contradict . QED
Note that the case in which 0 = (i, k, j, u) is symmetrical to o = (u, i, k, j), and thus is proven

similarly.
Claim 9: The region R3(k, 1, ) U R5(i,,7) is valid given o = (i, u, k, ).

Proof of Claim 9:

We have to show that for any point o, € R3(k,7,j) U R5(i,i,7), there exists a line ¢ which
crosses the epipolar lines and «, in the order defined by o. For reference, see Figure A.2.

Define the line lz to be a line parallel to ¢; passing through any point o, in R3(k, 1, j)U R5(i, , ).

Consider the line ¢ connecting o, € R3(k,%,7) U R5(i,4,7) and a point oy, € Ek(éz X éky’}’kj>-
As ay is at a point outside of the strip bordered by lz and ¢; and o, is on lZ, o, must be between o
and «,. Furthermore, as a is on the border of R1 and «; is not, o; must also be on the border of 1

and oy, must be between «,, and oj. Such an £ therefore preserves the order defined by o.
Claim 10: The region R4(i,7) U R5(j, 7,1) is invalid given o = (i, u, k, 7).

Proof of Claim 10:
We have to show that there exists no ¢ which crosses all the epipolar lines through any point

o € RA(1,7) U R5(j,7,1) in the order defined by o. For reference, see Figure A.3.
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Figure A.3: R4(7,7) U R5(j, 7,1) is shown here in white and the three cases described in the proof of
claim 10 are shown as dashed arrows.

(i) Consider a line ¢ connecting v, € RA4(i,7) U R5(j,7,) and a point ay, € 2 (vjk, 00) not
containing ;5. As «aj, borders R2(j, k), a; must be between v, and «y, thus ¢ does not the

preserve the order of o.

(ii) Similarly, consider £ connecting v, € R4(i,7) U R5(j,7,7) and a point oy, € £y (5, 00) not
containing ;. As «aj, borders R2(i, k), o; must be between v, and oy, thus £ does not the

preserve the order of o.

(iii) Consider ¢ connecting v, € R4(%,§') U R5(j,§',%) and a point a, € L (Vjk, Vik). AS oy, is
outside the strip defined by fi and ¢; and ay, is within this strip, o must be between «,, and «;,

thus £ does not the preserve the order of o.

As there is no point on ¢, through which an ¢ can pass and preserve the order of o, this region must be
invalid.
Note that the case in which ¢ = (j,u, k, ) is symmetrical to o = (i, u, k, j), and thus is proven

similarly.
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Appendix B

Detailed Results

This appendix presents tables which contain more detailed results than were shown in Chapter 5. All
the tables have the same structure. Each dataset in the first column corresponds to a location, given by
the letters a-i, and different image sets taken at each location at different times, given by the numbers
1-5. The number of images and the number of points to be matched vary between datasets and are
thus listed in the table as well. We tested our method a number of times on each dataset, each with a
different combination of initial points summarized in the no. of combinations column. For each dataset
we also present the percent of the tests in which dead ends were encountered. Note that, as described
in Chapter 4, when encountering dead ends, we deduce that we do no better than matching without
TERs. As such, the rest of the columns present results from the remainder of the data, which has no
dead ends. We present the percent correct matching with and without the use of TERs over all data in
each dataset. We also present the difference in the percent of correct matching between matching with
and without TERs for the points in which for better or worse the use of TERs changed the results. This

difference is presented in the average % diff. column.
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Dataset | No. of | No. of No. of % % Matches % Matches | Average
Images | Points | Combinations | Dead End | Without TERs | With TER | Diff. %

al 5 4 40 5.0 90.6 75.6 -20.0
a2 5 5 50 2.0 68.1 76.3 13.7
a3 6 9 124 31.5 70.4 64.5 -7.6
a4 10 2 125 93.6 45.4 441 -2.9
bl 7 1 34 20.6 29.6 45.4 15.7
b2 6 5 100 2.0 79.0 80.0 5.0

cl 6 3 59 23.7 64.0 71.0 7.0

c2 7 4 127 38.6 34.8 41.2 6.4

c3 6 4 74 2.7 55.0 59.3 4.3

c4 6 2 38 2.6 46.7 50.2 3.6

c5 8 5 242 23.6 61.7 65.7 4.0

dl 6 1 18 50.0 333 48.1 14.8
el 6 4 80 15.0 19.5 27.3 15.7
fl 7 6 208 16.3 63.4 72.9 11.3
gl 8 4 135 86.7 41.5 34.9 -6.6
hl 9 2 122 90.2 55.6 76.4 20.8
h2 7 3 98 50.0 28.3 23.7 -4.6
il 6 4 63 333 45.2 42.8 2.4

Table B.1: This table presents the results of test 5, in which three initial correspondences are given
manually.
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Dataset | No. of | No. of No. of % % Matches % Matches | Average
Images | Points | Combinations | Dead End | Without TERs | With TER | Diff. %

al 5 4 40 0 90.0 90.0

a2 5 5 50 2.0 68.1 76.3 13.7
a3 6 9 124 194 69.5 73.6 9.0
a4 10 2 125 71.2 41.3 41.3

bl 7 1 34 20.6 29.6 454 15.7
b2 6 5 100 2.0 79.0 80.0 5.0
cl 6 3 59 28.8 62.4 78.0 15.6
c2 7 4 127 37.8 34.6 41.6 9.2
c3 6 4 74 2.7 55.0 59.8 4.8
c4 6 2 38 2.6 46.7 48.4 1.7
c5 8 5 242 19.0 62.3 64.3 1.9
dl1 6 1 18 50.0 33.3 48.1 14.8
el 6 4 80 15.0 194 26.8 29.6
f1 7 6 208 16.3 63.4 72.9 11.3
gl 8 4 135 88.9 43.3 46.9 5.0
hl 9 2 122 67.2 26.1 46.8 20.7
h2 7 3 98 49.0 31.2 31.3 0.2
il 6 4 63 254 43.0 494 13.5

Table B.2: This table presents the results of test 6, in which 3 correspondences were given and a
forgiveness parameter of 10 pixels was set.
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Dataset | No. of | No. of No. of % % Matches % Matches | Average
Images | Points | Combinations | Dead End | Without TERs | With TER | Diff. %

al 5 4 40 0 90.0 90.0

a2 5 5 50 2.0 68.1 76.3 13.7
a3 6 9 124 15.3 68.3 74.6 17.7
a4 10 2 125 68.8 40.5 40.5

bl 7 1 34 20.6 29.6 454 15.7
b2 6 5 100 2.0 79.0 80.0 5.0
cl 6 3 59 28.8 62.4 81.5 19.1
c2 7 4 127 339 35.5 40.1 6.0
c3 6 4 74 2.7 55.0 60.3 5.3
c4 6 2 38 2.6 46.7 48.4 1.7
c5 8 5 242 15.7 62.3 68.2 6.0
dl1 6 1 18 50.0 33.3 59.3 25.9
el 6 4 80 16.3 194 26.8 29.6
f1 7 6 208 16.3 63.4 72.9 11.3
gl 8 4 135 87.4 42.0 51.1 9.0
hl 9 2 122 63.9 26.0 42.6 16.6
h2 7 3 98 51.0 31.9 339 3.1
il 6 4 63 254 41.9 48.4 13.8

Table B.3: This table presents the results of test 6, in which 3 correspondences were given and a
forgiveness parameter of 25 pixels was set.
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Dataset | No. of | No. of No. of % % Matches % Matches | Average
Images | Points | Combinations | Dead End | Without TERs | With TER | Diff. %

al 5 4 40 0 90 90
a2 5 5 50 2.0 68.1 76.3 13.7
a3 6 9 124 16.1 67.9 74.7 19.0
a4 10 2 125 70.4 40.7 40.7
bl 7 1 34 2.9 28.8 43.9 15.2
b2 6 5 100 2.0 79.0 80 5.0
cl 6 3 59 28.8 62.4 80.9 18.5
c2 7 4 127 33.1 359 384 3.3
c3 6 4 74 1.4 54.4 60.8 8.7
c4 6 2 38 2.6 46.7 51.2 4.5
c5 8 5 242 194 63.2 69.4 6.1
dl1 6 1 18 444 30 53.3 23.3
el 6 4 80 15.0 19.5 26.9 29.6
f1 7 6 208 16.3 63.4 72.9 11.3
gl 8 4 135 88.1 42.2 49.2 7.0
hl 9 2 122 63.1 26.3 44.1 17.8
h2 7 3 98 50 329 35.0 3.2
il 6 4 63 22.2 42.1 49.0 14.5

Table B.4: This table presents the results of test 6, in which 3 correspondences were given and a
forgiveness parameter of 50 pixels was set.
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Dataset | No. of | No. of No. of % % Matches % Matches | Average
Images | Points | Combinations | Dead End | Without TERs | With TER | Diff. %

al 5 4 40 0 90 90

a2 5 5 50 2.0 68.1 72.2 10.3
a3 6 9 124 14.5 67.9 73.7 16.1
a4 10 2 125 70.4 40.7 40.7

bl 7 1 34 2.9 28.8 43.9 15.2
b2 6 5 100 2.0 79.0 80 5.0
cl 6 3 59 22.0 61.1 86.6 254
c2 7 4 127 32.3 35.7 35.6 -0.1
c3 6 4 74 2.7 55.1 61.1 12.3
c4 6 2 38 0 45.6 50 44
c5 8 5 242 23.6 64.9 714 10.9
dl1 6 1 18 444 30 53.3 23.3
el 6 4 80 16.3 194 26.8 29.6
f1 7 6 208 14.9 63.8 71.8 9.6
gl 8 4 135 91.9 44 .4 50.4 11.7
hl 9 2 122 68.0 26.1 46.3 20.2
h2 7 3 98 48.0 33.0 349 3.0
il 6 4 63 254 42.8 49.0 13.0

Table B.5: This table presents the results of test 6, in which 3 correspondences were given and a
forgiveness parameter of 100 pixels was set.
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Dataset | No. of | No. of No. of % % Matches % Matches | Average
Images | Points | Combinations | Dead End | Without TERs | With TER | Diff. %

al 5 4 20 10.0 29.1 27.5 -6.3
a2 5 5 25 8.0 19.0 18.0 -5.0
a3 6 9 42 40.5 21.7 23.2 5.9
a4 10 2 13 69.2 26.5 26.5

bl 7 1 7 85.7 0 16.7 16.7
b2 6 5 30 20.0 33.6 34.3 3.3
cl 6 3 18 38.9 26.7 33.3 6.7
c2 7 4 23 73.9 0 5.8 16.7
c3 6 4 24 12.5 18.2 18.2

c4 6 2 12 16.7 0 0

c5 8 5 34 52.9 324 35.7 6.6
dl1 6 1 6 66.7 10.0 30.0 20.0
el 6 4 23 47.8 1.7 2.9 2.4
f1 7 6 42 47.6 31.9 339 2.9
gl 8 4 27 88.9 0 0

hl 9 2 14 85.7 25.0 62.5 37.5
h2 7 3 20 50.0 8.3 15.8 25.0
il 6 4 24 50.0 15.6 15.6

Table B.6: This table presents the results of test 7, in which nearest neighbors to a single given point
are used to select the three initial correspondences.
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