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Abstract

We use affect lexicons to modify word vectors during training in order to capture

emotional information. Our goal is to drag vectors of similar emotional conno-

tation closer together, while dragging away vectors with an opposite one. We

examine different approaches for incorporating emotional information into the

vector-training process, including using emotions of context words, and compare

them with vectors that were edited post training. In addition to some qualitative

analysis, we use the modified vectors in a few downstream tasks and evaluate their

performance. The results are encouraging; the vectors that were jointly trained

with affect information show better performance across most of our experiments.
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1 Introduction

Affect, in psychology, is an emotion that has a physical expression which can

be observed by people. Emotions can be expressed in multiple ways, including

facial expressions, hand gestures, body movements, prosody, and the content of

speech. Processing the content of speech for detecting affective expressions has

recently become an active research area of natural language processing (NLP).

Emotions, in NLP, are measured either by assigning weights to a predefined close

set of emotions (e.g., joy, sadness, anger) or by a system consisted of three prin-

cipal dimensions: valence, arousal and dominance, typically referred to as VAD.

Valence is an evaluation of a text or a word on a positive-to-negative spectrum.

Arousal is the expression of calmness or excitement, and dominance is the degree

of control that the author/reader of a text, has over their expressed affect. The

three dimensions are typically measured on a scale of 1 and 9, accordingly to the

standard forms that are used by people who are requested to assign VAD values

to an object, a word, or a text. Flat affect is defined as a lack of signs of affective

expressions. In our work, we will focus only on the valence-arousal dimensions.

Figure 1 shows the two axes, populated with some known labeled emotions. For

example, satisfaction is a positive emotion that has a neutral arousal level. On the

other hand, enthusiasm has higher arousal levels while still being categorized as a

positive emotion.
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Figure 1: An example of the valence-arousal system, populated with examples of
labeled emotions. The image was borrowed from Abdur-Rahim et al. (2016).
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In modern applications of NLP, words are typically represented by mathemat-

ical vectors, or embeddings, that capture their meaning as can be learned from the

context in which the words are mentioned in, within a large corpus. This con-

cept is also known as distributional semantics. The challenge with this approach

is that words with opposite valence may appear in similar contexts, resulting in

similar vectors. For example, in all common word embeddings collections, the

word happy is found to be similar to both sad and joy almost on the same level.

It happens because happy and sad are generic emotional adjectives, which may

appear in similar contexts. For example, both expressions, “a happy song” and “a

sad song” are likely to be mentioned in the same level of probability. On the other

hand, the noun joy is similar to happy since they are both likely to occur in a posi-

tive sentence about happiness. This challenge may affect the performance of NLP

sentiment-analysis models that use such embeddings as word representations.

A similar known challenge with word embeddings is related to gender bias.

It seems like some word vectors are more related to one gender than to the other,

and that poses an ethical question about models’ ability to focus on content cu-

ration. Therefore, there is a continued attempt to edit word vectors for different

purposes. For example, Ravfogel et al. (2020) propose a generic approach for re-

moving bias, not necessarily gender related, from word embeddings; Gonen and

Goldberg (2019) focus on removing gender bias from word vectors; and more re-

lated to this work, Khosla et al. (2018) modify an off-the-shelf word embeddings

collection using some affect information that they collected about the words. Con-

cluded from their work, word embeddings that were adjusted according to some
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affect information, may improve state-of-the-art results of emotion-related down-

stream tasks, such as sentiment analysis. Another example of using such vectors is

NLP systems that are designed to discover mental-health disorders in speech and

text; for example Bar et al. (2019) use word embeddings intensively for capturing

thought disorders of schizophrenics in transcribed speech. In this work, the au-

thors measure the similarity of vectors of consecutive words in transcribed speech,

in order to detect the situation of going out of topic. They also measure the sim-

ilarity of vectors of adjectives that are being used by people with schizophrenia

and control participants, when used to describe the same nouns. Intensifying the

emotional signal of words in their corresponding vectors is likely to improve Bar

et al. (2019)’s results, since most of the adjectives they describe in the paper are

on either of the two extremes of the valence axis.

The goal of this study is to evaluate different approaches for editing word vec-

tors, by incorporating emotional information from the surrounding context into the

making procedure of word embeddings. To do that, we slightly modify the archi-

tecture of word2vec Mikolov et al. (2013a), a known word-embeddings training

technique, to inject some information about the emotions of words, which was

obtain from a large lexicon of words enriched with affect information. In the next

step, we use our modified training technique to create emotionally aware word

vectors, and use them to improve a data-driven model for sentiment analysis. We

experiment with different affect lexicons, on two languages (English and Span-

ish), and on different hyperparameter settings.

We continue to describe our method in more details in Section 3.

8



2 Related Work

There is a growing body of research that examines ways of editing word vec-

tors for different purposes. Specifically, there is a number of works that aim to

incorporate affect information into word embeddings, and use them to improve

state-of-the-art results of common NLP downstream tasks. Most of those work

propose to edit an already trained vectors, where affect lexicons are widely used

as an external resource for adding the affect information. Khosla et al. (2018)

use the Warriner norm lexicon (Warriner et al., 2013), which assigns VAD scores

to many English words, in order to edit GloVe (Pennington et al., 2014) and

word2vec (Mikolov et al., 2013a) vectors. They append every individual word’s

VAD values to its corresponding vector, as additional dimensions, and then re-

duce their dimension back to the original one. The modified vectors are then be-

ing retrofitted (Faruqui et al., 2015) with WordNet (Miller, 1998) to drag similar

words closer together. They report on state-of-the-art results in intrinsic word-

similarity tasks, and outstanding performance in a few NLP downstream tasks,

which employ models that use those modified embeddings as input. The caveat

with this approach is that words that do not appear in the lexicon, such as proper

nouns, are not edited at all. To handle that, in our study we examine a way to

edit such words using the affect information of words that appear next to them in

a large corpus. The inspiration for this idea came from other related works, such

as (Recchia and Louwerse, 2015; Palogiannidi et al., 2015; Vankrunkelsven et al.,

2015). In all of those works, the authors had developed algorithms for generat-
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ing affective norms for out-of-vocabulary words, based on collocations. Similarly,

Speer et al. (2017) use retrofitting with ConceptNet to improve semantic represen-

tation of pre-trained word vectors, and Mrkšić et al. (2016) use counterfitting to

modify vectors with information about antonyms and synonyms. Yu et al. (2017)

is using retrofitting on pre-trained vectors by making words with similar valence

be close to each other.

Conceptually, our study falls under a different type of works in which the

training process of word vectors is modified to include some external information,

rather than editing pre-trained vectors as some sort of a post-processing step. One

such example is RC-NET Xu et al. (2014), a system for adding some knowledge-

base information to word vectors during training, by representing the information

as a regularization function.
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3 Our Method

In order to create our embeddings, we slightly modify the traditional word2vec

skip-gram architecture and enrich it with some VAD information. The word2Vec

neural architecture is essentially based on a two feed-forward layers: (1) a narrow

hidden layer, which embeds the semantic context of the target word, and (2) an

output layer which estimates the chances for each word from the vocabulary to

a collocate with the target word given as an input. Figure 2 provides a visual

representation of the classic neural word2vec architecture.

Figure 2: The word2Vec neural skip-gram architecture.

To train a neural word2vec architecture, we iterate over words taken from a
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large collection text documents, and encode each word as a one-hot v-dimensional

vector, with v being the size of the entire vocabulary. That one-hot vector is passed

as an input through the network, which has a single hidden layer of a configurable

size (typically set to 300) connected with an output layer of the vocabulary size.

Essentially, the network is trained to predict a distribution over the vocabulary,

reflecting the chance for every word to appear in the surrounding context1 of the

word in focus. Negative sampling (NS) was introduced by Mikolov et al. (2013b)

to handle the relatively large output-layer size being used along with the simple

softmax-style classification. With NS, the classic cross-entropy classification loss

function is replaced by an economical version of it, which essentially compares

the true context word and only K negative words, sampled from the vocabulary.

The value of K is typically small, around 10, which is sufficient for learning based

on the assumption that in every natural language, the chances of a randomly cho-

sen word being a collocation of the target word, are very low.

Once training is over, the network’s latent space, that is the vectors that get

calculated by the first layer, is then used as embeddings.

We modified the traditional word2Vec skip-gram architecture such that in ad-

dition to predicting the index of the context word, it is also predicting the emo-

tional weight of the target word that has been passed in as an input, as well as the

emotional weight of the context word that it tries to predict. The emotional weight

is defined as a pair of numeric values, which we retrieve from an affect lexicon

1The surrounding context is typically defined by a window of ±k words; in all our experiments,
we use k = 5.
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that contains many words, as we further explain in what follows. Figure 3 is a

visualization of our modified word2vec architecture.

Figure 3: The word2vec skip-gram architecture, slightly modified to enrich word
embeddings with affect information. t is the target word, for which we predict
c, the context word as well as the emotional weight e of the target and context
word, respectively. Therefore, the emotional weight is composed of two pairs of
numbers, representing the valence and arousal values of the two words.

As can be seen from the figure, in our modified architecture, the hidden layer

is connected individually to the original output layer, as well as to a new fully-

connected layer that predicts the emotional weight of both, target and context

words. The emotional weight of a word is represented by its valence and arousal

values retrieved from an affect lexicon; therefore, this output layer is of size 4.2

The valence and arousal values are both numbers in the range [1,9]. Our final

2We left the dominance value out, as among the three emotional values it has the worse inter-
annotation agreement during manual annotation.
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word vectors are composed only from the weights of the hidden layer.

Loss functions. We use two individual loss functions: The original cross-

entropy word2vec loss, as well as a regression-style minimum square error (MSE)

to predict the VAD values directly.

Affect lexicons. We experiment with two affect lexicons: 1) The Affective

Norms for English Words (ANEW) Bradley and Lang (1999), covering about

3,200 words, and 2) The Warriner norm lexicon Warriner et al. (2013), an ex-

tension to ANEW, covering about 14,000 words.3 Words in both lexicons are

provided with values of valence, arousal and dominance, ranging on a scale of

[1,9] (1 - low, 5 - neutral, 9 - high).

Corpus. To train the models, we use Text8, 4 a collection of 243,426 English

Wikipedia pages of various domains.

Training. We train the network using the two loss functions sequentially.

First we run back-propagation with the original word2vec loss, and then we use

the MSE loss to optimize the network on valence-arousal (VA) value prediction.

We take two different approaches for the second pass, and study the results. In one

approach (refer to as target affect), we only use the VA weights of the target word.

3We still use ANEW since the values assigned to the same word in both lexicons are not always
identical.

4http://mattmahoney.net/dc/textdata.html
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In the second approach, we use the VA weights of the context word only if the

target word is either missing from the lexicon or it does not express intense affect.

In the latter case, we use both the target and the context VA weights. We refer

to this approach as target-context affect. Intense affect is considered to be a pair

of [V,A] values outside of the square defined by the points [4,4], [4,6], [6,6], [6,4].

The second approach allows us to expand our coverage for words that are either

missing from the lexicon (e.g., names of people, organizations) or words that have

a flat affect (e.g., a car, a table, names of people that do appear in the lexicon).

We believe that in addition to semantics, the context words may play an important

role in capturing the emotional weight of the target word.5

Our modified word2vec skip-gram network is implemented in PyTorch.6 We

use a pair of embedding layers, one for the target word and one for the context

word, and a single linear layer for predicting the four VA values, which we connect

with the target-word embeddings layer. We use Adam Kingma and Ba (2015) with

a learning rate of 0.003 for optimizing the original word2vec loss, and a plain

stochastic gradient descent (SGD) with the same learning rate for the MSE loss.

We use SGD to ensure that the learning rate remains constant across all epochs,

so that the impact of the VA weights on the network’s weights remain similar. We

train every model with five epochs.

We’ve build the following four embeddings models (their aliases are provided

in parenthesis):

5Due to the small size of ANEW, we only use Warriner for producing embeddings with the
target-context affect approach.

6https://pytorch.org/
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1) Target affect with ANEW (T-AN);

2) Target affect with Warriner (T-Wa);

3) Target-context affect with Warriner (TC-AN);

4) A skip-gram model, which we use as a control and does not use any of the VA

weights during training (Baseline).
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4 Results

4.1 Embeddings Evaluation

To assess the quality of the vectors, we look at the following word pairs:

happy;sad, good;bad, surprised;relaxed, happy;joy emotional;society

We measure their (cosine) distance under the four model spaces. Table 1 arranges

their distances by model, and Figure 4 visualizes them using their 2 principle

components calculated by running PCA.

To evaluate the general concept of editing vectors during training versus as

a post-processing step, we repeat every experiment once again with the baseline

model, which we run for the same number of epochs, optimizing the model only

with the MSE loss for the Warriner’s VA values of the target word. The results are

in given in Table 1 in parentheses next to the T-Wa numbers, since both models

are equivalent except the post-processing optimization. The distances that we get

using the post-processed model are not very different than the baseline’s, suggest-

ing that the vectors that were jointly trained with the affect information are more

sensitive to what we need.

Pair Base T-AN T-Wa TC-Wa
happy;sad 0.88 1.27 1.42 (0.87) 0.85
happy;joy 0.91 0.43 0.37 (0.77) 0.88
good;bad 0.78 1.23 1.42 (0.72) 0.66
surprised;relaxed 0.92 1.11 1.25 (0.94) 0.93
emotional;society 0.89 0.78 0.73 (0.84) 0.89

Table 1: Word pairs, provided with their (cosine) distances, measured on the cor-
responding vectors given by different models. The distances in parentheses are
from a model, that was post-processed to capture emotion information.
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Figure 4: PCA representation for selected word pairs. Visualization shows that the
new proposed models improve the emotional distance between word vectors. The
distance between ”joy” and ”happy” got smaller, while the distance of ”happy”
and ”sad” grew larger.

Clearly, the target-affect models increase the distances of happy;sad and

good;bad. This is an ideal result, since each word pair expresses a non-flat oppo-

site valence, which is incorporated into their vectors. The same rational works for

happy and joy, both words have a similar valence, so their distance decreases

under the target-affect approach, bringing them closer then before. The sur-

prised;relaxed pair demonstrates a case of opposite arousal weights, which make

their corresponding target-affect vectors become slightly different than before. On
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the other hand, the target-context affect model does not change the distances sig-

nificantly for those pairs, and for good;bad it even puts them closer to each other in

the vector space. However, it does seem to properly handle the pair emotional and

society, both express no emotions, keeping them in the same distance as before,

which is what we would want as a result (The target-affect model does worse by

dragging them closer together, since they have a similar emotional weight). This

is a nice behaviour; we relate this result to the fact that both emotional and society

appear in different contexts expressing diverse emotions, which probably cause

the target-context affect network predict a similar average emotional weight for

both words. We provide another visualization in Figures 5-6. We visualize the

vectors of several emotional words (e.g., aroused, joy, relaxed, quiet, sad, sur-

prised, happy, calm, sleepy, bad, good), alongside some other words, this time

using t-SNE (Van der Maaten and Hinton, 2008) for reducing vector dimensional-

ity to a visualization level. Figure 5 shows the words vectors that were generated

by the Baseline model, while Figure 6 shows the same words using vectors that

were generated by the T-AN model. It can be seen that the Baseline model groups

the words together, while T-AN separates the words according to their emotional

context.

We believe that with words that appear in a more homogenic emotional con-

text, such as political figures and parties, we would observe the distances derived

by the target-context affect model, change accordingly. Since Wikipedia does not

qualify as an emotional chatter platform, we plan to use other corpora, where emo-

tions are likely to be expressed, and in a more consisted way. Finally, we evaluate
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our approach on a different language, as we train a skip-gram model as well as a

target-affect model in Spanish,7 and compare distances of word pairs, equivalent

to the English ones we use. The results are encouraging, as can be seen in the

following table (translations are in Table 1).

Pair Baseline T-AN(Spanish)
feliz;triste 0.70 1.21
feliz;alegria 0.77 0.52
bien;mala 0.82 1.44
sorpendido;relajada 0.95 1.05
emocional;sociedad 0.74 0.71

Table 2: Distances of equivalent Spanish word pairs.

7We use a Spanish adaptation of ANEW (Redondo et al., 2007) for retrieving emotional
weights; we train the models using a Spanish Wikipedia corpus (Reese et al., 2010).

20



Figure 5: t-SNE visualization of word vectors generated by the Baseline model. It
can been seen that the examined emotional words (in Red) are grouped together.
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Figure 6: t-SNE visualization of word vectors generated by the T-AN model. It
can been seen that the examined emotional words (in Red) are separated according
to their emotional context.
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4.2 Downstream Tasks

We evaluate the contribution of our vectors to the following two affect-related

downstream tasks: (1) The Stanford Sentiment Treebank 2 (SST-2) Socher et al.

(2013), containing about 12K movie reviews written in English, tagged with one

of five labels, and (2) EmoBank Buechel and Hahn (2017), containing 10K En-

glish short texts from different sources (but mostly from SST), annotated with

VAD values. For both tasks, we employ a flavour of a recurrent neural network

(RNN), connected with an array of fully-connected linear layers for predicting the

required target value. We design a simple architecture, so that we can focus on

measuring the contribution of the vectors.

For SST-2, we use a 2-layer bidirectional Gated Recurrent Unit (GRU) Cho et al.

(2014) RNN architecture, and take the concatenation of the final two vectors (of

the two directions) and simply forward it to a linear layer for a final prediction of

the label. We use a cross-entropy loss for optimizing the network. The hidden size

that we use for this network is 700. For EmoBank, we use a bidirectional 2-layer

Long Short-Term Memory (LSTM) Hochreiter and Schmidhuber (1997) archi-

tecture, expanded with a simple additive attention mechanism for generating one

context vector, which we forward into an array of two linear layers. The output

layer generates the three valence-arousal-dominance numeric values, which we

optimize with a regression-style MSE loss function. The hidden size that we use

for this network is 800. We train and evaluate both networks using the train/test

splits that were defined originally by the data owners, with the word vectors that

we generate with the four models.
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SST-2 EmoBank
Model Static Dynamic Static Dynamic
Baseline 69.4% 78.0% 0.438 0.421
T-AN 71.8% 80.8% 0.377 0.400
T-Wa 71.5% 80.5% 0.388 0.397
TC-Wa 70.3% 79.9% 0.414 0.380

Table 3: SST-2 and EmoBank evaluation results.

We choose whether to freeze the vector weights during training (referred to as

static), or to continue updating them (referred to as dynamic). We report on the

accuracy values (the higher, the better) for SST-2, and regression-style MSE (the

lower, the better) for EmoBank in Table 3.

Overall, the results clearly show an improvement in both tasks when the mod-

ified vectors are used. For the most part, when we keep optimizing the vectors for

the downstream task (i.e., dynamic), the results get better, except for the target-

affect models when trained on EmoBank, which may be related to the low agree-

ment rate between annotators (we plan to continue investigating that part in the

near future).

5 Conclusion

The method proposed here has demonstrated its potential for augmenting vectors

with affect information during training. Similar to other works, we have used

affect lexicons as a resource for retrieving word-level emotional weights. Our

qualitative study suggests that words, which express intense affect are likely to

get moved to a better position in the vector space with respect to other words with
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a similar or an opposite affect. A similar conclusion has been drawn by evaluating

a neural network that uses our vectors to address two emotion-related downstream

tasks. In addition to English, we got some preliminary results for Spanish, which

look similar to the ones we got got English. In the next stage of this research, we

could expand our experiments on other languages, as well as testing our approach

for updating vectors based on emotional weights of surrounding words, in a more

dynamic corpus where emotions toward specific words and entities are expressed

in a more consistent way.
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