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Abstract
Semantic Parsing is a key technology which is used to map Natural Language utter-

ances to a formal representation of their meaning. It is employed in many modern NLP
applications such as Amazon’s Alexa, Apple’s Siri and more. Combinatorial Categor-
ical Grammar (CCG) is a formalism used for developing semantic parsing technology.
CCG treebanks and parsers were created for many languages, but were never developed
for Semitic languages. The goal of this work is to create the first CCG treebank and parser
for Modern Hebrew. We use the Hebrew constituent treebank [37, 19] as a starting point
for our CCG treebank.

The conversion process we propose is similar to the process proposed by Hockenmaier
[13] for creating the English CCGbank. There are 3 stages to our conversion. (1) Deter-
mine each constituent type; (2) Linearize the derivation order by converting the constituent
tree into a binary constituent tree. (3) Convert each constituent into CCG categories based
on its location on the binary tree, syntactic role annotations and part-of-speech (POS) tags. 

The Hebrew treebank contains annotation for morphemes, not words. A morpheme is
a unit of meaning smaller than words. In morphological rich languages such as Hebrew, a
single word is composed of multiple morphemes, and each morpheme has its own CCG cat-
egory. The baseline parser that we propose is similar to Hockenmaier’s head-driven parser.
We use supertagging-based parsing as was shown to produce state-of-the-art results in other
languages. 

Supertagging Hebrew text requires morphological disambiguation. We tested three
methods to apply supertagging jointly with morphological disamiguation. (1) We exe-
cute RNN on words to get a word-context-vector, then each word is split into a disambi-
gaued sequence of morphemes. The morphemes pass-through an embedding layer and are
concatenated with the word-context-vector for the generation a morpheme-word-context-
vector (Word-Context); (2) We generate a lattice graph per word, each path is identified by
the morphemes that are part of it. The paths pass-through an embedding layer to generate
lattice-vector per word (Lattice-Encoding); (3) We created a special regional encoding for
each word and its morphemes (Manual-Morph-Encoding).



iv

Our word-context model performs best, followed by the manual-morp-encoding model.
There results suggests us that the learned embeddings are better in capturing context com-
pared to our own hand-crafted and linguistically motivated regional encoding. The lattice-
encoding model performs the worst due to the enormous search space. We conclude that
morphological analysis prior to supertagging is beneficial, at least in the case of our rela-
tively small Hebrew CCG dataset.
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Chapter 1

Introduction

1.1 Motivation
Imagine working on a computer software that processes text coming from a written or
spoken source. The program needs to understand the information being transmitted. So
we need a way to represent the meaning of the text to a computer. This representation
should be easy to work with while allowing you to make inferences about the content.
There should be a way to translate the raw text into that meaning representation.

In order the represent the meaning of texts formally to a computer, there is a need for
Semantic Representations of Text (SRTs), as natural language is informal and ambigous,
which is not a good way to represent meaning for a computer. It is ambiguous on multiple
levels. SRTs are formalisms which are used to represent meaning unambigously for com-
putational devices and downstream tasks. While Syntax dictates the arrangement of words
and phrases into sentences, it does not handle all phrase-level semantics composition and
semantic ambiguity. Combinatory Categorial Grammar is a type of SRT, which allows one
to tie syntax and semantics in a formal and elegant fashion.

Natural language processing tasks are becoming very popular nowadays. They em-
power virtual assistants such as Apple’s Siri or Amazon’s Alexa. They are part of algo-
rithms that try to improve health care by examining medical records. Combinatory Cate-
gorial Grammar (CCG) can be used to empower and improve many of these tasks.



2 Chapter 1. Introduction

1.2 Challenges
In this work we aim to adopt the CCG formalism as the basis for semantic parsing, and
for the first time apply it to Modern Hebrew. We aim to create a Hebrew CCG treebank,
and a statistical CCG parser trained on it. There are non-trivial linguistic decisions when
applying an existing formalism to a new language. For Modern Hebrew we need to decide
how to handle predicates and their subjects for the same sentence and how to represent
Gender and Numeric agreement between predicates and their subjects.

Modern Hebrew is a Morphologically rich language. Morphology introduces word level
ambiguity and requires us to split words into morphemes. The morpheme split sentences
form a directed cyclic graph (DAG) for disambiguation. Modern CCG parsers use super-
taggers based on Recurrent Nerual Networks (RNNs) for both accuracy and fast parsing
times. RNNs are neural networks that remember their state which allows them to make
a decision based on context around each word. 

We cannot apply traditional RNN on the disambiguation of a Directed Acyclic Graph 
(DAG). So we need to find ways to encode the lattice and feed it into an RNN asupertagging
architecture.

Finally, high word-level ambiguity will increase the interpretation search space. More-
over, the Hebrew treebank only contain 5200 sentences, a small fraction of the English
and German treebanks, so training an accurate statistical model for choosing the correct
interpretation presents a profound challenge, which we aim to address in this thesis.

1.3 Overview
In this work we will present the first Combinatory Categorial Grammar treebank for Mod-
ern Hebrew. The work will introduce the treebank construction process and review the dif-
ferent constructs of the Hebrew language. We will review several parsers (head-driven, A* bestmd, A*
word-context, A* manual-morpheme-encoding) and report their results on our treebank.
This thesis’ manuscript is organized as follows: Chapter 2 reviews related work on CCG
treebanks and parsers in other languages. Chapter 3 will focus on the Hebrew language,
it will also summarizes the key features of CCG and the Hebrew language. Chapter 4 ex-
plains our conversion process and how we handle different language constructs. Chapter
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5 will review our proposed tagging and parsing models, and their empirical results on our
treebank. Finally, in Chapter 6 we conclude with suggestions for further research.

1.4 Contributions
This work’s main contribution is the CCG treebank for the Hebrew language. Our second
contribution is our super-tagging architecture suitable for morphologically rich languages.
Finally, our last contribution is a baseline result for CCG Parsing over the Hebrew CCG-
Bank we deliver. In future work, we suggest to increase the linguistic coverage of our
treebank and examine how such linguistic enhancements improve parsing accuracy. In
addition, we propose to examine the parser in the context of downstream semantic tasks..





5

Chapter 2

Background

In this work we address the challenge of devising the first semantic parsing benchmark and
algorithm for Modern Hebrew texts. In this section we elaborate what is semantic parsing
(2.1), and what are common semantic representations in the community (2.2). Then we
introduce our selected formalism, Combinatory Categorial Grammar (2.3), which will be
used through the thesis, and describe it in detail. We then proceed to discussing parsing
algorithms (2.4) and the survey different ways we can statistically induce a parsing model
using machine learning and deep learning techniques (2.5), any of which we experiment
with and build upon in our empirical investigation. Finally, we discuss the specifics of
CCG parsing and supertagging (2.6 and 2.7 respectively) as they will guide our designs
choices in constructing the Hebrew CCG parsing alternatives.

2.1 Semantic Parsing
The goal of Semantic Parsing is to map an unstructured utterance in a language into a
formal Semantic Representation of Text (SRT). Semantic Parsing is not a solved task; the
state-of-the-art performance differs between languages. Languages with more speakers or
with high commercial potential are better supported, while other languages might have no
solution at all. A semantic parser needs to map an utterance into its SRTs target structure.
Language utterances can often admit structures because of interpretation ambiguity. It is
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the parser’s goal to select the most likely structure, that reflects that interpretation a human
would assign.

Ambiguity is one of the hardest problems in parsing. Words and sentences can carry
many meanings. This is unnoticed by speakers and taken for granted. We can understand
the correct meaning, because we interpret a sentence in a given context. It is hard to work
with a representation that has ambiguity; a good formal representation is not ambiguous.
A formal representation expression should have a single interpretation that does not require
its context. The parsing process therefore must determine the correct interpretation, so we
can translate the utterance into an unambiguous formal representation. 

 Solving Ambiguity is a hard task that requires knowledge outside of the utterance con-
text. Modern parsers use machine learning (ML) to help predict the most likely interpre-
tation. Training these algorithms requires a treebank annotated according to the SRT (cor-
pus). These corpora are crucial to the success of an SRT. Expert annotators built most cor-
pora, but relying on experts is expensive and limits the corpus size. Recently, SRTs started
using semi-automated and active-learning methods. These methods, in combination with
modern annotation tools like Doccano [25] that integrate with active learning to improve
the effectiveness of annotators by choosing the most informative samples. Crowdsourcing
platforms such as Mechanical Turk are used to build high quality large corpora [31, 35].

However, crowd sourcing cannot be used when an expert knowledge is required, e.g.,
when assigning formal logic to represent the semantic of utterances. In this work we chose
to rely on an automatic conversion process that is applied to existing resources and is au-
tomatically augmented and converted accorings to linguistic cue.

2.2 Semantic Representations
CCG is not the only method that tries to capture the semantic meaning of a text. In this
section, we will briefly review other representations and methods in the field. Rappoport
and Abend [2] provide an overview of these different methods.

An SRT framework provides the following functions: (1) Provide a formal notation that
dictates how and which information should be represented. (2) Define rules for merging
various units of meaning in its notation. In the center of all SRTs, is the identification
of the predicate-argument structure (who did what to whom) and the distinction between
essential (complements) and non-essential (modifiers) relations.
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SRTs differ in the following ways: (1) Their interaction with syntax, some are more
affected by paraphrasing while other are less affected. (2) The semantic information they
cover, such as coreference, semantic-roles and spatial, temporal and discourse informa-
tion. (3) How well do they handle different languages? Some were designed for a single
language, while others were designed to be cross-lingual.

2.2.1 Head-driven Phrase Structure Grammar
Head-driven Phrase Structure Grammar (HPSG) by [30, 29] is a grammatical formalism
to represent the correspondence between syntax and semantics, and it is similar to CCG.
HPSG has its roots in phrase structure and has a rich, structured lexicon that is very similar
to CCG. CCG relies solely on its categories while HPSG relies on additional information
encoded as feature structures in its construction. HPSG has a multiple inheritance type
system for its pre-defined linguistic signs. HPSG uses attribute-value matrices (AVMs) to
represent the meanings of the signs in the language..

2.2.2 Abstract Meaning Representation
Abstract Meaning Representation (AMR) [6] does not have a strong linguistic origin like
CCG or HPSG, and is more oriented to computational linguistics. AMR represents infor-
mation using a rooted label graph that abstracts the syntactic idiosyncrasies (figure 2.1).
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Figure 2.1: The AMR Graph for the sentence: ”The boy wants to go”. The
root of the graph is the verb ”want” which receives two arguments ARG0

”boy” and ARG1 ”go”. The matching logical form for this sentences is:
∃w, b, g : instance(w,want01)∧instance(g, go01)∧instance(b, boy01)∧

arg0(w, b) ∧ arg1(w, g) ∧ arg0(g, b).

2.2.3 Universal Conceptual Cognitive Annotation
Universal Conceptual Cognitive Annotation (UCCA)[3, 4] is a graph-based multi-layer
semantic representation. We can see an example of UCCA Sentence in figure 2.2. UCCA
was designed to be cross-lingual, and it does so by abstracting away syntax more than
AMR. The UCCA fundamental layer consists of 4 relation categories: Scene, Non-Scene,
Inter-Scene and Other. These relations connect ”units” which can either be terminals or a
collection of relations. A unit may participate in multiple relations.

The ”Scene” element is used to describe action or movement, and has, among others,
2 main types: scene with time evolution, in which the main relation is a ”Process” (P); and
Scene without time evolution, in which the main relation is a ”State” (S). ”Non-Scene”
is used for adjectives and other descriptive relations. ”Inter-Scene” is used for relations
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between scenes such as participation, elaboration and other types, marked by a relation
word.

Figure 2.2: The UCCA Graph for the sentence: ”The film we saw yesterday
was wonderful”. The main scene in this sentence is evoked by the word
”wonderful”. UCCA has a number of different relation types marks with the
letter adjacent to the lines. For example ”P” marks process, ”S” marks state

as explained before. ”A” marks participant in a scene, etc.

2.3 Combinatorial Categorical Grammar
Steedman introduced CCG [1, 32] as an extension to Categorical Grammar (CG) [9]. In
Categorical Grammar we represent utterance by categories. Categories are a closed set of
types which are a recursive closure of a set of atomic categories under several category con-
struction rules. CCG is a formalism grammar that relies on combinatory logic for category
construction rules. Categories are used to represent “meaning” of utterance. 

2.3.1 From Utterances to Logical Forms
CCG grammar is based on combinatorial logic, which is equivalent in power to lambda
calculus. CCG combiner logic can be translate rather easily to lambda calculus, thus we
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can translate our CCG parses into lambda calculus expressions. We map CCG categories
one to one into a matching lambda calculus expression as we can see in figure 2.3. 

אני אוכל תפוח
NP (S\NP)/NP NP

: λa.i(a) : λxλy.eat(x, y) : λc.apple(c)
>

catNP (S\NP)
: λa.i(a) : λx.eat(x, y) ∧ apple(y)

<

S
: eat(x, y) ∧ apple(y) ∧ i(x)

Figure 2.3: An example of CCG derviation for the sentence ״ תפוח אוכל אני ״
. In this example we include lambda calculus matching the CCG derivation.
CCG assigns a category for each word. e.g: NP for אני and (S\NP)/NP for
אוכל. The categories are fused resulting in a combined category according

to CCG rule that will be reviewed later.

In order for the logical form to be a useful, logical expression matching to each word
should be mapped to a function or an object in the relevant context. Example use cases
are querying dataset or executing command (chat bots) in natural language. We do not
translate our CCG parse into logical form in this work.

2.3.2 The Formalism
categories A primitive category is just a symbol, while a functional category is a function
of the predicate-argument structure (which arguments it takes) matching the sign. A CCG
category also includes syntactic information such as the direction of the argument. In this
way, CCG links both syntax and semantics in an almost transparent way. In fact, most of
the CCG complexity is in its lexicon, while the grammar itself has very few rules (figure
2.4).  
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תפוח אוכל אני
NP (S\NP)/NP NP

>

S\NP
<

S

Figure 2.4: CCG derivation for the sentence: “ תפוח אוכל אני ” . The word
”אני“ which is a pronoun meaning ”I”, will be assigned the category NP. The
word ”אוכל” (”eat”) which is a verb, will be assigned either S\NP (intransi-
tive) or S\NP/NP (transitive). NP is the category for both ”אני“ and ”תפוח“.
NP is an example of a primitive category for noun phrases. (S\NP)/NP is
an example of a functional category, in this case the category expects an NP

object from the left and from the right.

• NP - is a primitive category used for words like: I, house, cat.

• S\NP - is a functional category used for intransitive verbs like: sit, eat.

• PP/NP - is a functional category used for prepositions like: in, on, at.

Figure 2.5: Example of Words with Matching CCG Categories

Application  The Application rule is the most natural way to combine categories. In the
application rule, a word/morpheme is combined with a word/morpheme to its left or right.
We use the slash notation to show the direction of the rule.

I eat [S/NP] an apple [NP] → I eat an apple[S] >

I [NP] walked [S\NP] → I walked [S] <

In the sentence ”I walked”: The category for ”I” is NP and the category for ”walked”is
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S\NP. The ”walked” will accept ”I” as an argument (backward application) resulting in
the category S .

Composition Composition (figure 2.6) allows support for coordination and enables the
combination of arguments in different orders. It linearizes the CCG parsing process by
allowing incomplete constituents to combine, even when all their dependencies do not
meet. Crossing compositions allow words to switch places. E.g.  in the sentence “I walked
home”. “I” category is NP and the “walked” category is (S\NP)/NP and the home cate-
gory is NP. When we use the application rule, “walked” must first combine with “home”
resulting in the category S\NP. But composition allows “walked” and “I” to combine
before resulting in the category S/NP .
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• S/PP PP/NP → S/NP - forward harmonic >B

• NP\PP S\PP → S\PP - backward harmonic <B

• S/NP NP\PP → S\PP - forward crossing >B×

• PP/NP S\PP → S/NP - backward crossing <B×

אני הולך ל ראשון .
NP (S\NP)/PP PP/NP NP S \S[dot]

>B
(S\NP)/NP

>

(S\NP)
<

S
<

S[dot]
Forward Composition

אני הולך ל ראשון .
NP (S\NP)/PP PP/NP NP S \S[dot]

>

PP
>

(S\NP)
<

S
<

S[dot]
No Composition

Figure 2.6: The 4 different types of composition rules. In our Hebrew tree-
bank we only use forward and backward, as crossing composition are not

needed in the Hebrew language.

Type-Raising Type-Raising turns argument categories into functional categories. It is
used to maintain relation between categories in cases such as coordination (figure 2.7).
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I dislike and Mary enjoys
NP (S\NP)/NP conj NP (S\NP)/NP

>T >T
S/(S\NP) S/(S\NP)

>B >B
S\NP S\NP

(S\NP)

Figure 2.7: The type raising here allows ”I” to merge with ”dislike”; and
”Mary” to merge with ”enjoys” before they receive their object argument

which is omitted from the example.

 Hockenmaier and Steedman [13] created the CCG treebank in English. The treebank
was created by converting the existing Wall Street Journal constituent treebank to CCG.
They based the conversion on finding the semantic head of each constituent. There have
been works on other languages including German and Arabic, which is also a semitic lan-
guage.

Hockenmaier [18] worked on the German Language treebank based on the Tiger Cor-
pus. Hebrew and German are similar in allowing more flexible word ordering compared to
English. Cakici [12] converted the Turkish dependency treebank to CCG. Turkish and He-
brew have a more agglutinating structure compare to English. Boxwell et al. and Eltaher
et al. [11, 34] worked on the Arabic treebank.

Arabic and Hebrew are sister languages in the semitic family, sharing many features.
Both have missing vowels from their writing system, which can cause word-level ambi-
guity. Hebrew and Arabic have a similar root system that consists of 3 (usually) skele-
tal consonants. The skeleton may gain affixes: prefixes, suffixes, infixes. These affixes
change the meaning of the skeleton. To our knowledge, there has been no previous work
on applying CCG on the Hebrew language.

In morphologically rich languages e.g. Hebrew, Arabic, Turkish, etc.., a morphological
process creates words by combining multiple morphemes with different syntax and seman-
tic roles. We also model the morphological process in CCG as well by breaking words and
assigning categories to morphemes.



2.4. Parsing 15

2.4 Parsing
A key component for practical SRT is the parser. The parser’s job is to translate a raw
sequence of words into the SRT notation. The parser is not part of the SRT, and there may
be multiple parsing strategies for the same SRT. A parser works incrementally, it starts by
building candidates parses for the smallest unit and gradually merges them together untill it
covers the complete sentence or phrase. In this process, a parser may evaluate thousands,
or even millions of possible parses. Due to language ambiguity and due to some SRT
attributes, a single sentence or phrase may have more than 1 valid parse.

In order to select the best-suited parse, we turn to statistics. A statistical parser se-
lects the best candidate parse by assigning a probability to each parse and taking the most
probable. A parser might evaluate all possible parses for a given sentence or phrase in
any order, and select the best parse candidate out of all possible parses like the vanilla
Cocke–Kasami-Younger (CKY) algorithm is doing. Another option is to try to evaluate
more likely parses first, then stopping early without exhausting all possible parses. It is
the strategy that is taken by A* parser. Different parsers use different heuristics on which
parses they should evaluate first.

2.4.1 Cocke–Kasami-Younger
Cocke-Kasami–Younger is a dynamic programming parsing algorithm for context-free lan-
guages. Vanilla CKY calculates the parse for every possible subsequence of given phrase
or sentence. It starts from subsequence at length 1 untill it gets to the length of the input.
The algorithm evaluates every possible partition for subsequences that is bigger than 1,
where it tries to merge two subsequences at the partition point.

2.4.2 A* parser
A* parser by Steedman and Lewis [22], works by keeping an agenda of candidate con-
stituent categories to explore. The agenda is sorted by estimating the probability of the en-
tire sentence/phrase parse containing the category. The probability of the parse is estimated
by using the category intrinsic probability with the extrinsic probability. The intrinsic prob-
ability is estimated using the sum of the selected categories’ probabilities. The extrinsic
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probability is calculated by summing the best possible candidate for each constituent. The
parser picks the top item on the agenda to calculate possible candidates which are added to
the agenda. A* parser is significantly more efficient than other parsers (CKY for e.g), so
for this reason we chose to implement A* parser for CCG parsing of the Hebrew treebank.
   

2.5 Modeling
The objective function (equation 2.1) of the parser is to find the most suitable formal repre-
sentation that matches its input. The selected formalism (in our case, CCG) determines the
search space Y with is CCG case is all possible y’s for a given sentence x. A probabilistic
Model determines the function P (y|x).

f(x) = argmaxy∈GEN(x)P (y|x) (2.1)

2.5.1 Head Driven
Head-driven generative models grow the parsing tree from the roots to its leaves using 3
equations. This model was used by [13] for building a CCG parser in English. For this
reason we implemented this model as a baseline CCG parser.

The model objective function (equation 2.5) tries to find the best CCG tree out of all
possible CCG derivations for a given sentence. The Model includes 3 probabilities: it uses
one to generate the head from the parent; Another to generate the other child (in binary
cases); And the third to generate the word from the category.   The head conditional
probability models the growth of a head child from the left or right direction of its parent.
  

  Phead(Head|Parent, exp) =
Count(Parent,Head,Dir)

Count(Parent)
  (2.2)
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The non-head conditional probability models the growth of the child node to the other side
of the head node, in case of binary growth.   

  Pnonhead(nonHead|Parent, exp,Head) =
Count(Parent,Head,Dir,NonHead)

Count(Parent,Head,Dir)
  

(2.3)
The lexical conditional probability models the growth of a word from the parent category.
  

  Plexical(word|Category) =
Count(Word, Category)

Count(Category)
  (2.4)

  Our complete probability model tries to maximize the probability of the entire derivation
tree.   

  y = argmaxy∈Gen(x)

∏
t

Phead(t)Pnonhead(t)
∏
l

Plexical(l)  (2.5)

2.5.2 Log-Linear
The log-linear model can estimate the probability from our feature table. Log-Linear
model has a high flexibility that allows usage of many features. We base the model on
the following estimation function, where each feature has it matching bi coefficient. y =
b1e

(b2x2 + b3x3 + b3x3..)ϵ
We get the log linear model by applying log function on the estimation function

ln(y) = ln(b1) + b2x2 + b3x3 + b3x3...+ ln(ϵ) (2.6)

We note that the coefficient bi = d log(E(y|X))
dxi

, i = 2...n in Log-linear models can be trained
by various methods, most commonly by maximum likelihood estimation over the log like-
lihood function
The Possible features can be the number of times something occurred, in the previous
words, the last 1-3 letters in each word (capture present progressive, possessive) in En-
glish, and more.
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2.5.3 Perceptron
Perceptron is a linear classifier with a single layer. The Perceptron can be train against
different aim functions. Let Φ(x, y) be a method to extract vector of features from a pair
of a sentence and a possible parse (a feature could be the number of time a rule was used
etc).
A common objective function is:

y = argmaxy∈GEN(x)Φ(x, y) · α (2.7)

The parameters of the function are learned using iterative algorithm: (1) The feature
value result is calculated on the input features. (2) The results are subtracted from the
expected. (3) The weights are updated α = α + Φ(xi, yi) − Φ(xi, zi) where zi is an
incorrect parse for which the perceptron return the highest likelihood.

2.5.4 RNN - LSTM - GRU
Neural Networks are a set of machine learning algorithms that are inspired by biological
neurons. The neurons are connected with one another, and some can save their state. Each
neuron multiplies its inputs by its learned weights. Then a non-linear function (sigmoid,
tahn, Relu...) is applied.

Recurrent Neural Network (RNN) is a subset of Neural Networks where the neurons
also use their previous states in calculation. RNN show impressive performance in some
NLP tasks. Human languages are sequential in order and interpreting a word depends on
words previously observed. In a simple RNN each neuron receives its previous output.
Vanilla RNN suffer from vanishing gradient which limit their ability to remember long
range dependencies and rarely perform well in practice. Instead, most RNN are built of
more complex models with higher units called cells which contain several simple neurons.
For these reasons, we implemented 3 RNN parsers, which we will review in chapter 4.

Long Short Term Memory

Long Short Term Memory (LSTM) is an RNN which are is specifically designed to avoid
the long-term dependency problem. LSTM cell comprises 3 gates: forget gate (equations
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2.8), input gate (equations 2.9-2.11) and output gate (equations 2.12,2.13). These 3 gates
control what information to forget, keep and output accordingly. Each gate uses sigmoid
as non-linear function.

The forget gate controls how much information to keep from the previous state.

ft = α(Wf [ht−1, xt] + bf ) (2.8)

The input gate controls how much information to add to the cell state.

it = α(Wi[ht− 1, xt] + bi) (2.9)

C̃t = tanh(Wc[ht− 1, xt] + bC) (2.10)

Ct = ft ∗ Ct−1 + it ∗  C̃t (2.11)

The output gate controls the current output of the LSTM cell.

ot = α(Wo[ht− 1, xt] + bo) (2.12)

ht = ot ∗ tanh(Ct) (2.13)

 Gated Recurrent Units

 Gated Recurrent Units (GRU) is an RNN with 2 gates: reset gate and update gate. The
reset gate (equations 2.14-2.16) controls how much previous information to forget.

z = α(Wzxt +  Uzht−1 + bz) (2.14)

h̃t = tanh(Whxt + r ∗ Uhht− 1 + bz) (2.15)

ht = z ∗ ht−1 + (1− z) ∗ h̃t (2.16)

The update gate (equation 2.17) decides what information to add and what to forget.

r = α(Wrxt +  Urht−1 + br) (2.17)
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GRUs are more computationally efficient than LSTM and tend to converge faster. For this
reason, our model parsing models use GRU instead of LSTM.

  

Embedding and Input Encoding

Embedding is a dimensionality reduction technique that maps discrete variable to a vector
of continues numbers. In NLP, common methods for generating word embedding utilise
negative sampling with either a neural network or skip-gram [23]. We prefer word em-
bedding over discrete identifier for words representation because of their meaningful rep-
resentation, which is better suited for neural network nature. A navie way to represent
categorical features is by generating a binary feature for each possible value (One Hot en-
coding). We prefer embedding over One Hot encoding since encoding one column per
word will cause large and sparse vectors, which will require lots of parameters. Another
drawback of One-Hot Encoding is their uniform nature, which does not give similar rep-
resentation to words with similar meaning.

Embedding can be trained on unlabeled data and easily shared between different NLP
tasks, which is a common practice in NLP. There are several open source frameworks to
train word embeddings such as Glove [28] and  Fasttext [10]. In our RNN experiment we
train our own embedding together with our models rather than using pre-trained embedding.
We found that pre-trained embedding resulted in performance loss for our models. We
believe that it is because of our treebank morphological disambiguation. Since Pre-train
embedding are available for words not morphemes, there seems that they do not offer any
advantages in our case. We believe that training embedding separately from the model
make sense when you have external dataset which cannot be used to train the entire model
, due to lack of labels for example.

2.6 CCG Parsing and Probability Modeling
In her work on the English language, Hockenmaier [13] used a CKY head base statistical
parser to parse CCG. The CKY algorithm builds the parse from the bottom up, each time
merging two constituent symbols. They build the statistical model on top of the CKY chart
by including the conditional probability of the two symbols given their parent symbol. A
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cell in the CKY chart may contain many symbols that can make actual parsing intractable.
It uses a beam to select only the top N symbol from each cell at the expense of missing rare
derivations.

Clark and Curran et al. [14] introduced a more sophisticated C&C parser. The C&C
parser uses a log-linear model, also known as Conditional Random Field (CRF). CRF can
easily include more features than just the parent and children symbols used previously. The
C&C parser is more accurate and its parsing time performance is just as quick; However,
it requires a time consuming training. C&C include a supertagger [20, 7] to increase the
efficiency of the parser and CRF. The supertagger predicts a list of categories for each
word. The list should be significantly smaller than all possible categories but big enough
to include the correct category. Steedman and Lewis [22] took it a step further by using
only the supertagger for statistical modeling. Their simplified parser is quicker and more
accurate. Clark et al. [39] shows how using RNN supertagger results in better accuracy.

2.7 Supertagging
We use supertagging in CCG to provide lexical probabilities to words/morphemes. The
supertagger provides benefits to the parser. First, it increases the parsing efficiency by
dropping lexical entry (categories) with a low probability; second, it simplifies the parser’s
statistical model. The CCG category contains information about how, and with what other
category in can merge. Thus, supertagging in CCG can solve a big part of the parsing
problems. 

A* parser for CCG was first used by Lewis and Steedman [22], their parser relies only
on the supertagger’s probability in order to predict the most likely parse. A* parser is very
efficient as it does not have to maintain a complex ”book-keeping” of probabilities that is
usually required for parses with an internal statistical model. It is our goal to devise both a
supertagger and a parser for the Hebrew language based on the CCG formalism, working
at the level of morphemes.
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2.8 Conclusions
We saw here that semantic parsing is a critical task in NLP and that in order to achieve this
we are required to choose a representation, construct a treebank, design a parser, and train
a parsing model. We surveyed different representation options and have chosen to adopt
CCG. We further survey different parsing and machine learning methods previously used
for semantic parsing, and which we are going to assume as building blocks when devising
our own Hebrew semantic parser. Next, in chapter 3, we discuss our data, coming from
Hebrew, a morphologically rich languages, and the particular challenges it poses to CCG
parsing.
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Chapter 3

The Data

In this work we address semantic parsing of Hebrew, a Semitic language. Semitic lan-
guages have distinctive properties that make their processing harder than English and sim-
ilar languages, in particular due to their rich and ambiguous morphology. In (3.1) we
explain what is morphology and illustrate what are morphologically rich languages. In
(3.2) we survey specific morphological and morphosyntactic phenomena in the Hebrew
language, and in (3.3) we illustrate how these morphological-syntactic phenomena is cap-
tured in the Modern Hebrew treebank – which is currently the only existing benchmark for
Modern Hebrew parsing.

3.1 Morphologically-Rich Languages (MRLs)
Morphology is the process in that governs the creation of words. Some languages have
very limited morphological processes if at all, while others have very complex ones. We
divide morphology into a derivation process and an inflectional process. A derivation
creates new entries in the lexicon. An inflectional process encodes additional information
which is required by the grammar and depends on the context of the word. In English,
adding ”ing” at the end of a word is an example of an inflectional process. 

Hebrew is a morphology rich language, which increase both modeling and parsing
challenges, which compels us revised the English base CCG model and parser.
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Hebrew has a number of inflectional processes. We inflect words according to gender,
tense, number and person. Words in the Hebrew language can also contain a functional
part that is not related to the words themselves. We know these as clitics. We can see an
example of morpheme with a syntactic scope larger than the word itself, in the word ”בבית“
(in the house). It contains 2 morphemes (a preposition and a noun). The first letter ”ב“ (in)
denote the preposition. (house) “בית” is the noun part. In this example, the morpheme
carries information that is a part of the grammar and helps to assign a structure to the
sentence. 

We can see how morphology affect ambiguity in the word “Btselem”:

“Btselem”: noun בצלם.

“in Tselem”: preposition ב (in), noun צלם (Tselem) 

“in their shadow”: preposition ב (in), noun צל (shadow), possive ם (their).

Because we attach the information to the host word, words in a phrase or in a sentence
have more than one role in the semantic representation and sometimes it is difficult to draw
the line between the roles of such a word. 

 Each word is composed of morphemes and each morpheme has a different role. It
is not effective or possible to parse at the word level. Instead, the words are split into
their morphemes. There may be more than one possible segmentation to the same word.
Therefore , the parser has to handle word-level ambiguity. To address this, the word seg-
mentation can be done as a separate phase of the parsing process or as an integrated phase
of it (joint parsing).  

Therefore; Morphology rich languages present a challenge to both SRT and parser. We
use Lattices (figure 3.2) to represent the different decomposition of words into morphemes.
A morphological analyzer maps the words into a morphemes graph. The morphological
analyzer does not take into account syntactic or semantic rules. A path in the morpheme
graph represents a possible decomposition for the words. The composition might be gram-
matically incorrect.
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3.2 Modern Hebrew
Modern Hebrew is a semitic language spoken mainly in Israel. Hebrew, as other members
of the semitic family, has a rich morphology and syntax, with fusional properties. Words
in the Hebrew language are composed of smaller units of meaning called morphemes.
We divide morphemes into two groups, derivational and inflection. Inflection maintains
the core word’s meaning while adding information such as tense, gender, and number.
Derivation changes the core meaning of the word, e.g., it can turn a noun to a verb.

Hebrew has inflectional morphology governed by the grammar in a process called
agreement. For example, the subject and a verb must agree on the same number and gender.
A noun and its adjective must agree on the determiner marker. The inflectional morphology
is not just syntactic “sugar”, but plays an important role in predicate-argument structure.
The inflectional morphology helps the speakers understand the relation between words (e.g.
subject or object of the verb). We need this process since Hebrew has a flexible word order.
SVO (subject-verb- object) is the most common word order for the Hebrew language.

Modern Hebrew proposition and case markers are inflectional and they are attached
to the beginning of each word.. The Word ”בבית“ which is composed of the morphemes
”ב“ (in), ”ה“ (the) and ”בית“ (house), would translate to “in the house”.In this case, the
morpheme ”ה“ (the) does not manifest in any letter in the word-final form.

Hebrew has 7 formative letters called “וכלב ”.משה These always attach to the left of
their host word. Their scope is a word, a clause, or a phrase. We use them in the clause level
as coordinators, subordinators, relativizers. In the phrase level, we use them as prepositions
and modifiers. In the word-level, we use them for determiner. We inflect nouns with gender
and number. We inflect most pronouns for number and person, but some pronouns are
neutral and do not include a person. We inflect verbs for gender, temporal, numeral and
person. 

Modern Hebrew has a multi-layered word-formation, the derivational part is based on
a 3 letter root which is plugged into templates to form words. The inflectional morphology
of the Hebrew language includes gender, temporal, person and numeral attributes. These
attributes need to agree between words in a construction.

One of the challenges of parsing texts in Modern Hebrew is its high word-level am-
biguity. This ambiguity is the result of Hebrew’s rich morphology in addition to the He-
brew writing system. the modern Hebrew writing system includes diacritics (figure 3.1)
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In the word ”אִמָּא“ the first letter אִ is pronounced “Ee”.
While in the word ”אַבָּא“ the first letter אַ is pronounced as “Ahh”

In most texts, both words will appears without dictate as אמא and אבא.

Figure 3.1: Example of Diacritics in Modern Hebrew

marks that dictate the sound (Vowel) of written text. However, Hebrew speakers rarely use
diacritics in everyday writing of the language. Speakers of the language can conclude the
right word from the context.  

Current works on the Hebrew language first break words into their morphological com-
ponent (see figure 3.2) and only then apply a parser. Just like in the sentence level, there
can be more than one way to break a word into morphemes, as the same word-final form
might be created from different roots with different inflectional morphology. Tsarfaty et
al. [17, 38] found that joint parsing results in better performance. 

Most supertagger implementations will only work on a linear sequence. In joint pars-
ing, where parsing and disambiguation are done in a single step, the input is a lattice graph.
Linear supertagger can only work on each path in the graph separately, this is exponentially
increasing and unpractical. The category of each morpheme depends on other morphemes
in the graph. These dependencies require us to treat every path in the lattice graph dif-
ferently. Since the number of paths increases exponentially with the number of words,
the problem quickly becomes intractable. Bar-Haim et al. [8] createed a POS tagger by
merging the sequence of morphemes in the word level into a superstate. They encountered
similar problem [33] when trying to convert speech into text. They used a combination of
RNN and HMM to provide a better model than just HMM. The HMM model selects the
top paths, which are rescored by running the RNN Model. 
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0 1 2

3 4

5 6 ב7 ה צלמ ה נעים

בצל

צל
צל של

הם

בצלמ

צלמ
הנעים

Figure 3.2: The lattice for the sentences: ” הנעים בצלם ” .
The word ”בצלם“ (states 0-5) and the word ”הנעים“ (states 5-7) are composed
of multiple morphemes. We can see that there are 12 ways to decompose the
two-words sentence into morpheme. An average word in Hebrew is com-
posed of between 3 to 4 morphemes, so the number of possible paths will
increase by at least 3n where n is the number of words. This large search

space requires us to find as efficient way to process the lattices.
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3.3 The Modern Hebrew Treebank
Building a treebank is a large scale, time and resource consuming task. It is a common
practice to convert an existing treebank from one formalism into another, thus saving a lot
of effort. Hebrew has an existing constituent treebank, which we will convert into CCG
formalism.

TOP

S

yyDOT

.

NP

NP

הכרתו

AT

את

VP

VB

איבד

NP

PRP

הוא

Figure 3.3: Example of Sentence from the Hebrew Treebank.

Sima’an [19] built the treebank for Modern Hebrew CFG in 2001. The treebank con-
tained 500 hand annotated sentences taken from the Haaretz newspaper. It was later ex-
tended to 6,200 sentences by using automated, parsing with manual work. The original
treebank annotation were constituent tree which included morphological feature such as
gender, number, person and tense. We use a derived version of the treebank from Tsarfaty
[37] which includes syntactic roles. In Figure 3.3 we can see a simplified tree from the
Hebrew treebank. The lowest nodes are morphemes text. the “TOP” symbol marks the
highest node in all. We omit additional information such as syntactic role and morpho-
logical features from the figure. The word ”הכרתו“ has 3 parts: ”ה“ (def marker) - ”כרת“
(consciousness) - ”ו“ (his) . The treebank has 3 segments: train (5,241 sentences), dev (483
sentences) and test (492 sentences). It treebank annotations include POS, syntactic role,
and inflectional morphology, as noted above. The treebank uses a transliteration scheme,
in which Hebrew letters are replaced by English letters.

The morphological analyzer is the first phase in analyzing a text in the Hebrew lan-
guage. Adler et al. [5] present a morphological analyzer based on BGU Lexicon. We are
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using the analyzer and the disambiguator, Amir and Tsarfaty [24]. Bar-Haim [8] presented
a POS tagger for the Hebrew language. Tagging Hebrew text is more complex because
POS tags are applied on morphology and not words. They solved the problem by combin-
ing all the POS tag of a word’s morphemes into a single symbol.  Tsarfaty [37] presented
a constituent parser based on relationship realization. Goldberg [16] worked on a depen-
dency version of the treebank and presented a dependency parser. More and Tsarfaty[24]
presented a dependency transition parser.
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Chapter 4

Building A Modern Hebrew CCG
Treebank

The first contribution of this thesis is a Hebrew CCG treebank, where sentences are an-
notated with CCG derivations. The treebank has two purposes, as train data for training
the parsing algorithms, and as a benchmark for evaluating the performance of the different
variants. This section presents the algorithmic conversion we devised (4.1) its linguistic
coverage (4.2) and basic statistical analysis of the resulting treebank (4.3).

4.1 The Treebank Conversion
We base the tree conversion process (Fig. 4.1) on Hockenmaier [13]. It consists of 3
primary stages: (1) case marking (2) tree binarization (linearization) (3) categories con-
struction.

As pre-phase to the constituent identification, we apply some transformation to the
CFG trees (figure 4.1a-b). The attribute role ’information’ helps us determine the differ-
ent function each constituent node plays. Our first transformation removes unary nodes
and changes constituents with special characters like dashes and parentheses. When we
unify unary nodes, we take attribute role from the parent nodes, while the morphological
attributes are taken from the child node. The transformation shortens the tree paths while
keeping all the original information. 
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4.1.1 Case Marking
The head constituent is identified by rules over the constituent role attributes. For each
constituent we rank the child nodes base on their rule attribute, the highest node is chosen to
be the head.We determine the type-of non-head constituents after the binarization process.
At that stage, the tree is the same as the final CCG derivation tree. The types are an adjunct,
complement, punctuation.  Complement and punctuation are marked be on a curated list
of roles. The remaining nodes are marked as adjunct. The constituent type is annotated on
every node of the tree, which is passed to the next phase.

4.1.2 Tree Binarization
We do a tree binarization to simplify the category creation phase. The binarization is done
by splitting constituent containing over 2 nodes. The binarization determines the attach-
ment order of our CCG trees for these constituent. We use left node-raising for nodes to the
left of the head constituent, and right node raising for nodes to the right of the constituent
root see (figure 4.1c). The binary tree is now the same as the final CCG derivation tree, but
we do not yet have the categories at each node.

4.1.3 Categories Construction
This phase generates the final CCG tree (Fig. 4.1d) by traversing the tree from top to
bottom. The inner node traversal order is determined by case marking. Complement are
traversed first, followed by head and finally adjunct. The reason for this order is that
complement categories do not depend on their head, but the head category does depend
on the complement. Adjunct depend on their head so the head category must be deter-
mined first. Complement Category is derived directly from their POS, with a exception
rules to handle FRAG and other noise in the original treebank. Adjunct Category is de-
rived from the category of the head. We do adjunct category shortening to prevent long
categories due to a chain of modifiers. Adjunct Shortening uses the inner results category
of its heads, instead of the complete category. e.g: an Adjunct for NP/NP will be NP/NP
instead of (NP/NP)/ (NP/NP)

We calculate the categories of the head nodes at the end of each sub-tree. If the parent
node contains two children (head and adjunct) the head category is determined by taking
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the parent category as is, if (head and complement) the head category is constructed by
adding the complete to the parent category.
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TOP

S-root

yyDOT-punct

.

NP-obj

NP-hd

NN-hd

הכרתו

AT-acc

את

VP-prd

VB-prd

איבד

NP-subj

PRP-hd

הוא

(a) constituent tree with role information

TOP

S

yyDOT-p

.

NP-obj

NP-hd

הכרתו

AT-acc

את

VP-prd

איבד

NP-subj

הוא

(b) after unary removal and special case handling

TOP

S

yyDOT-punct

.

S

NP-obj

NP-hd

הכרתו

AT-acc

את

S

VP-prd

איבד

NP-subj

הוא

(c) binary (Linear)

הוא איבד את הכרתו .
NP (S/NP[di])\NP NP[di]/NP[def] NP[def] S[dot]\S

< >

S/NP[di] NP[di] S[dot] \S
>

S S[dot]\S
<

S[dot]
(d) final CCG tree

Figure 4.1: The 4 Stages conversion process: in the first stage ”unary re-
moval and prepossessing” (a-b), we can see how we remove the unary node
PRP assigned to the word הוא. There are also some transformations of the
tree structure for special conjunctions and constructs. The second stage ”bi-
nary transformation” is shown in sub-figure c. The head of this sentence is
the word איבד and the binarization process is done around it. sub-figure d
shows the final CCG tree. In it we can see that the category for the word
איבד receives both NP subj and NP[di] direct object as arguments. In the 4th
stage, ”case marking phase”, we annotate each node with a type (head, com-
plement, adjunct and punct) the head marking is done between sub-figure
b-c, while the remaining types are annotated after binarization between sub-

figure c-d.
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4.2 Linguistic Coverage

4.2.1 Definiteness and Agreement
The morpheme ”ה“ express definiteness in the Hebrew language. It is similar to the word
“the” in English. ”ה“ is always attached to the word it acts on. For example, the two
morpheme word ”הבית“, composed of ה and בית, translates to “in the house”. Hebrew
exhibits definiteness agreement in a noun phrase. E.g. in the phrase הגדול“ ”הבית which
translates to “in the big house”. We note that ”ה“ attach to both the noun ”בית“ (house) and
the adjective .(big)“גדול” It would be a malformed sentence otherwise. In our treebank, the
definiteness marker ה received the category,  NP[def]/NP. 

4.2.2 Pro-drop
Pro-Drop is a case where the pronoun in the sentence is dropped. For Example in figure
4.2. The sentence אני הלכתי לעבודה can be written as הלכתי .לעבודה The pronoun אני which
translate to “I” in English was dropped. The pro-drop affects the verb category; in our case,
the verb הלכתי will have two categories. The category S /NP \NP for the regular case and
S /NP for the pro-drop case. Pro-drop increases the lexicon size, as many verbs can appear
with and without their subject. In this work, we decided not to handle pro-drop separately.
This can hurt the performance of our parser for verbs that only appear in a transitive or
an intransitive form. We consider introducing meta rules that will add lexicon entries for
verbs with and without pro-drop.

לעבודה הלכתי אני
NP (S\NP)/NP NP

<

NP S\NP
>

S

לעבודה הלכתי
NP S/NP

>

S

Figure 4.2: Example of Pro-drop in Modern Hebrew



36 Chapter 4. Building A Modern Hebrew CCG Treebank

4.2.3 Conjunction
We model conjunction within CCG categories. In our treebank conjunction and com-
mas have categories just like any other morphemes. This differs from previous works which add
a new rule to CCG similar to Hockenmaier [13]. This approaches allows us to treat conjunc-
tion similar to any other morphemes, it also provides lexical visibility to conjunction cate-
gories and their usage. Our approach has some drawbacks. It results in noisier categories
for 2 reasons: (1) Conjunction word can combine many categories, so the conjunction word
may have many categories that are semantically similar e.g.: (NP\NP)/NP (S\S)/S. (2)
Because we build our treebank propagating categories from lower part of the PCG tree,
errors in lower categories will cause incorrect conjunction categories add more noise. In
the figure 4.3 “ו” is the conjunction marker and its category is (S\NP)/(S\NP) \(S\NP).
We note that we treat the conjunction morpheme as the head of the constituent. The Mor-
pheme is not the semantic head, but it is the syntactic head. Our decision means that we
need to separate semantic and syntactic heads. Commas can sometimes accommodate the
conjunction morpheme, in these cases we treat the coma as a modifier on the conjunc-
tion morpheme. In other cases, we might omit the conjunction morpheme leaving only a
comma. In such cases, we treat the comma as a conjunction with morpheme. The multiple
role comma plays causes its lexicon categories to be noisier than others.

4.2.4 Gender Agreement
The Hebrew language nouns are divided into feminine and masculine genders. The gen-
der agreement in Hebrew inflects verbs and adjectives to match the subject gender. The
inflection can help Hebrew speakers resolve predicate-argument structures in complex sen-
tences. Tsarfaty [36] showed that using gender agreement can improve parsing accuracy.
Adding gender subcategorization to categories will prevent merging different genders. In
figure 4.4 the verb ”מטרייה“ (Umbrella) appears with the adjective ”גדולה“ (big) which is
the feminine form of the adjective. We note that ”מטרייה“ is a feminine Noun.
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שמעתי ו ראיתי אני
S\NP (S\NP)/(S\NP) \(S\NP) S\NP NP

<

S\NP (S\NP)/(S\NP) NP
>

(S\NP) NP
<

S

S

VP

VP

VB

שמעתי

CONJ

CC

ו

VP

VB

ראיתי

NP

N

אני

”I saw and heard”
The word אני meaning ”I”

The word ראיתי meaning ”saw”
The word שמעתי meaning ”heard”

The word ו meaning ”and”

Figure 4.3: Example of Conjunction

גדולה מטרייה
NP[f] \NP[f] NP[f]

<

NP[f]

Figure 4.4: Example of Gender Agreement in Modern Hebrew

4.2.5 Flexable Word Order
Word order in Hebrew is usually tied to focus. Hebrew’s flexible word order influence
mostly verbs categories. The most common word order is SVO (subject, verb, object). A
likely category for a transitive verb in that order will be (S\NP)/NP[di], however, in an
OSV order that verb will get the category (S\NP)\NP[di]. Word order changes cause verb
categories to be more sparse even though they are semantically similar.  
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לטוס אוהב אני
אוהב אני , לטוס

אני - I אוהב - love לטוס - to fly
The first line is in SVO while, the second is in OSV and is more likely as a responses.

Figure 4.5: Example of different word order in the Hebrew language

4.2.6 Incomplete Sentences
The Hebrew treebank contains incomplete sentences. Incomplete sentences (Fig. 4.6)
are missing subject (Fig 4.6a) or object (Fig.4.6b) and their top constituent is FARG. 490
(7.8%) of the treebank sentence are FRAG. We create a rule-based logic to handle sentences
with FRAG constituent. (1) We identify what part is missing. (2) The FRAG is replaced
by a category that fits its missing part E.g for sentences that are missing subject S \NP.
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FRAG

VP

NP

NP

NN

בית

DEF

ה

AT

את

VB

ראה

FRAG

VP

VB

ראה

NP

PRP

הוא

FRAG

NP

PRP

הוא

ראה את ה בית
S \NP /PP PP /NP[def] NP[def] /NP NP

>
NP[def]

>
PP

>

S \NP

(a) Missing subject

הוא ראה
NP S \NP/NP

<B
S /NP

(b) Missing object

NP
(c) Miss-
ing Verb

Phrase

Figure 4.6: Example of Partial Sentences with CCG Derivation

4.2.7 Questsions
The Hebrew language has questions words similar to English Wh-questions. A question
sentence will usually end with the question sign ”?”. It is relatively easy to identify question
sentence in written text. Question sentences are is always in SVO order, and in yes/no cases
start with a question word. The Hebrew treebank has very few questions in it. Question
sentence is marked with SQ instead of S.
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4.3 Treebank Analysis
We use the standard train, dev and test partitioning of the Hebrew treebank.

Train 484-5,724

Dev 0-483

Test 5,724-6,216

Figure 4.7: Sentences Length in the Hebrew treebank

The average sentence length is 17 words Fig. 4.7.  The treebank has 1,500 categories:
most appear only once and are ignored, 591 categories appear more than 3 times, account-
ing for 99.1% of all categories (figure 4.9), and are used in tagging and parsing. The most
common category is NP. The average sentence contains 5 NP categories and about 23% of
the morpheme (figure 4.9).
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Figure 4.8: Most Common Categories

Figure 4.9: Minimum Category Occurrence Vs Coverage
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Chapter 5

Semantic Parsing for Modern Hebrew

In the previous chapter, we discussed this thesis’ first contribution - the treebank. In this
chapter we will elaborate on the second contribution - a suite of parsing algorithms that
we propose for CCG parsing of Hebrew. We will first lay out the experimental setup (5.1)
and then describe the models that we propose. Section (5.2) focuses on the head-driven
generative model for parsing CCG which we use as our baseline. In section (5.3) we discuss
our models for parsing segmented morphological disambiguate texts. These models can
be used with existing morphological disambiguation software. Finally, in section (5.4) we
target morphological and semantic disambiguation, using models that jointly do the parsing
and morphological disambiguation.

5.1 Experimental Settings
In this section we will give a short overview of the methods and data used in evaluation
of our different models. We have 3 evaluation scenario’s, supertagging gold segmented,
supertagging unsegmented and finally parsing performance.

5.1.1 Datasplits
We used the treebank’s traditional division into 3 sections: dev (0-483), train (484-5,723)
and test (5,724-6,216). All the results from this chapter are from the test part of the Modern
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Hebrew treebank. The development part was for parameters tuning, and the train part for
model training. 

5.1.2 Parsers
The A* Parser and Baseline Parser were implemented in java programing language. The
A* is given the morphological lattice graph with each lattice, annotated with probability
distribution for the tagger. When using gold segmentation the lattices is a linear graph.  

5.1.3 Taggers
The CRF tagger was trained using CRFsuite [26]. We trained the Nerual network using
Pytorch [27] framework, with SGD, momentum of 0.7, adaptive learning rate 0.1-0.001
and batch size of 32/64. We allowed up to 1000 epochs but used early stopping on the dev
set. We used l2 regularization of 0.000001. We set dropout between 0.5 to 0.3 according
to best dev set results.  An unseen flag replaced categories that were filtered due to lower
frequency in the training set. In prediction unseen flag is removed from the probability
distribution.

5.1.4 Morphological disambiguation and Latice
The gold segmentation models use the morphemes from the Hebrew treebank. For BestMD
model, We extracted the top 1 (best) morphemes from the raw sentences by using More A.
[24] morphological disambiguation. We aligned the raw sentences with their matching
trees using python difflib. Joint Model were fed lattice graph which We got by running
More A. [24] Morphological analyzer.

5.1.5 Metrics
Tagger metrics were measured using the top 1 and top 20 accuracy of predicted categories.
We counted categories missing from the model as errors. 
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ParseEval I did the ParseEval evaluation using the ParseEval tool by converting the
CCG derivation tree as constituent trees.

Terminal The terminal evaluation metric counts the number of matching categories be-
tween parsed tree and gold tree. We note that the parse tree may contain different mor-
phemes from the gold tree, in such cases we must first align the morphemes between the two
trees. We used python difflib for morphemes alignment. We counted miss-aligned mor-
phemes as errors. We measured the terminal accuracy in two settings:  subcategorization (NP[def]
!= NP]) and without subcategorization  (NP[def] = NP])

Dependencies We extracted dependencies from aligned gold and parsed CCG trees. We
aligned the morphemes of both sentences using difflib. Then assign minimum and maxi-
mum index for each node in the CCG derivation tree. These indexes were used to identify
nodes between trees. The undirected dependencies where extracted by tracing the cate-
gories application and composition in both trees, resulting in a list of dependencies for
each tree. We calculated Jaccard index to measure the number of capture dependencies. 

5.2 Baseline
For our baseline performance, we implemented the Hockenmaier and Collins head base
statistical model [13, 15]. let t = e1....en be a tree, where ei is the i expansion, node, in the
tree.

The Probability of the tree is given by the product of all the probability of each expan-
sion.

P (t) =
∏
ei∈t

P (ei) (5.1)

We define 3 expansion types: (1) Binary when a given node has two child node (2) Unary -
when a given node has one child (3) Lexical when the given node is has a single leaf child.
The binary expansion is calculated by estimating the conditional probability of the head
node given the parent and expansion direction (left or right).

Pe=binary(p, h, o, d) ≈ P (h|p)× P (o|p, h, d) (5.2)
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Pe=unary(p, h, d) ≈ P (h|p) (5.3)

Pe=lexial(p, w) ≈ P (w)× P (w|c)× P (c|p) (5.4)

where p is the parent node, h is the head node, o is the other node (binary case), d is
the direction of expansion, w is the morpheme text. Our baseline parser uses the CYK
algorithm. The parse table is at the morpheme level and includes multiple derivations of
each word. We decompose the words into lattices. We then use a lexicon to fill the possible
categories for each morpheme in the lattice graph.

שמעתי ו ראיתי אני
S\NP (S\NP)/(S\NP) \(S\NP) S\NP NP

<

S\NP (S\NP)/(S\NP) NP
>

(S\NP) NP
<

S
Step Rule Head Non-Head Direcition
ראיתי ו head,non-head ((S\NP)/(S\NP))\(S\NP) (S\NP) backward
ו שמעתי head,non-head (S\NP)/(S\NP) (S\NP) forward
אני ו head,non-head (S\NP) NP backward
אני lexicon, emission NP - -
ראיתי emission (S\NP) - -
ו emission ((S\NP)/(S\NP))\(S\NP) - -
שמעתי emission (S\NP) - -

Figure 5.1: Example of using the baseline probability model’s growth rules
on the sentence: “ שמעתי ו ראיתי אניי ” . Each line in the table corresponds to
a single step in the CCG derivation of the sentence. We can see for each step
which is the head, non-head and direction of application. These arguments
are used by the 3 growth probabiliteis of the model we presented before:

head, non-head and lexical (equations 5.2-5.4 ).
In the Figure we mark the head of each step in red.

The Hebrew treebank is relatively small, so effective smoothing is crucial. We use
smoothing for both lexicon and tree expansion. Unseen morpheme receives the lexicon
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0 1 2

3 4

5 6 ב7 ה צלמ ה נעים

בצל

צל
צל של

הם

בצלמ

צלמ
הנעים

Figure 5.2: Example of 2 words sentences lattices decomposition, shown
before in chapter 2.

entries that appear only once in our treebank. We also add these categories to entries of
rare morphemes. For the expansion, we are using a rule that appears only one for unseen
expansion both head and non-head. The conversion process is not without errors so we do
not include categories that appear less than 3 times in the training set.

5.3 Segmented Text Supertagging
The Gold Segmentation model (figure 5.3) uses the treebank segmented sentences as input
for its training. This model uses A* parser over the categories probability distribution.
The supertagger annotates each morpheme with a probability distribution for the various
categories. The A* parser [22] takes the morphemes and their probabilities. A* parser
efficiently select the correct derivation. The A* parser sets upper and lower bound for
each utterance. The boundaries are the sum of the best and worst probability for all the
morphemes in the utterance.
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5.3.1 Taggers
CRF Tagger

We trained a CRF tagger model using CRF suite [26]. The feature where the pos, gen, num
and morpheme with 2 look-back and one look forward. The CRF Model the conditional
probability of it’s window feature on the category.

RNN Tagger

We trained a deep learning RNN similar to Zettlemoyer et. al.[21]. Our network had 3
layers Bi-direction GRU with 512 dim followings 3 fully connected relu layers. We use
an embedding layer for the input morphemes. The network was trained using Statistical
Gradient Descent in PyTorch. We used 0.1 learning rate and 0.7 momentum with a batch
size of 64. We achieved 78% accuracy on our dev set. Our fully connected layers where
512 and 256.
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Figure 5.3: In the Figure, we see an example of the Morpheme BI-LSTM
RNN Tagger activation. We feed the 4 morpheme long sentences into the
model. We match each morpheme to its corresponding embedding. 2 Lay-
ers of bi-directional LSTM process, each embedding in the sentence context.
We feed the resulting vectors into 2 fully connected layers with relu activa-
tion function. For the last layer we use Softmax activation to get probability

distribution of the categories for a morpheme.

In practice, this model requires a different algorithm to select the best or K best seg-
mentation for a sentence. The model greatest advantage is its simplicity since we can use
an existing model for the English language. Selecting the best segmentation for a Hebrew
utterance is effectively parsing. Any mistake in the K best would result in an error sentence.
The search space is large. We will have to use a large K value to increase the chance that
the correct decomposition is in them, which could easily result in the intractable model.
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5.3.2 Results
The bi-directional LSTM had the best results with 77% accuracy on our test set. HMM had
the worst results surprisingly even worse than the simple word model. More importantly,
we can see that the top 20 categories contain the correct categories in more than 95% of
the times.

Model Accuracy Top 20
HMM 37% -
Word 57% NA
CRF 71% 93%
RNN 77% 98%

Table 5.1: SuperTagger Accuracy when using Gold Segmentation

5.4 Joint Supertagging with Disambiguation

5.4.1 Taggers
Word-Context

The word-context (Fig. 5.4) inputs model take the words text plus a list of possible mor-
phemes decomposition of the word. The model then outputs a category probability distri-
bution for each morpheme. The model performs both the tagging and the morpheme disam-
biguation in a single run. The network architecture is composed of 2 Layers bi-directional
GRU followed by 3 layers of fully connected relu. The word and morpheme share the same
encoding layers as we found it works better. The words embedding is passed to the GRU
layers. The GRU hidden state of each word is then concatenated with the embedding of
each morpheme in the word decomposition. The concatenated word morpheme vector is
then processed in the fully connected layers. The network outputs a softmax probability of
categories for each morpheme. The network is trained on the gold treebank with a known
segmentation. We used a similar SGD with 0.1 learning rate and 0.7 momentum to train
the network. In evaluation time we use YAP [24] morphological analyzer to decompose
the words into morphemes. We use pytorch framework [27] to train our NN models .
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Figure 5.4: I
llustration Word-Context Super Tagger] The word-context model assumes independence

between the selected morpheme categories both in the word and between words. The
assumption is obviously not true and hurt the model performance, We tried to amend it by

conditioning on the previous select composition.

Manual-Morphemes Encoding

We also want to try if we can build a better embedding for both words and morpheme
by including separate morphological features. We expected our encoding to work better
since the Hebrew treebank is relatively small and many words are too sparse for a model to
estimate their hidden morphology. We created a separate representation for each morpho-
logical feature. We choose the dimension of each morphological feature by the number of
possible values it has. We used a separate embedding layer for each feature and we added
a fully connected layer before the LSTM. The region encoder, uses a constant 9 dim vector
to encode a word. The regions are: PRP, AT, 1, 2, H, IN, POS, REL and CC. It maps each
morpheme in the word to one of these regions. Unknown morphemes are mapped to 1 if
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two unknown morphemes are found, then the first would be mapped to 1 and the second
to 2.

Lattice-Morphemes-Encoding

The Lattice-Morphemes-Encoding (figure 5.5) labels each word by concatenating all of its
morpheme categories. The network architecture is similar to the post segmentation model.
We are using wider layers since we transfer significantly more information. We also use 3
GRU layers instead of 2 layers as we found it work better.

Figure 5.5: In the figure, we see an example of the lattice-encoding BI-
LSTM RNN Tagger activation. We feed the 4 morpheme/3 words long sen-
tences into the model. Each word is represented by a path in the lattice graph,
the output for each word is a list of categories tuples. In Each tuple we have

one category per morpheme.
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5.4.2 Results

Model Accuracy Top 15
Best MD + Tagger 56% NA%

Morpheme-Manual-Encoding 58% 95.5%
Morpheme-Super-State 42% 83%

Words-Context-Morphemes 64% 97%

Table 5.2: SuperTagger Accuracy Joint Segmentation

5.5 Parsing Results with A*
The tagged morphemes were passed into an A* parser. The A* parser sets an upper and
lower boundary for each constituent by multiplying the best and worst probabilities by its
child constituents. The performance of A* parser depends on the supertagger’s accuracy.
The English supertagging has reached over 91% accuracy. Unfortunately, our best tagger
was only at 63% which make A* parser questionable.

We preformed an evaluation of our parser performance by measuring it. We measured
performance with three metrics: ParseEval, Terminal Accuracy and Undirected Depen-
dencies. ParseEval roughly measures the amount of constituents we assigned a correct
category by the parser. We note that CCG tree might have a different derivation order
which are equivalent from CCG point of view but might get a different ParseEval score.
The Terminal Accuracy measures how many of the morphemes were assigned the correct
category. A more effective metric is the Dependency Score. Our Terminal Accuracy is
significantly better than our dependency’s accuracy. Indicating our parser needs better
modeling for the selection of attachments. The evaluation of the parsers shows there is
room for progress. The word-context model was the best tagging model by a considerable
margin. We were surprised by the result since we expected the lattice encoding to preform
better due to its use in pos tagging. There are around 30 pos tags and 3 few words with
over 3 morphemes. While there are over 500 categories so our lattice encoding model has
significantly more target space which explain the gap in performances.
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Model ParseEval Terminal Unidirect dependecies 
GoldSegmentation 28% 44% | 70%* 44%
BestMD + Word 21% 29% | 51%* 39%

Baseline 13% 19% | 25%* 20%
Words-Context-Morphemes 22% 42% | 58%* 35%

Table 5.3: The parsing performances of our parsers. We extract dependen-
cies from the CCG tree by identifying the arguments of functional categories.
We calculate the accuracy based on the number of dependencies in the gold
and parse divided by the union of both. Terminal accuracy measure how

many morphemes received the correct categories from the parser.

5.6 Analysis and Conclusion
In this chapter we have presented our results for supertagging for both segmented and un-
segmented text and how they reflect on the parsing performance. Table 5.2 contains the
results of our supertagging models on the treebank test. We used the treebank’s morpho-
logical segmentation so the model performs only tagging. We can see that the RNN based
model achieved the best accuracy, similar to finding in other languages. Supertagging on
segmented text is not realistic, but can be used to give us a good estimation of loss of
accuracy due to morphological disambiguation.

In Table 5.2 we can see the result for unsegmented text. Again, the results are on
the treebank test set, but this time on the raw sentences without segmentation. The Word-
Context model preformed better in terminal accuracy compared to the BestMD. This result
is consistent with previous works that show joint parsing performs better than separate
disambiguation phase. we we can see 13% drop in accuracy between the best unsegmented
to the best segmented models. There is clearly room for better a joint disambiguation
strategy in supertagging.

The top 1 result accuracy is significantly lower than the top 15 for both the segmented
and unsegmented cases. This tells us that our supertagger is good in selecting the most
probable 15 categories (among the 300) but has failed to select the best one from this short
list of 15 categories.

Table 5.3 contains the parsing results for our different parsing models. We can see is a
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correlation between tagging and parsing performance. The terminal accuracy reflects the
accuracy of the parser in capturing the correct category while the undirected dependencies
capture the accuracy of the parser in relation between words. The Parseval is less relevant
since multiple CCG derivation tree, which represent the same relation but in a different
order, will be counted as error. One of the main reason for the drop in performance is
incorrect selection of verb categories for verbs. These errors result from missing categories
or incorrect estimation of an existing category for unseen verbs. These errors will propagate
to the verb arguments and modifiers.
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Chapter 6

Conclusion

In this thesis our goal was to create the first treebank and parser for semantic parsing for
Hebrew. We chose to base our formal representation and algorithm on the formal notions
of CCG. The contribution of the paper are threefold: (1) we created a new Hebrew CCG
benchmark consisting of 6,221 sentences annotated with CCG trees, (2) we proposed dif-
ferent parsing architectures to deal with the close interaction between CCG structures and
morphology in the Hebrew data, and (3) we presented baseline results for Hebrew semantic
parsing. Moreover we developed a web based tool for viewing our CCG treebank which
can in future development of the treebank and parsers. All of our data, models and code
are made publicly available to the community at the OnlpLab reportory.

We created a CCG treebank for the Hebrew language. To achieve this, we developed a
new conversion process for the Hebrew language based on Hocknmier’s [13] process. We
evaluated 3 different approaches for parsing: (1) head-driven model, (2) best MD, and (3)
word context; and 3 different approached for joint supertagging: (1) lattice encoding, (2)
regional encoding, and (3) word context. The intent was to apply supertagging on lattice
graphs. In the process of developing the treebank we created a web interface for viewing
and analyzing our CCG treebank.

The treebank construction is still an ongoing effort due to the lack of coverage of some
dependencies type. The number of categories relative to the treebank’s size is high and
many of them appear less frequently. Many of these categories are results of a rare word

https://github.com/OnlpLab
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order sequence. It is worth checking the possiblity of utilizing larger datasets, or to nor-
malize verb category to a single word-order.

The number of morphemes with NP category seems too high, so it might be beneficial
splitting it into multiple categories, however that could cause creation of additional verb
categories. A possible solution is to model morphological features such as agreement
and gender outside the CCG categories, or as optional subcategories that do not appear
on the verb.

The parsing performance shows a strong correlation to the tagger performance, so in-
creasing the tagging performance should should lead to better parsing results on the whole.
We suggest considering adding more features to in order to increase tagging performance. 

The word-context model assumes independence between the selected morpheme cate-
gories in both the word itself and in between words. This model’s assumption means that it
might miss agreement information between words, yet it still produced the best results. We
need to find a good strategy to run a supertagger on lattice graph. 

Finally, we hope that others can use this treebank and parsers to further improve NLP
for Modern Hebrew, a Semitic, morphologically-rich and resource-scarce language.
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תקציר
פורמלי לייצוג טבעית שפה של פסוקיות למיפוי משמשת אשר מפתח טכנולוגיית הינה סמנטי מחרוזות ניתוח
של ״אלקסה״ כמו מודרניים טבעית שפה עיבוד יישומי של רב במספר מיושמת הטכנולוגיה משמעותן. של

ועוד. אפל של ״סירי״ אמזון,
מחרוזות ניתוח לפיתוח המשמשת שיטה הינה (CCG) Grammar Categorical Combinatorial
שפות עבור פותחו לא מעולם אך רבות, שפות עבור נוצרו CCG בשיטת מחרוזות ומנתחי Treebanks סמנטי.
לשפה CCG בשיטת הראשונים המחרוזות ומנתחי Treebank ה את ליצור הינה זו עבודה של מטרתה שמיות.

המודרנית. העברית
בעברית. Treebank CCG ה ליצירת מוצא כנקודת בעברית treebank constituent ב משתמשים אנו

באנגלית. CCGBank ה ליצירת ]13] שהציע לזה דומה המרה תהליך מציעים אנו
(3) בינארי. לעץ המקטעים עץ המרת (2) מקטע. כל של סוגו קביעת (1) שלבים: 3 ישנם שלנו להמרה
התיוגים הסמנטי, תפקידו הבינארי, בעץ המקטע של מיקומו על בהתבסס מקטע, לכל CCG קטגוריית קביעת
צורנים, של מתיוגים מורכב העברי Treebank ה המקטע. של (POS) part-of-speech ה וסוג לו השייכים
עברית, כמו בצורנים העשירות בשפות משמעות. הנושאת ביותר הקטנה הלשונית היחידה הינה צורן מילים. לא
הבסיסי המחרוזות מנתח משלו. CCG בקטגוריית מחזיק צורן וכל צורנים של רב ממספר מורכבת אחת מילה

. (head-driven) Hockenmaier ידי על שהוצע למנתח דומה מציעים שאנו
אחרות. בשפות מוצלחות תוצאות מניב שזה שהוכח כיוון suppertagging מבוסס שימוש מציעים אנו
sup- ליישום שיטות 3 בדקנו מילים. של צורני פירוק מצריך בעברית טקסט על suppertagging ביצוע
מילה, לכל מייצג וקטור לקבל מנת על המילים ברמת RNN הפעלת (1) צורני. פירוק בשילוב pertagging
לכל מייצג וקטור לקבלת embedding שכבת דרך מועברים מילה כל של הצורנים המרכיבים זה, הליך בסיום
מהצורנים מורכב נתיב כל כאשר מילה, לכל צורני גרף ייצור (2) יחד. מאוחדים שנתקבלו הוקטורים צורן.
ידני קידוד יצירת (3) מילה. לכל מייצג וקטור לקבלת embedding שכבת דרך מועברים הנתיבים שבתוכו.

אותה. המרכיבים הצורנים סוגי פי על מילה לכל ייחודי
מודל ביותר. הטוב באופן תפקד הצורנים) של אלה עם המילים של הוקטורים את (המאחד הראשון המודל
מרחב עקב טוב פחות באופן תפקד הגרפי המודל אחריו. ביותר הטובות התוצאות את השיג הידני הקידוד
CCG ה עבור הפחות לכל מועיל, suppertagging ל מקדים צורני ניתוח כי מסיקים אנו העצום. החיפוש

העברית. השפה של הקטן במאגר treebank
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