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Abstract

Discounting the influence of future events is a key paradigm in eco-
nomics and it is widely used in computer-science models, such as games,
Markov decision processes (MDPs), and automata. While a single game or
MDP may allow for several different discount factors, discounted-sum au-
tomata (NDAs) were only studied with respect to a single discount factor.
For every integer λ ∈ N\{0, 1}, as opposed to every λ ∈ Q\N, the class of
NDAs with discount factor λ (λ-NDAs) has good computational proper-
ties: it is closed under determinization and under the algebraic operations
min, max, addition, and subtraction, and there are algorithms for its basic
decision problems, such as automata equivalence and containment.

We define and analyze discounted-sum automata in which each tran-
sition can have a different integral discount factor (integral NMDAs). We
show that integral NMDAs with an arbitrary choice of discount factors are
not closed under determinization and under algebraic operations. We then
define and analyze a restricted class of integral NMDAs, which we call tidy
NMDAs, in which the choice of discount factors depends on the prefix of
the word read so far. Some of their special cases are NMDAs that correlate
discount factors to actions (alphabet letters) or to the elapsed time. We
show that for every function θ that defines the choice of discount factors,
the class of θ-NMDAs enjoys all of the above good properties of integral
NDAs, as well as the same complexity of the required decision problems.
Tidy NMDAs are also as expressive as deterministic integral NMDAs with
an arbitrary choice of discount factors. We conclude with analyzing the
relation between the different classes of tidy NMDAs, demonstrating the
importance of each of the classes: No class is strictly contained in another,
union of any two inequivalent classes ruins closure under algebraic oper-
ations, and the intersection of all classes is exactly the set of eventually
constant functions.

All of our results hold for both automata on finite words and automata
on infinite words.
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1 Introduction

Discounted summation is a central valuation function in various computational
models, such as games (e.g., [37, 2, 23]), Markov decision processes (e.g, [28, 31,
18]), and automata (e.g, [25, 14, 16, 17]), as it formalizes the concept that an
immediate reward is better than a potential one in the far-away future, as well
as that a potential problem (such as a bug in a reactive system) in the far away
future is less troubling than a current one.

A Nondeterministic Discounted-sum Automaton (NDA) is an automaton
with rational weights on the transitions, and a fixed rational discount factor
λ > 1. The value of a (finite or infinite) run is the discounted summation of the
weights on the transitions, such that the weight in the ith position of the run
is divided by λi. The value of a (finite or infinite) word is the minimal value
of the automaton runs on it. An NDA A realizes a function from words to real
numbers, and we write A(w) for the value of A on a word w.

In the Boolean setting, where automata realize languages, closure under
the basic Boolean operations of union, intersection, and complementation is
desirable, as it allows to use automata in formal verification, logic, and more.
In the quantitative setting, where automata realize functions from words to
numbers, these Boolean operations are naturally generalized to algebraic ones:
union to min, intersection to max, and complementation to multiplication by
−1 (depending on the function’s co-domain). Likewise, closure under these
algebraic operations, as well as under addition and subtraction, is desirable for
quantitative automata, serving for quantitative verification. Determinization
is also very useful in automata theory, as it gives rise to many algorithmic
solutions, and is essential for various tasks, such as synthesis and probabilistic
model checking1.

NDAs cannot always be determinized [17], they are not closed under basic
algebraic operations [9], and basic decision problems on them, such as univer-
sality, equivalence, and containment, are not known to be decidable and relate
to various longstanding open problems [10]. However, restricting NDAs to an
integral discount factor λ ∈ N provides a robust class of automata that is closed
under determinization and under the algebraic operations, and for which the
decision problems of universality equivalence, and containment are decidable
[9].

Various variants of NDAs are studied in the literature, among which are
functional, k-valued, probabilistic, and more [27, 26, 15]. Yet, to the best of our
knowledge, all of these models are restricted to have a single discount factor
in an automaton. This is a significant restriction of the general discounted-
summation paradigm, in which multiple discount factors are considered. For
example, Markov decision processes and discounted-sum games allow for mul-
tiple discount factors within the same entity [28, 2]. As automata are aimed
at modeling systems, allowing different discount factors on different transitions
extends the system behaviors that can be modeled. For example, it allows to

1In some cases, automata that are “almost deterministic”, such as limit-deterministic [36]
or good-for-games automata [29, 11] suffice.
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better model how the value of used vehicles changes over time, having a bigger
discount factor in the first year, slightly smaller in the next couple of years, and
significantly smaller in further years.

A natural extension to NDAs is to allow for different discount factors over
the transitions, providing the ability to model systems in which each action (al-
phabet letter in the automaton) causes a different discounting, systems in which
the discounting changes over time, and more. As integral NDAs provide robust
automata classes, whereas non-integral NDAs do not, we look into extending
integral NDAs into integral NMDAs (Definition 1), allowing multiple integral
discount factors in a single automaton.

We start with analyzing NMDAs in which the integral discount factors can be
chosen arbitrarily. Unfortunately, we show that this class of automata does not
allow for determinization and is not closed under the basic algebraic operations.

For more restricted generalizations of integral NDAs, in which the discount
factor depends on the transition’s letter (letter-oriented NMDAs) or on the
elapsed time (time-oriented NMDAs), we show that the corresponding automata
classes do enjoy all of the good properties of integral NDAs, while strictly ex-
tending their expressiveness.

We further analyze a rich class of integral NMDAs that extends both letter-
oriented and time-oriented NMDAs, in which the choice of discount factor de-
pends on the word-prefix read so far (tidy NMDAs). We show that their ex-
pressiveness is as of deterministic integral NMDAs with an arbitrary choice of
discount factors and that for every choice function θ : Σ+ → N\{0, 1}, the class
of θ-NMDAs enjoys all of the good properties of integral NDAs. (See Fig. 1.)

Looking into the structure of the family of tidy NMDAs, we provide evidence
to support the importance of each of the classes: No class is strictly contained
in another, union of any two inequivalent classes ruins closure under algebraic
operations, and the intersection of all classes is exactly the set of eventually
constant functions.

As general choice functions need not be finitely represented, it might upfront
limit the usage of tidy NMDAs. Yet, we show that finite transducers (Mealy ma-
chines) suffice, in the sense that they allow to represent every choice function θ
that can serve for a θ-NMDA. We provide a PTIME algorithm to check whether
a given NMDA is tidy, as well as if it is a T -NMDA for a given transducer T .

Considering the decision problems of tidy NMDAs, we provide a PTIME
algorithm for emptiness and PSPACE algorithms for the other problems of
exact-value, universality, equivalence, and containment. The complexities are
with respect to the automaton (or automata) size, which is considered as the
maximum between the number of transitions and the maximal binary represen-
tation of any discount factor or weight in it. For rational weights, we assume
all of them to have the same denominator. (Omitting this assumption changes
in the worst case the PSPACE algorithms into EXPSPACE ones.)

We show all of our results for both automata on finite words and automata
on infinite words. Whenever possible, we provide a single proof for both settings.
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Figure 1: Classes of integral NMDAs, defined according to the flexibility of
choosing the discount factors. The class of NMDAs with arbitrary integral
factors is not closed under algebraic operations and under determinization. The
other classes are (for a specific choice function). Tidy NMDAs are as expressive
as deterministic NMDAs with arbitrary integral discount factors.

2 Discounted-Sum Automata with Multiple In-
tegral Discount Factors

We define a discounted-sum automaton with arbitrary discount factors, abbre-
viated NMDA, by adding to an NDA a discount factor in each of its transitions.
An NMDA is defined on either finite or infinite words. The formal definition is
given in Definition 1, and an example in Fig. 2.

An alphabet Σ is an arbitrary finite set, and a word over Σ is a finite or
infinite sequence of letters in Σ, with ε for the empty word. We denote the
concatenation of a finite word u and a finite or infinite word w by u·w, or simply
by uw. We define Σ+ to be the set of all finite words except the empty word, i.e.,
Σ+ = Σ∗ \{ε}. For a word w = w(0)w(1)w(2) . . ., we denote the sequence of its
letters starting at index i and ending at index j as w[i..j] = w(i)w(i+1) . . . w(j).

Definition 1. A nondeterministic discounted-sum automaton with multiple dis-
count factors (NMDA), on finite or infinite words, is a tuple A = 〈Σ, Q, ι, δ, γ, ρ〉
over an alphabet Σ, with a finite set of states Q, an initial set of states ι ⊆ Q, a
transition function δ ⊆ Q×Σ×Q, a weight function γ : δ → Q, and a discount-
factor function ρ : δ → Q ∩ (1,∞), assigning to each transition its discount
factor, which is a rational greater than 1. 2

• A walk in A from a state p0 is a sequence of states and alphabet letters,
p0, σ0, p1, σ1, p2, · · · , such that for every i, (pi, σi, pi+1) ∈ δ.
For example, ψ = q1, a, q1, b, q2 is a walk of the NMDA A of Fig. 2 on the
word ab from the state q1 .

• A run of A is a walk from an initial state.

• The length of a walk ψ, denoted by |ψ|, is n for a finite walk ψ = p0, σ0, p1,
· · · , σn−1, pn, and ∞ for an infinite walk.

2Discount factors are sometimes defined in the literature as numbers between 0 and 1,
under which setting weights are multiplied by these factors rather than divided by them.
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A : q0 q1 q2

a, 1, 3 a, 1
2 , 2

a, 1
4 , 2

b, 1
4 , 2a, 1, 3

a, 1
2 , 2

b, 2, 5

b, 3
2 , 4

Figure 2: An NMDA A. The labeling on the transitions indicate the alphabet
letter, the weight of the transition, and its discount factor.

• The i-th transition of a walk ψ = p0, σ0, p1, σ1, · · · is denoted by ψ(i) =
(pi, σi, pi+1).

• The value of a finite or an infinite walk ψ is

A(ψ) =
∑|ψ|−1
i=0

(
γ
(
ψ(i)

)
·
∏i−1
j=0

1

ρ
(
ψ(j)
)).

For example, the value of the walk r1 = q0, a, q0, a, q1, b, q2 (which is also
a run) of A from Fig. 2 is A(r1) = 1 + 1

2 ·
1
3 + 2 · 1

2·3 = 3
2 .

• The value of A on a finite or infinite word w is
A(w) = inf{A(r) | r is a run of A on w}.

• In the case where |ι| = 1 and for every q ∈ Q and σ ∈ Σ, we have
|{q′

∣∣ (q, σ, q′) ∈ δ}| ≤ 1, we say that A is deterministic, denoted by
DMDA.

In this case we use δ(q, σ) for the target state of the transition from q over
the σ letter, and use γ(q, σ) and ρ(q, σ) for the weight and discount factor
of that transition.

• When all the discount factors are integers, we say that A is an integral
NMDA.

In the case where for every q ∈ Q and σ ∈ Σ, we have |{q′ | (q, σ, q′) ∈ δ}| ≥ 1,
intuitively meaning that A cannot get stuck, we say that A is complete. In
this work, we only consider complete automata. It is natural to assume that
discounted-sum automata are complete, and we adopt this assumption, as dead-
end states, which are equivalent to states with infinite-weight transitions, break
the property of the decaying importance of future events.

Automata A and A′ are equivalent, denoted by A ≡ A′, if for every word w,
A(w) = A′(w).

For every finite (infinite) walk ψ = p0, σ0, p1, · · · , σn−1, pn (ψ = p0, σ0, p1, · · · ),
and all integers 0 ≤ i ≤ j ≤ |ψ| − 1 (0 ≤ i ≤ j), we define the finite sub-walk
from i to j as ψ[i..j] = pi, σi, pi+1, · · · , σj , pj+1. For an infinite walk, we also
define ψ[i..∞] = pi, σi, pi+1, · · · , namely the infinite suffix from position i. For
a finite walk, we also define the target state as δ(ψ) = pn and the accumulated

discount factor as ρ(ψ) =
∏n−1
i=0 ρ

(
ψ(i)

)
.
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We extend the transition function δ to finite words in the regular manner:
For a word u ∈ Σ∗ and a letter σ ∈ Σ, δ(ε) = ι; δ(u ·σ) =

⋃
q∈δ(u) δ(q, σ). When

A is deterministic, we refer to δ(u) as a state and not as singleton set, and to
ρ(u) as ρ(r), where r is the single run of A on u. For a state q of A, we denote
by Aq the automaton that is identical to A, except for having q as its single
initial state.

An NMDA may have rational weights, yet it is often convenient to consider
an analogous NMDA with integral weights, achieved by multiplying all weights
by their common denominator.

Proposition 2. For all constant 0 < m ∈ Q, NMDA A = 〈Σ, Q, ι, δ, γ, ρ〉,
NMDA A′ = 〈Σ, Q, ι, δ,m · γ, ρ〉 obtained from A by multiplying all its weights
by m, and a finite or infinite word w, we have A′(w) = m · A(w).

Proof. Let 0 < m ∈ Q, A = 〈Σ, Q, ι, δ, γ, ρ〉 and A′ = 〈Σ, Q, ι, δ,m · γ, ρ〉
NMDAs, and w a finite or infinite word.

For every run r of A on w, we have that the same run in A′ has the value of

A′(r) =

|w|−1∑
i=0

(
m · γ(r(i)) ·

i−1∏
j=0

1

ρ(r(j))

)

= m ·
|w|−1∑
i=0

(
γ(r(i)) ·

i−1∏
j=0

1

ρ(r(j))

)
= m · A(r)

Hence for every run of A with value v0 we have a run of A′ for the same
word with value of m · v0. Symmetrically for every run of A′ with value v1 we
have a run of A for the same word with value of 1

m · v1. So,

A′(w) = inf{A′(r)
∣∣ r is a run of A′ on w}

≥ inf{m · A(r)
∣∣ r is a run of A on w}

= m · inf{A(r)
∣∣ r is a run of A on w} = m · A(w)

and

A(w) = inf{A(r)
∣∣ r is a run of A on w}

≥ inf
{ 1

m
· A′(r)

∣∣ r is a run of A′ on w
}

=
1

m
· A′(w)

which leads to A′(w) = m · A(w).

Size. We define the size of A, denoted by |A|, as the maximum between the
number of transitions and the maximal binary representation of any discount
factor or weight in it. For rational weights, we assume all of them to have the
same denominator. The motivation for a common denominator stems from the
determinization algorithm (Theorem 11). Omitting this assumption will still
result in a deterministic automaton whose size is only single exponential in the
size of the original automaton, yet storing its states will require a much bigger
space, changing our PSPACE algorithms (Section 4) into EXPSPACE ones.
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Algebraic operations. Given automata A and B over the same alphabet,
and a non-negative scalar c ∈ Q, we define

• C ≡ min(A,B) if ∀w. C(w) = min
(
A(w),B(w)

)
• C ≡ max(A,B) if ∀w. C(w) = max

(
A(w),B(w)

)
• C ≡ A+ B if ∀w. C(w) = A(w) + B(w)

• C ≡ A− B if ∀w. C(w) = A(w)− B(w)

• C ≡ c · A if ∀w. C(w) = c · A(w)

• C ≡ −A if ∀w. C(w) = −A(w)

Decision problems. Given automata A and B and a threshold ν ∈ Q, we
consider the following properties, with strict (or non-strict) inequalities:

• Nonemptiness. There exists a word w, s.t. A(w) < ν (or A(w) ≤ ν).

• Exact-value. There exists a word w, s.t. A(w) = ν.

• Universality. For all words w, A(w) < ν (or A(w) ≤ ν).

• Equivalence. For all words w, A(w) = B(w).

• Containment. For all words w, A(w) > B(w) (or A(w) ≥ B(w)).

Notice that considering quantitative containment as a generalization of language
containment, and defining the “acceptance” of a word w as having a small
enough value on it, we define that A is contained in B if for every word w, A’s
value on w is at least as big as B’s value. (Observe the > and ≥ signs in the
definition.)

Finite and infinite words. Results regarding NMDAs on finite words that
refer to the existence of an equivalent automaton (“positive results”) can be
extended to NMDAs on infinite words due to Lemma 3 below. Likewise, results
that refer to non-existence of an equivalent automaton (“negative results”) can
be extended from NMDAs on infinite words to NMDAs on finite words. Ac-
cordingly, if not stated otherwise, we prove the positive results for automata on
finite words and the negative results for automata on infinite words, getting the
results for both settings.

Lemma 3. For all NMDAs A and B, if for every finite word u ∈ Σ+, we have
A(u) = B(u), then also for every infinite word w ∈ Σω, we have A(w) = B(w).

The proof is a simple extension of the proof of a similar lemma in [9] with
respect to NDAs.

Notice that the converse does not hold, namely there are automata equivalent
w.r.t. infinite words, but not w.r.t. finite words. A simple example for this case
is the automata A and B depicted in Fig. 5.

12



B : q0

q2

q1

a, 1
2 , 2 a, 2

3 , 3

a, 0, 2
b, 0, 2
c, 0, 2

b, 1
2 , 2

c, 2, 2

b, 2, 3
c, 4

3 , 3

Figure 3: An integral NMDA B on infinite words that cannot be determinized.

3 Arbitrary Integral NMDAs

Unfortunately, we show that the family of integral NMDAs in which discount
factors can be chosen arbitrarily is not closed under determinization and under
basic algebraic operations.

Theorem 4. There exists an integral NMDA that no integral DMDA is equiv-
alent to.

Proof. Let B be the integral NMDA depicted in Fig. 3 over the alphabet Σ =
{a, b, c}. We show that for every n ∈ N, B(anbω) = 1 − 1

2n+1 and B(ancω) =
1 + 1

3n+1 .
An integral DMDA D that is equivalent to B will intuitively need to preserve

an accumulated discount factor Πn and an accumulated weight Wn on every an

prefix, such that both suffixes of bω and cω will match the value of B. Since
the difference between the required value of each pair 〈anbω, ancω〉 is “relatively
large”, Πn must have “many” small discount factors of 2 to compensate this
difference. But too many discount factors of 2 will not allow to achieve the
“delicate” values of 1+ 1

3n+1 . We will formally analyze the mathematical prop-
erties of Πn, showing that its prime-factor decomposition must indeed contain
mostly 2’s, “as well as” mostly 3’s, leading to a contradiction.

Note that the only nondeterminism in B is in the initial state. Intuitively,
for an infinite word for which the first non-a letter is b, the best choice for B
would be to start in q0, while if the first non-a letter is c, the best choice would
be to start in q1.

Formally, for each n ∈ N \ {0}, observe that for the finite word an, the run

r1 starting at q0 will have the accumulated value of B(r1) =
∑n−1
k=0

1
2 ·

1
2k

=
1
2 ·

1− 1
2n

1− 1
2

= 1− 1
2n , and an accumulated discount factor of 2n; the run r2 starting

at q1 the value B(r2) =
∑n−1
k=0

2
3 ·

1
3k

= 2
3 ·

1− 1
3n

1− 1
3

= 1− 1
3n , and an accumulated

13



D : p0
ai,W1,Π1

aj ,W2,Π2

bω,Wb, cω,Wc,

Figure 4: Partial structure of the DMDA D in the proof of Theorem 4.

discount factor of 3n; and thus the value of B, which is the minimum value of

the two runs, B(an) = min
{

1− 1
2n , 1−

1
3n

}
= 1− 1

2n .

Accordingly, we have that for every n ∈ N,

B(anbω) = min
{

1− 1

2n
+

1

2
· 1

2n
, 1− 1

3n
+ 2 · 1

3n

}
= 1− 1

2n+1
(1)

B(ancω) = min
{

1− 1

2n
+ 2 · 1

2n
, 1− 1

3n
+

4

3
· 1

3n

}
= 1 +

1

3n+1
(2)

We will show a contradiction regarding the accumulated discount factor on a
cycle in the alleged equivalent DMDA. Assume toward contradiction that there
exists an integral DMDA D = 〈Σ, QD, p0, δD, γD, ρD〉 such that B ≡ D. Since
QD is finite, there exist i ∈ N and j ∈ N\{0} such that δD(ai) = δD(ai+j). Let r
be the run of D on ai+j , and denote the weight and discount factor of the prefix
of r on ai as W1 = D(ai) = D(r[0..i−1]) and Π1 = ρ(r[0..i−1]), and the weight
and discount factor of the suffix of r on the aj cycle as W2 = D(r[i..i+ j − 1])

and Π2 = ρ(r[i..i+ j− 1]). Let Wb =
[
D(aibω)−D(ai)

]
·Π1, be the weight of a

bω word starting from δD(ai), and similarly Wc =
[
D(aicω)−D(ai)

]
·Π1. The

partial structure of D with respect to those symbols is depicted in Fig. 4. For
every k ∈ N we have

D(ai+j·kbω) = W1 +
( k−1∑
t=0

W2

Π1 ·Πt
2

)
+

Wb

Π1 ·Πk
2

(3)

D(ai+j·kcω) = W1 +
( k−1∑
t=0

W2

Π1 ·Πt
2

)
+

Wc

Π1 ·Πk
2

(4)

By the assumption that B ≡ D, subtracting Eq. (1) from Eq. (2) and Eq. (3)
from Eq. (4), we get

1

3i+j·k+1
+

1

2i+j·k+1
=
Wc −Wb

Π1 ·Πk
2

Let M be the maximal weight in absolute value in D. Since 2 is the minimal
integral discount factor, we have that the value of D on any infinite word is no
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more than 2M in absolute value. Hence |Wb| ≤ 2M and |Wc| ≤ 2M , which lead
to

1

2i+j·k+1
<

1

3i+j·k+1
+

1

2i+j·k+1
≤ 2 · 2M

Π1
· 1

Πk
2

and therefore,
1

2j·k
< 2·2M ·2i+1

Π1
· 1

Πk2
and

(
Π2

2j

)k
< 2·2M ·2i+1

Π1
.

The above holds for every k ∈ N. Observe that 2·2M ·2i+1

Π1
is a constant and

limk→∞

(
Π2

2j

)k
=∞ if and only if Π2

2j > 1, to conclude that Π2 ≤ 2j . But Π2 is

a product of j integers bigger than 1, hence Π2 = 2j .
Let m be the least common denominator of Wc and W2, and construct a

DMDA D′ = 〈Σ, QD, p0, δD,m · γD, ρD〉 created from D by multiplying all its
weights by m. According to Proposition 2 and Lemma 3, for every w ∈ Σω we
have

D′(w) = m · D(w) = m · B(w) (5)

Let W ′1,W
′
2 and W ′c be the values of D′ on the ai prefix, the following aj cycle

and the final cω respectively. Observe that W ′1 = m ·W1, W ′2 = m ·W2 and
W ′c = m ·Wc, and that W ′2 and W ′c are integers.

For every k ∈ N, similarly to Eq. (4), we have

D′(aicω)−D′(ai+k·jcω) =
W ′c
Π1
−
( k−1∑
t=0

W ′2
Π1 · 2t·j

)
− W ′c

Π1 · 2k·j

=
W ′c(2

k·j − 1)−
∑k
t=1 2t·jW ′2

Π1 · 2k·j
(6)

Define X(k) = W ′c(2
k·j − 1) −

∑k
t=1 2t·jW ′2 and observe that X(k) is integer.

Combine Eqs. (2), (5) and (6) to m + m
3i+1 −

(
m + m

3i+k·j+1

)
= D′(aicω) −

D′(ai+k·jcω) = X(k)
Π1·2k·j , simplified to m·(3k·j−1)

3i+k·j+1 = X(k)
Π1·2k·j . But both m and

Π1 are constants and each of them has a finite number of prime factors of 3.
Since (3k·j − 1) is not divisible by 3, and X(k) is integer, when k gets bigger,
eventually the denominator of the left side will have more prime factors of 3
than the denominator of the right side, which leads to a contradiction.

Hence, no DMDA is equivalent to B with respect to infinite words. According
to Lemma 3, we also conclude that no DMDA is equivalent to B with respect
to finite words.

In the following proof that integral NMDAs are not closed under algebraic
operations, we cannot assume toward contradiction a candidate deterministic
automaton, and thus, as opposed to the proof of Theorem 4, we cannot assume
a specific accumulative discount factor for each word prefix. Yet, we analyze
the behavior of a candidate nondeterministic automaton on an infinite series of
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q0B :

q1

q3

q2p1p0

A :

p2

a, 1
3 , 3

a,−1, 3

a, 0, 3

b, 0, 3
b, 0, 3

a, 0, 3
b, 0, 3

a, 1
2 , 2

a,−1, 2

b, 0, 2
b, 0, 2

a, 0, 2
b, 0, 2

Figure 5: Deterministic integral NDAs that no integral NMDA is equivalent to
their max or addition.

words, and build on the observation that there must be a state that appears in
“the same position of the run” in infinitely many optimal runs of the automaton
on these words.

Theorem 5. There exist integral NMDAs (even deterministic integral NDAs)
A and B over the same alphabet, such that no integral NMDA is equivalent to
max(A,B), and no integral NMDA is equivalent to A+ B.

Proof. Consider the NMDAs A and B over the alphabet Σ = {a, b} depicted in
Fig. 5. Observe that for every n ∈ N,

A(anbω) =

{
1

2n n is odd

0 n is even
, B(anbω) =

{
0 n is odd
1

3n n is even

Hence max(A,B)(anbω) =
(
A+ B

)
(anbω) =

{
1

2n n is odd
1

3n n is even
.

Intuitively, the target function has relatively large jumps in its value between
every anbω and an+1bω words. For even values, as n gets bigger, when consider-
ing some prefix of a run rn on anbω that entails a minimum value, two different
suffixes can cause relatively “far” values. Hence, a relatively small accumulated
discount factor is required for allowing these large jumps. For that property to
hold, the accumulated discount factor must be no more than a constant product
of 2n. Meaning, each relevant prefix of rn in the max(A,B) (or A+B) automa-
ton cannot have more than a constant number of discount factors bigger than
2.

On the other hand, the value given by B to an+1bω is very “delicate”, mean-
ing very close to 0 (and yet positive). Thus, as n gets bigger, a “fine grained”
discount factor is required, contradicting the “coarse” accumulated factor of
mostly 2’s.
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C : q
an,Wn,Πn

bω, Ub,−

a · bω, Ua,−

Figure 6: The state q and the notations from the proof of Theorem 5, for two
different even n ∈ N such that δ(rn[1..n]) = q. The labels on the walks indicate
the input word and the accumulated weight and discount factors.

Formally, assume toward contradiction that there exists an integral NMDA
C′, such that C′ ≡ max(A,B) ≡ A + B, and let d ∈ N be the least common
denominator of the weights in C′.

Consider the NMDA C = 〈Σ, Q, ι, δ, γ, ρ〉 created from C′ by multiplying all
its weights by d. Observe that all the weights in C are integers. According to

Proposition 2, for every n ∈ N, we have C(anbω) = d·C′(anbω) =

{
d

2n n is odd
d

3n n is even

For every even n ∈ N, let wn = anbω, and rn a run of C on wn that entails
the minimal value of d

3n . There exists a state q ∈ Q such that for infinitely many
even n ∈ N, the target state of rn after n steps is q, i.e, δ(rn[0..n − 1]) = q.
Let Ub = Cq(bω) and Ua = Cq(a · bω), and for every such n ∈ N, let Wn =
C(rn[0..n− 1]), and Πn = ρ(rn[0..n− 1]) (See Fig. 6).

For every such n ∈ N, since C(rn) = d
3n , we have

Wn +
Ub
Πn

=
d

3n
(7)

and since the value of every run of C on an+1bω is at least d
2n+1 , we have

Wn + Ua
Πn
≥ d

2n+1 . Combining them both to get d
3n −

Ub
Πn

+ Ua
Πn
≥ d

2n+1 resulting
in

Ua − Ub
Πn

≥ d ·
( 1

2n+1
− 1

3n

)
(8)

But for large enough n, we have 3n > 2n+2, hence we get 1
2n+2 > 1

3n and
1

2n+1 − 1
3n >

1
2n+1 − 1

2n+2 = 1
2n+2 . Assign this into Eq. (8) to get Ua−Ub

d · 2n+2 ≥
Πn. Hence, there exists a positive constant m1 = Ua−Ub

d · 22 such that

m1 · 2n ≥ Πn (9)

Now, Ub is a rational constant, otherwise Eq. (7) cannot hold, as the other
elements are rationals. Hence, there exist x ∈ Z and y ∈ N such that Ub = x

y .

Assign it into Eq. (7) to get

1

3n
=
Wn ·Πn + Ub

d ·Πn
=
Wn ·Πn + x

y

d ·Πn
=
Wn ·Πn · y + x

d · y ·Πn
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But since the denominator and the numerator of the right-hand side are
integers, we conclude that there exists a positive constant m2 = d · y, such that
m2 · Πn ≥ 3n. Combined with Eq. (9), we get m1 · m2 · 2n ≥ 3n, for some
positive constants m1 and m2, and for infinitely many n ∈ N. But this stands

in contradiction with limn→∞

(
2
3

)n
= 0.

4 Tidy NMDAs

We present the family of “tidy NMDAs” and show that it is as expressive as
deterministic NMDAs with arbitrary integral discount factors. Intuitively, an
integral NMDA is tidy if the choice of discount factors depends on the word
prefix read so far. We further show that for every choice function θ, the class
of all θ-NMDAs is closed under determinization and algebraic operations, and
satisfies the requirement of having decidable algorithms for its decision problems.

The family of tidy NMDAs contains various other natural subfamilies, such
as integral NMDAs in which the discount factors are chosen per letter (action)
or per the elapsed time, on which we elaborate in Section 4.4. Each of these
subfamilies strictly extends the expressive power of integral NDAs.

We conclude with analyzing the structure of the family of tidy NMDAs.

Definition 6. An integral NMDA A over an alphabet Σ and with discount-
factor function ρ is tidy if there exists a function θ : Σ+ → N \ {0, 1}, such that
for every finite word u = σ1 . . . σn ∈ Σ+, and every run q0, σ1, · · · , qn of A on
u, we have ρ(qn−1, σn, qn) = θ(u).

In this case we say that A is a θ-NMDA.

Simple examples of tidy NMDAs are given in Figs. 11 and 14.

Definition 7. For an alphabet Σ, a function θ : Σ+ → N \ {0, 1} is a choice
function if there exists an integral NMDA that is a θ-NMDA.

For choice functions θ1 and θ2, the classes of θ1-NMDAs and of θ2-NMDAs
are equivalent if they express the same functions, namely if for every θ1-NMDA
A, there exists a θ2-NMDA B equivalent to A and vice versa.

For every tidy NMDA A and finite word u, all the runs of A on u entail
the same accumulated discount factor. We thus use the notation ρ(u) to denote
ρ(r), where r is any run of A on u.

Observe that a general function θ : Σ+ → N\{0, 1} might require an infinite
representation. Yet, we will show in Theorem 12 that every choice function has
a finite representation.

4.1 Determinizability

We determinize a tidy NMDA by generalizing the determinization algorithm
presented in [9] for NDAs. The basic idea in that algorithm is to extend the
subset construction, by not only storing in each state of the deterministic au-
tomaton whether or not each state q of the original automaton A is reachable,
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but also the “gap” that q has from the currently optimal state q′ of A. This
gap stands for the difference between the accumulated weights for reaching q
and for reaching q′, multiplied by the accumulated discounted factor.

Since we consider tidy NMDAs, we can generalize this view of gaps to the
setting of multiple discount factors, as it is guaranteed that the run to q and the
run to q′ accumulated the same discount factor. (For non-tidy integral NMDAs,
this is not the case, and they indeed need not be determinizable, as shown in
Theorem 4.)
The construction. Consider a tidy NMDA A = 〈Σ, Q, ι, δ, γ, ρ〉.

For every finite word u ∈ Σ∗ and state q ∈ Q, we define S(q, u) to be the
set of runs of A on u with q as the target state, and r(q,u) to be a preferred
run that entails the minimal value among all the runs in S(q, u). Observe that
every prefix of a preferred run is also a preferred run. Hence given the values
of all the preferred runs on a certain finite word u, i.e., A(r(q,u)) for every
q ∈ Q, we can calculate the values of the preferred runs on every u · σ word by
A(r(q′,u·σ)) = min

{
A(r(q,u)) + γ(t)

∣∣ t = (q, σ, q′) ∈ δ
}

.
Intuitively, every state of D that was reached after reading u, will store

for each q ∈ Q its “gap”, which is the difference between A(u) and A(r(q,u)),
“normalized” by multiplying it with the accumulated discount factor ρ(u), and
“truncated” if reached a threshold value (which can no longer be recovered).

Formally, for a state q ∈ Q, and a finite word u, we define

• The cost of reaching q over u as

cost(q, u) = min
{
A(r)

∣∣ r is a run of A on u s.t. δ(r) = q
}

= min
{
A(r)

∣∣ r ∈ S(q, u)
}

where min ∅ =∞.

• The gap of q over u as gap(q, u) = ρ(u)
(
cost(q, u)−A(u)

)
. Intuitively, the

gap stands for the value that a walk starting in q should have, compared
to a walk starting in u’s optimal ending state, in order to make a run
through q optimal.

Let T be the maximum difference between the weights in A, That is, T =
max

(
|x − y|

∣∣ x, y ∈ range(γ)
)
. Since for every infinite run r of A we have∑∞

i=0
1∏i−1

j=0 r(j)
≤
∑∞
i=0

1
2i = 2, we define the set of possible recoverable-gaps

G =
{
v
∣∣ v ∈ Q and 0 ≤ v < 2T

}
∪ {∞}. The ∞ element denotes a non-

recoverable gap, and behaves as the standard infinity element in the algebraic
operations that we will be using. Note that our NMDAs do not have infinite
weights and the infinite element is only used as an internal component of the
construction.

We will inductively construct D = 〈Σ, Q′, q′in, δ′, γ′, ρ′〉 as follows. A state of
D extends the standard subset construction by assigning a gap to each state of
A. That is, for Q = {q1, · · · , qn}, a state p ∈ Q′ is a tuple 〈g1, · · · , gn〉, where
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gh ∈ G for every 1 ≤ h ≤ n. Once a gap is obviously not recoverable, by being
larger than or equal to 2T , it gets truncated by setting it to be ∞.

In the integral ρ function case, the construction only requires finitely many
elements of G, as shown in Lemma 8, and thus it is guaranteed to terminate.

For simplicity, we assume that ι = {q1, q2, · · · , q|ι|} and extend γ with
γ(qi, σ, qj) = ∞ for every (qi, σ, qj) 6∈ δ. The initial state of D is q′in =
〈0, · · · , 0,∞, · · · ,∞〉, in which the left |ι| elements are 0, meaning that the
initial states of A have a 0 gap and the others are currently not relevant.

We inductively build the desired automaton D using the intermediate au-
tomata Di = 〈Σ, Q′i, q′in, δ′i, γ′i, ρ′i〉. We start with D1, in which Q′1 = {q′in},
δ′1 = ∅, γ′1 = ∅ and ρ′1 = ∅, and proceed from Di to Di+1, such that Q′i ⊆ Q′i+1,
δ′i ⊆ δ′i+1, γ′i ⊆ γ′i+1 and ρ′i ⊆ ρ′i+1. The construction is completed once
Di = Di+1, finalizing the desired deterministic automaton D = Di.

In the induction step, Di+1 extends Di by (possibly) adding, for every state
q′ = 〈g1, · · · , gn〉 ∈ Q′i and letter σ ∈ Σ, a state q′′ := 〈x1, · · · , xn〉, and a
transition t := (q′, σ, q′′) as follows:

• Weight: For every 1 ≤ h ≤ n define,

ch := min
{
gj + γ(qj , σ, qh)

∣∣ 1 ≤ j ≤ n}, and add a new weight, γ′i+1(t) =
min

1≤h≤n
(ch).

• Discount factor: By the induction construction, if Di running on a finite
word u ends in q′, there is a run of A on u ending in qh, for every 1 ≤ h ≤ n
for which the gap gh in q′ is not ∞. Since A is tidy, all the transitions
from every such state qh over σ have the same discount factor, which we
set to the new transition ρ′i+1(t).

• Gap: For every 1 ≤ h ≤ n, set xh := ρ′i+1(t) ·
(
ch − γ′i+1(t)

)
. If xh ≥ 2T

then set xh :=∞.

See Fig. 7 for an example of the determinization process.
We prove below that the procedure always terminates for a tidy NMDA, and

that every state of the generated DMDA can be represented in PSPACE. The
proof is similar to the corresponding proof in [9] with respect to NDAs, adding
the necessary extensions for tidy NMDAs.

Lemma 8. The above determinization procedure always terminates for a tidy
NMDA A. Every state of the resulting deterministic automaton D can be rep-
resented in space polynomial in |A|, and |D| ∈ 2O(|A|).

Proof. The induction step of the construction, extending Di to Di+1, only de-
pends on A, Σ and Q′i. Furthermore, for every i ≥ 0, we have that Q′i ⊆ Q′i+1.
Thus, for showing the termination of the construction, it is enough to show that
there is a general bound on the size of the sets Q′i. We do it by showing that
the inner values, g1, . . . , gn, of every state q′ of every set Q′i are from the finite
set Ḡ, defined below.
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q1 q2

⇓

0,∞ 0, 3

∞, 0

0, 1

2, 0

c1 = min(0 + 0,∞+ 1) = 0
c2 = min(0 + 1

2 ,∞− 2) = 1
2

c = min(0, 1
2 ) = 0

x2 = 2( 1
2 − 0) = 1

c1 = min(∞− 1, 0 + 1) = 1
c2 = min(∞+ 0, 0 +∞) =∞
c = min(1,∞) = 1
x2 = 3(∞− 1) =∞

c1 = min(2 + 0, 0 + 1) = 1
c2 = min(2 + 1

2 , 0− 2) = −2
c = min(1,−2) = −2
x1 = 2

(
1− (−2)

)
= 6 ∞

a, 1
2 , 2

b, 0, 3

a, 1, 2
b, 1, 3

a, 0, 2
b,−1, 3

a,−2, 2

a, 0, 2

b,−1, 3

b,−1, 3a, 0, 2

a,−1, 2

a,−2, 2

b, 1, 3b, 1, 3

a,−2, 2

b,−1, 3

Figure 7: An example of the determinization procedure, as per Theorem 11.
The gray rectangles detail some of the intermediate calculations.
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Let d ∈ N be the least common denominator of the weights in A, and let
T ∈ N be the maximal difference between the weights. We define the set Ḡ as

Ḡ =
{k
d

∣∣ k ∈ N and
k

d
< 2T

}
∪ {∞}

We start with the first set of states Q′1, which satisfies the property that
the inner values, g1, . . . , gn, of every state q′ ∈ Q′1 are from Ḡ, as Q′1 =
{〈0, · · · , 0,∞, · · · ,∞〉}. We proceed by induction on the construction steps,
assuming that Q′i satisfies the property. By the construction, an inner value
of a state q′′ of Q′i+1 is derived by four operations on elements of Ḡ: addition,
subtraction (x − y, where x ≥ y), multiplication by λ ∈ range(ρ) ⊂ N, and
taking the minimum.

One may verify that applying these four operations on ∞ and numbers of
the form k

d , where k ∈ N, results in ∞ or in a number k′

d , where k′ ∈ N. Recall
that once an inner value exceeds 2T , it is replaced by the procedure with ∞,
meaning that k′

d < 2T , or the calculated inner value is ∞. Concluding that all
the inner values are in Ḡ.

Observe that |Ḡ| ≤ 2 · T · d + 1. Meaning that every state in the resulting
DMDA has up to 2 · T · d+ 1 possible values for each of the |Q| inner elements.
Hence we have no more than (2 · T · d + 1)|Q| possibilities for the states of D,
proving the termination claim.

Recall that in our definition for |A|, we mention that we assume that all of
the weights are given with the same denominator, which is d in our notations.
Hence the space required for |Q| elements with up to 2 ·T · d+ 1 possible values
each, which is the space required for every state in D, is polynomial with respect
to |A|. Also the total size of D is in 2O(|A|).

We will now show the correctness of the determinization procedure. Accord-
ing to Lemma 3, it is enough to show the equivalence D ≡ A with respect to
finite words.

Lemma 9. Consider a tidy NMDA A over Σ+ and a DMDA D, constructed
from A by the above determinization procedure. Then, for every u ∈ Σ+, we
have A(u) = D(u).

Proof. Let A = 〈Σ, Q, ι, δ, γ, ρ〉 be the input NMDA, D = 〈Σ, Q′, ι′, δ′, γ′, ρ′〉
the DMDA constructed from A, and T be the maximal difference between the
weights in A.

For a finite word u, let δ′(u) = 〈g1, · · · , gn〉 ∈ Q′ be the target state of D’s
run on u. We show by induction on the length of the input word u that:

i. A(u) = D(u).

ii. For every 1 ≤ h ≤ n, gh = gap(qh, u) if gap(qh, u) < 2T and ∞ otherwise.

The assumptions obviously hold for the initial step, where u is the empty
word. As for the induction step, we assume they hold for u and show that for
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every σ ∈ Σ, they hold for u · σ. Let δ′(u · σ) = 〈x1, · · · , xn〉 ∈ Q′ be the target
state of D’s run on u · σ.

We start by proving the claim with respect to an infinite-state automaton D′
that is constructed as in the determinization procedure, except for not changing
any gap to ∞. Afterwards, we shall argue that changing all gaps that exceed
2T to ∞ does not harm the correctness.

i. By the definitions of cost and gap, we have for every 1 ≤ h ≤ n,

cost(qh, u · σ) = min
1≤j≤n

(
cost(qj , u) +

γ(qj , σ, qh)

ρ(u)

)

= min
1≤j≤n

(
gap(qj , u)

ρ(u)
+A(u) +

γ(qj , σ, qh)

ρ(u)

)

= A(u) +

min
1≤j≤n

(
gap(qj , u) + γ(qj , σ, qh)

)
ρ(u)

(10)

= By the induction assumption

= D′(u) +

min
1≤j≤n

(
gj + γ(qj , σ, qh)

)
ρ(u)

(11)

By the construction of D′, the transition weight γ′i(t) assigned on the
i = |u|+ 1 step is

γ′|u|+1(t) = min
1≤h≤n

(
min

1≤j≤n
(gj + γ(qj , σ, qh))

)
. Therefore,

D′(u · σ) = D′(u) +
γ′|u|+1(t)

ρ(u)

= D′(u) +

min
1≤h≤n

min
1≤j≤n

(
gj + γ(qj , σ, qh)

)
ρ(u)

= min
1≤h≤n

(
D′(u) +

min
1≤j≤n

(
gj + γ(qj , σ, qh)

)
ρ(u)

)
= min

1≤h≤n
cost(qh, u · σ) = A(u · σ)

ii. By Eq. (11), we get that for every 1 ≤ h ≤ n:

min
1≤j≤n

(gj + γ(qj , σ, qh)) = ρ(u)
(
cost(qh, u · σ)−D′(u)

)
Let t be the transition that was added in the i = |u| + 1 step of the
algorithm from the state δ′(u) over the σ letter.
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For every 1 ≤ h ≤ n, we have

xh = ρ′i(t) · (ch − γ′i(t))

= ρ′i(t)
(

min
1≤j≤n

(gj + γ(qj , σ, qh))− γ′i(t)
)

= ρ′i(t)

(
min

1≤j≤n
(gj+γ(qj , σ, qh))− ρ(u)

(
D′(u · σ)−D′(u)

))

= ρ′i(t)

(
ρ(u)

(
cost(qh, u · σ)−D′(u)

)
− ρ(u)

(
D′(u · σ)−D′(u)

))
= ρ′i(t) · ρ(u)

(
cost(qh, u · σ)−D′(u · σ)

)
= ρ(u · σ) ·

(
cost(qh, u · σ)−D′(u · σ)

)
And by the induction assumption we have

xh = ρ(u · σ) ·
(
cost(qh, u · σ)−A(u · σ)

)
= gap(qh, u · σ)

It is left to show that the induction is also correct for the finite-state au-
tomaton D. The only difference between the construction of D and of D′ is that
the former changes all gaps (gj) above 2T to ∞. We should thus show that
if the gap gj , for some 1 ≤ j ≤ n, exceeds 2T at a step i of the construction,
and this gj influences the next gap of some state h (we denoted this gap in the
construction as xh) then xh ≥ 2T . This implies that D(u) = D′(u), since at
every step of the construction there is at least one 1 ≤ h ≤ n, such that xh = 0,
corresponding to an optimal run of A on u ending in state qh.

Formally, we should show that if gj ≥ 2T and xh = ρ′i+1(t)·
(
gj+γ(qj , σ, qh)−

γ′i+1(t)
)

, where t is the transition added in the construction on step i as defined

in part (ii.) above, then xh ≥ 2T . Indeed, according to the construction exists
an index 1 ≤ k ≤ n such that gk = 0 and since A is complete, there is a
transition from qk to some state qm, implying that γ′i+1(t) ≤ gk +γ(qk, σ, qm) =
γ(qk, σ, qm). Hence

xh ≥ ρ′i+1(t) ·
(

2T + γ(qj , σ, qh)− γ′i+1(t)
)
≥ 2 ·

(
2T + γ(qj , σ, qh)− γ′i+1(t)

)
≥ 2 ·

(
2T + γ(qj , σ, qh)− γ(qk, σ, qm)

)
≥ 2 · (2T + (−T )) = 2T

We show next that the DMDA created by the determinization procedure is
indeed a θ-DMDA.

Lemma 10. Consider a θ-NMDA A over Σ+ and a DMDA D, constructed
from A by the determinization procedure above. Then D is a θ-DMDA.
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Proof. Consider a tidy NMDA A = 〈Σ, Q, ι, δ, γ, ρ〉, and the DMDA D =
〈Σ, Q′, ι′, δ′, γ′, ρ′〉 constructed from A.

We show by induction on the length of an input word that for every finite
word u ∈ Σ∗, we have ρ′(u) = ρ(u). The base case regarding the empty word
obviously holds. As for the induction step, we assume the claim holds for u and
show that it also holds for u · σ, for every σ ∈ Σ.

Let t be the final transition of D’s run on u · σ. Due to the construction
of D, there exist q, q′ ∈ Q such that gap(q, u) 6= ∞, gap(q′, u · σ) 6= ∞, and
ρ′(t) = ρ(q, σ, q′).

Hence, ρ′(u · σ) = ρ′(u) · ρ′(t) = ρ(u) · ρ′(t) = ρ(u) · ρ(q, σ, q′) and since
gap(q, u) 6=∞, we get that q ∈ δ(u), and ρ′(u·σ) = ρ(u)·ρ(q, σ, q′) = ρ(u·σ).

And finally, as a direct consequence of the above construction and Lemmas 8
to 10:

Theorem 11. For every choice function θ and a θ-NMDA A, there exists a
θ-DMDA D ≡ A of size in 2O(|A|). Every state of D can be represented in space
polynomial in |A|.

4.2 Representing Choice Functions

We show that, as opposed to the case of a general function f : Σ+ → N \
{0, 1}, every choice function θ can be finitely represented by a transducer (Mealy
machine).

A transducer T (Mealy machine) is a 6-tuple 〈P,Σ,Γ, p0, δ, ρ〉, where P is a
finite set of states, Σ and Γ are finite sets called the input and output alphabets,
p0 ∈ P is the initial state, δ : P × Σ → P is the total transition function and
ρ : P × Σ→ Γ is the total output function.

A transducer T represents a function, to which for simplicity we give the
same name T : Σ+ → Γ, such that for every word w, the value T (w) is the
output label of the last transition taken when running T on w. The size of
T , denoted by |T |, is the maximum between the number of transitions and the
maximal binary representation of any output in the range of ρ.

Since in this work we only consider transducers in which the output alphabet
Γ is the natural numbers N, we omit Γ from their description, namely write
〈P,Σ, p0, δ, ρ〉 instead of 〈P,Σ,N, p0, δ, ρ〉. An example of a transducer T and a
T -NMDA is given in Fig. 8.

As the structure of an NMDA is finite, we get that transducers are enough
for representing any choice function of a tidy NMDA.

Theorem 12. For every function θ : Σ+ → N \ {0, 1}, θ is a choice function,
namely there exists a θ-NMDA, if and only if there exists a transducer T such
that θ ≡ T .

Proof. Consider a function θ : Σ+ → N \ {0, 1}. For the first direction, observe
that given a transducer T = 〈P,Σ, p0, δ, ρ〉 representing θ, it holds that the
NMDA T ′ = 〈Σ, P, {p0}, δ, γ, ρ〉, for every weight function γ, is a θ-NMDA.
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T :

q0 q1

a, 2 a, 3

b, 2

b, 4

p0 p1

p2 p3

A :

a, 1, 2 a, 1
2 , 2

b, 2, 4

a, 1, 2

b, 1
2 , 4 b, 2

3 , 2

b, 1, 4

a, 3
2 , 2

b, 3
4 , 2

a, 1, 3

Figure 8: A transducer T and a T -NMDA.

For the other direction, consider a θ-NMDA A′. According to Theorem 11,
there exists a θ-DMDA A = 〈Σ, Q, q0, δ, γ, ρ〉 equivalent to A′. Since the image
of ρ is a subset of N, we have that θ can be represented by the transducer
T = 〈Q,Σ, q0, δ, ρ〉.

For a given choice function θ, we refer to the class of all θ-NMDAs. Observe
that when considering such class, only the choice function is relevant, regardless
of the transducer defining it.

4.3 Closure under Algebraic Operations

Theorem 13. For every choice function θ, the set of θ-NMDAs is closed un-
der the operations of min, max, addition, subtraction, and multiplication by a
rational constant.

Proof. Consider a choice function θ and θ-NMDAs A and B.

• Multiplication by constant c ≥ 0: A θ-NMDA for c · A is straightforward
from Proposition 2.

• Multiplication by −1: A θ-NMDA for −A can be achieved by first deter-
minizing A, as per Theorem 11, into a θ-DMDA D and then multiplying
all the weights in D by −1.

• Addition: Considering the θ-NMDAs A = 〈Σ, Q1, ι1, δ1, γ1, ρ1〉 and B =
〈Σ, Q2, ι2, δ2, γ2, ρ2〉, a θ-NMDA for A+B can be achieved by constructing
the product automaton C = 〈Σ, Q1 ×Q2, ι1 × ι2, δ, γ, ρ〉 such that:

26



Operation � Family Tidy DMDAs Tidy NMDAs

c · A (for c ≥ 0)
Linear

Linear

−A Single Exponential

A+ B
Quadratic

Quadratic
A− B Single Exponential

min(A,B)
Single Exponential

Linear

max(A,B) Single Exponential

Table 1: The size blow-up involved in the algebraic operations.

– δ =
{(

(q1, q2), σ, (p1, p2)
) ∣∣ (q1, σ, p1) ∈ δ1 and (q2, σ, p2) ∈ δ2

}
.

– γ
(
(q1, q2), σ, (p1, p2)

)
= γ1(q1, σ, p1) + γ2(q2, σ, p2) .

– ρ
(
(q1, q2), σ, (p1, p2)

)
= ρ1(q1, σ, p1) = ρ2(q2, σ, p2). Note that the

latter must hold since both ρ1 and ρ2 are compliant with θ.

• Subtraction: A θ-NMDA for A − B can be achieved by i) Determinizing
B to B′; ii) Multiplying B′ by −1, getting B′′; and iii) Constructing a
θ-NMDA for A+ B′′.

• min: A θ-NMDA for min(A,B) is straightforward by the nondeterminism
on their union.

• max : A θ-NMDA for max(A,B) can be achieved by i) Determinizing A
and B to A′ and B′, respectively; ii) Multiplying A′ and B′ by −1, getting
A′′ and B′′, respectively; iii) Constructing a θ-NMDA C′′ for min(A′′,B′′);
iv) Determinizing C′′ into a θ-DMDA D; and v) Multiplying D by −1,
getting θ-NMDA C, which provides max(A,B).

We analyze next the size blow-up involved in algebraic operations. In addi-
tion to the general classes of θ-NMDAs, we also consider the case where both
input and output automata are deterministic. Summation of the results can be
seen in Table 1.

Most results in Table 1 are straightforward from the constructions presented
in the proof of Theorem 13: multiplying all the weights by a constant is linear,
creating the product automaton is quadratic, and whenever determinization is
required, we get an exponential blow-up. However, the result of the size blow-
up for the max operation on tidy NMDAs is a little more involved. At a first
glance, determinizing back and forth might look like a doubly-exponential blow-
up, however in this case an optimized determinization procedure can achieve a
singly-exponential blow-up: Determinizing a tidy NMDA that is the union of
two DMDAs, in which the transition weights are polynomial in the number of
states, is shown to only involve a polynomial size blow-up.
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Theorem 14. The size blow-up involved in the max operation on tidy NMDAs
is at most single-exponential.

Proof. Consider a choice function θ, θ-NMDAs A and B, and the automata
A′′,B′′, C′′,D and C, as constructed in the ‘max’ part of the proof of Theorem 13.
Observe that C′′ is the the union of two θ-DMDAs. As so, for every word
u, there are only two possible runs of C′′ on u. In order to determinize C′′
into D we present a slightly modified procedure compared to the one presented
in Section 4.1. Instead of the basic subset construction, we use the product
automaton of A′′ and B′′ and instead of saving in every state of D the gap from
the preferred state for every state of C′′, we only save the gap between the two
runs of C′′. Combined with the observation we showed in the proof of Lemma 9
that the weights of A′′ and B′′ are bounded by the weights of A and B, we are
able to reduce the overall blow-up to be only single-exponential.

The procedure presented in Section 4.1 requires the following modifications:

• Every state of D is a tuple 〈q1, q2, g1, g2〉 where q1 is a state of A′′, q2 is a
state of B′′, and g1, g2 ∈ G are the gaps from the preferred run.

• The initial state of D is 〈qA, qB, 0, 0〉 where qA and qB are the initial states
of A′′ and B′′, respectively.

• In the induction step, Di+1 extends Di by (possibly) adding for every
state p = 〈q1, q2, g1, g2〉 and letter σ ∈ Σ, a state p′ := 〈q′1, q′2, g′1, g′2〉 and
a transition t := 〈p, σ, p′〉 such that for every 1 ≤ h ≤ 2:

– ch := gh + γ
(
qh, σ, δ(qh, σ)

)
– γ′i+1(t) = min(c1, c2)

– ρ′i+1(t) = ρ
(
q1, σ, δ(q1, σ)

)
– xh := ρ′i+1(t) ·

(
ch − γ′i+1(t)

)
. If xh ≥ 2T then set xh :=∞

With the above modifications, similarly to Lemma 8, we get that the number
of possible gaps is 2 · T · dA · dB + 1 where dA and dB are the denominators of
weights in A′′ and B′′, respectively. Hence, there are no more than (2 · T · dA ·
dB + 1)2 · NA · NB possibilities for the states of D, where NA and NB are the
number of states in A′′ and B′′, respectively.

According to the determinization procedure showed in Section 4.1 and as
explained in the proofs of Lemmas 8 and 9, the following observations hold:

• dA and dB are also the denominators of weights in A and B, respectively,
and since we use binary representation of weights, dA · dB is up to single-
exponential in |A|+ |B|.

• All the weights in A′′ and B′′ are bounded by the weights of A and B,
hence T is also up to single-exponential in |A|+ |B|.

• NA and NB are up to single-exponential in |A|+ |B|.
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Concluding that the number of states in D is up to single-exponential in |A|+|B|,
and since the number of states in C is equal to the number of states in D, we
get a single-exponential blow-up.

Observe that if weights are represented in unary, we can achieve a quartic
blow-up for the min and max operations on tidy-DMDAs, by using the above
determinization procedure, and since T is linear in unary representation.

We are not aware of prior lower bounds on the size blow-up involved in
algebraic operations on NDAs. For achieving such lower bounds, we develop a
general scheme to convert every NFA to a λ-NDA of linearly the same size that
defines the same language, with respect to a threshold value 0, and to convert
some specific λ-NDAs back to corresponding NFAs.

The conversion of an NFA to a corresponding λ-NDA is quite simple. It
roughly uses the same structure of the original NFA, and assigns four different
transitions weights, depending on whether each of the source and target states
is accepting or rejecting.

Lemma 15. For every λ ∈ N \ {0, 1} and NFA A with n states, there exists a
λ-NDA Ã with n+2 states, such that for every word u ∈ Σ+, we have u ∈ L(A)
iff Ã(u) < 0. That is, the language defined by A is equivalent to the language
defined by Ã and the threshold 0.

Proof. Given an NFA A = 〈Σ, Q, ι, δ, F 〉 and a discount factor λ ∈ N \ {0, 1},
we construct a λ-NDA Ã = 〈Σ, Q′, {p0}, δ′, γ′〉 for which there exists a bijection
f between the runs of A and the runs of Ã such that for every run r of Ã on a
word u,

• r is an accepting run of A iff f(r) is a run of Ã on u with the value
Ã
(
f(r)

)
= − 1

λ|r|
.

• r is a non-accepting run of A iff f(r) is a run of Ã on u with the value
Ã
(
f(r)

)
= 1

λ|r|
.

We first transform A to an equivalent NFA A′ = 〈Σ, Q′, {p0}, δ′, F 〉 that is
complete and in which there are no transitions entering its initial state, and
later assign weights to its transitions to create Ã.

To constructA′ we add two states toQ, havingQ′ = Q∪{p0, qhole}, duplicate
all the transitions from ι to start from p0, and add a transition from every state
to qhole, namely δ′ = δ ∪

{
(p0, σ, q)

∣∣ ∃p ∈ ι, (p, σ, q) ∈ δ} ∪ {(q, σ, qhole)
∣∣ q ∈

Q′, σ ∈ Σ
}

. Observe that |Q′| = |Q| + 2, and L(A) = L(A′). Next, we assign
the following transition weights:

• For every t = (p0, σ, q) ∈ δ′, γ′(t) = − 1
λ if q ∈ F and γ′(t) = 1

λ if q /∈ F .

• For every t = (p, σ, q) ∈ δ′ such that p 6= p0, γ′(t) = λ−1
λ if p, q ∈ F ;

γ′(t) = λ+1
λ if p ∈ F and q /∈ F ; γ′(t) = −λ+1

λ if p /∈ F and q ∈ F ; and

γ′(t) = −λ−1
λ if p, q /∈ F .
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By induction on the length of the runs on an input word u, one can show that
for every u ∈ Σ+, Ã(u) = − 1

λ|u|
if u ∈ L(A) and Ã(u) = 1

λ|u|
if u /∈ L(A).

Converting an NDA to a corresponding NFA is much more challenging, since
a general NDA might have arbitrary weights. We develop a conversion scheme,
whose correctness proof is quite involved, from every NDA Ḃ that is equivalent
to −Ã, where Ã is generated from an arbitrary NFA as per Lemma 15, to a
corresponding NFA B. Notice that the assumption that Ḃ ≡ −Ã gives us some
information on Ḃ, yet Ḃ might a priori still have arbitrary transition weights.
Using this scheme, we provide an exponential lower bound on the size blow-up
involved in multiplying an NDA by (−1). The theorem holds with respect to
both finite and infinite words.

Theorem 16. For every n ∈ N and λ ∈ N \ {0, 1}, there exists a λ-NDA A
with n states over a fixed alphabet, such that every λ-NDA that is equivalent to
−A, w.r.t. finite or infinite words, has Ω(2n) states.

Proof. Consider n ∈ N and λ ∈ N \ {0, 1}. By [34, 30] there exists an NFA A
with n states over a fixed alphabet of two letters, such that any NFA for the
complement language L(A) has at least 2n states.
Finite words.

Let Ã be a λ-NDA that is correlated to A as per Lemma 15, and assume
towards contradiction that there exists a λ-NDA Ḃ = 〈Σ, QḂ, ιḂ, δḂ, γḂ〉 with

less than 2n

4 states such that Ḃ ≡ −Ã.
We provide below a conversion opposite to Lemma 15, leading to an NFA for

L(A) with less than 2n states, and therefore to a contradiction. The conversion
of Ḃ back to an NFA builds on the specific values that Ḃ is known to assign
to words, as opposed to the construction of Lemma 15, which works uniformly
for every NFA, and is much more challenging, since Ḃ might have arbitrary
transition weights. This conversion scheme can only work for λ-NDAs whose
values on the input words converge to some threshold as the words length grow
to infinity.

For simplification, we do not consider the empty word, since one can easily
check if the input NFA accepts it, and set the complemented NFA to reject it
accordingly.

By Lemma 15 we have that for every word u ∈ Σ+, Ã(u) = − 1
λ|u|

if u ∈ L(A)

and Ã(u) = 1
λ|u|

if u /∈ L(A). Hence, Ḃ(u) = − 1
λ|u|

if u /∈ L(A) and Ḃ(u) = 1
λ|u|

if u ∈ L(A). We will show that there exists an NFA B, with less than 2n states,
such that u ∈ L(B) iff Ḃ(u) = − 1

λ|u|
, implying that L(B) = L(A).

We first construct a λ-NDA B′ = 〈Σ, QB′ , ι, δ, γ〉 that is equivalent to Ḃ, but
has no transitions entering its initial states. This construction eliminates the
possibility that one run is a suffix of another, allowing to simplify some of our ar-
guments. Formally, QB′ = QḂ∪ι, ι = ιḂ×{1}, δ = δḂ∪

{(
(p, 1), σ, q

) ∣∣(p, σ, q) ∈
δḂ
}

, and weights γ(t) = γḂ(t) if t ∈ δḂ and γ
(
(p, 1), σ, q

)
= γḂ(p, σ, q) otherwise.

Let R− be the set of all the runs of B′ that entail a minimal value which is less
than 0, i.e., R− = {r

∣∣ r is a minimal run of B′ on some word and B′(r) < 0}.
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Let δ̂ ⊆ δ be the set of all the transitions that take part in some run in R−,

meaning δ̂ = {r(i)
∣∣ r ∈ R− and 0 ≤ i < |r|}, and ˆ̂δ ⊆ δ the set of all transitions

that are the last transition of those runs, meaning ˆ̂δ =
{
r
(
|r| − 1

) ∣∣ r ∈ R−}.
We construct next the NFA B = 〈Σ, QB, ι, δB, FB〉. Intuitively, B has the

states of B′, but only the transitions from δ̂. Its accepting states are clones of

the target states of the transitions in ˆ̂δ, but without outgoing transitions. We
will later show that the only runs of B that reach these clones are those that
have an equivalent run in R−. Formally, QB = Q′B ∪ FB, FB =

{
(q, 1)

∣∣ ∃p, q ∈
Q′B and (p, σ, q) ∈ ˆ̂δ

}
, and δB = δ̂ ∪

{(
p, σ, (q, 1)

) ∣∣ (p, σ, q) ∈ ˆ̂δ
}

.
Observe that the number of states in B is at most 3 times the number of

states in Ḃ, and thus less than 2n. We will now prove that for every word u, B
accepts u iff B′(u) = − 1

λ|u|
.

The first direction is easy: if B′(u) = − 1
λ|u|

, we get that all the transitions

of a minimal run of B′ on u are in δ̂, and its final transition is in ˆ̂δ, hence there
exists a run of B on u ending at an accepting state.

For the other direction, assume towards contradiction that there exists a
word u, such that B′(u) = 1

λ|u|
, while there is an accepting run ru of B on u.

Intuitively, we define the “normalized value” of a run r′ of B′ as the value of
B′ multiplied by the accumulated discount factor, i.e., B′(r′) · λ|r′|. Whenever
the normalized value reaches −1, we have an “accepting” run. We will show
that ru and the structure of B imply the existence of two “accepting” runs
r′1, r

′
2 ∈ R− that intersect in some state q, such that taking the prefix of r′1

up to q results in a normalized value λkW1 that is strictly smaller than the
normalized value λjW2 of the prefix of r′2 up to q. Since r′2 is an “accepting”
run, the suffix of r′2 reduces λjW2 to −1 and therefore it will reduce λkW1 to a
value strictly smaller than −1, and the total value of the run to a value strictly
smaller than − 1

λn , which is not a possible value of B′.
Formally, let ru(|u| − 1) =

(
p′, u(|u| − 1), (q′, 1)

)
be the final transition of

ru. We replace it with the transition t′ =
(
p′, u(|u| − 1), q′

)
. The resulting run

r′u = ru[0..|u|−2] · t is a run of B′ on u, and therefore B′(r′u) ≥ 1
λ|u|

. Since (q′, 1)

is an accepting state, we get by the construction of B that t′ is in ˆ̂δ. Consider a
run r′1 ∈ R− that shares the maximal suffix with r′u, meaning that if there exist
r′ ∈ R− and x > 0 such that r′[|r′| − x..|r′| − 1] = r′u[|u| − x..|u| − 1] then also
r′1[|r′1| − x..|r′1| − 1] = r′u[|u| − x..|u| − 1].

Recall that all the initial states of B′ have no transitions entering them
and B′(r′1) 6= B′(r′u), hence r′1 is not a suffix of r′u and r′u is not a suffix of
r′1. Let i be the maximal index of r′u such that r′u[i..|u| − 1] is a suffix of r′1,
but r′u[i − 1..|u| − 1] is not a suffix of r′1. Let k be the index in r′1 such that
r′1[k..|r′1| − 1] = ru[i..|u| − 1], and let x = |r′1| − k (see Fig. 9).

Since r′u(i− 1) ∈ δ̂, there exists r′2 ∈ R− and index j such that r′2(j − 1) =
r′u(i − 1). Let y = |r′2| − j (see Fig. 9). Consider the run r′3 = r′2[0..j − 1] ·
r′u[i..|u| − 1], starting with the prefix of r′2 up to the shared transition with
r′u, and then continuing with the suffix of r′u. Observe that B′(r′3) > − 1

λ|r
′
3|

as
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r′1(0) r′1(k − 1)

r′u(i) =
r′1(k)

r′u(|u| − 1) =
r′1(k + x− 1)

r′2(0)
r′u(i− 1) =
r′2(j − 1)

r′2(j) r′2(j + y − 1)

r′u(0)

W1

X

Y

W2

Figure 9: The runs and notations used in the proof of Theorem 16.

otherwise r′3 ∈ R− and has a larger suffix with r′u than r′1 has.
Let W1 = B′

(
r′1[0..k − 1]

)
, W2 = B′

(
r′2[0..j − 1]

)
, X = B′

(
r′1[k..k + x − 1]

)
(which is also B′

(
r′u[i..|u| − 1]

)
), and Y = B′

(
r′2[j..j + y − 1]

)
(see Fig. 9). The

following must hold:

1. W1 + X
λk

= B′(r′1) = − 1
λk+x

. Hence, λkW1 = − 1
λx −X .

2. W2+ X
λj = B′(r′3) > − 1

λj+x . Hence, λjW2 > − 1
λx−X, and after combining

with the previous equation, λjW2 > λkW1.

3. W2 + Y
λj = B′(r′2) = − 1

λj+y . Hence, λjW2 + Y = − 1
λy

Consider now the run r′4 = r′1[0..k − 1] · r′2[j..j + y − 1], and combine Items 2
and 3 above to get that λkW1 +Y < − 1

λy . But this leads to B′(r′4) = W1 + Y
λk

<

− 1
λk+y

= − 1

λ|r
′
4|

, and this means that there exists a word w of length k+ y such

that B′(w) < − 1
λk+y

, contradicting the assumption that B′ ≡ Ḃ ≡ −Ã.

Infinite words.
For showing the lower bound for the state blow-up involved in multiplying

an NDA by (−1) w.r.t. infinite words, we add a new letter # to the alphabet,
and correlate every finite word u to an infinite word u ·#ω. The proof is similar,
applying the following modifications:

• The scheme presented in the proof of Lemma 15 now constructs a λ-NDA
Ã over the alphabet Σ ∪ {#}, adding a 0-weighted transition from every
state of Ã to qhole. The function f that correlates between the runs of A
and Ã is still a bijection, but with a different co-domain, correlating every
run r of A on a finite word u ∈ Σ+ to the run f(r) of Ã on the word
u ·#ω.

• With this scheme, we get that Ḃ(u · #ω) = − 1
λ|u|

if u /∈ L(A) and Ḃ(u ·
#ω) = 1

λ|u|
if u ∈ L(A), hence replacing all referencing to B′(u) with

referencing to B′(u ·#ω).
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• R− is defined with respect to words of the form u · #ω, namely R− =
{r
∣∣ u ∈ Σ+, r is a minimal run of B′ on u ·#ω and B′(r) < 0}.

• R−p is a new set of all the maximal (finite) prefixes of the runs of R−

without any transitions for the # letter, meaning R−p = {r[0..i − 1]
∣∣ r ∈

R−, r(i− 1) = (p, σ, q) for some σ ∈ Σ, and r(i) = (q,#, s)}. δ̂ and ˆ̂δ are
defined with respect to R−p instead of R−.

• Defining r′u, we consider a run r′t ∈ R− that is a witness for t′ ∈ ˆ̂δ, meaning
there exists i ∈ N for which r′t(i) = t′, and r′t(i+ 1) is a transition for the
# letter. Then r′u = ru[0..|u| − 2] · t · r′[i+ 1..∞] = ru[0..|u| − 2] · r′[i..∞],
is a run of B′ on u ·#ω.

• For choosing r′1 that “shares the maximal suffix” with r′u, we take r′1 ∈ R−
such that for every r′ ∈ R− and x > 0, if r′u[i..∞] is a suffix of r′ then it
is also a suffix of r′1.

• For the different runs and their parts, we set X = B′
(
r′1[k..∞]

)
, Y =

B′
(
r′2[j..∞]

)
, r′3 = r′2[0..j − 1] · r′u[i..∞] and r′4 = r′1[0..k − 1] · r′2[j..∞].

4.4 Basic Subfamilies

Tidy NMDAs constitute a rich family that also contains some basic subfamilies
that are still more expressive than integral NDAs. Two such subfamilies are
integral NMDAs in which the discount factors depend on the transition letter
or on the elapsed time.

Notice that closure of tidy NMDAs under determinization and under alge-
braic operations is related to a specific choice function θ, namely every class
of θ-NMDAs enjoys these closure properties (Theorems 11 and 13). Since the
aforementioned subfamilies of tidy NMDAs also consist of θ-NMDA classes,
their closure under determinization and under algebraic operations follows. For
example, the class of NMDAs that assigns a discount factor of 2 to the letter
‘a’ and of 3 to the letter ‘b’ enjoys these closure properties.

4.4.1 Letter-Oriented Discount Factors

A θ-NMDA over an alphabet Σ is letter oriented if all transitions over the same
alphabet letter share the same discount factor; that is, if θ : Σ+ → N \ {0, 1}
coincides with a function Λ : Σ → N \ {0, 1}, in the sense that for every finite
word u and letter σ, we have θ(uσ) = Λ(σ). (See an example in Fig. 10.)

Notice that every choice function θ for a letter-oriented θ-NMDA can be
defined via a simple transducer of a single state, having a self loop over every
letter with its assigned discount factor.

We show that letter-oriented NMDAs indeed add expressiveness over NDAs.
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q0 q1

q2

a, 1, 3 a, 1
3 , 3

b, 3
4 , 2

a, 1, 3

b, 1, 2

b, 1, 2
a, 4

5 , 3

a, 2
3 , 3

a, 1
2 , 3

Figure 10: A letter-oriented discounted-sum automaton, for the discount factor
function Λ(a) = 3; Λ(b) = 2.

A :

q0 q1q2

a, 1
2 , 2 a,− 1

2 , 2
b, 0, 3

b, 1
3 , 3a, 0, 2

b,− 2
3 , 3

Figure 11: A letter-oriented discounted-sum automaton, for the discount factor
function Λ(a) = 2; Λ(b) = 3, that no integral NDA is equivalent to.

Theorem 17. There exists a letter-oriented NMDA that no integral NDA is
equivalent to.

Proof. Consider the NMDAA depicted in Fig. 11. Assume toward contradiction
that there exists an integral NDA B′ such that B′ ≡ A. According to [9], there
exists an integral deterministic NDA (integral DDA) B with transition function
δB and discount factor λ, such that B ≡ B′ ≡ A.

Observe that for every n ∈ N\{0}, we have B(anbω) = A(anbω) = 1
2n . As B

has finitely many states, there exists a state q in B and i, j ∈ N \ {0} such that
δB(ai) = δB(ai+j) = q. Let W1 = Bq(aj) and W2 = Bq(bω).

Observe that

1

2i
= B(aibω) = B(ai) +

W2

λi
(12)

1

2i+j
= B(ai+jbω) = B(ai) +

W1

λi
+

W2

λi+j
(13)

1

2i+2j
= B(ai+2jbω) = B(ai) +

W1

λi
+

W1

λi+j
+

W2

λi+2j
(14)
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q4

q0A : q1

q2 q3

a, 1, 2

a, 1
3 , 3

a, 1
2 , 3

a, 2
3 , 2

b, 2
3 , 2

b, 1
4 , 3

b, 3
2 , 3

b, 3
4 , 2

b, 1, 3
a, 1, 2

b, 3
4 , 2

a, 1, 3

Figure 12: A time-oriented discounted-sum automaton A.

Subtract Eq. (12) from Eq. (13), and Eq. (13) from Eq. (14) to get

1

2i+j
− 1

2i
=
W1 −W2

λi
+

W2

λi+j
(15)

1

2i+2j
− 1

2i+j
=
W1 −W2

λi+j
+

W2

λi+2j
=

1

λj

(W1 −W2

λi
+

W2

λi+j

)
(16)

and combine Eqs. (15) and (16) to get 1
2j

(
1

2i+j −
1
2i

)
= 1

2i+2j − 1
2i+j = 1

λj

(
1

2i+j −
1
2i

)
, which implies λ = 2.

Observe that for every n ∈ N\{0}, we have B(bnaω) = A(bnaω) = 1
3n .

Symmetrically to the above, but with respect to ‘b’ instead of ‘a’ and ‘3’ instead
of ‘2’, results in λ = 3, leading to a contradiction.

4.4.2 Time-Oriented Discount Factors

A θ-NMDA over an alphabet Σ is time oriented if the discount factor on a
transition is determined by the distance of the transition from an initial state;
that is, if θ : Σ+ → N \ {0, 1} coincides with a function Λ : N \ {0} → N \ {0, 1},
in the sense that for every finite word u, we have θ(u) = Λ

(
|u|
)
.

For example, the NMDA A of Fig. 12 is time-oriented, as all transitions
taken at odd steps, in any run, have discount factor 2, and those taken at even
steps have discount factor 3. The transducer T of Fig. 13 represents its choice
function.

Time-oriented NMDAs also add expressiveness over NDAs.

Theorem 18. There exists a time-oriented NMDA that no integral NDA is
equivalent to.

Proof. Let A be the time-oriented NMDA depicted in Fig. 14. Observe that
A(anbω) = 1

6d
n
2
e . Analogously to the proof of Theorem 17, but with respect to
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T :

Σ, 2

Σ, 3

Figure 13: A transducer that represents the discount-factor choice function for
the NMDA A of Fig. 12.

q0A : q1 q2

a, 1
6 , 2

b, 0, 2

a, 0, 3
b, 0, 3

a,− 5
6 , 2

b, 0, 2

Figure 14: A time-oriented NMDA that no integral NDA is equivalent to.

“
√

6” instead of “2”, we have that the discount factor of an equivalent DDA, if
such exists, is λ =

√
6, hence no integral NDA can be equivalent to A.

4.5 The Structure of the Family

Every choice function θ defines a class of θ-NMDAs which is closed under al-
gebraic operations (Theorem 13). In this section we show that this is not the
case for the entire family of tidy-NMDAs. We show in Section 4.5.1 that the
union of any two different classes of θ-NMDA is not closed under algebraic oper-
ations, meaning that we cannot extend any of them in the trivial way of taking
the union with another. We further analyze the relations between the different
θ-NMDA classes, and demonstrate the importance of each class. We show in
Section 4.5.3 that no θ1-NMDA class is a strict subset of any other θ2-NMDA
class, meaning that every class stands for itself. In Section 4.5.2 we show that
the intersection of all θ-NMDA classes can only express a set of basic functions,
the set of eventually constant functions, meaning that every such class has a
significant contribution to the expressiveness of the family.

We start with identifying a similarity property between transducers, and
showing that for every choice functions θ1 and θ2, the class of θ1-NMDAs is
equivalent to the class of θ2-NMDAs iff θ1 and θ2 can be defined by similar
transducers.

Definition 19. Transducers T1 and T2 over the same alphabet and with tran-
sition functions δT1 and δT2 respectively, are similar if for every finite words v
and w, such that δT1(v) = δT1(v · w) and δT2(v) = δT2(v · w), we have∏|w|−1
k=0 T1

(
v · w[0..k]

)
=
∏|w|−1
k=0 T2

(
v · w[0..k]

)
.

That is, T1 and T2 are similar if for every word v ·w that causes a cycle over
the suffix w both in T1 and T2, the discount factors accumulated in these two
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T1:
b, 2 b, 3

a, 5

a, 4

T2:
b, 2 b, 3

a, 5

a, 4

b, 2 b, 3
a, 10

a, 2
b, 17

a, 9

Figure 15: An example of similar transducers.

cycles are equal. For example, the transducers T1 and T2 depicted in Fig. 15
are similar. Observe that similar transducers can have different structures, and
are allowed to disagree on the accumulated discount factor achieved for some
words, as long as these words do not cause a cycle in both of them.

Using similar transducers, we also define similar choice functions:

Definition 20. Choice functions θ1 and θ2 are similar if there exist similar
transducers T1 and T2 such that T1 ≡ θ1 and T2 ≡ θ2.

As one would expect, the choice of transducers to represent the choice func-
tions does not matter.

Corollary 21. For every choice functions θ1 and θ2 for which there exist non-
similar transducers T1 and T2 such that T1 ≡ θ1 and T2 ≡ θ2, we have that θ1

and θ2 are not similar, meaning there are no similar transducers T ′1 and T ′2 such
that T ′1 ≡ θ1 and T ′2 ≡ θ2.

Proof. This is a direct corollary of Theorem 29 and Corollary 30 (which we will
prove in Section 4.5.3). According to Corollary 30, the non-similarity of T1 and
T2 leads to the existence of a θ1-NMDA for which no θ2-NMDA is equivalent to.
On the other hand, if there exist similar transducers T ′1 and T ′2 such that T ′1 ≡ θ1

and T ′2 ≡ θ2, according to Theorem 29, every θ1-NMDA has an equivalent θ2-
NMDA.
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4.5.1 Class union

Observe that for every choice function θ, the class of θ-NMDAs is closed under
algebraic operations (Theorem 13). Yet, this is not the case for the entire family
of tidy NMDAs. The automata A and B provided in the proof of Theorem 5 are
tidy, and it is shown there that no integral NMDA is equivalent to their max or
addition.

Corollary 22. There exist choice functions θ1 and θ2 over the same alphabet,
a θ1-NMDA A, and a θ2-NMDA B, such that for every choice function θ3, there
is no θ3-NMDA equivalent to A+B and no θ3-NMDA equivalent to max(A,B).

Moreover, we show that the union of every two non-similar classes of θ-
NMDAs in not closed under algebraic operations.

Theorem 23. For every two non-similar choice function θ1 and θ2 over a non-
singleton alphabet, there exist a θ1-NMDA A1 and a θ2-NMDA A2 such that
no integral NMDA (even non-tidy one), is equivalent to max{A1,A2} or to
A1 +A2.

Proof. Consider non-similar choice functions, θ1 and θ2, a transducer for θ1,
T1 = 〈P1,Σ, p1, δT1 , ρT1〉 and a transducer for θ2, T2 = 〈P2,Σ, p2, δT2 , ρT2〉. By
Definition 20, T1 and T2 can not be similar. Intuitively, when w denotes the
word on a cycle that witnesses the non-similarity of the transducers T1 and T2,
we construct automata such that the maximum (or the addition) of their values
on words containing wn for an increasing n, alternates between 1

Fn1
and 1

Fn2
,

where F1 and F2 are the accumulated discount factors over the w cycle in T1

and T2 respectively. We then continue, as in the proof of Theorem 5, to show
that no integral NMDA can express the relatively large jumps in this function.

Let v and w be finite words such that δT1(v) = δT1(v ·w); δT2(v) = δT2(v ·w);
and

|w|−1∏
k=0

T1

(
v · w[0..k]

)
6=
|w|−1∏
k=0

T2

(
v · w[0..k]

)
Denote:

• The accumulated discount factors over the runs of T1 and T2 on v as

E1 =
∏|v|−1
k=0 T1

(
v[0..k]

)
and E2 =

∏|v|−1
k=0 T2

(
v[0..k]

)
respectively.

• The accumulated discount factors over the w cycle in T1 and T2 as F1 =∏|w|−1
k=0 T1

(
v ·w[0..k]

)
and F2 =

∏|w|−1
k=0 T2

(
v ·w[0..k]

)
respectively. With-

out loss of generality, we have

F2 > F1 (17)

• The first letter of w as τ ′ = w(0).
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Ai :

q0 · · · q|v| 0, s1 0, s|w| 1, s1 1, s|w|

δTi (σ) δTi (vσ)
δTi

(
v·

w(0)σ
)Ti

v(0) v
(
|v| − 1

)
w(0) . . . w(0) . . .

w(0)

σ 6= v(0) σ 6= w(0) σ 6= w(1) · · ·

Figure 16: A partial sketch of the θ1-DMDA and the θ2-DMDA for which
no integral NMDA is equivalent to their max or addition. The labels on the
transitions indicate the input letter.

Let τ ∈ Σ such that τ 6= τ ′. We will show a θ1-DMDA A1 and a θ2-DMDA A2,
such that for every n ∈ N,

A1(v · wn · τω) =

{
1
Fn1

n is odd

0 n is even
A2(v · wn · τω) =

{
0 n is odd

1
Fn2

n is even
(18)

Intuitively, A1 and A2 will each look like a |v| sized list, walked upon the v
word, followed by two |w| sized lists, walked upon the w2 word, having a back
transition from the end of the third list to the beginning of the second list, to
cause a cycle walked upon reading w2 again and again. Each of them will also
have a copy of the representing transducer, with transitions into it from all the
states of the lists, such that whenever reading the first letter that breaks the
pattern of v · wn, one of the transitions out of the lists will be taken, and the
rest of the run will continue only in the states of the transducer.

All the transitions besides two will be zero weighted: In A1 the final transi-
tion in the second list, will have a weight that will assure a value of 1

Fn1
, for odd

number of occurrences of w. The transition from the second list to the third
list will have a negative weight that will compensate on the previous value back
to 0, in case another instance of w is present. Similarly, A2 will have a non-
zero weighted transition as the final transition of the third list, and a negative
weighted compensating transition from the third list back to the second list. A
schematic sketch of A1 and A2 is given in Fig. 16.

Formally, for i ∈ {1, 2}, let Ai = 〈Σ, Qi, ιi, δi, γi, ρi〉 be an NMDA such that:

• Qi =
{
qj
∣∣ j ∈ {0, 1, . . . , |v|}} ∪ {0, 1} × {sj ∣∣ j ∈ {1, . . . , |w|}} ∪ Pi.

• ιi = {q0}.
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• δi =
{

(qj , v(j), qj+1)
∣∣ j ∈ {0, 1, . . . , |v| − 1}

}
∪{(

qj , σ, δTi(v[0..j − 1] · σ)
) ∣∣ j ∈ {0, 1, . . . , |v| − 1}, σ 6= v(j)

}
∪{(

q|v|, w(0), (0, s0)
)}
∪{(

q|v|, σ, δTi(v · σ)
) ∣∣ σ 6= w(0)

}
∪{(

(k, sj), w(j), (k, sj+1)
) ∣∣ k ∈ {0, 1}, j ∈ {1, . . . , |w| − 1}

}
∪{(

(k, sj), σ, δT1(v · w[0..j − 1] · σ)
)∣∣∣∣k ∈ {0, 1},j ∈ {1, . . . , |w| − 1}, σ 6= w(j)

}
∪{(

(k, s|w|−1), w(0), (t, s1)
) ∣∣ k ∈ {0, 1}, t = k + 1 mod 2

}
∪{(

(k, s|w|−1), σ, δT1(v · w · σ)
) ∣∣ k ∈ {0, 1}, σ 6= w(0)

}
∪

δTi

• γi:

– γi

((
i− 1, s|w|−1

)
, w
(
|w| − 1

)
,
(
i− 1, s|w|

))
= Ei
Ti(v·w) .

– γi

((
i− 1, s|w|

)
, w(0),

(
|i− 2|, s1

))
= −Ei.

– zero weights for all the other transitions.

• ρi:

– For every j ∈ {0, 1, . . . , |v|}, letter σ ∈ Σ and state q ∈ Qi such that
(qj , σ, q) ∈ δi, we have ρi(qj , σ, q) = Ti

(
v[0..j − 1]σ).

– For every k ∈ {0, 1}, j ∈ {1, . . . , |w|}, σ ∈ Σ and q ∈ Qi such that(
(k, sj), σ, q

)
∈ δi, we have ρi

(
(k, sj), σ, q

)
= Ti

(
v · w[0..j − 1]σ).

– For every transition t ∈ δTi , we have ρi(t) = ρTi(t).

– Observe that the above indeed assures that Ai is a θi-NMDA.

Denote the non-zero weighted transitions as t1 =
((
i − 1, s|w|−1

)
, w
(
|w| −

1
)
,
(
i − 1, s|w|

))
and t2 =

((
i − 1, s|w|

)
, w(0),

(
|i − 2|, s1

))
. In all the runs of

Ai, either t2 is always taken immediately after t1, or the run moves to a state

in Pi, and continues to stay in Pi. Observe that γi(t2)
γi(t1) = −Ti(v · w). Also, in

every run that takes t2 immediately after t1, the discount of γi(t2), divided by
the discount of γi(t1) is Ti(v ·w). Hence, the value of Ai on every word u ∈ Σ∗,
such that δi(u) /∈ Pi and δi(u) 6=

(
i− 1, s|w|

)
is Ai(u) = 0.

By the construction of A1 and A2, for u ∈ Σ∗, we have δ1(u) =
(
0, s|w|

)
if

and only if there exists odd n ∈ N such that u = v ·wn, and δ2(u) =
(
1, s|w|

)
if

and only if there exists even n ∈ N such that u = v · wn. Hence for odd n ∈ N,

we have A1(v · wn) = γi(t1)

E1·Fn−1
1 · F1

Ti(v·w)

= 1
Fn1

. Similarly, for even n ∈ N we have

A2(v · wn) = 1
Fn2

.

Finally, a transition from
(
i − 1, s|w|

)
on the letter τ 6= w(0), will force the

run to continue in the zero weighted copy of Ti, so Eq. (18) indeed holds.
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The rest of the proof stands on the basis of the proof of Theorem 5, with
the following modifications:

• In this case we don’t necessary have max(A1,A2) ≡ A1 + A2, but they
only identify on every v · wn · τω word.

• Replacing the discount factor 2 with F1 and the discount factor 3 with F2.

• Referring to the words v · wn · τω instead of the words anbω.

• Referring to the run prefix rn[0..|v|+ n|w| − 1] instead of rn[0..n− 1].

• Replacing the suffix bω with τω and the suffix a · bω with w · τω.

Implicitly, the modified proof follows. By Eq. (18), we have

max(A1,A2)(v · wn · τω) =
(
A1 +A2

)
(v · wn · τω) =

{
1
Fn1

n is odd
1
Fn2

n is even

Assume toward contradiction that there exists an integral NMDA C′, such
that C′ ≡ max(A1,A2). Let d ∈ N be the least common denominator of the
weights in C′.

Consider the NMDA C = 〈Σ, Q, ι, δ, γ, ρ〉 created from C′ by multiplying all
its weights by d. Observe that all the weights in C are integers. According to
Proposition 2, for every n ∈ N,

C(v · wn · τω) =

{
d
Fn1

n is odd
d
Fn2

n is even

For every even n ∈ N, let wn = v · wn · τω, and rn a run of C on wn that
entails the minimal value of d

Fn2
.

There exists a state q ∈ Q such that for infinitely many even n ∈ N, the target
state of rn after n steps is q, i.e, δ

(
rn[0..|v| + n|w| − 1]

)
= q. Let Ub = Cq(τω)

and Ua = Cq(w ·τω), and for every such n ∈ N, let Wn = C
(
rn[0..|v|+n|w|−1]

)
,

and Πn = ρ
(
rn[0..|v|+ n|w| − 1]

)
.

For every such n ∈ N, since C(rn) = d
Fn2

, we have

Wn +
Ub
Πn

=
d

Fn2
(19)

and since the value of every run of C on v · wn+1 · τω is at least d
Fn+1

1

, we have

Wn+ Ua
Πn
≥ d

Fn+1
1

. Combining them both to get d
Fn2
− Ub

Πn
+ Ua

Πn
≥ d

Fn+1
1

resulting

in

Ua − Ub
Πn

≥ d ·
(

1

Fn+1
1

− 1

Fn2

)
(20)

Since
(
F2

F1

)n
−−−−→
n→∞

∞, we have that for large enough n, Fn2 > Fn+2
1 . Hence,

1
Fn+2

1

> 1
Fn2

and 1
Fn+1

1

− 1
Fn2

> 1
Fn+1

1

− 1
Fn+2

1

= F1−1

Fn+2
1

> 1
Fn+2

1

. Assign this into
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Eq. (20) to get Ua−Ub
d · Fn+2

1 ≥ Πn. Hence, there exists a positive constant

m1 = Ua−Ub
d · F 2

1 such that

m1 · Fn1 ≥ Πn (21)

Since Ub is a rational constant, there exist x ∈ Z and y ∈ N such that
Ub = x

y . Assign it into Eq. (19) to get

1

Fn2
=
Wn ·Πn + Ub

d ·Πn
=
Wn ·Πn + x

y

d ·Πn
=
Wn ·Πn · y + x

d · y ·Πn

But since the denominator and the numerator of the right-hand side are
integers, we conclude that there exists a positive constant m2 = d · y, such that
m2 · Πn ≥ Fn2 . Combined with Eq. (21), we get m1 ·m2 · Fn1 ≥ Fn2 , for some
positive constants m1 and m2, and for infinitely many n ∈ N. But this stands

in contradiction with limn→∞

(
F1

F2

)n
= 0.

Note that all the above also hold when changing max(A1,A2) toA1+A2.

Observe that the limitation in Theorem 23 for a non-singleton alphabet is
required only for the infinite-words case. For a singleton alphabet, only eventu-
ally constant functions exist in the infinite-words case, and all of them can be
represented by a θ-NMDA for any choice function θ. For the finite-words case,
this limitation is not required.

Theorem 24. For every two non-similar choice functions θ1 and θ2, there exist
a θ1-NMDA A1 and a θ2-NMDA A2 such that no integral NMDA (even non-tidy
one), is equivalent to max{A1,A2} or to A1 +A2.

Proof. Let θ1 and θ2 be non-similar choice functions, A1 a θ1-NMDA and A2 a
θ2-NMDA as constructed in the proof of Theorem 23. As shown in the proof of
Theorem 23, for every n ∈ N,

A1(v · wn) =

{
1
Fn1

n is odd

0 n is even
A2(v · wn) =

{
0 n is odd

1
Fn2

n is even

where F1 and F2 defined as in the proof of Theorem 23.
The rest of the proof is similar to the proof of Theorem 23 with the following

adjustments:

• Replacing v · wn · τω with v · wn.

• Replacing Ub with 0 and defining Ua = Cq(w) instead of Ua = Cq(w · τω).

42



4.5.2 Class intersection

We show that for every alphabet Σ, the intersection of all θ-NMDA classes over
Σ is exactly the set of eventually constant functions. We start with a formal
definition of eventually constant functions, and continue with Lemmas 26 and 27
that provide the two directions of the proof.

Definition 25. For an alphabet Σ and a number n ∈ N,

• A function f : Σ+ → Q is n-constant if for every finite word w of length
at least n, we have f(w) = f(w[0..n− 1]).

• A function f : Σω → Q is n-constant if for every w,w′ ∈ Σω, we have
f(w) = f(w[0..n− 1] · w′).

• A function f : Σ+ → Q or f : Σω → Q is eventually constant if there
exists n ∈ N, such that f is n-constant.

Lemma 26. For every eventually constant function f and choice function θ
over the same alphabet, there exists a θ-NMDA that represents f .

Proof. Let Σ = {σ1, σ2, · · · , σk} be an alphabet, n ∈ N, f an n-constant func-
tion, θ a choice function, and T = 〈P,Σ, p0, δT , ρT 〉 a transducer for θ.

Finite words.
Let f : Σ+ → Q be an n-constant function. We will describe a θ-DMDA

A = 〈Σ, Q, {qε}, δ, γ, ρ〉 that represents f .
Schematic sketch of A can be found in Fig. 17. Intuitively, A will be a tree

with exactly |Σ| children for every node up to depth of n, followed by a copy of
the transducer T with 0-weighted transitions.

We will iteratively add states to A, level after level of the tree. With this
construction, for every state there is a single word leading to it. The weight of
every new transition from a state q will be calculated according to the corre-
sponding discount factor in T , and the accumulated weight up to q, such that
the value after it will comply with f . This process will continue up to depth n.

Every state in level n will be connected to the state in the copy of T that
synchronizes with the input word that caused reaching it. This will preserve the
correct discount factors when the following transitions will be taken, to finally
ensure that A is indeed a θ-NMDA. All the weights in the copy of T will be 0.
Since f is an n-constant function, this will ensure equivalence to f for all words.

Formally, the states of A are

Q = {qw|w ∈ Σ∗ and |w| ≤ n} ∪ P

For simplifying the definition of A’s weight function, we extend f to the
empty word, defining f(ε) = 0.

The transitions, weights and discount factors of A are:
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A : qε

qσ1
qσ2

qσk

qσ2
1

qσ1σ2
qσ2
k

qσn1 qσnk

0-weighted T

σ1, f(σ1), T (σ1)

σ2, f(σ2),
T (σ2)

σk, f(σk), T (σk)

σ2,[
f(σ1σ2)− f(σ1)

]
· T (σ1),

T (σ1σ2)

Σ, 0 Σ, 0

· · · · · ·

· · · · · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

···

···

···

Figure 17: Partial sketch of the θ-NMDA for the n-constant function f in the
proof of Lemma 26 for the finite-words case.
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• For every w ∈ Σ∗ such that 0 ≤ |w| < n, and every 1 ≤ j ≤ k,

tw,j = (qw, σj , qw·σj ) ∈ δ

γ(tw,j) =
[
f(w · σj)− f(w)

]
·
j−1∏
i=1

T
(
w[0..i]

)
ρ(tw,j) = T (w · σj)

• For every p ∈ P , and 1 ≤ j ≤ k,

tp,j =
(
p, σj , δT (p, σj)

)
∈ δ

γ(tp,j) = 0

ρ(tp,j) = ρT
(
p, δT (p, σj)

)
• For every w ∈ Σn, and 1 ≤ j ≤ k,

tw,j =
(
qw, σj , δT (w · σj)

)
∈ δ

γ(tw,j) = 0

ρ(tw,j) = T (w · σj)

Infinite words.
Let f : Σω → Q be an n-constant function. Similarly to the construction

in the finite-words case, the θ-DMDA A = 〈Σ, Q, {qε}, δ, γ, ρ〉 that represents
f will be a tree of depth n followed by a copy of T . Yet, in the infinite case,
all the weights in the tree up to depth n will be zeroes, and the weights of the
transitions from depth n to depth n+ 1 will be the value of f on the equivalent
word. (See a sketch of A in Fig. 18.)

Formally, the transitions, weights and discount factors of A are:

• For every w ∈ Σ∗ such that 0 ≤ |w| < n, and every 1 ≤ j ≤ k,

tw,j = (qw, σj , qw·σj ) ∈ δ
γ(tw,j) = 0

ρ(tw,j) = T (w · σj)

• For every w ∈ Σn, and 1 ≤ j ≤ k,

tw,j =
(
qw, σj , δT (w · σj)

)
∈ δ

γ(tw,j) = f(w · σω1 )

ρ(tw,j) = T (w · σj)

• The rest of the transitions are identical to the finite-words case.
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A : qε

qσ1
qσk

qσn−1
1

qσn−1
k

qσn1 qσn−1
k σ2

qσnk

0-weighted T

σ1, 0, T (σ1) σk, 0, T (σk)

σ1, 0, T (σn1 ) σ2, 0, T (σn−1
1 σ2) σk, 0, T (σnk )

∀σ ∈ Σ.
σ, f(σω1 ), T (σn1 σ)

∀σ ∈ Σ.
σ, f(σn−1

1 σ2σ
ω
1 ), T (σn−1

1 σ2σ)

∀σ ∈ Σ.
σ, f(σnkσ

ω
1 ), T (σnkσ)

· · · · · ·

···

···

Figure 18: Partial sketch of the θ-NMDA for the n-constant function f in the
proof of Lemma 26 for the infinite-words case.
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We will now show that the intersection of all the θ-NMDA classes contains
only eventually constant functions.

Lemma 27. For every non-eventually constant function f over an alphabet Σ,
there exists a choice function θ over Σ, such that no θ-NMDA represents f .

Proof. Let f be a non-eventually constant function. We will show that there is
no 2-NDA that represents f or no 3-NDA that represents f .

Assume toward contradiction that there exist a 2-NDA A′ and 3-NDA B′
such that A′ ≡ B′ ≡ f . Hence, according to [9] there exist a 2-DDA A =
〈Σ, QA, ιA, δA, γA〉, and 3-DDA B = 〈Σ, QB, ιB, δB, γB〉, such that

A ≡ B ≡ f (22)

Finite words.
Intuitively, for a non-eventually constant function and a finite alphabet,

there exist a letter σ and infinitely many words that their value is changed
when appending σ to them. We find two such words, with different sizes n1 and
n2, that cause the same final state both in A and in B. We then show that it
is impossible to reach the desired value after appending σ, in all the cases of
accumulated discount factors of 2n1 , 2n2 , 3n1 and 3n2 .

Since f is not eventually constant, for every 0 < k ∈ N, there exist σ ∈ Σ,
k ≤ n ∈ N and u ∈ Σn such that f(u) 6= f(u · σ). A and B have finitely many
states, implying that there exist states qA ∈ QA and qB ∈ QB, a letter σ ∈ Σ,
numbers n1 6= n2 ∈ N, and words u1 ∈ Σn1 and u2 ∈ Σn2 , such that

f(u1) 6= f(u1 · σ) (23)

f(u2) 6= f(u2 · σ) (24)

δA(u1) = δA(u2) = qA (25)

and

δB(u1) = δB(u2) = qB (26)

Combine Eqs. (22), (25) and (26) to get

γA(qA, σ)

2n1
= A(u1 · σ)−A(u1) = B(u1 · σ)− B(u1) =

γB(qB, σ)

3n1

and since according to Eqs. (22) and (23), γB(qB, σ) 6= 0, we get

γA(qA, σ)

γB(qB, σ)
=
(2

3

)n1

Similarly, when combining Eqs. (22) and (24) to (26), we get

γA(qA, σ)

γB(qB, σ)
=
(2

3

)n2
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and a contradiction to n1 6= n2.
Infinite words.
We use a similar idea as in the finite-words case, with replacing the single

final transition with transitions over two different infinite suffix words.
Since f is not eventually constant, for every 0 < k ∈ N, there exist w1, w2 ∈

Σω, k ≤ n ∈ N and u ∈ Σn such that f(u · w1) 6= f(u · w2). Hence, there
exists a state qA ∈ QA such that for every 0 < k ∈ N, there exist w1, w2 ∈ Σω,
k ≤ n ∈ N and u ∈ Σn, such that δA(u) = qA and AqA(w1) 6= AqA(w2). Hence,
there exist states qA ∈ QA and qB ∈ QB, infinite words w1, w2 ∈ Σω, integral
numbers n1 6= n2 ∈ N, and finite words u1 ∈ Σn1 , u2 ∈ Σn2 , such that

AqA(w1) 6= AqA(w2) (27)

δA(u1) = δA(u2) = qA (28)

and

δB(u1) = δB(u2) = qB (29)

Combining Eqs. (22) and (27) to (29) to get

AqA(w2)−AqA(w1)

2n1
= A(u1 · w2)−A(u1 · w1)

= f(u1 · w2)− f(u1 · w1)

= B(u1 · w2)− B(u1 · w1)

=
BqB(w2)− BqB(w1)

3n1
(30)

and similarly

AqA(w2)−AqA(w1)

2n2
=
BqB(w2)− BqB(w1)

3n2
(31)

Eqs. (30) and (31) are a contradiction to either Eq. (27) or to n1 6= n2.

Theorem 28. For every alphabet Σ, the intersection of all θ-NMDA classes
over Σ is exactly the set of all eventually constant functions over Σ.

Proof. Follows directly from Lemmas 26 and 27.

4.5.3 Class inclusion

It turns out that for every choice functions θ1 and θ2, the class of θ1-NMDAs
is not more expressive than the class of θ2-NMDAs. For showing it, we provide
two complementary results: The first proves that the classes of θ1-NMDAs and
of θ2-NMDAs define the same set of functions if θ1 and θ2 are similar. The
second proves that if θ1 and θ2 can be represented by non-similar transducers
then there exists a θ1-NMDA, such that no θ2-NMDA is equivalent to. (Notice
that it also implies that two transducers representing the same choice function
must be similar.)
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B : qε

qσ1
qσk

qσ2
1

qσ1σ2
qσ2
k

qσn1

· ·
·

··
·

··
·

σ1,A(σ1), T2(σ1) σk,A(σk), T2(σk)

σ2,[
A(σ1σ2)−A(σ1)

]
· T2(σ1),

T2(σ1σ2)

· · · · · ·

Figure 19: A sketch of the θ2-DMDA constructed in the proof of Theorem 29.

Theorem 29. For every similar choice functions θ1 and θ2, every θ1-NMDA
has an equivalent θ2-NMDA.

Proof. Consider similar choice functions θ1 and θ2 over an alphabet Σ and a θ1-
NMDA A′. Let T1 = 〈PT1 ,Σ,N, pT1 , δT1 , ρT1〉 and T2 = 〈PT2 ,Σ,N, pT2 , δT2 , ρT2〉
be transducers for θ1 and θ2 respectively. By Theorem 11, there exists a θ1-
DMDA A = 〈Σ, QA, {q0}, δA, γA, ρA〉 equivalent to A′. We will construct a
θ2-DMDA B = 〈Σ, QB, qε, δB, γB, ρB〉 equivalent to A.

Intuitively, B will be built as a tree while ensuring that the discount factors
agree with T2, and the values agree with A. Yet, whenever reaching a word
that has a prefix that causes a “similar cycle” in A, T1, and T2, we will have
a transition to the appropriate ancestor in the tree instead of a transition to
a new child. (See a sketch of B in Fig. 19.) We shall then prove that this
process eventually terminates in all the branches and yields a finite automaton
B equivalent to A.

We create B through the following procedure:

1. InitializeQB = {qε}, δB = ∅, γB = ∅, ρB = ∅, and a “stack” S = {〈qε, ε, 1〉}.
Each tuple in S represents a state we need to continue the build of B from,
the word on which B reached that state, and the accumulated discount
factor in B running on that word.

2. Loop while S is not empty:

(a) Pop 〈q, u,Π〉 from S.

(b) For every σ ∈ Σ:

i. If u has a prefix v such that δA(v) = δA(u ·σ), δT1(v) = δT1(u ·σ)
and δT2(v) = δT2(u·σ), add a “back transition”, t =

(
q, σ, δB(v)

)
,

to δB.
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ii. Else add a new state qu·σ to QB, a transition t = (q, σ, qu·σ) to
δB, and push the tuple 〈qu·σ, u · σ,Π · T2(u · σ)〉 to S.

(c) Define the weight and discount factor of the transition t added in the
previous step to be

γB(t) =
[
A(u · σ)−A(u)

]
·Π, ρB(t) = T2(u · σ)

In step 2(b)i, we take a prefix v, such that δA(v) = δA(u · σ), δT1(v) =
δT1(u · σ) and δT2(v) = δT2(u · σ). Observe that such a prefix v, when exists,
is unique: Assume toward contradiction that there exists another prefix v′ 6= v
such that δA(v′) = δA(u·σ), δT1(v′) = δT1(u·σ) and δT2(v′) = δT2(u·σ). Without
loss of generality, we assume that v′ is a prefix of v. But we have δA(v′) = δA(v),
δT1(v′) = δT1(v) and δT2(v′) = δT2(v). This stands in contradiction to a previous
iteration of the algorithm when v was examined and the 2(b)i step did not find
the v′ prefix of v to satisfy this property.

We prove that the procedure eventually terminates by showing that each
branch of the tree (after which there is only the back-transition) is not longer

than X =
(
|QA|+ 1

)
· |PT1

| · |PT2
|. For every word w of length X, there exists

a state p2 ∈ PT2
that appears at least Y =

(
|QA| + 1

)
· |PT1

| times in the run

of T2 on w. Therefore, there exist prefixes w1, w2, · · · , wY of w, such that for
every 0 < i ≤ Y , we have δT2(wi) = p2. Also, there exist a state p1 ∈ PT1

and at least Z = |QA| + 1 prefixes of w out of the above Y prefixes, named
wi1 , wi2 , · · · , wiZ , such that for every 0 < j ≤ Z, we have δT1(wij ) = p1 and
δT2(wij ) = p2. Finally, there exist prefixes w′ and w′′ of w out of the above Z
prefixes, such that δA(w′) = δA(w′′), δT1(w′) = δT1(w′′) and δT2(w′) = δT2(w′′),
satisfying the condition of step 2(b)i. Hence, for each tree branch, step 2(b)i
will be taken before reaching length of X.

Observe that due to the construction of B, every state in B corresponds to
a state in A, a state in T1 and a state in T2. That is, for every qB ∈ QB, there
exist qA ∈ QA, qT1 ∈ P1 and qT2 ∈ P2, such that for every w ∈ Σ∗ for which
δB(w) = qB, we have δA(w) = qA, δT1(w) = qT1 and δT2(w) = qT2 . This holds
since all the transitions to an ancestor (in step 2(b)i) were added only if the
same prefix caused a cycle in A, in T1 and in T2 back to the corresponding
states.

Therefore, since all the discount factors in B were added with values that
match T2, we conclude that B is indeed a θ2-NMDA.

It is left to show that B is equivalent to A. Let fA : QB → QA be the
function that returns the corresponding state in A with respect to the property

mentioned above. Observe that for every y ∈ Σ+, we have fA

(
δB(y)

)
= δA(y).

Consider a state qu ∈ QB and a letter σ ∈ Σ. The transition t from qu on σ

has, by the construction of B, weight γB(t) =
[
A(u·σ)−A(u)

]
·
∏m−1
i=0 T2(u[0..i]).

Let WA be the weight of the σ transition from fA(qu) in A, i.e., WA =
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qεstart qu0
. . . . . . qu

yk0 yk1 ykm−1

y[0..k0 − 1] y[k0 + 1..k1 − 1] y[km−1 + 1..n− 1]

Figure 20: An illustration of the structure of the run r of B on y from the proof
of Theorem 29. The labels on the transitions stand for the input letter/word
for it.

γA

(
fA(qu), σ

)
. Hence,

γB(t) =
[
A(u) +

WA∏m−1
i=0 T1(u[0..i])

−A(u)
]
·
m−1∏
i=0

T2(u[0..i])

= WA ·
m−1∏
i=0

T2(u[0..i])

T1(u[0..i])
(32)

Let y ∈ Σ∗ be a word such that δB(y) = qu and r be the run of B on y. Due
to the construction of B, r identifies with the run of B on u (which is simply
going along the tree), with possibly having some cycles in the middle. Formally,
for every 0 ≤ j ≤ m− 1, we have

• y(kj) = u(j).

• r(kj) =
(
qu[0..j−1], u(j), qu[0..j]

)
, where for j = 0 we define u[0..− 1] = ε.

• Each of the subwords y[0..k0−1], y[km−1 +1..n−1], and y[kj+1..kj+1−1]
for every 0 ≤ j < m − 1 is either empty, or the equivalent sub-walk of r
on it contains a cycle.

The described structure can be seen in Fig. 20.
Due to the construction of B, all the above subwords also cause a cycle in

T1 and in T2. Since T1 and T2 are similar, we have

k0−1∏
i=0

T2(y[0..i])

T1(y[0..i])
= 1 (33)

∀0≤j<m−1

kj+1−1∏
i=kj+1

T2(y[0..i])

T1(y[0..i])
= 1 (34)

n−1∏
i=km−1+1

T2(y[0..i])

T1(y[0..i])
= 1 (35)

We will show by induction on j that for every 0 ≤ j ≤ m− 1,

j∏
i=0

T2(u[0..i])

T1(u[0..i])
=

kj∏
i=0

T2(y[0..i])

T1(y[0..i])
(36)
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For the base case of j = 0, since y[0..k0−1] causes a cycle in B or was empty,
δT1(y[0..k0 − 1]) = pT 1 and δT2(y[0..k0 − 1]) = pT2 . Hence,

T1(y[0..k0]) = ρT1(pT 1, yk0) = ρT1(pT 1, u0) = T1(u0)

and similarly T2(y[0..k0]) = T2(u0). Combine this with Eq. (33) to get T2(u0)
T1(u0) =∏k0

i=0
T2(y[0..i])
T1(y[0..i]) .

For the induction step, assume Eq. (36) holds and combine it with Eq. (34)
to get

kj+1∏
i=0

T2(y[0..i])

T1(y[0..i])
=

kj+1∏
i=kj+1

T2(y[0..i])

T1(y[0..i])
·
kj∏
i=0

T2(y[0..i])

T1(y[0..i])

=
T2(y[0..kj+1])

T1(y[0..kj+1])
·
j∏
i=0

T2(u[0..i])

T1(u[0..i])

But similarly to the base case, since y[0..kj+1] and u[0..j] both lead to the same
state also in T1, we have T1(y[0..kj+1]) = T1(u[0..j]) and since they lead to the
same state in T2 we have T2(y[0..kj+1]) = T2(u[0..j]). Combined with the above,

we get
∏j+1
i=0

T2(u[0..i])
T1(u[0..i]) =

∏kj+1

i=0
T2(y[0..i])
T1(y[0..i]) .

Now combine Eqs. (32), (35) and (36) to get that for every state qu ∈ QB,
letter σ ∈ Σ, and word y ∈ Σ∗ such that δB(y) = qu, we have

γB(qu, σ) = γA

(
fA(qu), σ

)
·
|y|−1∏
i=0

T2(y[0..i])

T1(y[0..i])
(37)

Finally, we will show by induction on the size of the word that for every
y ∈ Σ∗, we have A(y) = B(y).

We extend A and B to have the value of 0 on empty words, so the claim
will hold for the base case of an empty word. Now assume the claim holds for
a word y of length l, and let σ ∈ Σ. We will show that the claim holds for y · σ.
Let t be the transition in B from δB(y) on σ. We have

B(y · σ) = B(y) +
γB(t)∏l−1

i=0 T2(y[0..i])

= A(y) +
γB(t)∏l−1

i=0 T2(y[0..i])

Combined with Eq. (37), we get

B(y · σ) = A(y) +
γA

(
fA(δB(y)), σ

)
·
∏l−1
i=0

T2(y[0..i])
T1(y[0..i])∏l−1

i=0 T2(y[0..i])

= A(y) +
γA

(
δA(y), σ

)
∏l−1
i=0 T1(y[0..i])

= A(y · σ)
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Concluding that for every finite word w ∈ Σ+, we have B(w) = A′(w).
Also, according to Lemma 3, for every infinite word u ∈ Σω, we have B(u) =
A′(u).

The complementary result is a direct corollary of Theorems 13 and 23: For
two non-similar choice functions θ1 and θ2, if every function represented by a θ1-
NMDA can also be represented by a θ2-NMDA, we get a contradiction between
Theorems 13 and 23.

Corollary 30. For every non-singleton alphabet Σ and non-similar choice func-
tions θ1 and θ2 over Σ, there exists a θ1-NMDA such that no θ2-NMDA is
equivalent to.

From Corollary 30 and Theorem 29, we directly get the following:

Corollary 31. For every choice functions θ1 and θ2, the class of θ1-NMDAs is
not more expressive than the class of θ2-NMDAs

Proof. Assume that every θ1-NMDA has an equivalent θ2-NMDA. According to
Corollary 30, θ1 is similar to θ2. Hence, according to Theorem 29, and since the
equivalence relation is symmetric, we conclude that the class of θ2-NMDAs is
equivalent to the class of θ1-NMDAs.

Observe that we state Corollary 30 with respect to a non-singleton alphabet,
as in the setting of infinite words, there exists only a single word over a singleton
alphabet. When restricting attention to finite words, the result is also relevant
to a singleton alphabet, and it indeed holds, as a direct corollary of Theorems 13
and 24.

Corollary 32. For every non-similar choice functions θ1 and θ2, there exists
a θ1-NMDA A such that no θ2-NMDA is equivalent to A w.r.t. finite words.

Corollaries 31 and 32 and the results shown in Section 4.5.2 complete our
analysis, showing that every class of θ-NMDAs is important by itself and con-
tributes to the expressiveness of the family of tidy-NMDAs.

5 Tidy NMDAs – Decision Problems

We show that all of the decision problems of tidy NMDAs are in the same
complexity classes as the corresponding problems for discounted-sum automata
with a single discount factor. That is, the nonemptiness problem is in PTIME,
and the exact-value, universality, equivalence, and containment problems are
PSPACE-complete (see Table 2). In the equivalence and containment problems,
we consider θ-NMDAs with the same choice function θ. When integral DMDAs
are considered, we show that all of the problems are in PTIME. In addition, the
problem of checking whether a given NMDA is tidy, as well as whether it is a θ-
NMDA, for a given choice function θ, is decidable in PTIME. The complexities
are w.r.t. the automata size (as defined in Section 2), and when considering a
threshold ν, w.r.t. its binary representation.
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5.1 Tidiness

Given an NMDA A, one can check in PTIME whether A is tidy. The algorithm
follows by solving a reachability problem in a Cartesian product of A with itself,
to verify that for every word, the last discount factors are identical in all runs.

Theorem 33. Checking if a given NMDA A is tidy is decidable in time O
(
|A|2

)
.

Proof. Consider an input NMDA A = 〈Σ, Q, ι, δ, γ, ρ〉. Observe that A is tidy
iff there does not exist a finite word u ∈ Σ+ of length n = |u| and runs r1 and
r2 of A on u, such that ρ(r1(n − 1)) 6= ρ(r2(n − 1)). Intuitively, we construct
the Cartesian product of A with itself, associating the weight of every transition
in the product to the difference of the two discount factors of the transitions
causing it. The problem then reduces to reachabilty in this product automaton
of a transition with weight different from 0.

Formally, construct a weighted automaton P = 〈Σ, Q×Q, ι× ι, δ′, γ′〉 such
that

• δ′ =
{(

(s0, s1), σ, (t0, t1)
) ∣∣ σ ∈ Σ and (s0, σ, t0), (s1, σ, t1) ∈ δ

}
.

• γ′
(
(s0, s1), σ, (t0, t1)

)
= ρ(s0, σ, t0)− ρ(s1, σ, t1).

Every run in P for a finite word u corresponds to two runs in A for the same
word u. A non-zero weighted transition in P corresponds to two transitions in
A for the same letter, but with different discount factors. Hence, A is tidy if
and only if no run in P takes a non-zero weighted transition.

The graph underlying P can be constructed in time quadratic in the size of
A, and the reachability check on it can be performed in time linear in the size
of this graph.

Given also a transducer T , one can check in polynomial time whether A is
a T -NMDA.

Theorem 34. Checking if a given NMDA A is a T -NMDA, for a given trans-
ducer T , is decidable in time O

(
|A| · |T |

)
.

Proof. We show the procedure. Let A = 〈Σ, QA, ι, δA, γ, ρA〉 be the input
NMDA and T = 〈QT ,Σ, q0, δT , ρT 〉 the input transducer.

We construct a nondeterministic weighted automaton A′ that resembles A
and a deterministic weighted automaton T ′ that resembles T , as follows. A′ =
〈Σ, QA, ι, δA, ρA〉 is derived from A by taking the same basic structure of states,
initial states and transition function, and having the discount factors of A as
its weight function. T ′ = 〈Σ, QT , q0, δT , ρT 〉 is derived from T , by having the
same structure as T and having the output function of T as the weight function
of T ′.

Then, we construct the product automaton B = A′×T ′, in which the weight
on each transition is the weight of the corresponding transition in A′ minus the
weight of the corresponding transition in T ′.
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Finite words Infinite words

Non-emptiness (<) PTIME (Theorem 36)
PTIME (Theorem 35)

Non-emptiness (≤) PTIME (Theorem 37)

Containment (>) PSPACE-complete PSPACE (Theorem 43)

Containment (≥) (Theorem 41) PSPACE-complete (Theorem 42)

Equivalence PSPACE-complete (Corollary 44)

Universality (<) PSPACE-complete PSPACE(Theorem 45)

Universality (≤) (Theorem 45) PSPACE-complete (Theorem 45)

Exact-value
PSPACE-complete

PSPACE (Theorem 46)
(Theorem 46)

Table 2: The complexities of the decision problems of tidy NMDAs.

It is only left to check whether or not all the weights on the reachable tran-
sitions of B are zero. Indeed, A is a T -NMDA iff all its reachable discount
factors, which are the weights in A′, correspond to the outputs of T , which are
the weights in T ′.

5.2 Nonemptiness, Exact-Value, Universality, Equivalence,
and Containment of tidy NMDAs

We start with the non-emptiness problems. For both strict and non-strict in-
equalities with respect to infinite words, there is a simple reduction to one-player
discounted-payoff games that also applies to arbitrary NMDAs (which are not
necessarily tidy, or even integral), showing that those problems are in PTIME.
This result can also be generalized to the strict non-emptiness problem of ar-
bitrary NMDAs w.r.t. finite words. The non-strict problem w.r.t. finite words
is solved differently, and applies to integral NMDAs (which are not necessarily
tidy).

Theorem 35. The nonemptiness problem of NMDAs w.r.t. infinite words is in
PTIME for both strict and non-strict inequalities.

Proof. LetA = 〈Σ, Q, ι, δ, γ, ρ〉 be an NMDA and ν ∈ Q a threshold. Discounted-
payoff games with multiple discount factors (DPGs) were defined in [2]. We will
construct a one-player DPG G = 〈VMAX , VMIN , E, γG, ρG〉 such that every in-
finite walk ψ of A will have a corresponding infinite play π of G, such that
A(ψ) = µ(π), where µ(π) is the value of G on the play π as defined in [2].
Observe that our definition of the value of a walk is identical to the definition
of µ in [2]. Hence we would like G to have the same states, transitions, weights
and discount factors as A, while omitting the letters on the transitions.

Formally, the sets of vertices belonging to the players are VMIN = Q and
VMAX = ∅. For every transition t = (q, σ, p) ∈ δ we add a corresponding edge
(q, p) to E with weight and discount factor of γG(q, p) = γ(t) and ρG(q, p) = ρ(t).
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Observe that Amight have two transitions with the same source and destination
but with different weight and/or discount factor for different letters, however
according to [2], DPGs are allowed to have multiple edges between the same
ordered pair of vertices. Let f be the function that matches a transition in A
to the corresponding edge in G.

We can extend f to be a bijection between the set of walks of A and the
set of plays of G. Observe that by the construction, for every walk ψ, we have

A(ψ) = µ
(
f(ψ)

)
, and for every play π, we have µ(π) = A

(
f−1(π)

)
. Recall

that the value of a word is the minimal value of a run of A on it, to conclude
that the minimum value of an infinite word, equals the minimum value of a play
in G starting from a vertex that corresponds to an initial state.

The problem of solving G, i.e., for each vertex v ∈ VMIN finding the mini-
mum value of any play starting from v, can be represented as a linear program,
as suggested by [2]. With the feasible solutions for this problem, all left to do is
to iterate all the vertices that correspond to an initial state in ι, to check if the
minimum value of a play from any of them is lower (or lower or equal for the
non-strict case) than ν. If such a play π exists, then f−1(π) is an infinite walk
starting from an initial state whose value is lower (or equal) than ν, hence A is
not empty w.r.t. infinite words. Otherwise, there is no infinite run with value
lower (or equal) than ν, meaning that A is not empty w.r.t. infinite words.

For nonemptiness with respect to finite words, we cannot directly use the
aforementioned game solution, as it relies on the convergence of the values in the
limit. However, for the nonemptiness with respect to strict inequality, we can
reduce the finite-words case to the infinite-words case: If there exists an infinite
word w such that A(w) is strictly smaller than the threshold, the distance
between them cannot be compensated in the infinity, implying the existence of
a finite prefix that also has a value smaller than the threshold; As for the other
direction, we add to every state a 0-weight self loop, causing a small-valued
finite word to also imply a small-valued infinite word.

Theorem 36. The nonemptiness problem of NMDAs w.r.t. finite words and
strict inequality is in PTIME.

Proof. Let A = 〈Σ, Q, ι, δ, γ, ρ〉 be an NMDA and ν ∈ Q a threshold. We will
construct in polynomial time an NMDA A′ = 〈Σ, Q∪ ι×{1}∪{q∞}, ι×{1}, δ∪
δ′ ∪ δ′′, γ ∪γ′ ∪γ′′, ρ∪ρ′ ∪ρ′′〉, such that A′ is empty(<) with respect to infinite
words if and only if A is empty(<) with respect to finite words, getting from
Theorem 35 the required result.

The construction duplicates all the initial states of A and adds a new state
q∞. The new transitions are:

• δ′ =
{(

(q, 1), σ, q′
) ∣∣ q ∈ ι, σ ∈ Σ, (q, σ, q′) ∈ δ

}
;

γ′ : δ′ → Q such that γ′
(
(q, 1), σ, q′

)
= γ(q, σ, q′);

ρ′ : δ′ → N \ {0, 1} such that ρ′
(
(q, 1), σ, q′

)
= ρ(q, σ, q′).
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• δ′′ = {(q, τ, q∞)
∣∣ q ∈ Q} ∪ {(q∞, σ, q∞)

∣∣ σ ∈ Σ} for some letter τ ∈ Σ;

γ′′ : δ′′ → Q such that γ′′ ≡ 0;

ρ′′ : δ′′ → N \ {0, 1} for any arbitrary discount factors.

Observe that for every finite word u ∈ Σ+ we have that A′(u · τω) ≤ A(u),
since for every run of A on u there is an equivalent run of A′ on u that has the
same value.

If A is not empty(<) w.r.t. finite words, there exists u ∈ Σ+ such that
A(u) < ν. Hence A′(u · τω) ≤ A(u) < ν. Concluding that A′ is not empty(<)
w.r.t. infinite words.

For the other direction, if A′ is not empty(<) w.r.t. infinite words, there
exists w ∈ Σω such that A′(w) < ν. Let r be the run of A′ on w that entails
the minimum value. Assume r contains some transitions from δ′′. Let r′ be the
maximal prefix run of r that contains only transitions form δ and δ′. Since all
the transitions in δ′′ are targeted in q∞ and have a weight of 0, we get that
A′(r′) = A′(r) < 0. By changing the first transition of r′ from

(
(q, 1), σ, q′

)
to

(q, σ, q′) we get a run of A on a finite prefix of w with the same value of A′ on
r, which is a value strictly less than ν. Meaning that there exists v ∈ Σ+ such
that A(v) < ν, which is our claim. Otherwise, r contains only transitions from
δ and δ′. changing its first transition

(
(q, 1), σ, q′

)
to (q, σ, q′) results in a run

of A on w with the same value strictly less than ν.
We will now show that if the value of A on some infinite word w is less than

ν then there exists a prefix of w for which the value of A is also less than ν.
Denote ε = ν−A(w). Let W be the maximal absolute value of A on any infinite
word, and λ the minimal discount factor in A.

Observe that there exists nε ∈ N such that W
λnε < ε and consider the run

rnε = r[0..nε − 1] of A on the finite word u = w[0..nε − 1]. We will show that
after reaching δ(rnε), if A(rnε) is not smaller than ν, then the weight of the
suffix A(r[nε..∞]) reduced by the accumulated discount factor ρ(rnε) will be
too small to compensate, resulting in A(r) ≥ ν.

Observe that |Aδ(u)(w[nε..∞])| ≤W < ε · λnε and ρ(rnε) ≥ λnε , resulting in

1
ρ(rnε ) ≤

1
λnε and

|Aδ(u)(w[nε..∞])|
ρ(rnε ) < ε.

And finally,

ν − ε = A(w) = A(r) = A(rn) +
Aδ(u)

(
w[nε..∞]

)
ρ(rn)

≥ A(rn)−
∣∣Aδ(u)(w[nε..∞])

∣∣
ρ(rnε)

> A(rn)− ε ≥ A(u)− ε

Meaning that ν > A(u) and A is not empty(<) with respect to finite words.

For nonemptiness with respect to finite words and non-strict inequality, we
cannot use the construction used in Theorem 36, since its final part is inade-
quate: It is possible to have an infinite word with value that equals the threshold,
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while every finite prefix of it has a value strictly bigger than the threshold. We
thus use a different approach. Instead of using linear programming to calculate
the minimal value of an infinite run starting in every state (as in [2]), we use
linear programming to calculate the minimal value of a finite run ending in
every state.

Theorem 37. The nonemptiness problem of integral NMDAs w.r.t. finite words
and non-strict inequality is in PTIME.

Proof. Consider an integral NMDA A = 〈Σ, Q, ι, δ, γ, ρ〉 and a threshold ν.
For every finite run r of A, we define its normalized difference from ν as
the accumulated discount factor multiplied by the difference, meaning ∆(r) =
ρ(r)

(
A(r)− ν

)
. For every state q ∈ Q, we define its minimal normalized differ-

ence from ν as the minimal normalized difference among all finite runs that end
in q, meaning, ∆(q) = inf{∆(r) | δ(r) = q} = inf(Dq).
A is not empty w.r.t. finite words and non-strict inequality iff there exists a

run r such that ∆(r) ≤ 0. We will show that for every state q ∈ Q such that
∆(q) ≤ 0, there exists a finite run r of A ending in q such that ∆(r) ≤ 0, and
combine it with the trivial opposite direction to conclude that A is not empty
iff there exists q ∈ Q such that ∆(q) ≤ 0. Consider a state q ∈ Q,

• If ∆(q) = −∞, then by the definition of ∆(q), for every x < 0 there exists
a run r ending in q such that ∆(r) < x.

• If ∆(q) = x ∈ Q, then for every ε > 0 there exists a run rε ending in q
such that ε > ∆(rε)− x ≥ 0. Since we are dealing with integral discount
factors, every normalized difference of a run is of the form k

d , where k ∈ N
and d is the common denominator of the weights in γ and ν. We will show
that the infimum of the set Dq is its minimum, since every element of Dq

can have only discrete values.

Let kx ∈ N be the minimal integer such that kx
d ≥ x, meaning kx = dx · de,

and observe that for every run r ending in q we have ∆(r) ≥ kx
d , leading

to ∆(r)− x ≥ kx
d − x. Since this different needs to be arbitrary small, we

get that kx
d − x = 0. For every run r ending in q we have that ∆(r) − x

is 0 or at least 1
d . And since this difference needs to be arbitrary small, it

must be 0 for some of those runs. Hence, there exists a run r ending in q
such that ∆(r) = x.

We will now show a linear program that calculates the value of ∆(q) for
every q ∈ Q, or determines that there exists some q ∈ Q such that ∆(q) < 0.
For simplicity, we assume that all the states in A are reachable (since otherwise,
one can create in polynomial time an equivalent integral NMDA for which all
states are reachable). Let Qin be the set of all states that have an incoming
transition, and n its size, meaning Qin = {q ∈ Q | ∃(p, σ, q) ∈ δ} = {q1, · · · , qn}.
Our linear program is over the variables x1, x2, · · · , xn, such that if there exists
a feasible solution to the program, meaning a solution that satisfies all the con-
straints, then 〈∆(q1),∆(q2), . . . ,∆(qn)〉 is its maximal solution, and otherwise
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there exists a state q such that ∆(q) < 0. For the first case, after finding the
minimal normalized difference from ν for every state in Qin, we can check if any
of them equals to 0, and for the other case we can immediately conclude that
A is not empty.

For defining the linear program, we first make the following observations.
For every t = (qi, σ, qj) ∈ δ s.t. qi ∈ ι, we have ∆(t) = ρ(t) ·

(
γ(t)− ν

)
, and for

every run r of length |r| = m > 1 we have

∆(r) = ρ(r) ·
(
A(r)− ν

)
= ρ
(
r[0..m− 2]

)
ρ
(
r(m− 1)

)
·
(
A
(
r[0..m− 2]

)
+

γ
(
r(m− 1)

)
ρ
(
r[0..m− 2]

) − ν)
= ρ
(
r(m− 1)

)
·
(

∆
(
r[0..m− 2]

)
+ γ
(
r(m− 1)

))
Hence, 〈x1, x2, . . . , xn〉 = 〈∆(q1),∆(q2), . . . ,∆(qn)〉 must satisfy the following
system of equations:

1. xj ≤ ρ(t) ·
(
γ(t)− ν

)
for every t = (qi, σ, qj) ∈ δ s.t. qi ∈ ι.

2. xj ≤ ρ(t) ·
(
γ(t) + xi

)
for every t = (qi, σ, qj) ∈ δ s.t. qi ∈ Qin.

These equations have a single maximal solution 〈x∗1, · · · , x∗n〉 such that for
any solution 〈a1, · · · , an〉 and 1 ≤ i ≤ n, we have x∗i ≥ ai . To see that
〈∆(q1), . . . ,∆(qn)〉 is indeed the unique maximal solution, if such exists, consider
a solution 〈a1, · · · , an〉, a state qi ∈ Qin and a run r such that δ(r) = qi and
∆(r) = ∆(qi). For every 0 ≤ j < |r|, let qij be the target state after the j-
sized prefix of r, meaning qij = δ

(
r[0..j]

)
. We will show by induction on j that

aij ≤ ∆(r[0..j]) to conclude that ai = ai|r|−1
≤ ∆(r[0..|r| − 1]) = ∆(r) = ∆(qi):

• For the base case, we have ai0 ≤ ρ
(
r(0)

)(
γ(r(0))− ν

)
= ∆

(
r(0)

)
.

• For the induction step,

aij ≤ ρ
(
r(j)

)
·
(
γ
(
r(j)

)
+ aij−1

)
≤ ρ
(
r(j)

)
·
(
γ
(
r(j)

)
+ ∆

(
r[0..j − 1]

))
= ∆

(
r[0..j]

)
The implicit constraint of non-negative values for the variables of the linear

program, meaning xi ≥ 0 for every 1 ≤ i ≤ n, handles the case of a possible
divergence to −∞. With these constraints, if there exists q ∈ Q such that
∆(q) < 0, then the linear program has no feasible solution, and this case will
be detected by the algorithm that solves the linear program.

Meaning that the problem can be stated as the linear program: maximize∑n
i=0 xi subject to Items 1 and 2 and xi ≥ 0 for every 1 ≤ i ≤ n.

We continue with the PSPACE-complete problems, to which we first provide
hardness proofs, by reductions from the universality problem of NFAs, known
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q0 q1 ⇒ q0, 1 q0 q1

qacc

a

a

a,− 1
2

a,− 1
2

a, 1
2

a,−1

a, 1

Figure 21: An example of the reduction defined in the proof of Lemma 38.

to be PSPACE-complete [32]. Notice that the provided hardness results already
stand for integral NDAs, not only to tidy NMDAs.

PSPACE-hardness of the containment problem for NDAs with respect to
infinite words and non-strict inequalities is shown in [4]. We provide below
more general hardness results, considering the equivalence problem, first with
respect to finite words and then with respect to infinite words, as well as the
exact-value, universality(≤) and universality(<) problems with respect to finite
words.

Lemma 38. The equivalence and universality(≤) problems of integral NDAs
w.r.t. finite words are PSPACE-hard.

Proof. Given an NFA A = 〈Σ, Q,Q0,∆, F 〉, we construct in polynomial time an
NDA B with discount factor 2, such that B never gets a negative value, and A
is universal if and only if B is equivalent to a 0 NDA, namely to an NDA that
gets a value of 0 on all finite words. For simplicity, we ignore the empty word
and words of length 1, whose acceptance is easy to check in A.

Intuitively, B will have the same structure as A, and the assigned weights
on the transitions will guarantee that the value of B on every word u is 1

2|u|
. In

addition, we have in B a new “good” state qacc, and for every original transition
t to an accepting state q ∈ F , we add in B a new “good” transition t′ to qacc,
such that the weight on t′ allows B to have a value of 0 on a word u on which
there is a run on u ending in q. Finally, we add a “bad” transition out of qacc,
such that its weight ensures a total positive value, in the case that B continues
the run out of qacc. (Example in Fig. 21.)

Formally, we construct a 2-NDA (with discount factor 2) B = 〈Σ, Q ∪Q0 ×
{1} ∪ {qacc}, Q0 × {1},∆ ∪ δB, γB〉, where

• δB =
{(

(q, 1), σ, q′
)
} | (q, σ, q′) ∈ ∆

}
∪{

(q, σ, qacc) | exist q′ ∈ F and (q, σ, q′) ∈ ∆
}
∪{

(qacc, σ, qacc) | σ ∈ Σ
}

.

• γB:

– For every t =
(
(q, 1), σ, q′

)
∈ δB, we have γB(t) = 1

2 .

– For every t ∈ ∆, we have γB(t) = − 1
2 .
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– For every t = (q, σ, qacc) ∈ δB, we have γB(t) = −1.

– γB
(
(qacc, σ, qacc)

)
= 1.

Observe that by the construction of B, for every word w, B(w) ≥ 0. Hence,
B is equivalent to a 0 NDA iff it is universal(≤) with respect to the thresh-
old 0. Meaning that the same reduction shows the PSPACE-hardness of the
universality(≤) with respect to infinite words.

Lemma 39. The equivalence and universality(≤) problems of integral NDAs
w.r.t. infinite words are PSPACE-hard.

Proof. Similarly to the proof of Lemma 38, we construct in polynomial time
an NDA B with discount factor 2, such that the input NFA is universal if and
only if B is equivalent to a 0 NDA with respect to infinite words. Also in this
reduction, no negative values of words will be possible, so it is also valid for
showing the PSPACE-hardness of the universality(≤) problem. The reduction
is similar to the one provided in the proof of Lemma 38, with intuitively the
following adaptations of the constructed NDA B to the case of infinite words:
We add a new letter # to the alphabet, low-weighted #-transitions from the
accepting states, and high-weighted #-transitions from the non-accepting states.

By this construction, the value of B on an infinite word u · # · w, where u
does not contain #, will be 0 if and only if A accepts u.

Notice that the value of B on an infinite word that does not contain # is
also 0, as it is limn→∞

1
2n .

Formally, given NFA A = 〈Q,Σ,∆, Q0, F 〉, we construct a 2-NDA B =
〈Σ ∪ {#}, Q ∪Q0 × {1} ∪ {q∞}, Q0 × {1},∆ ∪ δB, γB〉 where

• # /∈ Σ is a new letter.

• δB =
{(

(q, 1), σ, q′
)
} | (q, σ, q′) ∈ ∆

}
∪{

(q,#, q∞) | q ∈ Q
}
∪{(

(q, 1),#, q∞
)
| q ∈ Q

}
∪{

(q∞, τ, q∞) | τ ∈ Σ ∪ {#}
}

.

• γB:

– For every t =
(
(q, 1), σ, q′

)
∈ δB, we have γB(t) = 1

2 .

– For every t ∈ ∆, we have γB(t) = − 1
2 .

– For every t1 = (q,#, q∞) ∈ δB or t2 =
(
(q, 1),#, q∞

)
∈ δB, such that

q ∈ F , we have γB(t1) = −1 and γB(t2) = 0. Those transitions assure
that for every u ∈ Σ∗ that A accepts, there exists a run of B on u#,
ending in q∞ with a value of 0.

– For every t1 = (q,#, q∞) ∈ δB or t2 =
(
(q, 1),#, q∞

)
∈ δB, such that

q ∈ Q \ F , we have γB(t1) = 0 and γB(t2) = 1.

– γB
(
(q∞, τ, q∞)

)
= 0.
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q0 q1 ⇒ q0 q1

q∞

q0, 1

a

a

a,− 1
2

a,− 1
2

a, 1
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#, 0
#,−1#, 1

a, 0
#, 0

Figure 22: An example of the reduction defined in the proof of Lemma 39.

An example of the construction is given in Fig. 22.
Observe that for every infinite word w ∈ Σω, we have B(w) = limn→∞

1
2n =

0. In addition, for every finite word u ∈ Σ∗ and infinite word w ∈ (Σ ∪ {#})ω,
we have B(u ·# ·w) = 0⇔ there exists a run of B on u ·# with a final transition
(p,#, q∞) or

(
(p, 1),#, q∞

)
such that p ∈ F ⇔ there exist p ∈ F and a run of

A on u with p as the final state ⇔ u ∈ L(A). Hence A is universal iff B ≡ 0.
Also, for every finite word u ∈ Σ∗ and infinite word w ∈ (Σ ∪ {#})ω, we

have B(u ·# · w) ≤ 0 ⇔ u ∈ L(A). Hence A is universal iff B is universal with
respect to the threshold 0, non-strict inequality and infinite words.

Lemma 40. The universality(<) and exact-value problems of integral NDAs
w.r.t. finite words are PSPACE-hard.

Proof. Similarly to the proof of Lemma 38, we show a polynomial reduction
from the problem of NFA universality to the problems of NDA universality and
exact-value. The reduction is similar to the one provided in the proof of
Lemma 38, yet changing the transition weights in the constructed NDA B, such
that for every finite word u, we have B(u) < 0 if and only if A accepts u, and
B(u) = 0 otherwise. This provides reductions to both the universality(<) and
exact-value problems.

Formally, given an NFA A = 〈Q,Σ,∆, Q0, F 〉, we construct a 2-NDA B =
〈Σ, Q ∪ {qacc, q∞}, Q0,∆ ∪ δB, γB〉 where:

• δB =
{

(q, σ, qacc) | exist q′ ∈ F and (q, σ, q′) ∈ ∆
}
∪{

(qacc, σ, q∞) | σ ∈ Σ
}
∪{

(q∞, σ, q∞) | σ ∈ Σ
}

.

• γB:

– For every t ∈ ∆, we have γB(t) = 0.

– For every t = (q, σ, qacc) ∈ δB, we have γB(t) = −1. These transitions
ensure that if a word w is accepted in A, then there exists a run of
B on w with a negative value.
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q0 q1 ⇒ q0 q1 qacc q∞

a

a

a, 0

a, 0
a,−1

a, 2

a, 0

Figure 23: An example of the reduction defined in the proof of Lemma 40.

– For every σ ∈ Σ, we have γB
(
(qacc, σ, q∞)

)
= 2.

These transitions ensure that only runs that “exit” the original struc-
ture of A in the finial transition, will result in a negative value. The
weight of 2, reduced by the fixed discount factor of 2, exactly com-
pensates on the negative weight that was added in the transition that
entered qacc.

– For every σ ∈ Σ, we have γB
(
(q∞, σ, q∞)

)
= 0.

These transitions ensure that a run entering q∞ will maintain the
exact same value for every suffix walk added to it.

An example of the construction is given in Fig. 23.
Observe that the only negative weights in B are on the transitions entering

qacc, and only a single one of them can be part of every run. All the runs not
entering qacc have a value of 0, and all the runs passing in qacc in a transition
that is not the final one will also have a value of 0.

For every finite word w ∈ Σ+, we have that w ∈ L(A) ⇔ there exist q ∈ Q,
p ∈ F and a run r of A on w with a final transition (q, σ, p)⇔ there exist q ∈ Q
and a run r′ of B on w with a final transition (q, σ, qacc) ⇔ there exists a run r′

of B on w such that B(r′) < 0 ⇔ B(w) < 0 ⇔ B(w) 6= 0.
Hence A is universal iff B is universal(<) with respect to finite words and

the threshold ν = 0 . Also, A is universal iff there is no finite word w such that
B(w) = 0.

Another special case left to handle is the empty word ε, but this can be
easily verified before constructing B by checking if F ∩Q0 6= ∅.

Notice that the proof of Lemma 40 does not easily extend to the infinite-
words setting, as Lemma 38 was adapted into Lemma 39, since the convergence
of the values in the constructed NDA B to 0 interfere with the strict inequality.

We continue with the PSPACE upper bounds. The containment problem
of NDAs was proved in [4] to be in PSPACE, using comparators to reduce the
problem to language inclusion between Büchi automata. Our approach for the
containment problem of NMDAs is different, and it also improves the complexity
provided in [4] for NDAs (having a single discount factor), as we refer to binary
representation of weights, while [4] assumes unary representation.3

3Rational weights are assumed to have a common denominator, both by us and by [4],
where in the latter it is stated implicitly, by providing the complexity analysis with respect
to transition weights that are natural numbers.
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Our algorithm for solving the containment problem between θ-NMDAs A
and B is based on performing the determinization of B on-the-fly into a DMDA
D, as suggested in [4], and simulating on the fly a θ-NMDA for the difference
between A and D. We then non-deterministically guess a run r that witnesses
a negative value of the difference automaton, while ensuring that the entire
process only uses space polynomial in the size of the input automata. For
meeting this space requirement, after each step of the run r, the algorithm
maintains a local data consisting of the current state of A, the current state of
D and a “normalized difference” between the values of the runs of A and D on
the word generated so far. When the normalized difference goes below 0, we
have that the generated word w is a witnesses for A(w) < D(w), when it gets to
0 we have a witness for A(w) = D(w), and when it exceeds a certain maximal
recoverable difference, which is polynomial in |A| + |B|, no suffix can be added
to w for getting a witness.

Theorem 41. For every choice function θ, the containment problem of θ-
NMDAs w.r.t. finite words is PSPACE-complete for both strict and non-strict
inequalities.

Proof. PSPACE hardness directly follows from Lemmas 38 and 40.
We provide a PSPACE upper bound. Consider a choice function θ, and

θ-NMDAs A = 〈Σ, QA, ι, δA, γA, ρA〉 and B. We have that

∀w.A(w) > B(w)⇔6 ∃w.A(w) ≤ B(w)⇔6 ∃w.A(w)− B(w) ≤ 0

and
∀w.A(w) ≥ B(w)⇔6 ∃w.A(w) < B(w)⇔6 ∃w.A(w)− B(w) < 0

We present a nondeterministic algorithm that determines the converse of
containment, namely whether there exists a word w such that A(w) − B(w) ≤
0 for continament(>) or A(w) − B(w) < 0 for continament(≥), while using
polynomial space w.r.t. |A| and |B|, to conclude that the problems are in co-
NPSPACE and hence in PSPACE.

Let D = 〈Σ, QD, {p0}, δD, γD, ρD〉 be a θ-DMDA equivalent to B, as per
Theorem 11. Observe that the size of D can be exponential in the size of B,
but we do not save it all, but rather simulate it on the fly, and thus only save
a single state of D at a time. We will later show that indeed the intermediate
data we use in each iteration of the algorithm only requires a space polynomial
in |A| and |B|.
Containment(≥).

For providing a word w ∈ Σ+, such that A(w)− B(w) < 0, we nondeter-
ministically generate on the fly a word w, a run rw of A on w, and the single
run of D on w, such that A(rw) − B(w) = A(rw) − D(w) < 0. Observe that
A(w) ≤ A(rw), hence the above condition is equivalent to A(w)− B(w) < 0.

Let MA, MB, and MD be the maximal absolute weights in A, B, and D,
respectively.

We start by guessing an initial state qin of A and setting a local data stor-
age of 〈qin, p0, 0〉. The local data will maintain the current state of A and D

64



respectively, and a “normalized difference” between the value of the run in A
generated so far and the value of D on the word generated so far, as formalized
below. The algorithm iteratively guesses, given a local data 〈q, p, d〉, a letter
σ ∈ Σ and a transition t = (q, σ, q′) ∈ δA(q, σ), and calculates the normalized
difference d′ = ρA(t)

(
d+γA(t)−γD(p, σ)

)
between the values A(rw) and B(w),

w.r.r. the word w and the run rw generated so far. If d′ is bigger than the
maximal recoverable difference 2S, where S = MA + 3MB, we abort, if d′ < 0,
we have that the generated word w indeed witnesses that A(w) < D(w) (the
accept condition holds), and otherwise we continue and update the local data
to 〈q′, δ(p, σ), d′〉. Observe that by the construction in the proof of Theorem 11,
for every weight W in D we have that |W | ≤ 2T + MB ≤ 3MB, where T is
the maximal difference between the weights in B. Hence S > MA + MD is
polynomial w.r.t. |A| and |B|, and can be calculated in polynomial space w.r.t.
|A| and |B|.

We show by induction on the length of the word w that whenever a word w
and a run rw are generated, the value d in the corresponding local data 〈q, p, d〉
indeed stands for the normalized difference between A(rw) and D(w), namely

d = ρA(rw)
(
A(rw)−D(w)

)
(38)

For the base case we have a single-letter word w = σ, and a single-transition
run rw = t. Hence, d′ = ρA(t)

(
d + γA(t) − γD(p, σ)

)
= ρA(rw)

(
0 + A(rw) −

D(w)
)

= ρA(rw)
(
A(rw)−D(w)

)
.

For the induction step, consider an iteration whose initial local data is
〈q, p, d〉, for a generated word w and run rw, that guessed the next letter σ
and transition t, and calculated the next local data 〈q′, p′, d′〉. Then we have
d′ = ρA(t)

(
d+ γA(t)− γD(p, σ)

)
. By the induction assumption, we get:

d′ = ρA(t)
(
ρA(rw)

(
A(rw)−D(w)

)
+ γA(t)− γD(p, σ)

)
= ρA(rw)ρA(t)

(
A(rw) +

γA(t)

ρA(rw)
−D(w)− γD(p, σ)

ρA(rw)

)
= ρA(rw · t)

(
A(rw · t)−

(
D(w) +

γD(p, σ)

ρA(rw)

))
,

and since the discount-factor functions of A and D both agree with θ, we have

d′ = ρA(rw · t)
(
A(rw · t)−

(
D(w) +

γD(p, σ)

ρD(w)

))
= ρA(rw · t)

(
A(rw · t)−D(w · σ)

)
,

which provides the required result of the induction claim.
Next, we show that the accept condition holds iff there exist a finite word

w and run rw of A on w such that A(rw) − D(w) < 0. Since for every finite
word w we have ρA(w) > 0, we conclude from Eq. (38) that if d′ < 0 was
reached for a generated word w and a run rw, we have that A(rw)−D(w) < 0.
For the other direction, assume toward contradiction that there exist finite
word w and run rw of A on w such that A(rw) − D(w) < 0, but the algo-
rithm aborts after generating some prefixes w[0..i] and rw[0..i]. Meaning that
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ρA(rw[0..i])
(
A(rw[0..i])−D(w[0..i])

)
> 2MA+2MD. LetW1 = A(rw[i+1..|rw|−

1]) and W2 = DδD(w[0..i])(w[i+ 1..|rw| − 1]). Observe that

0 > A(rw)−D(w) > ρA
(
rw[0..i]

)(
A(rw)−D(w)

)
= ρA

(
rw[0..i]

)
A
(
rw[0..i]

)
+W1 −

(
ρA(rw[0..i])D(w[0..i]) +W2

)
> 2MA + 2MD +W1 −W2

But since all the discount factors applied by θ are greater or equal to 2, we have
that |W1| ≤ 2MA and |W2| ≤ 2MB, leading to a contradiction.

To see that the algorithm indeed only uses space polynomial in |A| and |B|,
observe that the first element of the data storage is a state of A, only requiring
a space logarithmic in |A|, the second element is a state of D, requiring by
Theorem 11 a space polynomial in B, and the third element is a non-negative
rational number bounded by 2S, whose denominator is the multiplication of
the denominators of the weights in A and D, and as shown in the proof of
Theorem 11, also of the multiplication of the denominators of the weights in
A and B, thus requires a space polynomial in |A| and |B|. Finally, in order to
compute this third element, we calculated a weight of a transition in D, which
only requires, by the proof of Theorem 11, a space polynomial in |B|.
Containment(>).

The algorithm is identical to the one used for the containment(≥) problem
with changing the accept condition d′ < 0 to d′ ≤ 0. This condition is met iff
there exists a finite word w such that A(w)− B(w) ≤ 0. The proof is identical
while modifying “< 0” to “≤ 0” in all of the equations.

The algorithm for determining containment(≥) in the infinite-words settings
is similar to the one presented for finite words, with the difference that rather
than witnessing a finite word w, such that A(w)−B(w) < 0, we witness a finite
prefix u (of an infinite word w), such that the normalized difference between
A(u) and B(u) (taking into account the accumulated discount factor on u) is
bigger than some fixed threshold.

Theorem 42. For every choice function θ, the containment problem of θ-
NMDAs w.r.t. infinite words and non-strict inequality is PSPACE-complete.

Proof. PSPACE hardness directly follows from Lemma 39.
We provide a PSPACE upper bound. Consider a choice function θ, and

θ-NMDAs A and B. Analogously to the proof of Theorem 41, we present a
nondeterministic algorithm that determines whether there exist a word w and
a run rw of A on w, such that A(rw) − B(w) < 0, and thus A(w) − B(w) < 0.
The algorithm uses polynomial space w.r.t. |A| and |B|, which shows that the
problem is in co-NPSPACE and hence in PSPACE.

The algorithm is identical to the one presented in the proof of Theorem 41,
with the only difference that the condition for an infinite word w such that
A(w)− B(w) < 0 is that we generated a finite word u and a run ru of A on u,
that resulted in a local data with normalized difference d < −2S. We will use
the same notations as in the proof of Theorem 41.
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Observe that for any infinite word w and infinite walks (ψ1, ψ2) of (A,D) on
w from any state in (A,D), we have that 2S = 2MA + 2MD ≥ A(ψ1)−D(ψ2).

If −2S > d = ρA(ru)(A(ru)−D(u)) was reached for a generated finite word
u, and a run ru of A on u, then for any infinite suffix word w and a walk ψ1 of
A on w starting at δA(ru), we have that

0 = −2S + 2S >
(
ρA(ru)

(
A(ru)−D(u)

))
+
(
A(ψ1)−D(ψ2)

)
where ψ2 is the walk of A on w starting at δD(u). Hence,

0 > A(ru) +
A(ψ1)

ρA(ru)
−
(
D(u) +

D(ψ2)

ρA(ru)

)
≥ A(ru · ψ1)−D(u · w)

≥ A(u · w)−D(u · w)

For the other direction, assume that there exists an infinite word w ∈ Σω

such that A(rw)−D(w) = −ε < 0, where rw is a run of A on w that entails the
minimum value. By an observation similar to the one presented in the proof of
Theorem 41, we conclude that whenever a word prefix w[0..i] and a run rw[0..i]
are generated, the algorithm does not fulfill the abort condition.

It is only left to show that there exist prefixes of w and rw that result with
d < −2S. Indeed, we have that there exists n1 ∈ N such that for every i ≥ n1

we have A(rw[0..i])−D(w[0..i]) < − ε
2 and there exists n2 ∈ N such that for

every i ≥ n2 we have − ε
2 < −

2S
ρ(w[0..i]) . Hence for n = max{n1, n2} we have

A(rw[0..n])−D(w[0..n]) < − ε
2 < −

2S
ρ(w[0..n]) , meaning that the algorithm

will accept when w[0..n] and rw[0..n] are generated.
As for the space analysis, the arguments presented in the proof of Theorem 41

also apply to the current algorithm, as the only relevant difference is that the
third element in the data storage is now a rational number bounded by 2S
and −2S, thus requiring double the space that was considered in the proof of
Theorem 41, and hence remaining polynomial in |A| and |B|.

To find a witness for strict non-containment in the infinite-words setting, we
adapt the above proof, by adding an accept condition for detecting convergence
of the difference between the two automata values to the threshold value, which
is the existence of a cycle with the same normalized difference.

Theorem 43. For every choice function θ, the containment problem of θ-
NMDAs w.r.t. infinite words and strict inequality is in PSPACE.

Proof. We use the same algorithm as in Theorem 42 with adding a new accept
condition, which will identify the existence of an infinite word w and a run rw of
A on w, such that 0 = A(rw)−B(w). This new condition is reaching the same
couple of states in A and D twice with the same value of normalized difference d.
Our NPSPACE algorithm can check this condition by guessing states qacc ∈ QA,
pacc ∈ QD and a normalized difference dacc, setting a flag when 〈qacc, pacc, dacc〉
is reached while the flag was clean, and accepting if it is reached while the flag
was set.
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If the condition is met after generating some prefix word and a run of A on
that word, we have cycles in both A and D for the same suffix word, leading
to the same normalized difference. Meaning that there exist finite words u and
v, a run ru of A on u and a walk ψv of A on v starting at δA(ru), such that
for every i ∈ N, according to Eq. (38), we have dacc

ρ(u·vi) = A(ru · ψiv)−D(u · vi).
Hence

0 = lim
i→∞

dacc
ρ(u · vi)

= lim
i→∞

A(ru · ψiv)−D(u · vi)

resulting in A(u · vω) ≤ A(ru · ψωv ) = B(u · vω).
For the other direction, we show that if there exist an infinite word w and

a run rw of A on w such that B(w) = A(rw), then the new accept condi-
tion is met for some 〈qacc, pacc, dacc〉. Consider such w and rw and observe
that similarly to the analysis shown in the proof of Theorem 41, the normal-
ized difference between the value of every prefix of rw and the value of the
same sized prefix of the single run of D on w, never exceeds the maximal re-
coverable difference. Hence, for every finite prefix w[0..i] of w, we have that
di = ρ(w[0..i])

(
A(rw[0..i]) − D(w[0..i])

)
. The representation of d is bounded

by a polynomial value with respect to |A| and |B|, hence it is finite. Also, A
and D have finitely many states, meaning that there exist j 6= k ∈ N, such
that δA(rw[0..j]) = δA(rw[0..k]) = qacc, δD(w[0..j]) = δD(w[0..k]) = pacc, and
dj = dk = dacc. Hence the accept condition is met when the (max{j, k})-sized
prefixes of w and rw are generated.

Combined with the results shown in the proof of Theorem 42, we conclude
that there exist an infinite word w and a run rw of A on w, such that A(rw)−
B(w) ≤ 0 iff one of the accept conditions is met.

A PSPACE algorithm for equivalence directly follows from the fact that
A ≡ B if and only if A ≥ B and B ≥ A.

Corollary 44. The equivalence problem of tidy NMDAs is PSPACE-complete.

We continue with the universality problems which are special cases of the
containment problems.

Theorem 45. The universality problems of tidy NMDAs are in PSPACE.
The universality(<) w.r.t. finite words, universality(≤) w.r.t. finite words, and
universality(≤) w.r.t. infinite words are PSPACE-hard.

Proof. We will show that the universality problems of tidy NMDAs are in
PSPACE. Hardness directly follows from Lemma 40 for universality(<) with
respect to finite words, from Lemma 38 for universality(≤) with respect to fi-
nite words, and from Lemma 39 for universality(≤) with respect to infinite
words.

Consider a tidy NMDA B, and a threshold ν. The universality(<) is a spe-
cial case of the containment(>) problem, replacing the automaton A of the
containment problem with a constant function that returns ν. Similarly, the
non-strict universality is a special case of the non-strict containment. Accord-
ingly, the algorithms for solving those problems are identical to the proofs of
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Theorems 41 to 43, with changing all the references to the automaton A with a
“virtual” automaton implementing the constant function ν. For that purpose,
the local data will be initialized with a normalized difference of d = ν (instead
of 0), and when updated, we replace the addition of γA(t) with 0, i.e., hav-
ing d′ = ρA(t)(d + 0 − γD(p, σ)). The maximal recoverable distance S will be
calculated using MA = 0.

The space requirement analysis is identical to Theorem 41 with omitting the
analysis of A.

Theorem 46. The exact-value problem of tidy NMDAs is in PSPACE (and
PSPACE-complete w.r.t. finite words).

Proof. Consider a tidy NMDA B and a threshold ν. The procedures for checking
the existance of a words w such that B(w) = ν are similar to the procedures
used in Theorems 41 and 43 for the containment(>) problems, with replacing
the automaton A with a “virtual” NMDA for the constant function ν, as in
the proof of Theorem 45, and using only the accept conditions that determines
ν − B(w) = 0. For the fininte words case, the accept condition is generating
a word that its normalized difference is d = 0. An analysis similar to the one
showed in the proof of Theorem 41, with replacing “< 0” in the equations with
“= 0”, proves the correctness.

For the infinite words case, the accept condition is the one presentented in
the proof of Theorem 43, which determines the convergence to ν. In the proof
of Theorem 43 we showd that this accept condition determines the existence of
an infininte word w such that ν − B(w) = 0.

In both problems we also abort if the normalized difference gets below −2S,
to preserve the polynomial space usage.

Hardness with respect to finite words directly follows from Lemma 40.

5.3 Nonemptiness, Universality, Equivalence, and Con-
tainment of integral DMDAs

We show that the nonemptiness, universality, equivalence, and containment
problems of integral DMDAs are in PTIME, since we can reduce them to the
non-emptiness problems of integral NMDAs which are in PTIME.

Theorem 47. The non-emptiness, containment, equivalence and universality
problems of integral DMDAs are in PTIME for both finite and infinite words.

Proof. The complexity of the non-emptiness problem directly follows from The-
orems 35 to 37.

We will now show that the containment problems are special cases of the
emptiness problems when swapping the strictness of the problem (“>” becomes
“≤” and “≥” becomes “<”). Consider integral DMDAs A and B. According
to Theorem 13, we can construct an integral DMDA C ≡ A− B in linear time.
Observe that for all words w, A(w) > B(w) ⇔ for all words w, C(w) > 0 ⇔
there is no word w s.t C(w) ≤ 0. Meaning that A is contained(>) in B iff C is
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empty(≤) with respect to the threshold 0. Similarly, A is contained(≥) in B iff
C is empty(<) with respect to the threshold 0.

Equivalence is a special case of containment(≥) as in Corollary 44, and the
universality problems are special cases of the containment problems when setting
B to be the input DMDA and A to be a constant DMDA that gets the value of
the input threshold on every word.

Observe that since Theorems 35 and 36 are also valid for general NMDAs,
with not necessarily integral discount factors, the results of Theorem 47 are also
valid for general DMDAs, in all the problems with respect to infinite words,
and in the problems of non-emptiness(<), containment(≥), universality(≤) and
equivalence w.r.t. finite words.

6 Conclusions and Future Work

The measure functions most commonly used in the field of quantitative verifica-
tion, whether for describing system properties [12, 23, 31], automata valuation
schemes [8, 9, 17, 4], game winning conditions [2, 24, 37], or temporal specifica-
tions [1, 6, 22, 35], are the limit-average (mean payoff) and the discounted-sum
functions.

Limit-average automata cannot always be determinized [17] and checking
their (non-strict) universality is undecidable [24]. Therefore, the tendency is to
only use deterministic such automata, possibly with the addition of algebraic
operations on them [13].

Discounted-sum automata with arbitrary rational discount factors also can-
not always be determinized [17] and are not closed under algebraic operations
[9]. Yet, with integral discount factors, they do enjoy all of these closure prop-
erties and their decision problems are decidable [9]. They thus provide a very
interesting automata class for quantitative verification. Yet, they have a main
drawback of only allowing a single discount factor.

We define a rich class of discounted-sum automata with multiple integral
factors (tidy NMDAs) that strictly extends the expressiveness of automata with
a single factor, while enjoying all of the good properties of the latter, including
the same complexity of the required decision problems. We thus believe that tidy
NMDAs can provide a natural and useful generalization of integral discounted-
sum automata in all fields and especially in quantitative verification.

We list below several natural directions for future research.

• Containment of NMDAs with different choice functions: Our algorithms
for the containment problem of tidy NMDAs (Theorems 41 and 42) take
advantage of the special configuration that results from the fact that both
input automata have the same choice function. The algorithms cannot
be directly extended to tidy NMDAs with different choice functions, and
we conjecture that the solution for the latter might require a different
approach and a much higher complexity.
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• Lower bounds: Our lower bounds for the size blow-up involved in alge-
braic operations handled the subtraction and multiplying by −1 opera-
tions. Lower bound for the size blow-up involved in the max operation
still remains an open question. Further, to the best of our knowledge, the
exact-value problem of integral DMDAs is also currently an open question.

• Non-integral discount factors: We focused on integral NMDAs, extend-
ing the nice properties of integral NDAs. Studying non-integral NMDAs
might shed some light on the open problems of non-integral NDAs, either
toward finding a nice subclass that is closed under algebraic operations,
or better understanding the difficulty in resolving the decidability of the
universality, equivalence and containment problems, and whether it has
some relation to the tidiness property that we introduced.

• Comparator automata: Comparator automata are introduced and studied
in [4, 3, 5] for providing means to compare the aggregate values of two
sequences of quantitative weights. They are instrumental in solving de-
cision problems of quantitative automata and finding winning strategies
in quantitative games. They are currently studied for several aggregation
functions, among which are discounted summation with a single integral
discount factor. It may be interesting to study if and how comparator au-
tomata can be extended to discounted summation with multiple discount
factors.

• Netsed automata: In nested weighted automata, introduced in [20], a mas-
ter automaton spins off and collects results from weighted slave automata,
each of which computes a quantity along a finite portion of an infinite
word. The master automaton is equipped with a value function on infi-
nite sequences and the slave automata with a value function on finite se-
quences. Nested weighted automata were studied with respect to several
value functions, such as limit-average for infinite sequences and summation
for finite sequences [20, 19]. It is natural to enrich their value functions
with discounted summation, with either a single or multiple discount fac-
tors, to both finite and infinite sequences. Notice that it can be combined
with the other value functions, for example having discounted summation
for the slave automata and LimSup for infinite sequences.

• Probabilistic semantics: In [21, 33], quantitative automata are studied un-
der probabilistic semantics, where the probability distribution is given by
means of a Markov chain. Under this setting, probabilistic questions are
considered, such as the expected value of the automaton or its cummula-
tive distribution under a given threshold, rather than the classic automata
decision problems, such as emptiness and universality. Several types of
quantitative automata were studied under this setting, among which are
LimSup and LimAvg automata. It is natural to also study tidy NMDAs
under the probabilistic semantics.
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• Implementation: On the practical side, it will be interesting to implement
our decision algorithms, and compare their performance with existing al-
gorithms (which currently only address NDAs), like the ones presented in
[3, 5].
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[30] Galina Jirásková. State complexity of some operations on binary regular
languages. Theoretical Compututer Science, 330:287–298, 2005.

[31] Omid Madani, Mikkel Thorup, and Uri Zwick. Discounted deterministic
Markov decision processes and discounted all-pairs shortest paths. ACM
Transactions on Algorithms, 6(2), 2010.

[32] Albert R. Meyer and Larry J. Stockmeyer. The equivalence problem for
regular expressions with squaring requires exponential space. In proceedings
of 13th IEEE Symp. on Switching and Automata Theory, pages 125–129,
1972.

[33] Jakub Michaliszyn and Jan Otop. Non-deterministic weighted automata
evaluated over Markov chains. Journal of Computer and System Sciences,
108:118–136, 2020.

[34] William J. Sakoda and Michael Sipser. Nondeterminism and the size of
two way finite automata. In proceedings of STOC, pages 275–286, 1978.

[35] Takashi Tomita, Shin Hiura, Shigeki Hagihara, and Naoki Yonezaki. A tem-
poral logic with mean-payoff constraints. In Formal Methods and Software
Engineering, volume 7635 of LNCS, pages 249–265. 2012.

[36] Moshe Y. Vardi. Automatic verification of probabilistic concurrent finite-
state programs. In proceedings of FOCS, pages 327–338, 1985.

[37] Uri Zwick and Mike Paterson. The complexity of mean payoff games on
graphs. Theoretical Computer Science, 158:343–359, 1996.

75



 

 

 

 

לסיום אנחנו מנתחים את הקשרים   דטרמיניסטים שאינם מוגבלים בבחירת פרמטרי הפיחות.

על מנת להציג את החשיבות של כל אחת מהן: ים מסודרים, -NMDAבין המחלקות השונות של 

אף אחת מהן אינה מוכלת ממש באחרת, איחוד שתי מחלקות שונות גורם לאיבוד תכונת 

אלגבריות, והחיתוך של כל המחלקות הללו הוא בדיוק קבוצת הפונקציות  הסגירות לפעולות 

 . שערכן קבוע החל מאורך מילה סופי כלשהו

אוטומטים למילים  גם עבור עבור אוטומטים למילים סופיות וגם כל התוצאות שלנו תקפות 

 אינסופיות.

  



 

 

 תקציר 

 
בכלכלה ונמצא בשימוש נרחב במודלים  מרכזי( הוא כלי Discounted sumחישוב מופחת )

( ואוטומטים, היות והוא מגדיר  MDPמשחקים, תהליכי הכרעה מרקוביים ) כגוןבמדעי המחשב 

שבעיה פוטנציאלית בעתיד  ןאת הרעיון שרווח מיידי עדיף על רווח פוטנציאלי בעתיד הרחוק, וכ

יכול  MDPמשחק או שוד )למשל באג במערכות ראקטיביות(, מדאיגה פחות מבעיה קיימת. בע

 – NDA(, אוטומטי סכום מופחת )Discount Factorsלהכיל מספר פרמטרי פיחות )

Nondeterministic Discounted-sum Automata  נחקרו רק בהקשרים בהם ישנו פרמטר )

𝜆 עבור כל מספר שלםפיחות יחיד.  ∈ ℕ\{0,1}למחלקה של כל ה ,NDA- ים עם פרמטר

ת חישוביות טובות: המחלקה סגורה לדטרמיניזציה ותחת הפעולות  ישנן תכונו 𝜆הפיחות 

האלגבריות של מינימום, מקסימום, חיבור וחיסור. בנוסף, ישנם אלגוריתמים לבעיות ההכרעה  

היסודיות, כגון הכלה ושוויון אוטומטים, עבור האוטומטים במחלקה. הנ"ל אינו מתקיים עבור  

𝜆) פרמטרי פיחות שאינם שלמים ∈ ℚ \ ℕ). 

 

( יכול להיות transitionבעבודה זו אנו מגדירים ומנתחים אוטומטי סכום מופחת בהם כל מעבר )

אינטגרלים עם  NMDAאינטגרלים(. אנחנו מראים ש NMDAבעל פרמטר פיחות שלם שונה )

ולפעולות האלגבריות.   בחירה שרירותית של פרמטרי פיחות אינם סגורים לדטרמיניזציה

אינטגרליים, להם אנחנו קוראים   NMDAבהמשך אנחנו מגדירים ומנתחים תת מחלקה של 

NMDA- כך שבחירת פרמטרי הפיחות תלויה בתחילית של המילה שנקראה עד  מסודריםים ,

ים בהם פרמטרי -NMDAלנקודת הזמן הנוכחית. מקרים פרטיים של אוטומטים אלו הם 

 θזמן. אנו מראים שלכל פונקציה בהתאם לא"ב(, או  -פעולה )אות בל התאם נקבעים בהפיחות 

נהנית מכל התכונות   NMDAs-θהמגדירה את הבחירה של פרמטרי הפיחות, המחלקה של כל ה 

ים אינטגרליים, ומאותה הסיבוכיות לבעיות ההכרעה  -NDAהחישוביות הטובות של 

ים אינטגליים -NMDAח הבעה השווה לים מסודרים הם בעלי כו-NMDAהמתאימות. בנוסף, 
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