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Abstract

Music Information Retrieval (MIR) is an important research field in music, combin-
ing computer science, signal processing, physics, psychology and more. One of the
most important subtasks of MIR is Automatic Music Transcription (AMT), which
involves notating an unnotated musical piece. This task is of great value in the
music discipline, but it is also complex and, for polyphonic musical pieces, is still
below human performance. We present a novel approach for a specific AMT task,
Note Tracking (NT) for guitars (AMT limited to only the pitch of the note and
its occurrence in time), using only a silent video of a guitar, captured by a camera
mounted on it. We use the vibration of the strings as a visual signal and analyze it
using various signal processing and computer vision methods. We process each sting
separately which practically allows reducing the complexity of a polyphonic NT to
multiple monophonic N'T. We also use the physical characteristics of the guitar, like
the possible notes that can be played on a specific string, in order to limit our search
space which is inapplicable in audio methods. We analyze the expected errors of our
method, given the instrument, the string, and the frame rate of the camera. The
performance of our method were tested on four different guitars, and it is shown that
our algorithm can play an important role in solving the NT problem. Additional
information is required to obtain perfect results.
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Chapter 1

Introduction

Sheet music is a form of musical notation that indicates instruments players how to
play a certain musical piece. The most important elements in a musical sheet are
the notes’ pitches, onsets (the notes’ beginning) and offsets (the notes’ end), but a
complete musical sheet may also consists of other elements, such as key, tempo and
other rhythmic information, fingering and dynamics (e.g., loudness and intonation).

The task of music transcription is a key task in Music Information Retrieval
(MIR). This task entails the translation of an audio recoding or performance of a
musical piece to some kind of written form. Only limited number of the musical
pieces are notated by the composer or performer, while others need to be manually
extracted based on listening alone. Manually transcribing music is a non trivial
task even for skilled musicians and can be time consuming and inaccurate, thus an
automatic mechanism is required.

Automatic Music Transcription (AMT) is generally considered as the task of
automatically constructing a musical sheet from an auditory musical data. Although
audio data is a natural source of information for AMT, our goal is to use computer
vision to generate a coherent musical sheet of music played by a string instrument,
given only a visual data of the instrument (see Figure . As most audio-based
AMT applications restrict themselves to the detection of the notes’ pitch, onset,
and duration or offset, which is usually referred to as Note Tracking (NT), we will
restrict our system to those components as well. Our focus is on various guitars,
but our method is mostly not instrument-specific and can be easily generalised to
work on other string instruments.

Note tracking for monophonic music (only one voice playing at a given time) is
considered to be solved by auditory applications. The main challenge for auditory
application is to separate different notes in polyphonic music (two or more notes are
played simultaneously), in particular, when there are several instruments playing
together, some of which are of the same type (e.g., a string quartet that includes
two violins). Another challenge is to determine the fingering configuration which is
an important aspect of the transcription. However, it is often ambiguous in audio
data since the same note (with the same pitch) can be produce by several strings
(e.g., the note A2 in a classic guitar can be produced by pressing the 5th segment
of the lowest string (E) and the second string (A) open).

A small number of audio applications addressed the issue of identifying what
string and fret is being played, but those are limited; either by a pre-set of known
chords to identify, or by analyzing an individual string played in isolation. Most of
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those methods work merely on a guitar and rely on its specifications, and cannot be
simply generalised to work on other string instruments.

To overcome the audio limitations, vision-based methods were suggested. Those
methods use tracking of the left hand fingers to determine the chords being played.
Most of the existing vision-based methods or hybrid methods combining both audio
and video data, focuses on the guitar. The underline technique for those methods
is to visually identify the fretboard, strings and the player’s left hand fingers posi-
tioning, in order to estimate what finger is pressing which string and fret, and using
that to extract the chord (e.g., [I, 2, [3]). These methods carry a crucial, inher-
ent limitation: They are unable to detect onsets and offsets, as they merely detect
the left hand positioning needed to execute the chord. Neither a strumming nor a
plucking of the strings is detected, thus making it impossible to determine whether
the strings vibrate or are still. In other words, those methods cannot determine
when a note or a chord is being actually played or rather if the player’s hand merely
rests on the fretboard. Furthermore, the left hand only determines the pitch of the
notes, whilst the right hand is responsible to theirs order, duration and if they are
actually being played at all, thus making it impossible to extract a specific melody
or retrieve information about each of the notes’ temporal information. Mostly visual
methods offer only modest success rates, are restricted to some pre-set or are limited
to identify playing on some parts of the guitar.

Recovering and reconstructing of sound from a vibration of an object in a video
was shown in the work of Davis et al. [4]. We suggest a novel vision-based approach
to further analyze the obtained signal (or rather - signals) to perform NT, and
extract additional musical information from the video by using prior knowledge.
Our method obtains multiple visual signals from the vibration of the strings, rather
than tracking of the player’s motions and actions. These signals allow us to use
common signal processing methods, as used in the existing advanced audio-based
NT systems. This is possible since the audio-captured sound wave is produced
by the vibrating string, thus the audio signal has similar frequency components as
the visual signal of the vibration. Furthermore, obtaining the change in intensities
caused by the string displacement in a certain spatial location upon the string,
correlates with the string vibration. As a result, the intensity change signal and the
audio signal results in a similar response in the frequency domain. This was shown
by Wu et al. [5] and Rubinstein [6]. They revealed signals that are imperceptible
to the human eye by amplifying those color variation in a certain spatial location
(pixel or a set of pixels). Thus for a stabilized video, like in our case, using this
observation relinquishes a direct tracking of the string. We will further discuss the
above-mentioned studies in the related work Chapter [3]

We demonstrate the correlation between an audio signal of a note produced by
a vibrating string and a visually-obtained intensities change signal of this vibra-
tion by simultaneously capturing a note by a video recorder and an audio recorder
and observing the respective frequency domain responses. Figure [1.1| shows those
obtained signals when playing a single note, E2, with a fundamental frequency of
approximately 82.41 Hz, and the correlating frequency response, using FFT. Those
signals have roughly the same peaks in the frequency domain.

Our innovative approach allows to overcome some of the above-mentioned lim-
itations of both visual and audio NT systems. However, it poses new challenges.
The main challenge we address here is the relatively low frame rate of the camera

Shir Goldstein 11
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Figure 1.1: The signals captured from both audio and video data of a guitar playing
the note E2 (82.41Hz) by plucking the open lowest string are shown on the left
column. The signals’ representation in the frequency domain are shown on the right
column. For the video signal, there is an obvious peak in 82.28 Hz, and for the audio
one there is an obvious peak in 82.24 Hz.

(240 fps in our case) with respect to a typical audio sampling rate (44.1 kHz). Low
frame rate causes the detection of the note’s pitch to become substantially more
challenging. In particular, the Nyquist-Shannon sample rate theorem [7, [§] guaran-
tees perfect reconstruction (or reliable analysis) only for a signal with a bandlimit
smaller than half the frame rate (see Section [2.2.1)). For detection of higher fre-
quencies, the aliasing phenomenon must be considered. Moreover, the sensitivity to
noise is more substantial for a low frame rate.

An additional challenge for a fully automatic system, is to detect in all frames
the key pixel we call a string-pizel (or pixels) on which the vibration is measured.
For simplicity, we assume that the camera is mounted on the instrument, hence no
stabilization of the video is required. This setup is a first step toward more general
setups that include using an unmounted camera, using two cameras, etc. Although
some obfuscation of the strings by the player’s hand or body is allowed, we assume
that some parts between the left (fretting) hand and the right (strumming) hand
are visible throughout the entire video.

We explored two different approaches for strings detection, which is necessary
for obtaining the string-pixels. The first approach is geometric, is based on the
guitar physical structure and obtained from a single frame. The second, which is
more effective, is a spatial-temporal approach that considers the strings vibration
throughout multiple frame.

The rest of the thesis is organized as follows: In Chapter 2 we will provide a
short theoretical background of both musical terms and mathematical ones. We
briefly review the theory of string oscillation and explain about harmonics and the
fundamental frequency of a note. We also review the time-frequency analysis for

12 Shir Goldstein
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MIR applications, which is a basic components to a vast majority of NT systems.
In Chapter 3 we review the related work of both auditory methods and visual ones.
In Chapter 4 we present our method. We explain the flow of the method and its
expected limitations. We review the aliasing problem and the effect it has on our
method. In Chapter 5 we present the testing of our algorithm, and also each of its
components. Several measurements were used for evaluating the performance of our
method. Finally, in Chapter 6 we conclude our work and discuss optional future
work.

Shir Goldstein 13
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Figure 1.2: Illustration of the automatic music transcription process, for both audio
and video data. First, the signals are obtained from either audio of visual data,
then anaylzed using signal processing methods, then represented in a time-frequency
representation, and finally arranged to a complete musical score or tablature.

14 Shir Goldstein



Chapter 2

Theoretical Background

In this chapter we introduce the technical terms relevant to this work. Those include
music related terminology as well as signal processing and frequency domain analysis
terms.

2.1 A Musical Note

The musical note has many meanings, amongst a musical entity, a notation sign, a
pitch and more. The basic components of a played musical note are threefold:

e Height - How high or low does a note sounds.

e Timbre - The sound of the note that differentiate two notes with the same
height played on different instruments.

e Temporal information — Note’s duration, and in a context of a musical piece -
when is a note played.

We hereby define the meaning of a musical note to be used throughout this
work; a musical note (or simply: note) is a musical entity, produced by a pitched
instrument, that consists of a tone (also: pitch), and in the context of a musical piece
carries additional temporal information (e.g., when a note is played). Timbre will
not be addressed throughout this thesis. We will only address string instruments,
and not other pitched instruments as brass instruments.

2.1.1 The Physicality of the Musical Note

When an ideal string that is fixed in both ends vibrates, it produces different waves,
each with a particular frequency, amplitude and phase. The lowest frequency in
which it vibrates is called the fundamental frequency (or simply: fundamental, and
abbreviated as fy). The entire set of frequencies in which the string vibrates are
an integer multiple of the fundamental frequency and are called harmonics. Each
harmonic is a member of the harmonic series defined by the fundamental. Formally,
let fy be a fundamental frequency, then the harmonic series is defined as

H, = {h; | hi=i- fo,i € NT}.

15



Vision-Based Musical Notes Recognition of String Instruments

It follows that fj is the first harmonic and is equal to hy, the second harmonic is hs
and so on.

When a string vibrates in a certain frequency, it causes pressure fluctuations in
the air around it in the same frequency. These fluctuations eventually vibrates our
ear drum and produce a sound. But in practice, especially when a string is plucked or
struck by a hammer (as in a guitar and a piano respectively) as opposed to bowed for
example, the string vibrates in slightly different set of frequencies. This causes the
instrument to produce a complex tone, that is constructed from pure (also: musical
or simple) tones. Those tones are periodic and have a single sinusoidal waveform,
i.e., contains a single frequency. Those tones, called partials, mainly include the
harmonics. Any partials which are not harmonics are called inharmonic partials.
Throughout this work we will address the instruments as producing only harmonic
partials, as the partials it actually produces are very close to the harmonics and the
inharmonic partials tend to decay rapidly.

The pitch of a note is a perceptual term that is used to describe how high or low a
tone is. Pitch is closely related to the fundamental frequency, because generally the
perceived pitch correlates with the fundamental — a high pitch sound corresponds
to a tone with a high fundamental and a low pitch sound corresponds to a tone
with a low fundamental. Throughout this thesis we will use fundamental frequency,
fundamental, and pitch interchangeably, as is customary among musicians.

It follows that each musical note has a specific, distinct set of frequency com-
ponents. This allows the human ear as well as computerized programs to identify
and differentiate between notes with different fundamentals or pitch. For example,
the middle C, C4, has a fundamental frequency of 261.63 Hz, and has harmonics
of 523.26 Hz, 784.89 Hz and so on (see Figure . The amplitude of each partial
determines the timbre of the note. For that reason different instruments that plays
the same note (with the same tone) sound different, e.g., the different sound pro-
duced by playing C4 on a guitar and a flute. In this work we will assume that each
of the guitars produces at most the first, second and third harmonics with some
amplitude. This, since the higher a harmonic is the lower is its amplitude and in
practice we found that amplitudes of harmonics higher than the third are as low as
the noise.

fo ()’
hz
- h-‘l
-+ 3 | e
-9 b:t:&:: 1 E 120 B f :
T~ I—1T—1—1— E” |l
A e T +TT1T1 f
o
AN3 V) ®r
& 0 100 2000
fo(h1) h2 hi h4 hS h6 h? ha hg h10 Frequency (Hz)
(a) Middle C harmonics (b) Middle C spectrum

Figure 2.1: Middle C harmonics and spectrum up to the 10th harmonic, produced
by a plucked guitar string.
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2.2 Fourier Transform and Analysis

Fourier Transform is a method to convert a signal, which is in the time domain,
into the frequency domain, by decomposing it to its frequency constituent parts.

The Fourier transform can operate on continuous-time signals (which are often
periodic, or constructs of periodic components) in order to create a continuous fre-
quency spectrum. However, in practice, signals are discrete and finite, since they
are reduced from real-world, continuous-time signals by sampling (see Section .
For these signals, a discrete version of the Fourier transform, the Discrete Fourier
Transform (DFT) is used. Many applications in digital signal processing use this
transform, or rather its fast implementation Fast Fourier Transform (FFT), and it
is presumed to be the most important discrete transform.

Formally, DFT transforms a sequence of samples x1, xs, ..., x,,_1 to the sequence
X1, Xo, ..., X,_1 which is defined by

N-1

Xk . T, €7i27rkn/N
= E n

n=0

2.2.1 Sampling and Aliasing

The process of reducing a continuous-time (analog) signal to a discrete-time signal
is called sampling. The capturing of a sound wave by a microphone is an example
of sampling, as well as capturing a scene by a video camera.

When a signal is sampled, it is inherently band-limited in frequency. That is,
sampling a signal with a finite number of points, clearly cannot represent an infinite
range of frequencies. Thus, every signal obtained by a sampling process is limited to
a specific frequency range that is determined by the sampling rate, defined by the
number of samples per second. Figure in part illustrates the sampling process.

The Nyquist-Shannon sampling theorem [7], [§] establishes a sufficient condition
for a sample rate that permits a discrete-time signal to entirely capture the informa-
tion from a continuous-time signal. According to the theorem, the sufficient frame
rate for a signal that has a maximum frequency of fy;4x should be at least 2fy;4x
samples per second. In other words, the sampled signal must contain no sinusoidal
component that is higher than half the sample rate. It follows that the frequency
spectrum of a time-to-frequency transform will be limited to half the sample rate.
This defines the typical audio sampling frequency to be 44.1 kHz which is slightly
higher than double the maximal frequency of the human hearing range (20 kHz).

However, when a signal that does contain frequency components higher than f,/2
is sampled with a sample rate of f,, a phenomenon called aliasing occurs. Aliasing
is an effect that causes different signals to become indistinguishable when sampled.
Equivalently, such a signal will not correctly show its frequency components, as
some can exceed the maximum frequency of the frequency spectrum. Any frequency
component above f;/2 is indistinguishable from a lower-frequency component, and
is called an alias. In the case of an insufficient sample rate f,, for a frequency
above f$/2, fhign, there exists m € NT such that f, = |faign — mfs| < fs/2 that
it aliases to. For example, when sampling with 240 Hz, two sinusoidal signals with
frequencies of 110 Hz and 130 Hz are aliases of one another, as both will have a
frequency component of 110 Hz. The 110 Hz sinusoidal will show a signal component
in 110 Hz, since it is lower than half the sample rate. However, 130 Hz is above f,/2,

Shir Goldstein 17
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thus aliases to 110 Hz, since 110 = |[130 — (1)240|. Although usually an anti-aliasing
filter is used to suppress these high frequencies, in this work we will use these aliased
frequencies to obtain additional information, since our sample rate is limited with
respect to the notes played on the guitars. Figure illustrates the phenomenon of

aliasing.
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Figure 2.2: (a): The spectrum of the note A4 (f, = 440 Hz), with a sample rate
of over 20 kHz. (b): The spectrum of the note A4 (440 Hz), with a sample rate of
2756 Hz. Frequencies above 1378 Hz, such as the fourth, fifth and sixth harmonics
are aliased. For example, the alias of fourth harmonic hy = 4f; = 1760 is 996 =

h
6000
Frequency (Hz)

(a)

L
4000

11760 — 2756].

2.2.2

As mentioned above, the musical tone is a complex signal that contains several fre-
quencies. Thus, Fourier analysis is well-suited for the task of identifying a note, by
braking it to its frequency components. Although this simple transform is sufficient
for several music applications (such as a tuner), it does not give any temporal in-
formation. That is, when performed on a long signal, it will reveal the frequency
components throughout the entire signal. In musical-analysis cases, if a signal rep-
resents an entire musical piece, this analysis might be practically meaningless, as
the frequencies throughout a musical piece are many and vary frequently. Thus,
a time—frequency analysis is the main practice in music related signal processing.
Mainly, it involves braking the signal into small, usually overlapping signals and
applying a Fourier transform (or other time-to-frequency transforms) to each one,
to create a time-frequency representation.

Temporal Information

Short-Term Fourier Transform

The most basic and well-used transform is Short Term Fourier Transform (STFT),
which breaks the discrete samples of the signal z[t] of length M to equal-length
segments (with length N), and computes FFT on each one to reveal the frequency

components in a given time.

Each of those segments is first multiplied by a window function, wlt| of size
N |I|, and then applied with FFT. To reduce artifacts, those windows are usually
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applied with some overlap, r. Figure [2.4] shows the STFT applied on an analog
signal following the sampling process.

The Spectrogram

A general spectrogram is a visual representation of a signal that shows its fre-
quencies information variation over time (or some other variable). A spectrogram
representation of the STFT applied to a signal correspond to taking the squared
magnitude of the STFT. In this case, the spectrogram is a 2D map, T" x f, where
each column of the map is the power spectral function of each segment. More specif-
ically, the spectrogram is a m x k matrix, . The number of columns is given by
k = ([(M-r)/(N-r)]). The frequency bin size fgg is given by fps = fs/N. It
follows that the number of spectrogram rows is given by m = (n/2 + 1) for an even
N and (N + 1)/2 for an odd N, since the applicable frequencies ranges from zero
to fs/2. Finally, the value at an entry a(t;, f;) is the magnitude of the frequency
fj computed for the interval with size N of the signal starting from (¢; — 1)(M —r)

(see Figures [2.4) and [4.34).

2.3 The Guitar

The guitar is a string instrument, usually fretted, that is played by strumming
the strings or plucking them. For a standard guitar, the right hand is the strum-
ming/plucking hand whilst the finger of the left are fretting it. Typically, all guitar
strings have the same length. However, their thickness varies; higher strings are thin-
ner, which causes the string to produce a higher set of frequencies. Additionally,
Shortening a string using the left hand makes a string produce higher frequencies.
See guitar structure and components in Figure [2.3

Fretboard/Fingerboard
|

Frets

Segments

Neck

Figure 2.3: The key components and structure of a guitar.

The guitar’s frets are metallic straight strips that divide the fretboard into seg-
ments. The ratio of the spacing of two consecutive frets is ¥/2 . This ratio makes
the difference in notes produced by playing consecutive segments to be a semitone.
Pressing the string against a higher segment will shorten the string to the next
closest fret and make it produce a higher pitched note. We will use the term fret
to address the segment that is behind it, as is customary among musicians. For
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example, when naming the second fret we mean the segment between the first fret
and the second one.

2.4 Musical Notation

Musical notation is a representation of a played (or sung) music by instruments
(or human voice) using some form of musical symbols. Musical notation include
various properties of the musical piece. The most important ones include the notes
temporal information and pitch information. Other properties may include tempo,
key, dynamics, etc. Modern staff notation is the most known form of musical nota-
tion, which usually include the majority of these properties, and are usually used for
classical instruments (like brass and bowed string instruments), instruments with
complex polyphony (such as a piano) or for multiple instruments (like an orchestra
or a quartet). An example of a modern staff is shown in Figure However,
some instruments or different methods of playing require little understanding of
these complex musical notation or some note properties are redundant. Guitar’s
common musical notation is the tablature. This notation includes merely the pitch
information by notating the number of string and fret needed to be pressed in order
to produce it. Temporally, the notes’ orders is given, and usually some additional
temporal information regarding the notes’ onsets and offsets is added, either by the
space between the these numbers (where a small space between notes indicated to
play them closer together and vice versa), or by other simple temporal notation as
in modern staff notation. This notation can be sufficient to describe a large majority
of music for guitars. See example of a tablature in Figure [2.5c]

Music being computerized formed a new way of interfacing and communicating
between electronic music instruments and computers. This formed MIDI (Musical
Instrument Digital Interface) which is a technical standard that carries information
about events of musical notes. For example, a MIDI keyboard controller can be
connected to a computer and a software will identify each key press. MIDI mainly
carries event messages that correspond to temporal and pitch information. MIDI
representation will usually consist of a matrix, where the columns (x-axis) represents
the time sequence and the rows (y-axis) represent the pitch. Every note in this
representation is an horizontal bar. The bar’s y-axis coordinates corresponds to the
pitch of the note. The bar’s x-axis coordinates corresponds its occurrence in time,
where the left edge indicates the start of the note and the right one indicates its end
(and accordingly its length corresponds to the note’s duration).

In this work, we will use MIDI-like representation as it is closely related to the
time-frequency representation obtained using the STFT and since it is suitable for
guitar playing (especially for bass and for melody playing in guitars). Furthermore,
this representation describes best the features obtained by NT. Since we analyze
each string separately, the transition to a tablature is trivial. An example of a MIDI
representation is presented in Figure [2.50]
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Figure 2.4: The short-term Fourier transform process.

Shir Goldstein 21



Vision-Based Musical Notes Recognition of String Instruments

E c?
)
P AL ] I I I ]
- I —i |
Oy —= 1 ; . = —
[ - - L4 - i - -
Hap - py birth - day to you! Hap - py
F
)
i — f I = ——
A | il = ———
v @ - ra
birth - day to you! Hap - py
Bb
ﬁn i : — = = —
) I i i =} - = -I'- }
birth - day dear (John - ny) Hap - py
F/C c F
) | . ;
6 = - L =) il
[
birth - day to you!

)

(a) Modern staff notation of "Happy Birthday”.

(c) Tablature representation of ”Happy Birthday”.

Figure 2.5: Different representations of the ”Happy Birthday” song.
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Chapter 3

Related Work

Our work was inspired by the innovative study by Davis et al. [4], where sounds were
recovered from silent videos. In their study, they showed that when sound hits an
object, its surface vibrates subtly, and those vibrations can be visually detected by a
camera. Furthermore, it is possible to reconstruct the original sound by processing
the signals obtained from those vibrations. However, NT was beyond the scope of
their study, since they did not focus specifically on music signals or attempted to
analyze them. Wu et al. [9] suggested to look at a certain location in the image and
extract the temporal color changes, in order to amplify it to make it visible to the
naked eye. Rubinstein [10] demonstrates that a temporal color change obtained
in a certain location on a vibrating string, can reveal its vibration frequency solely
from the video. These studies used an extremely high frame rate camera or made
use of the rolling shutter properties to effectively increase the frame rate, which is
inapplicable in our work, as our signal must be captured in a single pixel. Another
notable study is that of Owens et al. [11], where supervised learning is used to
predict the sound of an object being hit or scratched in a scene from a silent video.
It demonstrates that audio information could be retrieved by visual data alone, but
without any attempt to analyze the physics of the scene.

Naturally, most applications use auditory means to solve the AMT problem (see
surveys [12, 13, 14 15, 16]). These applications use signal processing methods to
analyze the audio signal. But although AMT is a fundamental field in music infor-
mation retrieval, only monophonic AMT is considered solved. AMT for polyphonic
music is a more complicated problem and the state-of-the-art AMT systems still
perform well-below the level of humans, or is restricted to the degree of polyphony
or instruments type [12]. Furthermore, audio signals can partially obfuscate some
essential information that can be observed almost only visually, such as fingering
or even what string is used to play a certain note (as a note can be played on
several strings). Although several works did address those issues, they are limited
in several aspects, e.g., by the set of pre-defined structured chords or by the level
of polyphony [I7, 18], an isolated single note [19], or a single instrument playing
solely [18], 20].

Visual and hybrid (visual combined with audio-based) approaches were attempted
to solve the AMT problem, due to the limitations of the audio-based methods. As
the visual information obtained usually consist of the physical manner the player is
operating the instrument, visual methods are mainly instrument specific. Methods
that focus of the guitar mostly follow the same technique of detecting the guitar’s
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strings and frets and then locating the guitarist’s left hand. Most methods ignore
the player’s right hand (the plucking / strumming hand).

A key component of methods that use visual infomration is to locate the guitar
in the video or frame. Straight forward approaches use the common structure of
the guitar to locate it in the frame. For example, Pelari et al. [21], 22] and Quested
et al. [23] detected the straight lines of the of frets. Common trackers were used
to track some guitar-specific structural elements, such as the constant ratio of the
distance between frets. In both these hybrid systems a rough location of the left hand
was obtained to retrive the fingering information (string and fret) for each detected
note by the audio analysis system. Similar but more comprehensive systems were
presented by Cheung and Lee [24] and Scarr and Green [25]. These solely vision-
based systems use similar characteristics of the guitar to locate the fretboard and
more specifically the exact location of each string and fret. Locating of the fretboard
is executed on each frame separately and no tracking is used. Zhang et al. [26] used
the similar structural elements of a violin for an AMT application.

Applications that bypassed the challenge of tracking the fretboard or to relocate
it in each frame used, as we do, a mounted camera [3, 27, 28]. In this case, the
strings and the frets need to be detected only once, as they stay static in relation
to the camera throughout the entire video. Others [2] 29] B30, 31, 32] used markers
on the guitar in order to track it. Our method use a mounted camera, and the
strings need to be only once detected. The detection is based on their vibration in
a video rather than using the geometric structure of the guitar from a single image
(see Section [£.3).

Given the location of the guitar, the frets, and the strings, the next challenge
is to identify the left hand and/or fingers of the player. In this task as well, some
method used marking on the fingers [2, BI]. Most method that avoid markings
usually use either detecting of the skin color [II, 21} 23, 25 22, 24, 26] and/or
search for the circular shape of the finger tips by using circular hough transform
[T, B, 24, 26], 27, 28]. Hrybyk and Kim [29] trained a set of rectified images of the
fretboard to identify a specific voicing of a chord.

Although visual and hybrid methods can diminish some limitations derived from
solely audio-based applications, these methods are not without their shortcomings;
first, since the detection of the frets is executed by measuring the distance from the
nut, it is required to have a sufficiently large view of the fretboard that includes
the frets that are played on, starting from the 1st fret. Some methods are limited
either by the number of frets considered (e.g., [3]) or by a pre-known set of possible
chords or voicing options (e.g., [29]). Our method requires only a small portion of
the strings to be visible.

Another main limitation of visual-based method is the detection of when a note
was played, if at all, as discussed earlier. Zhang et al. [20] attempt to overcome this
limitation by measuring the distance between the strings to its closest finger, in an
attempt to determine the finger that is pressing the string. However, they concluded
that, due to poor results, a single 2D camera is insufficient to obtain this kind of
information. Another notable exception is the work of Wang and Ohya [I] that
detects "key frames” in which the player’s hand is moving toward a new chord, thus
making it possible to roughly determine when a chord is not being played and when
it is. However, this approach does not solve the problem of a specific strumming or
picking and is irrelevant if the player is playing a melody rather than chords.
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Chapter 4

The Note Tracking System

In this chapter, we present our note tracking method. The input is a video taken by
a camera mounted on the guitar, as shown in Figure The output is the NT that
consists of the temporal segmentation of the played notes as well as their pitch.

(a) A camera mounted on the guitar camera

Figure 4.1: Our system setup.

In Section [4.3] we present our method to detect a set of string-pizels for each
string. A string-pixel g5 of string s is roughly located on the projection of s. The
string-pixels should be located only once, because their locations are fixed with re-
spect to the camera; the change in the strings locations is only due to their vibration.
The intensity of ¢ as a function of time, g4(t), is correlated with the frequency of
the string vibrations (see Figure . For each string s, we compute the NT of
the music played using a set of its string-pixels signals, {¢i(¢)}, as an input. The
temporal segmentation algorithm is described in Section Then, for each seg-
mented note, the algorithm for computing the fundamental frequency (the note’s
pitch) is described in Section . Robustness of the NT is obtained by voting from
several string-pixels of the specific string. The pitch and temporal information of
notes from all the strings can then be rearranged to form a coherent musical sheet
(MIDTI or tablature-like).

A full diagram of the proposed method is given in Figure
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4.1 Temporal Information

In this section we present our method to compute the temporal information of the
played music on a given string. It consists of the onset and offset of each note.
Our goal is to divide the set of input signals, {¢;(¢)}, into a set of segments, each
corresponding to a single note played on the string s. We represent each of the input
signals in a time-frequency representation, a spectrogram, to achieve both temporal
and pitch information. However, since temporal resolution and frequency resolution
are complementary, we favor the temporal information and largely ignore the pitch
information obtained by this representation. The computed temporal information
is then used to compute the frequency of each played note (see Section .

4.1.1 Spectrograms Generation

We calculate the short-term Fourier transform of each of the signals separately and
represent it as a spectrogram (see Section . That is, an FFT is applied to time
intervals of length N of the original signal. The size N should be sufficiently large
for obtaining high energy at the fundamental frequency of the played note as well as
for improving resolution of the computed frequencies. On the other hand, small N
improves the time resolution, and it is more likely that only a single note is played
during a short time interval. To improve the time resolution, overlapping intervals
can be considered. In our implementation, we use overlapping time intervals and
trade frequency resolution for temporal resolution, since the temporal information
is more imperative in this stage. Thus, we use a rectangular window with N = 20,
and the maximal overlap between the signal’s time intervals (r = 19).

4.1.2 Note Temporal Segmentation

Since each ¢} (t) is a signal obtained from a single string, only a single note is played
at a given time. Moreover, for a sufficiently small time interval N, only a single
note is present. Hence, at the time interval during which a note is played, the
spectrogram is expected to have a region with high energy roughly centered around
the played frequency. High energy of the spectrogram at the same temporal interval
is also expected at the visible frequencies that correspond to the note’s harmonics,
and the aliased frequencies of both the note and its harmonics (see Section [4.2)).
Other regions of the spectrogram are expected to have low energy, except for noisy
regions, typically at low frequencies. In our case, we consider the noise range to
be < 20Hz. To avoid the detection of noise, the region of the spectrogram that
contains frequencies equal to or below 20 Hz is discarded.

We use a naive segmentation method — applying a threshold to the spectrogram
energy. A bounding box is set around each region above the threshold. The bounding
box coordinates in the temporal axis correspond to a temporal segment, denoted by
T = (tj, tj + 5tj)-

The large frequency bins, the spectral leakage phenomenon, and the fact that
some harmonics can appear as aliases and might overlap unaliased harmonics, can
cause the high energies to smear across the frequency axis. This, in addition to noisy
areas in the spectrogram, can result in temporally adjacent segments to be falsely
merged to be included in a single bounding box.
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Figure 4.2: Spectrograms that were applied with bounding boxes. (a) Applying the
bounding boxes on the entire spectrogram. Some bounding boxes can be falsely
merged to include two notes, as in the red bounding box. (b) Applying bound-
ing boxes on horizontal stripes of the spectrogram, which resulted in individually
detection of the notes, in the red bounding boxes.

Hence, the segmentation is performed separately on each frequency bin of the
spectrogram. That is, the spectrogram image is divided to horizontal stripes accord-
ing to the frequency bins size, and each is set with the bounding boxes. This causes
large energy areas representing a note to be divided to several, roughly temporally
equal bounding boxes. Since we merely wish to extract temporal information in this
stage, we can ignore the height of the bounding box which eventually be selected to
represent the temporal segmentation of the note. An example of this sectioning if
showed in Figure [4.2

As a post-processing step, we discard overlapping temporal segments, by choos-
ing the more dominant regions, as at each given time only one note can be played.
Additionally, small segments are also discarded. The threshold is chosen to be the
ranked 80% of the energy values in the spectrogram, since we assume that the played
notes take roughly 20% of the spectrum at each given time (See Figure [4.3)).

This algorithm is applied to each ¢/ (t). As expected, the set of temporal segments
obtained from the set {¢'(t)} (for a gives string s) varies due to the quality each
of the signals. This, since different locations along the string captures its vibration
differently (see example in Figure . We use the results obtained from the signals
of all string-pixels of a given string to vote for its temporal segmentation; the set of
frames that appear in at least 65% of the signals are chosen.

Clearly, a more sophisticated segmentation algorithm can be used for this stage
of our algorithm. It is left for future research to study how advanced segmentation
methods can improve our results.
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Figure 4.3: (a) The spectrogram computed for a chromatic scale played on E string
of the bass guitar. (b) The initial bounding boxes placed around the thresholded
spectrogram (c) The horizontal sectioning and discarding of noise.(d) The discarding
of time-overlapped bounding boxes, before discarding of the bounding boxes with
no meaningful signal. (e) The final temporal segments.

4.2 Pitch Detection

Computing the note’s fundamental frequency is a main goal of NT. Many audio-
based methods compute the note’s pitch by selecting frequencies with high energy
in the spectrogram of the audio signal and matching it to the known structure of the
notes’ frequency components (the corresponding harmonic series). In our case, these
frequency components are largely above the spectrogram frequency range due to the
low frame rate. More importantly, the frequency resolution of the spectrogram is
poor thus frequency bins are too coarse to allow distinction between close frequencies
(e.g., a frequency bin of 1 hertz will not allow distinction between frequencies of
81.4 Hz and 82 Hz assuming the fall in the same bin). The poor frequency resolution
is caused by our choice of a small time interval size, N, which guarantees high
temporal resolution at the cost of low frequency resolution.

To improve the frequency resolution, FFT can be applied to a longer time in-
terval that consists of a single note computed by the temporal note segmentation
(Section . Indeed, the temporal note segments are typically longer than the
chosen N.

Our goal is to compute the fundamental frequency, fy, for each pre-calculated
note temporal segmentation. This, by applying FFT on each of those segments,
which results in obtaining the power spectra function, S(f), for each string-pixel.
Finally, a majority voting is computed on all string-pixels for each note to determine
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Figure 4.4: Several string-pixels’ temporal note segmentation. Each row represents
the temporal segmentation of the signal computed using a single string-pixel. The
upper row (blue) is the ground truth.

each note’s pitch.

The main challenge is the low sampling rate of the video (240fps) with respect
to the fundamentals we wish to recover (up to 392 Hz), let alone for their second
and third harmonics (up to 1176 Hz). According to the Nyquist-Shannon sample
rate theorem [7, [§], a perfect reconstruction is guaranteed for frequencies within
a bandwidth limit B < fs/2, which we refer to as the visible range of the power
spectrum (see Section .

Peaks of S(f): A peak of S(f) is expected at the note’s fundamental frequency,
fo, if it is in the visible range (fo < fs/2). Otherwise, it is theoretically guaranteed
that one of its aliased frequencies, denoted by fa(fo), is visible (see definition in
Section [2.2.1)). That is, there exists k € N* such that fa(fo) = |f — kfs| < fs/2.
We define the visible frequency of f (given f;) to be

D VA P
f“<f)_{fA(f> f> 12

Hence, if S(f) has a single peak at f’, we could infer that it is either at fy or
that it is an aliased frequency of fy given by the set {|fo £ k- fps|}ren (as long as
fo(fo) is not in the noise range).

Additional peaks are expected at the note’s harmonics (or their visible aliased
frequencies). Formally, let the harmonic series set of fq be given by {h;|h; = i fo}ien+
(fo is the first harmonic of itself). A peak of S(f) is expected at each f,(f), where
f = ifo. In practice, the energy of a harmonic usually decreases as ¢ increases (see
Figure ; hence we consider only the fundamental frequencies and two lowest
additional harmonics of fo. We expect S(f) to have peaks at :

Fv(fo) = {fv(f0)7 fv(2f0>7 fu(3f0)}-

Thus, the structure of the music harmonics and our limited bandwidth of visible
frequencies can cause ambiguities, since one needs to discriminate between fy, its
aliased frequency, and its harmonics. That is, a peak of S(f) at a frequency f

may be obtained for f = fo, f = fa(fo) or f € {fu(2f0). fu(3f0)}. For example,
observing a frequency of 110 Hz can be either because a note has a fundamental

Shir Goldstein 29



Vision-Based Musical Notes Recognition of String Instruments

frequency of 110 Hz, because it is a (second) harmonic of a note with fundamental
frequency of 55 Hz (as 2 % 55 = 110), or because it is an aliased frequency of 130 Hz
(as 240 — 130 = 110). Moreover, our limited bandwidth could cause peaks to be
very close together and thus harder to distinguish. For example, there is only 0.8
Hz difference between the peak of the note A2, where fy = f,(fo) = 110hz, and
the peak of C3, where fy = 130.8 and f,(fo) = 109.2hz. Also, a slight out of tune
guitar or a hard picking of the string can cause some variation of the note’s pitch.
Figure illustrated this property.

In addition to the above-mentioned expected peaks, some peaks will not be
visible because they are within the noise range (< 20 Hz), and peaks may be shifted
due to S(f) resolution.

Using Prior Knowledge: Our goal is to compute fy despite the expected above-
mentioned ambiguities. The most significant information we have is that S(f) con-
sists of only a single note. Moreover, the set of possible fundamental frequencies
that can be played on a given string s, Fying(s), is also known (as long as the
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Figure 4.5: The visible fundamentals of each string for the standard guitars. Note
that the visible fundamentals on string E are relatively dense while the ones of A
string are sparse.
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instrument is tuned). As a result, if fo € Fiing(s) is played, we expect the peaks of
S(f) to be the set Fy(fy). We define a score for each possible f € Fypings(s), and
the computed set of peaks, and we choose the note with the highest score.

Observe that in audio analysis, no aliasing exists since the bandwidth is suffi-
ciently large or an anti-aliasing filter can be used. However, harmonics frequencies
are visible, and it might be hard to discriminate, for example, whether a single note
is played or both the note and its harmonics are played. We do not have to handle
these challenges that arise from such ambiguity, since only a single note is played at
a given temporal segment on a given string.

Score Definition: Let Fj..5(S(f)) be the set of the highest six peaks of S(f).
The score of fy € Fyping(s) is computed as the weighted sum of the distances of
each f;, € Fy/(fo) from its nearest peak in Fpe.xs(S(f)). We normalize the distances
between f;, and f? € Fears(S(f)), since the results of the discrete FFT are equally
spaced while the distances between semitones are larger for high frequencies and
smaller for lower ones. Formally, let f < f’ be two successive semitones, and let
[ < f? € Fpears(S(f)) be the peak frequency. The distance between f and f? is
given by d(f, f*) = |(f — f?)|/|(f — f)|. In a similar manner we define the distance
d(f, f?) where f > f? using f’ < f. The frequency of the nearest peak to f is given
by

~

[ =argmingepsyd(f, 7).

The contribution of the i"* harmonic of fy, f = ify, to the score of f; is given by
e; = e 1D S(f).

Then the score is defined by the weighted sum:
3
score(fo) = Zwiei,
i=1

where w; is a weight of the i harmonic. In our implementation the weights are set
to be w; = 0.6, wy = 0.25, w3 = 0.15, if all expected frequencies are above the noise
range. Otherwise the weights are set to 0 for an invisible frequency, and the rest are
set accordingly.

High energy frequencies at Fy(fy) are used as evidence to support that f, was
played. However, special attention should be paid to two notes that are likely to be
confused. These include a pair of notes such that one of them has a fundamental
that is the second harmonic of the other, that is, fo,2fy € Fitring(s). In this case,
score(2fy) may be larger than score(fy) but fy is the correct fundamental frequency
of the played note, or vice versa. To avoid such errors, we reexamine which one of
them is the fundamental frequency. We expect e;(fy) to be low if 2f; is the correct
one. We test this according to the rank of e;(fy) in the set of e1(f),Vf € Faring(s).
In our implementation we choose 2fy if the rank is below 70%.

Post-Processing After obtaining the score of each string-pixel for a specific tem-
poral note we use a majority vote to determine the note’s fundamental. Further-
more, some temporal segments can show no meaningful frequency information (i.e.,
no peaks are visible in the corresponding S(f), see Section [£.2). This means that
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no pitch was detected in the temporal segment. Thus, if the majority of the string-
pixels indicated that no pitch was detected, the temporal segment is assumed to be
a false-positive and is discarded.

4.2.1 Expected Failures

Given the limited frame rate used, it is possible to predict the failures of the pitch
detection for each instrument.

Let us consider two notes played on the same string of a given instrument. These
notes are defined to be indistinguishable if their corresponding harmonic series are
observed identically. Strictly, let f" and f” be two notes with fundamentals of f{, f{
such that f] # f{ (and accordingly H + H{f{)’), then f’ and f” are indistinguishable
it £,(f7) = Fu(f7).

For example, the fundamentals of the notes Bb2 and B2 are 116.5 Hz and 123.5 Hz,
respectively. For Bb2: f,(116.5) = 116.5, hoy = 233Hz = f,(hs) = [233—1-240| =7,
hs = 349.5Hz = f,(h3) = [349.5 — 1 - 240 = 109.5, and or B2: f,(123.5) =
1123.5 — 1 - 240| = 116.5, hy = 247THz = f,(ho) = [247 —1-240| = 7, hy =
370.5Hz = f,(hs) = |370.5—2-240] = 109.5 (See[4.2)for computation explanation).
Example of such notes on the classic guitar is given in Figure [4.6]

We clearly cannot recover a frequency below the defined noise range. Hence,
notes that both fy, and h, are in the noise range their pitch cannot be detected.
Moreover, neither their temporal information can be detected. Theoretically, hz can
be detected but in practice the peak of the high harmonic is too weak for detecting
such notes.

Specifically, there are two pairs of indistinguishable notes. The first pair, Bb2
and B2 (116.5Hz and 123.5Hz) can be produced in the bass guitar in strings D
and G and, and by all other guitars in strings E and A. The second pair, Bb3 and
B3 (fo = 233.1Hz,246.9 Hz), which are played on all guitars but the bass guitar,
are also indistinguishable but more importantly, both the fundamental and second
harmonic are within the noise range. This make them practically impossible to
detect since, as mentioned above, the peak in hj is usually insignificant. Figure 4.6
illustrates the indistinguishable notes in the standard guitar.

The note A3 (fo =220 Hz, f,(220) = 20) has its fundamental in the noise range,
but its second harmonic, f,(2fy) = 40, is detectable. Some notes has some of their
harmonics in the noise range, which might cause some detection issues, mainly in
the pitch detection phase. Tables and summarize the visibility properties of
the notes per string and fret, respectively. Tables and show the visibility of
each note and its string and fret location on each of the instruments.

Since the frequency resolution is relatively low, we also expect ambiguities for
similar frequencies rather than identical ones. For example, A2 (f! = 110 Hz) and
C3 (f¢ = 130.8Hz) have very close visible frequencies of the fundamental, that
is fo(fa) = 110, f,(f2) = 109.2. These notes second and third harmonics are also
relatively close (f,(h]) = 20 and f,(h?) = 21.6. Also f,(h3) = 90 and f,(h3) = 87.6).

4.3 Strings Detection

We present two algorithms for locating the string-pixels. The first is a classic,
geometric approach for string detection which is based on a single frame. The
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String % fo % fi % both fy
(only) in (only) in | and f; in the

noise the noise noise range
range range

E(1) 0 17 0

A(2) 6 20 0

D(3) 6 6 12

G(4) 6 12 12

Table 4.1: Notes visibility properties, per string, up to the 12th fret.

Fret % fo % fi % both f
(only) in | (only) in and f; in
noise the noise the noise
range range range
0 0 16.67 0
1 0 16.67 0
2 16.67 25 0
3 0 8.34 16.67
4 0 8.34 16.67
5 0 16.67 0
6 0 16.67 0
7 16.67 25 0
8 0 8.34 16.67
9 0 8.34 16.67
10 0 0 0
11 0 16.67 0
12 16.67 8.34 0

Table 4.2: Notes visibility properties, per fret.

second is a temporal-spectral approach, using the temporal data from the video.
Note, that we assume that the string-pixels obtained are not obfuscated throughout
the entire video. However, if only few of the string-pixels are partially invisible, this
should not effect our results, as multiple string-pixels are processed and a majority

Figure 4.6: The fundamental frequencies of the standard guitars. The pairs of red
and green dots mark a pair of indistinguishable notes. Marked with white dots are
notes whose fundamental frequency is within the noise range. Frequencies 233.1 and
246.9 are marked as indistinguishable although both their f; and hs are within the
noise range, which practically makes the undetectable.
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(a) (b) (©) ()

Figure 4.7: The process of locating the string-pixels. (a) The edge map of the
guitar image (without dilation). (b) The energy map of 53.7 Hz (which is the aliased
frequency of 293 Hz, note D4 on string G). (c) The pixels with highest energy for
the computed frequency. (d) The random chosen subset of string-pixels from the
set presented in (c).

voting is used, thus making our method more robust. Moreover, a small adjustment
of our method can assure that the number of visible string-pixels at a given time of
the video is sufficient, for example by using more string-pixels.

4.3.1 A Geometric-Based Algorithm

The guitar’s strings and frets are approximately straight lines. It follows that the
strings should be selected from a set of image lines. We assume that a region in the
video frame contains the guitar neck, although part of it can be obfuscated by the
players hand. The guitar’s neck consists of frets and strings, which form a grid-like
structure that can point us to the location of the strings. Multiple methods where
attempted: Hough transform was used to detect straight lines the image, than only
roughly perpendicular lines where chosen; Harris corner detector was attempted to
find the corners created in the intersection between a fret and a string; and more.
However, these methods offered only limited success and are not applicable unless
strong assumptions regarding the scene and the visible part of the guitar are made.

4.3.2 A Temporal-Spectral Based Approach

We propose to use frequency information available from the video, and detect each
string according to expected frequency (e.g., by an initialization video that captures
pre-known visible notes). When a string vibrates in a known frequency, some pixels
around or along the string are expected to have high energy in their frequency
spectrum at that known frequency. Thus, those pixels capture the string vibration,
and can be detected by searching high energy pixels after filtering the frequency
spectrum to the desired frequency. Practically, an FFT is computed on the dilated
edge image (Figure to reduce the computation time, and the string-pixels are
detected by a filter on the expected frequency (see example Figure . The string-
pixels with the highest energy are chosen (Figure and then selected randomly
to for a set of 31 string-pixels (Figure .

Real-data experiment revealed that even a manual locating of the strings yields
inferior results to using our temporal-spectral algorithm. Thus, a geometric ap-
proach will be inferior as well (see Section . As a result, the geometric approach
was abandoned and was not used for the experiments.
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Figure 4.8: The proposed algorithm’s pipeline.
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Chapter 5

Experimental Results

5.1 Experiments

We tested our method on data generated by us. Existing data available on the Web
is insufficient for our method since it is either captured with a low frame rate or by a
camera that is not mounted on the instrument. The algorithm was implemented in
Matlab, and run on a standard PC. We evaluate the performance of each component
of our algorithm separately, as well as the performance from start to end of the entire
system.

Since this problem has not been addressed before, there are no existing solutions
with which to compare our results. Existing methods that use audio signals face
challenges due to polyphonic music, which is trivial in our data, but they avoid the
challenges of the low sampling rate of a camera. On the other hand, visual-based
methods are not comparable to ours, since they detect only the pose of the left hand.
The left hand pose is used to detect a chord that can be played, but no onset and
offset are computed.

An visualization of the tests results for pitch detection and frame-by-frame eval-
uation is shown in Figure [5.1]

5.2 Data

We applied our method to all data described below. The videos were captured
by a camera mounted to several guitars - an electric bass guitar, a classic guitar,
an electric guitar, and an acoustic guitar. These guitars have strings made from
different materials, and consists of a representative sample of all common strings
available for guitars. We use a GoPro (model: HERO3+) camera and SJCam
(similar to GoPro, with similar specifications), with 240 FPS in WVGA resolution
(see Figure [4.1)).

The instrument was tuned using a simple electronic tuner before data collection.
The music was played by a guitar player. The videos were captured in a well-
lit room, without flickering lighting (such as fluorescent). In addition, all strings
were visible in the video with high enough contrast to the background, although
sometimes the string shadow can also be used to obtain the same signal with higher
contrast. The strumming was strong enough for obtaining a large amplitude of the
string’s vibration.
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Figure 5.1: A visualisation example of the different tests results. The blue segments
are the GT, the yellow ones are the pitch detected on the given GT intervals (as in
Test 2),and the red ones are the automatically temporally segmented notes (as in
Test 1), and their detected pitch (as in Test3 - evaluation of pitch detection). The
frame-by-frame evaluation (as in Test3 - frame-by-frame evaluation) is calculated
by counting only frames where the blue segments and the red ones are present and
show the same frequency.

For the bass guitar we consider notes played up to the 14th fret (including, out
of 20), that is, 15 notes played on each string. Higher fret notes are rarely used in
practice. For the other guitars, we considered only the first 13 notes on each string,
that is up to the 12th fret (out of 20), since the strings are shorter than those of
the bass and thus the amplitude when strumming is smaller. Unfortunately, the
resolution of our cameras does not allow to reliably capture the signal of the two
highest strings of these guitars, which are very thin and/or made of a partially
transparent material (i.e, nylon). Hence, we tested our method only on the lower 4
strings of these instruments out of total of six. Note that the bass guitar has only
four strings. It remains to be seen whether a camera with higher resolution may
allow to deal with all strings.

On each of the strings (E,A,D,G) of each of the guitars, we played four times the
chromatic scale (consecutive semitones on all the considered frets) up to the 14th
fret in the bass guitar and up to the 12th fret in all other three guitars. All together
we played 864 = 15 x4 x4 x 1+ 13 x 4 x 4 X 3 notes. We made no assumption on
the music played, hence, this data represents well all musical pieces played in the
considered range. Additionally, we demonstrate a polyphony example of a chord
playing in a guitar.

5.3 Calibration

The temporal-spectral algorithm was used to detect the string-pixels in each of
the videos (see Section [4.3.2). For calibration, for each video, we used a known
temporal interval with a known played note. In practice, a calibration video can
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also be processed separately, by providing a video that captures the strumming of
all strings with predefined notes (e.g., open string or a chord).

In the next experiments we will use the temporal-spectral string detection algo-
rithm with a calibration performed using notes that where played on a high (6th,7th,
or 8th) fret. In general, we found that calibrating using notes played on a higher fret
gives more reliable results than that obtained on an open string or with manually
chosen string-pixels (see Test 4. The geometric approach was abandoned since it
yielded inferior results in the detection of the string.

Example of the manually detected pixels, the low-fret and the high-fret detected
pixels are shown in Figure [5.5

Test 1: Temporal Note Segmentation

Here we test the temporal segmentation of the notes. The input is a set {¢(¢)}, for
a given string, and the output is a set of temporal intervals {7;(s)}.

The ground truth is computed manually for each string s, by manually marking
the starts and ends around the high-energies areas of a spectrogram. The spectro-
gram is computed for a single pixel of each string, ¢f(¢). The known number of notes
visible in the spectrogram and their frequencies are used for the manual marking.
This process yields temporal intervals (start and end frames) for each played note.
It is important to note that this manual extraction of the ground truth is consider-
ably inaccurate, as the exact frame a note is starting and ending is often unclear.
In particular, notes tend to fade out. We do not use existing audio methods for
ground truth extraction since they often use priors on the played music, which does
not reflect the actual signal. Such priors could also be used in our method as a
post-processing. However, our goal here is to study the information that can be
extracted directly from the visual signal.

For quantitative evaluation of the onsets, we use the same methodology as in
MIREX [33]. That is, an onset is considered if it is within a tolerance time window
around the ground truth defined by a threshold. Note, that this test merely requires
a general note to be detected regardless of the correctness of the pitch. Given a
detected onset, we consider its offset to be correct if it is within a tolerance time
window around the ground truth. When more than a single onset is detected for
a given note, we use the one which is closest to the ground truth for the offset
evaluation. The others are considered as false positives for the onset detection.
Note that errors in the offset values may be due to the choice of the matched interval
based on the onset.

The temporal interval detection may miss a note with low energy or with fre-
quency components in the noise range. It may also split a note into two or more
intervals, which causes false positive onset detection and an offset error. Noisy data
may cause false positive detection of a note. Finally, fading out of a note may cause
offset errors.

Four different thresholds are considered, 12, 24, 36 and 80. The 12 frames thresh-
old corresponds to 50ms. The 50ms threshold is typically used in the MIREX onsets
detection [33]. It corresponds to 2205 samples in audio recorded at 44.1 kHz. An 80
frames threshold (which is 0.03 of 2205) corresponds to 1/3 of a second. Although
slightly slow for professional guitarists, it is a reasonable pace for educational pur-
poses and chords playing. Hence, a threshold of 80 frames is acceptable in the data
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resolution available by the considered camera.

The recall of the onset detection, using 80 as a threshold, is 0.88 (true-positive).
The precision with the same threshold is given by 0.74. This results in F-measure of
0.8. In addition, 70% of the notes which onsets were detected were also successfully
matched with offsets. The detailed results for onset and offset for the bass guitar are
presented in Table [5.2] and for each of the other guitars in Table In addition we
present the sum of onset errors (false-negatives) per fret and string over all guitars in
Table Note that in this table, only the first 13 notes (out of 15) for each string
of the bass are considered, for compatibility with the tests on the other guitars.
These results are computed using 80 as a threshold. For completeness the results of
the other thresholds for the onset detection are presented in Appendix

The results of our method cannot be compared to those obtained by the state-
of-the-art MIREX 2016 [34], since the data reported consists of different musical
instruments (including unpitched ones), different musical pieces, and a different
annotation technique. Most importantly, the signal’s sources are different (audio
vs. video). However, it is interesting to note that the F-measure reported by the
MIREX (2016) is 0.87 which only 0.07% better than our results which are obtained
using naive segmentation.

Generally lower strings and lower frets yield better results (see Table . The
two lower strings achieved around 4% errors (of played notes on both strings), while
the higher two yielded around 19%. Frets under the 9th fret had less than 8% errors
and 9-12 frets had more than double that, with close to 20% errors. Lower strings
has several advantages for notes extraction over higher ones. First, lower strings are
thicker, which makes the visual signal clearer and stronger. In particular, the classic
guitar G string is made from nylon which has some transparency. Additionally, notes
with fy in the noise range are less likely to be detected, since the first harmonic is
typically the one with the highest energy. Moreover, some notes have both their f,
and hs in the noise range, which make them almost impossible to detect, as the third
harmonic alone is unlikely to have a high energy. These imperfectly seen notes are
more present in the two higher strings. Table summarize the imperfectly seen
notes for each string of the instruments. As can be seen, the two higher strings have
17% of the notes with (at least) fy in the noise range, as opposed to 3% in the two
lower ones. Note that notes with merely hy in the noise range should be detected by
the onset detector, as their f is not within the noise range and is ordinarily visible.

The extracted signal from high fret notes are inferior to the one extracted from
lower frets. This is due to the fact that higher frets corresponds with shorter strings,
thus vibration amplitude is smaller (assuming same force is applied for the displace-
ment (strumming or picking) of the string).

Test 2: Pitch Detection with GT Temporal Inter-
vals

We evaluate the pitch detection part of our method, given the temporal intervals of
the notes. The input is the set of string-pixel signals, {¢7(¢)} for each string s, the
set of possible frequencies of s, Fying(s), and a set of temporal note segmentations
{77} In this test we wish to focus merely on the pitch detection, hence we used GT
temporal segmentation as input. For evaluation, we used the ground truth pitch
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H Acoustic H Classic H Electric
Onset Onset Onset
String | TP (%) [FP | Ot OO \—pp gy Trp | Ot 0 |3y Trp | Offset (0)
E(1) 51 (98%) | 12 | 37 (73%) || 47 (90%) | 25 | 28 (60%) || 52 (100%) | 2 42 (81%)
A(2) |[49 (94%) | 12 | 35 (71%) || 45 (87%) | 27 | 21 (46%) || 52 (100%) | 2 49 (94%)
D(@3) || 37 (71%) | 21 | 15 (41%) || 30 (58%) | 19 | 18 (55%) 48 (92%) 7 39 (81%)
G(4) |39 (75%) | 43 | 13 (33%) || 39 (75%) | 33 | 28 (72%) 50 (96%) | 17 | 26 (52%)

Table 5.1: Classic, acoustic and electric guitars onset and offset detection results
out of 52 notes played per string on each instrument. True-positive (TP) detections
and their respective percent out of the played notes, false-positive (FP) detections
and offsets detection and the respective percent of the TP detection.

Bass
Onset
String | TP(%) [P | Ot (%)
E(1) | 60 (100%) | 2 58 (97%)
A(2) 57 (95%) 3 | 45 (79%)
D(3) 57 (95%) | 27 | 45 (79%)
G(4) 51 (85%) | 20 | 39 (76%)

Table 5.2: Bass guitar onset and offset detection results out of 60 notes played
per string. True-positive (TP) detections and their respective percent of the played
notes, false-positive (FP) detections and offsets detection and the respective percent

of the TP detection.

according to the known played notes.
Overall, 66% of the notes’ pitches were detected correctly. We present the percent
of incorrectly detected pitches. The errors per string and per fret are summarized in

Tables 5.5 and [5.6] respectively. The results per instruments are shown in Table[5.7]
We classify these the errors into the following seven categories:

40

e Indistinguishable Notes (IN): The detected note is indistinguishable from the

GT note (see Section and Figure [4.6).

e Notes with f, in Noise Range (Ny,):

e Notes with hy in noise Range (Ny,):

e Notes with both f; and hs in Noise Range (N, ):

e Semitone Error (SE): The detected note is one semitone away up or down from

GT.

e Harmonic Error (HE): The detected note is a harmonic of the GT one, or the
GT is harmonic of the detected note.

e Others: all other errors.
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Fret Err. St. 1 | Err. St. 2 | Err. St. 3 | Err. St. 4 || Total Err. || % Total Err.
0 0 1 4 1 6 9%
1 0 0 0 1 1 2%
2 0 0 0 5 5 8%
3 0 0 0 7 7 11%
4 0 1 1 2 4 6%
5 0 0 1 5 6 9%
6 0 0 2 1 3 5%
7 0 0 4 2 6 9%
8 0 2 6 0 8 12.5%
9 0 1 11 2 14 22%
10 3 0 6 1 10 16%
11 1 2 4 4 11 17%
12 2 4 5 2 13 20%
Total Err. 6 11 44 33 94 11%
% Total Err. 3% 5% 21% 16% 11%

Table 5.3: Summary of the errors of the temporal note segmentation (true-positive)
per string and fret. The last two columns and rows show the total error per each
fret and string respectively and the corresponding percent from the notes played per
fret / string.

String Onset TP(%) Offset (%)

E(1) 210 (97%) 165 (79%)
A(2) 203 (94%) 150 (74%)
D(3) 172 (80%) 117 (68%)
G(4) 179 (83%) 105 (59%)

Table 5.4: Summary of all instruments temporal segmentation results, per string.
The correctly detected notes (TP) are shown with their respective percent of the
played notes. The correctly detected offsets are shown with their respective percent
of the notes that their onsets were correctly.

We divide the first six error types to two sets. The first, Sezpecteda = HE U SE U
IN of expected errors caused by several reasons: notes that are a semitone apart
from one another and thus very close in frequency components(SE), notes that are
octave apart thus share frequency components (HFE) and indistinguishable notes
(IN). The second, Shoiserange = Nfys Nnys (Nro & Np2), which are notes that are
imperfectly seen by our method, as one of their f,(fo), f,(ha) or both are in the noise
range. Note that HE,SE,IN are pairwise disjoint, as are Ny, Np,, (Ngo & Npa).
However, Sezpectea a0d Spoiserange are not disjoint. For example, B2 has a fundamental
frequency of (123.5Hz), which is indistinguishable from Bb2 (f; = (116.5Hz)) and
also a note with hy in the noise range.

Tables [5.5| and summarize the results per string and fret, respectively. Note
that 13% of the 34% errors was in notes that has at least one harmonic (out of the
first two) in the noise range. Harmonic errors account for only 2% of the 34%. This
is expected, as those errors are applicable only for 2 (out of 13) frets for the classic,
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Err' Sea: ected S’I’LO’L’S@J”(ITL €
Str. Total Bl —gp—T—¢g | I~ o T N | Njo & N
E(1) | 70 (32%) | 10 (7%) 0 12(6%) | 0 |13 (6%) 0
A(2) | 54 (25%) 0 6 (3%) | 15 (T%) | 5 (2%) | 19 (9%) 0
D(3) || 86 (40%) | 4 (2%) | 17 (8%) | 4 (2%) |12 (6%) | 4 (2%) | 24(11%)
G(4) | 82 (38%) 0 | 27(125%) | 4(2%) |11 (5%) | 4 (2%) | 24 (11%)
Total || 292 (34%) | 14 (2%) | 50 (6%) | 35 (4%) | 28(3%) | 40 (5%) | 48 (6%)

Table 5.5: Pitch detection errors given GT temporal intervals, per string. The first
column summarize the total errors of each string and the respective percent from
the total number of played notes, 216 (per string). The other columns present the
number of errors for each type and set defined above, and the respective percent
from the total played notes.

Err. Seapected Shoise_range
Fret Total Brr T4 T 1 Yo | Ne | N & Ve
0 16%) | 1@%) 0 0 0 3 (6%) 0
1 0 0 0 0 0 0 0
2 23 (36%) 0 0 | 12(19%) | 8 (125%) | 12 (19%) 0
3 23 (36%) 0 0 0 0 0 12 (19%)
4 21 (33%) 0 7 (11%) 4 (6%) 0 4 (6%) 12 (19%)
5 11 (17%) 0 2 (3%) 0 0 1 (2%) 0
6 11 (17%) 0 3 (5%) 0 0 0 0
7 28 (44%) 0 2(3%) | 12 (19%) | 12 (19%) | 12 (19%) 0
8 27 (42%) 0 1(2%) 0 0 0 12 (19%)
9 34 (53%) 0 |10(16%) | 4(6%) 0 4(6%) | 12 (19%)
10 34 (53%) 0 |u@w| o 0 0 0
11 27 (42%) 0 6 (9%) 0 0 0 0
12 37 (58%) | 13 (20%) | 1 (2%) 0 5 (8%) 0 0
13* 2(12.5%) 0 1 (6%) 0 0 0 0
14% | 10(625%) | 0 3(19%) | 3(19%) | 3(19%) | 4 (25%) 0
Total || 292 (34%) | 14 (2%) | 50 (6%) | 35 (4%) | 28(3%) | 40 (5%) | 48 (6%)

Table 5.6: Pitch detection errors given GT temporal intervals, per fret. Note, *frets
13 and 14 are only applicable for the bass guitar. The first column summarize the
total errors of each fret and the respective percent from the total number of played
notes, 64 for frets 0-12 and 16 for frets 13-14. The other columns present the number
of errors for each type and set defined above, and the respective percent from the
total played notes.

acoustic and electric guitar (0, 12) and for 6 (out of 15) frets for the bass guitar
(0,1,2,12,13,14). 6% of the 34% are notes that were identified as a semitone above
of below the GT pitch.

Analyzing the results per fret uncovers the relation between the errors caused
in frets with imperfectly seen notes and the total amount of errors, as is shown in
Figure Up to the 8th fret, a steady ratio between the total errors and those of
the imperfectly seen frets is kept. Starting from the 8th fret, the number of errors
increases in frets with no noise issues. This is expected since, as explained above,
higher frets notes are harder to detect and analyze. Moreover, this is consistent
with the findings in Test 1, where the higher frets showed inferior results. Failure to
temporally segment a note will usually cause failures in the pitch detection as well,
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since occasionally a temporal segmentation errors is a result of an undetected note
and not merely failure in detecting the onset within the desired threshold.

40 I

—Errors Per Fret

—Imperfectly Seen Errors Per Fret
+ Fret with Indistinguishable Note -

Errors

0 2 4 6 8 10 12
Frets

Figure 5.2: The errors using GT temporal intervals (blue), and the errors in imper-
fectly seen notes (orange), on each fret. The peaks (diamonds) correspond to frets
that have indistinguishable notes, in which errors are certain.

Observing the results per string shows that the two lower strings are again per-
forming better than the two higher ones. However, the best results was listed for
the second lowest string (A), rather than the lowest one (E). This can be explained
by the sparse fundamentals of the notes on the A string, as opposed to the relatively
dense fundamentals of the E string (see Figure . Clearly, this property affects
the pitch detection and not the temporal segmentation, thus the E string presented
the best results in the temporal note segmentation stage.

The results per instrument are presented in Table 5.7] As expected, the bass
guitar results are superior to all other guitar, due to the strings thickness and length,
and since less notes are imperfectly seen.

Instrument % Success

Bass 86
Acoustic 64
Classic 56
Electric %)
Total 66

Table 5.7: The pitch detection success percentage using GT temporal intervals, per
instrument, counting the number of correctly detected pitches of the total notes
played on each instrument - 240 for the bass guitar and 208 for all other guitars.

Shir Goldstein 43



Vision-Based Musical Notes Recognition of String Instruments

Err' SCJ) ected Snoise,ran e
String Matched | Total Err. T ‘ §E ‘ I~ Nro ‘ Noa ‘g N0 & Nia
EQ1) 210 (97%) | 68 (32%) | 10 (5%) 0 12 (6%) 0 13 (6%) 0
A(2) 206 (95%) | 55 (27%) 0 5(2%) | 13 (6%) | 6 (3%) | 18 (9%) 0
D(3) 196 (91%) | 74 (38%) | 5(3%) | 5(3%) | 4(2%) | 12 (6%) | 4 (2%) | 13 (T%)
G(4) 197 (91%) | 74 (38%) 0 | 24(12%) | 4(2%) | 7(4%) | 5(3%) | 17 (10%)
Total 809 (94%) | 271 (33%) | 15 (2%) | 33 (4%) | 33 (4%) | 25 (3%) | 40 (5%) | 30 (4%)

Table 5.8: Pitch detection errors given automatically segmented temporal intervals,
per string. The first column is the number of intervals that were matched with a GT
interval and corresponding percent of the total number of the GT notes, 216 (per
string). The second column presents the errors per string in pitch detection only for
the matched detected notes. The other columns present the number of errors for
each type and set defined above, and the respective percent from the total played
notes.

Test 3: End-to-end

In this test we apply our algorithm to compute the pitch of all temporal intervals
segmented by our method. This allows evaluation of the entire system. We first
evaluate only the pitch detection, and then frame-by-frame errors.

Evaluation of Pitch Detection We now evaluate the pitch detection given the
temporal intervals calculated by our method. The pitch errors are computed only for
detected temporal segments that overlap the GT. Results per string and per fret are
given in Tables [5.8 and respectively. The first column is the number of intervals
that where matched with a GT interval and corresponding percent of the total
number of the GT notes. The second column presents the errors in pitch detection
only for the matched detected notes. We also present, as in Tables and [5.6] the
classification of the errors, and the overall results per instrument, similarly to the
Table (.7

Since notes are matched by choosing the note with largest interval overlap to GT
interval, notes that are not matched suggest that no note (nor noise) was detected
in the GT temporal interval. The better results of matching in the two lower strings
in consistent with the results in Test 1.

Roughly, the pitch detection results are consistent with the results of Test 2.
This suggests that the note with closest temporally onset is usually also the one
with the most temporal overlap to GT.

Similarly to the results in the previous section, more errors occur in higher frets,
and from the 8th fret an on, less of these errors occur due to noise issues. Again,
better pitch detection is obtained the string (A) showing better results than the
lowest one (E) as previously in Test 2.

The results per instrument are presented in Table [5.10] Again we see the bass
guitar superiority.

Frame-by-frame Evalutation We use frame-by-frame evaluation of the results
compared to ground truth. We compare the output data and the ground truth in
each frame. The algorithm output is assumed to be correct if in a given frame the
GT and the output shows the same frequency (or no frequency, e.g. no note is played
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Err' SE.T) ected Snoise,’r'an €
Frot Matched | Total Err. HE | SpE N No T N g‘ N7o & Nia

0 64 (100%) | 4 (6%) 1 (2%) 0 0 0 3 (5%) 0

1 64 (100%) | 1 (2%) 0 0 0 0 0 0

2 62 (97%) | 21 (34%) 0 1(2%) | 11 (18%) | 6 (10%) | 12 (19%) 0

3 59 (92%) | 18 (31%) 0 1(2%) 0 0 0 7 (12%))

4 62 (97%) | 17 (27%) 0 6 (10%) | 4 (6%) 0 4 (6%) | 10 (16%)

5 61 (95%) | 9 (15%) 0 1 (2%) 0 0 1 (2%) 0

6 64 (100%) | 12 (19%) 0 1 (2%) 0 0 0 0

7 64 (100%) | 27 (42%) 0 1(2%) | 12 (19%) | 12 (19%) | 12 (19%) 0)

8 60 (94%) | 23 (39%) 0 0 0 0 0 8 (13%)

9 57 (89%) | 30 (53%) 0 3 (5%) | 4(7%) 0 4 (7o) 5 (9%)
10 50 (92%) | 39 (66%) 0 17 (29%) 0 0 0 0

11 54 (84%) | 22 (41%) 0 0 0 0 1(2%) 0

12 53 (83%) | 38 (72%) | 14 (26%) | 1 (2%) 0 6 (11%) 1(2%) 0
13* 15 (94%) |  3(20%) 0 1 (7%) 0 0 0 0
14* 11 (69%) | 7 (64%) 0 1(9%) | 2(18%) | 1(9%) | 2 (18%) 0
Total 809 (94%) | 271 (33%) | 15 (2%) | 34 (4%) | 33 (4%) | 25 (3%) | 40 (5%) | 30 (4%)

Table 5.9: Pitch detection errors given automatically segmented temporal intervals,
per fret. Note, *frets 13 and 14 are only applicable for the bass guitar. The first
column is the number of intervals that where matched with a GT interval and
corresponding percent of the total number of the GT notes (64 for frets 0-12 and 16
for frets 13-14). The second column presents the errors per fret in pitch detection
only for the matched detected notes. The other columns present the number of
errors for each type and set defined above, and the respective percent from the total
played notes.

Instrument % Matched % Success

Bass 96 88
Acoustic 88 65
Classic 93 55
Electric 98 5%5)
Total 94 67

Table 5.10: Total pitch detection success percentage using automatically obtained
temporal intervals, per instrument. The first column is the percent of matched
intervals from the notes played - 240 for the bass guitar and 208 for all other guitars.
The second column is the percent of the successful pitch detection from the total
notes matched.

in the frame). This allows us to evaluate the system for both frequency and temporal
information combined. Using this evaluation allows us to largely ignore cases that
are counted as errors in previous test, but reflect some success of the methods in
some aspects. Figure shows some of those errors. The first error (1) is a case
were a note is split, where the first, temporally closer to GT, detected note was
detected with the wrong pitch, and the second was detected with the correct pitch.
In this case the first detected note will be accounted for in the temporal segmentation
detection and the other will be considered a false-positive. In the auto-computed
pitch detection, the same detected note will be considered and since its pitch was
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40 T
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Figure 5.3: The errors using automatically obtained temporal intervals (blue), and
the errors in imperfectly seen notes (orange), on each fret. The peaks (diamonds)
correspond to frets that have indistinguishable notes, in which errors are certain.

detected wrongly, the pitch test will record an error. However, using the frame-by-
frame evaluation, the overlapping frame of the second detected notes and the ground
truth will be considered as success. In the second error (2), a splitting occurred and
both detected notes was detected with the right pitch. For the temporal interval
test, the second detected note will be considered as false-positive. For the pitch
detection using automatic intervals, the first detected note will be considered and
the other ignored, and the offset detection is a failure. Frame-by-frame evaluation
will consider the entire note as successfully obtained, except from the gap between
to detected notes. The third and fourth errors (3,4) are cases where the detected
onset is not within the tested threshold, either too late (3) or too early (4). For the
temporal segmentation test, the detected notes in both cases will be considered false
positives. For the auto-segmented pitch detection test, the detected notes will be
matched and considered true-positive since the pitch detected is correct. The frame-
by-frame evaluation will consider all area that overlaps both the GT and detected
note as success and any other area as error.

This evaluations is roughly similar to fy-estimation problem (see MIREX 2016 [35])
that involves detecting all active fundamentals in a given time frame. In our case,
the problem diminishes to a single fy-estimation, as we consider a single string each
time, that can only produce a single note simultaneously. This evaluation is ex-
tremely robust, does not make any assumptions on the data (such as thresholds),
it is not dependant of sequential steps and provides good estimation of the system
performance. Note that we do not allow tolerance in the note onsets and offsets
here. Furthermore, this evaluation disregards the nature on an error. For example,
undetecting a note temporally and a correctly temporally detected note with an
incorrectly detected pitch will both be considered as a frame with an error. This ex-
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Real-Data Errors Examples

mmmmm Ground Truth

= Notes Detected with Automatic Temporal Intervals

‘ (1)

(2) (3) 4

Figure 5.4: Errors examples obtained by testing our method on real-data. (1) A
split note, where the first detected note is detected with the wrong pitch and the
second with the correct one. (2) A split note, where both detected notes are detected
with the correct pitch. (3),(4) A case where the detected onset is not within the
tested threshold, either too late (3) or too early (4).

plains the slight variation is results per string and instrument comparing to previous
tests.

Table summarizes this evaluation method. Overall, 68% of the frames were
correctly detected. As was observes before, when considering the entire data on all
guitars, lower strings yield better results. However, this observation does not hold
when considering each instrument separately, which encourage us to collect more
data to get more conclusive results. In this test, as in was shown in the other tests,
the bass guitar outperforms other guitars.

String || Bass | Acoustic | Classic | Electric | All
E(1) 93 64 66 64 72
A(2) 83 71 62 70 71
D(3) 71 67 64 67 67
G(4) 68 55 60 69 63
Total || 79 64 63 68 68

Table 5.11: A frame-by-frame evaluation presenting the percent of frames that were
successfully detected from the total frames in the video, calculated per string and
instrument.

Test 4: String-pixels Selection

Here we test the string-pixels that yields the best results. Three sets of string-pixels
were considered; string-pixels that were extracted using high fret (6th, 7th or 8th)
note calibration, open string note calibration, and manual marked pixels on the
string. Our method was then applied on each video of the bass guitar. Several of
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(a) High-fret string-pixels (b) Open string string-pixels  (¢) Manual string-pixels

Figure 5.5: The string-pixels obtained using three different methods: (a) String-
pixels obtained by using the temporal-spectral algorithm with a high-fret note (6, 7
or 8). (b) String-pixels obtained by using the temporal-spectral algorithm with an
open string note. (c) String-pixels that were marked manually upon the string.

the mentioned above measurements were used to determine the best selection of
string pixels. Those include frame-by-frame evaluation (as in Test 3 - frame-by-
frame evaluation), onsets f-measure (as in Test 1) and pitch detection using GT
temporal intervals (as in Test 2). Results are summarized in Table [5.12, The
set of string-pixels obtained by our automatic string detection using high fret note
calibration surpassed other methods (our performed equally well) in each of the
tested measurements.

Frame-by-Frame | Onsets F-measure | PD with GT int.
Manual 79 % 0.85 85 %
Auto. Open-String 73 % 0.85 84 %
Auto. High Fret 79 % 0.87 86 %

Table 5.12: Different string-pixels detection methods and their performances, eval-
uated by the different evaluation methods.

Test 5: Polyphony Demonstration (Chords Play-
ing)

In this section we present a demonstration of a possible application of our method.
In this demonstration we show a polyphony example of an acoustic guitar playing 5
chords: Cmaj (open) - Gmaj (open) - Fmaj (Barred) - Dmaj (open) - Gmaj (open).
This means that at the same time, 5 or 6 strings are playing together. In this case,
we assume that the guitarist is playing in ”chord mode”, meaning only chords are
played and considered. Appropriately, we add some post-processing to the output
of our algorithm:

e Only temporal intervals that overlap in at least 3 strings are kept.
e Temporal intervals lasting less than 48 frames (200 ms.) are discarded.

The results are shown in Figure 5.6l Note, that in this case the offset is without
significance. The time-overlapping temporal segments where shortened to the short-
est interval in the chord to provide better visualisation. In practice, when playing
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chords, a letter representing the chord will appear in the musical sheet (for example,
Am?7), and no offset notation is used.

This demonstration points out two important strengths of our method. First,
polyphony does not affect the signal extracted from each string separately. This
validates our approach and tests. Secondly, since every string is analyzed separately,
an error on one or more strings may not affect the correctness in identifying a chord.
It remains for future work to develop a chord-oriented system that could analyze
the played notes as chords.

300 T T
E String fain noise
= A String range
D Strin
. 9 D Semitone
250" = G String
% Pitch Error
> - D Indistinguishable
=
s | ]
]
o
o
L
150 - il
100 |- il
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0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Time

Figure 5.6: The method’s output in ”chord mode”, for a video capturing the playing
of the chords Cmaj - Gmaj - Fmaj - Dmaj - Gmaj, as explained in Section [5.3] The
X’s mark notes that were detected with the wrong pitch. The rectangles around the
detected notes indicate the type of error, if applicable. In this case the offsets are
disregarded, since generally in chords notation no offsets are mentioned.
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Chapter 6

Discussion and Future Work

In this thesis we present the first steps toward solving Note Tracking for various
guitars, using a video capturing the vibration of the strings. We clarify the challenges
involved and suggest algorithms for handling them. We present our algorithm which
includes thee main steps — string-pixels detection, temporal note segmentation, and
pitch detection. Our method for detecting string-pixels is based on the strings
vibrations rather than using classic detection techniques that are based on geometry.
The pitch detection algorithm uses priors on the possible notes played on each string
as well as their expected visible aliasing and harmonics. The temporal segmentation
uses multiple signals obtained from a single video to attain robustness. In addition,
we present a set of methods for evaluating these algorithms. We next discuss our
results, and suggest how our method can be further extended in a future work.

Discussion

As a rule, a successful capturing of signals of the played note depends on two main
factors. The first is the camera’s frame rate. The frame rate makes some notes
partially or completely obscured by noise, which induces errors. Additionally, some
notes are ambiguous in relation to others. For the standard guitars other than the
bass guitar, the method of harmonics scoring had limited success in detecting notes
that their fundamental frequency was in the noise range. In particular, the notes
Bb3 and B3 that both their 1st and 2nd harmonics are in the noise range were
undetectable by our method.

Second, the physical characteristics of the string can also influence the success
rate of our method. Notes that are produced by playing a lower fret, are usually
easier to detect, since the longer the string is, the bigger its vibrating amplitude.
Additionally, lower strings are thicker, which seldom makes the intensity change
signal captured stronger and less noisy.

The bass guitar results are better than the other guitars throughout all tests.
This is expected, due to the instrument characteristics as mentioned above: the
bass guitar has longer strings and thicker strings and the bass guitar produces lower
frequencies notes, thus a note’s fundamental frequency is always in not in the noise
range.

Since our method is unique and incomparable to other NT methods, we presented
a diverse variety of testing techniques to evaluate our method. Most results are
roughly in the same scale as audio, and although our method is limited in some
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aspects such as frets higher than the 12th (in standard guitars) and the invisibility
of the two highest strings, it offers an innovative approach - analyzing a complex
polyphonic signal by transforming it to multiple monophonic signals.

Future Work

Extracting notes from a vibrating string for the task of note tracking or other music
information retrieval tasks, is a brand new field. Thus, the options for future work
are innumerous.

As commercial cameras keep improving, higher frame rates and higher resolution
are expected to be available at reasonable price. We expect that an increase in
frame rate will massively improve our performances. Not only will a higher frame
rate solve ambiguities and remove notes from noisy range, it will provide a better
time resolution. Additionally, errors that are unaffected by the noise range are
also expected to be reduces, as a higher frame rate expands the unaliased frequency
range, thus making notes more distinguishable from one another. Moreover, a better
resolution camera or one with zooming abilities can also contribute to better results,
since the extracted signal can be stronger and clearer.

A clear aspiration of future work is to relinquish the need of a mounted camera.
The vision is to capture a musician playing his instrument from a far, non-intrusive
camera, and to be able to extract the played notes. Simple tacking of the instruments
or strings might not suffice, as our method extracts the signal by measuring the
change in intensities a string generates when vibrating, and a large-scale movements
of the guitar may interfere with this signal. Nonetheless, preliminary tests show that
a video of a guitar player sitting fairy still in front of a stationary camera, can be
used to extract such signal and the note played. Furthermore, there are additional
changes when using an unmounted camera; the distance from the instrument may
cause the signal to be fairly weak, and it may be harder to distinguish between
adjacent strings. This could be partially solved by using a more advanced camera.

As our retrieved signal is very similar to an audio retrieved signal, future work
can also include implementing the great work done on audio signals, on our visually
obtained signal. Time domain, as well as frequency domain methods for audio
signals such as filter banks and cepstrum, can yield improvements if operated on the
visual signal.

Moreover, a hybrid approach, combining both visual signal and audio signal,
should be attempted. Some methods combining both audio and video were previ-
ously addressed, but only for left hand tracking methods that doesn’t obtain the
signal from the vibrating string. As our visual signal and the audio signal represent
the same physical event, more information could be gathered on the played note, as
opposed to a visual signal describing the movement of the instrument or the player.
Each of the signals has its own strengths and weaknesses, e.g., audio has a higher
resolution that evades low frame rate ambiguities but captures a polyphonic sig-
nal that presents other ambiguities and that is harder to process. Infusion of both
signals can create a clearer, easier to process signal.

Future work should also include some knowledge on the instrument and the
manner it is played. For example, tracking of the left hand and positioning it on
the guitar, can eliminate ambiguities for the currently played note, as the hand
should be placed roughly around the pressed fret. Another way to use instruments
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or musical information is to estimate a likely trajectory of the left hand, which can
also eliminate unlikely played notes and improve pitch detection accuracy. Although
one of our method strengths (compared to other visual methods) is the ability to
detect all kinds of melodies and non-trivial chords, providing a pre-set of chords,
even a vast one, could eliminate ambiguities in pitch detection and also overcome
the invisibility of some notes, as a chord with some detected notes could suffice to
identify it.

More string instruments should be tested our method, mainly bowed string in-
struments, as the string vibration is slightly different.

To conclude, we believe that the proposed solution to the note tracking problem,
can be a first step toward a more reliable NT with better results, as we present
a novel approach to obtain the musical information. Combining our method with
other existing audio or vision based method may be present a big leap in the NT
results and other MIR applications.
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Appendix A

String _

Fret E A D G
0 82.41 110 146.8 196
1 87.31 116.5 155.6 207.7
2 92.5 123.5 164.8 220
3 98 130.8 174.6 2331
4 103.8 138.6 185 246.9
5 110 146.8 196 261.6
6 116.5 155.6 207.7 277.2
7 123.5 164.8 220 293.7
8 130.8 174.6 233.1 311.1
9 138.6 185 246.9 329.6
10 146.8 196 261.6 349.2
11 155.6 207.7 277.2 370
12 164.8 220 293.7 392

Figure A.1: Classic, acoustic and electric guitars fundamental frequencies. Yellow
markings indicate notes that their hy are in the noise range, red markings indicates
notes that their fy are in the noise range, mixed red and yellow markings indicates
notes that both their fy and hs are in the noise range.
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String _

m E A D a
0 41.2 HH 73.42 98.00
1 43.65  5H8.27 T7.78 103.8
2 46.25 61.74 82.41 110
3 49 65.41 87.31 116.5
4 51.91 69.3 92.5 123.5
5 55 73.42 98 130.8
6 58.27 T7.78 103.8 138.6
7 61.74 82.41 110 146.8
8 65.41  87.31 116.5 155.6
9 69.30 92.5 123.5 164.8
10 73.42 98 130.8 174.6
11 T77.78 103.8 138.6 185
12 82.41 110 146.8 196
13 87.31 116.5 155.6 207.7
14 92.5 123.5 164.8 220

Figure A.2: Bass Guitar fundamental frequencies. Yellow markings indicate notes
that their ho are in the noise range, and red markings indicated notes that their f,
are in the noise range.
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Appendix B

Threshold = 12

Threshold = 24

Threshold = 36

Precision

Recall

F-measure

Precision

Recall

F-measure

Precision

Recall

F-measure

0.36

0.43

0.39

0.56

0.68

0.61

0.64

0.79

0.71

Table B.1: Precision, recall and F-measure evaluations for onset detection for all

instruments, using different thresholds.
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Bass guitar

Threshold = 12 || Threshold = 24 || Threshold = 36
String | TP (%) FP TP (%) | FP || TP (%) | FP
E (1) | 37 (62%) 25 49 (82%) 13 59 (98%) 3
A (2) | 48 (80%) 12 55 (92%) 5 56 (93%) 4
D (3) | 20 (33%) 64 38 (63%) 46 48 (80%) 36
G (4) | 20 (33%) 51 33 (55%) 38 41 (68%) 30

| Total | 125 (52%) | 152 [[175 (73%) [ 102 [ 204 (85%) [ 73 |

Electric guitar

Threshold = 12 || Threshold = 24 || Threshold = 36
String | TP (%) | FP [ TP (%) | FP | TP (%) | FP
E() | 2548%) | 29 [ 46(8%) | 8 | 50(9%6%) | 4
A(2) [ 25(48%) | 29 || 43(83%) | 11 [ 49(94%) | 5
D(3) [ 25(48%) | 30 || 44 (85%) | 11 [ 48(92%) | 7
G (4) | 29(56%) | 38 [ 41(79%) | 26 | 47 (90%) | 20

| Total | 104 (50%) | 126 [ 174 (84%) | 56 | 194 (93%) | 36 |

Acoustic guitar

Threshold = 12 || Threshold = 24 || Threshold = 36
String | TP (%) FP TP (%) FP TP (%) FP
E (1) 26 (50%) 37 47 (71%) 16 50 (96%) 13
A (2) 26 (50%) 35 39 (75%) 22 43 (83%) 18
D (3) 15 (29%) 43 25 (48%) 33 30 (58%) 28
G (4) 11 (21%) 71 21 (40%) 61 24 (46%) 58

Total | 78 (37.5%) | 186 || 132 (63%) | 132 ||

147 (71%) | 117 |

Classic guitar

Threshold = 12 || Threshold = 24 || Threshold = 36
String | TP (%) FP P (%) | FP P (%) | FP
E@) [1502%) | 57 [28(54%)| 44 | 38(73%) | 34
A(2) [20(38%) | 52 [130(58%) [ 42 | 33(63%) | 39
D(3) [14(2%) | 35 19 (37%) | 30 | 24 (46%) | 25
G (4) [13(25%) | 59 18 (35%) | 54 | 26 (50%) | 46

| Total |62 (30%) | 203 [ 95(46%) | 170 | 121 (58%) | 144 |

Table B.2: Onset detection results for all instruments, using different thresholds. A

total of 240 notes are played on the bass guitar (60 per string) and 208 on each of
the other guitars (52 per string).
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