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Abstract

One of the best practices for Distributed Denial of Service (DDoS) resiliency
in the cloud is the auto-scaling mechanism, where machines can be added and
removed in an online manner to respond to fluctuating load. It is commonly
believed that the auto-scaling mechanism translates the DDoS attacks into
Economic Denial of Sustainability attack (EDoS). Rather than suffering from
performance degradation up to a total denial of service the victim suffers
only from economic damage incurred by paying the extra resources required
to process the bogus traffic of the attack.

In this paper we analyze the "Yo-Yo attack’, an efficient attack on the
auto-scaling mechanism. In the Yo-Yo attack, the attacker sends periodic
bursts of overload, thus causing the auto-scaling mechanism to oscillate be-
tween scale-up and scale-down phases. The Yo-Yo attack causes significant
performance degradation in addition to economic damage, while the attack
is harder to detect and requires less resources from the attacker compared to
traditional DDoS. We demonstrate the attack on Amazon EC2 [2], and ana-
lyze protection measures the victim can take by reconfiguring the auto-scaling
mechanism. Our work shows that DDoS mitigation is a crucial component
in cloud environment, and that auto-scaling is not a bullet-proof remedy.



Chapter 1

Introduction

In the last few years, more and more public and private networks have come
to rely on cloud environments and virtualization to provide service while
meeting their SLA commitments. One attractive property of the cloud is
its support for rapid elasticity — the ability to scale the number of virtual
machines up and down according to the load, which can often be configured
to occur automatically, according to customer-set thresholds.

The main purpose of auto-scaling mechanism is to cope with changes in
the traffic load. While it is mainly used to cope with predictable changes that
arise from known characteristics of the service (i.e., peak hours), it is also
recommended as a remedy to cope with unpredictable loads that may arise
from flash crowds or even malicious Distributed Denial of Service (DDoS)
attacks. Amazon lists the auto-scaling mechanism as one of the best practices
for dealing with Distributed Denial of Service (DDoS) [4].

In DDoS, an attacker overwhelms the victim with bogus traffic, block-
ing the service from legitimate users. With a cloud-based operation, the
auto-scaling mechanism ensures that a victim can cope with an attack by
providing additional resources for handling the extra traffic. This solution,
however, comes with an economic penalty, termed Economic Denial of Sus-
tainability attacks (EDoS). The victim needs to pay the cloud infrastructure
provider for the extra resources required to process the bogus traffic, re-
sources which provide no real benefit to the victim. However, it is assumed
that the auto-scaling is a good enough solution, since it ensures that the
service will continue to run with good performance. Moreover, the economic
damage is not a real deterrent for the victim, since the alternative remedies,
such as DDoS scrubbers middleboxes or DDoS scrubber cloud services [6, 24]
also cost the victim money.

In this paper, we show that contrary to the common belief a shrewd
attacker, can cause substantial performance damage, up to repeated episodes



of total denial of service, on top of the economic damage. We analyze, the
Yo-Yo attack, where the attacker sends periodic bursts of overload, thus
causing the auto-scaling mechanism to oscillate between scale-up and scale-
down. During the repetitive scale-up process, which takes usually up to a
few minutes, the cloud service suffers from substantial performance penalty.
When the scale-up process is finished, the attacker stops sending traffic, and
waits for the scale-down process to start. When the scale-down ends, the
attacker begins the attack again, and so on. Overall the cloud service will
suffer a substantial performance penalty for almost half the duration of the
attack. Moreover, when the scale-up process ends there are extra machines
- but no extra traffic. Thus the victim pays for the machines in vain. Notice
that these short bursts, are harder to detect, and also reduce the cost of the
attack to the attacker.

We demonstrate the Yo-Yo attack on Amazon’s cloud service under dif-
ferent configurations and analyze the damages. The attack requires inferring
the state of the auto-scaling mechanism of the victim (i.e., whether the sys-
tem is in the middle of scale-up or scale-down). We show that it is feasible
for the attacker to detect the state of the auto-scaling mechanism by sending
probe packets that measure the response time. As we know, we are the first
to analyze such attacks deeply and our work helps to explain the recently
reported behavior of attacks which come in repeated waves.

Auto-scaling mechanisms employ one of two common policy types: The
first is the discrete scale policy, which adds one or a few machines at a time,
checks whether the problem has been resolved, and if not continues to add
machines iteratively. The second is the adaptive scale policy, which tries to
estimate the number of machines required to cope with the load of the traffic
and adds them at once. We model the Yo-Yo attack under the two polices.
In the discrete scale policy, we show that if the burst in the load is up to k
more than the original load, the victim will pay for approximately g more
machines, and an average extra load on machine will be logarithmic in k. In
the adaptive model, on the other hand we show that the economic damage
and the extra load are linear with k. In a representative use case this is
translated to a requirement of extra g machines and the average extra load
will be g Thus, while under the adaptive auto-scaling policy the system is
guaranteed to adapt to the extra load in shorter time, this policy is shown
to be more vulnerable than the discrete policy.

We then discuss various auto-scaling parameters and their influence on
the damage from the Yo-Yo attack. We show that, auto-scaling is a not
bullet proof remedy against variations of DDoS attacks such as the Yo-Yo
attack, and that DDoS mitigation is a crucial component also in the cloud.

The remainder of this paper is organized as follows. Section 2 describes



cloud scaling characteristics and existing attacks in the cloud area. Section 3
presents the Yo-Yo attack in detail. Section 4 introduces the related work. In
Section 5 we model the attack, analyze it mathematically and compare it to
the DDoS attack. In Section 6 we evaluate the Yo-Yo attack and assess the
impact of our attack on a real cloud service infrastructure. In Section 7 we
discuss possible defense strategies. In Section 8 we present our conclusions.



Chapter 2

Cloud Auto-Scaling

Auto-scaling is a cloud computing service feature that automatically adds or
removes compute resources depending upon actual usage. Its main benefit
is helping to cope with load during rush hours; It is also purported to save
costs. While the main aim of auto-scaling is to deal with the natural changes
in load, it is also used as a remedy for DDoS attacks[4]. In this section
we describe common auto-scaling mechanisms in the cloud, emphasizing the
aspects relevant to DDoS attack and to our analysis of the Yo-Yo attack.

Each cloud solution comes with its own auto-scaling engine: Heat in
Openstack [3], autoscaler in Google Cloud [11], Azure Autoscale in Microsoft
Azure [10] and auto-scaling in Amazon Elastic Compute Cloud (Amazon
EC2) [2]. Basically, in each of these systems the underlying algorithm lets
the cloud customer, referred to in our work as the user, to define a scaling
criterion, and the corresponding thresholds for overload and underload. In
Amazon auto-scaling, which we used in our experiment, the possible metrics
for this criterion are CPU utilization, in/out network traffic in bytes, and
disk read/write in bytes or operations.

Each user needs to configure rules for performing scale-up and scale-down
of the group of machines, as well as the minimum and maximum number of
machines allowed. Each scale rule is defined by a threshold, scale interval and
action, s.t. if the threshold was exceeded for the duration of the scale interval,
the action is performed. We denote by I,, and I, the scale interval for
scale-up and scale-down actions.

Another important configurable parameter is the scale policy type, which
determines how the scaling action is performed: discretely or adaptively. In
discrete policy the number of machines increases or decreases with a fixed,
predefined number of machines. If the overload was not resolved the process
is continued iteratively. In adaptive policy the number of machines increases
or decreases differentially and adaptive to the system load.



Google cloud scaling is always adaptive !. The user sets the target crite-
rion value, e.g., CPU utilization above some threshold for scale-interval, and
the autoscaler makes scaling decisions proportionally and maintains that level
without the user having to set rules.

In Amazon EC2 the user should specify configuration for the auto-scaling
algorithm. 2 In the adpative policy the user defines several thresholds for
the relevant scaling criterion, and the corresponding number of machines to
upload for each threshold. For example, for CPU utilization criterion, the
number of machines to upload if the CPU utilization during the scale interval
is above 50% will be different from the number of machines to upload if it is
above 80%. Thus, the adaptive policy is more adaptive to the condition of
the service; however, it is more complex to configure. In this paper we chose
to demonstrate the Yo-Yo attack on Amazon EC2 since it allows us more
control over the auto-scaling algorithm. However, we note that we observed
similar results in the Google environment.

After a scaling decision is made, it takes time until the machine is ready
to function. This time is called the Warming time and, we denote it by W,,,.
Mao et al. [18] show that this time is between 1 and 13 minutes, depending
on the infrastructure provider, OS server and other factors, in addition to
the service initialization time required. Scaling down takes Wy, to release
all the resources, but might take less time, if the service does not have a
long backup operation. The extra machines are usually loaded before the
rush hours, to avoid the latency of warming time[23]. While this solution is
useful in the case of predictable, daily fluctuations of load, it is obviously not
applicable to DDoS attacks.

In Distributed-Denial-of-Service (DDoS), the attack is launched from mul-
tiple connected devices that are distributed across the Internet (for example
a botnet) and flood a target with fake requests. Nowadays, a cloud environ-
ment usually has extensive resources, and dynamic allocation capability of
resources. As a result, theoretically it is not possible to deny the service of
a cloud permanently. However, in this paper we show that the attacker can
still cause damage using the Yo-Yo attack.

We demonstrate here how auto-scaling helps to mitigate DDoS, and the
impact of the different auto-scaling parameters. We use here a very simplified
and basic model using parameters of medium-size e-commerce web site [5].
We assume the site has in steady state, an average rate of 10,000 request,
with 10 machines. The site is attacked with additional 20,000 requests (triple

1Google autoscaler, is a black-box to the user and there is no public information about
the algorithm.

2Discrete policy carried out using ’Simple scaling’ or single step of ’Step scaling’, Adap-
tive policy carried out using multiple steps of ’Step scaling’



Figure 1: DDoS attack on system with adaptive scale policy

the average request rate). The user configured I, = Loy, = Iminute. The
service is such that Wy, = Wyown = 2minutes. The impact of the DDoS
attack is that the average load per machine increases by a factor of two (See
Figure 1).

As Figure 1 shows, adaptive scaling action occurred after interval of I,
and a few machines were added and ran for the duration of the attack.
Therefore, system overload was experienced only for the duration of I, plus
Wp.

Figure 2 shows the impact of the same attack on an environment with
discrete policy. As shown, same number of machines handle this overload
in both environments, but the system overload is felt for longer duration
under the discrete policy. Here the duration is estimated as a function of
the number of machines to scale, multiple by a single machine scale time, I,
plus W,,,.

As a result of the flood of fake requests in the DDoS attack, more instances
of the service are launched. While the cloud services are provided as pay-per-
use [15], the services under attack cost more, thus leading to an Economic
Denial of Sustainability attack (EDoS)[14]. In our example the user would
be requested to pay for 20 extra machines for all the duration of the attack.
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Figure 2: DDoS attack on system with discrete scale policy
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Chapter 3
Yo-Yo Attack

In this section we present the Yo-Yo attack, which results in damages from
both DDoS attack and EDoS attack.

The attack called Yo-Yo attack since the attacker oscillates from the on-
attack phase to the off-attack phase. In the on-attack phase, the attacker
sends a burst of traffic that causes the auto-scaling mechanism to perform a
scale up. In the off-attack phase, the attacker stops sending the excess traffic.
This second phase takes place when the attacker identifies that the scale up
has occurred. Once the attacker determines that scale down has occurred,
the process is repeated.

Figure 3 demonstrates the Yo-Yo attack on an environment with discrete
scaling policy on the same medium-size commercial site on which we demon-
strate the DDoS attack. The attack configuration for both on-attack period
and off-attack period set to 60 units time. The attack causes both economic
and performance damage. During scale-up, the number of machines increases
linearly and decreases linearly during scale-down, hence the economic dam-
age. In addition, at the beginning of each on-attack phase, the site suffers
from substantial performance degradation. Afterwards, the load on the ma-
chines drops logarithmically, because the load is distributed over a number of
linearly increasing number of machines. We note that it is harder to detect
this attack, since its volume is smaller than that of a regular DDoS attack.

Clearly, the strength of the attack is partially determined by the ability
of the attacker to determine when to switch between the two phases. In
section 6.1 we show how an attacker can estimate the state of autoscaling by
sending probe messages to the site, and observing when the site suffers from
long response time and when the response time is short. This is in addition
to the fact that some cloud providers, such as Amazon, have default values
for these parameters. For now, we simulate the best-case attack from the
attacker’s perspective, where we assume the attacker is aware of the scaling

12
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Figure 3: Yo-Yo attack on system with discrete scale policy

parameters and whether the auto-scaling up and down occur.

From discussions with administrator of cloud services, and also in Ama-
zon’s recommendation for handling DDoS [4], we have learned that some of
the DDoS attacks come in repeated waves. We have no information as to
whether these attacks are Yo-Yo attacks in the sense that they are tailored
to exploit the auto-scaling mechanism. This paper sheds light on the impact
of tailoring the waves of the attack to the auto-scaling mechanism.
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Chapter 4

Related Work

Security, and DDoS prevention in particular, are curcial to every computing
environment, especially in the cloud [31]. Several recent works and whitepa-
pers [4, 21| recommend auto-scaling as a possible solution to mitigate DDoS
attacks.

VivinSandar and Shenai [30] describe that a traditional DDoS attack can
be transformed into an Economic Denial of Sustainability attack (EDoS) in
the cloud environment. Somani et al. [26] describe that DDoS / EDoS attack
in a cloud affecting everyone and all the environments.

Several work are trying to mitigate EDoS attacks [27, 9, 16]. Their pro-
posed solutions are focused on classification of the clients and the ability to
determine whether the user is legitimate or malicious bot. Mary et al.[20]
propose a mitigation technique called DDoS&EDoS-Shield to protect against
DDoS&EDoS attacks in cloud computing. All of these works ignore the effect
of the autoscaling mechanism and attacks of the Yo-Yo type.

The basic form of the Yo-Yo attack and the general concept were pre-
sented as a brief announcement [25], but the authors ignored the impact of
Yo-Yo on performance and the impact of different auto-scaling policies. This
paper also provides not only a theoretical model but also discussion about
possible remedies.

The Yo-Yo attack can also be seen as a type of Reduction of Quality
(RoQ) [12] attack. RoQ attacks aim to keep an adaptive mechanism oscillat-
ing between overload and underload conditions. In other areas, it has been
shown that many mechanisms, load-balancing [13], and even TCP retrans-
mission [17], are vulnerable to such attacks. The Yo-Yo attack is the first to
show that the auto-scaling mechanism is vulnerable also.

There are several papers [8, 7, 28, 29| that discuss how to perform efficient
auto-scaling, but they ignore the security aspect.

14



Chapter 5
Yo-Yo Analysis

In this section we analyze the Yo-Yo attack using a simplified model. From
the model we gain insight into the attack and the effect of different autoscal-
ing policies.

We follow our analysis with an evaluation of the impact of Yo-Yo attack
on our use case example, representative of medium-size commercial site.

5.1 Auto-scale model environment

Consider a hosting environment that includes autoscaling with identical ser-
vice machines behind a load balancer. Requests arrive with average rate of r
requests per unit time, and the load balancer distributes them to m machines
in the steady state. The scaling policy configuration contains a scale interval
of I, and 45,y and warming time of W, and Wgyn,.

The auto-scaling policy might influence the autoscaling parameters and
can also influence the parameters chosen by the attacker in the Yo-Yo attack.
We denote by superscript letter 'd’, parameters for the discrete policy, and
by superscript letter ’a’ the parameters for the adaptive policy. For example,
I{fp might be a different value than Ij,. Note that W,, and Wy, are not
influenced by the scaling policy because they depend on the properties of the
application running on the machine.

5.2 Yo-Yo attack formalization

The Yo-Yo attack is composed of n cycles, and each cycle duration is T,
comprised of an on-attack period, denoted as t,,, and an off-attack period,
denoted as t,rf. Thus 7' is equal to t,, plus torr. Where k is the power of
the attack, we assume that in the on-attack period, the attacker adds fake

15



requests k times more than the rate in the steady state (i.e., a total rate of
(k+1)-r), while in the off-attack period t,ss, the attacker does not send any
traffic.

See Table 1 for notation summary.

‘ Parameter H Definition ‘ Configured by
r Average requests rate per unit time of legitimate clients Given by system usage
m Number of machines System administrator
Tup\Liown Threshold interval for scale-up and scale-down
Wop\Weaown | Warming time of scale-up and scale-down Given by system infrastructure
n Number of attack cycles Attacker
T Cycle duration
ton\loff Time of on-attack phase and off-attack phase. T' = to, + tosys
k The power of the attack

Table 1: Notation used in the model description

We assume that the attacker aims to optimize the damage, with the main
goal of being active long enough to scale up to extra k- m machines, and a
secondary goal of causing performance damage. In subsection 5.6, we discuss
other possible attacks that aims to optimize the damage differently.

For the autoscaling to occur and exceed the policy threshold, two condi-
tions must be met. First, the extra load of k-7 should burden on the system
such that the threshold for scaling is fulfilled, regardless the criterion (e.g.,
CPU utilization, traffic). Second, t,, should be greater than or equal to the
scale-interval I,,.

We assume that in order to cope with additional k - r traffic, the auto-
scaling will scale up to all additional k - m machines. This assumption sim-
plifies the analysis.

Under the discrete scaling policy, the on-attack time which is equal to
the scale-up time directly depends on the number of machines to scale. In
this policy, every [ffp + W, only one machine is added. Thus ':

tgn = k tme (Igp + WUP) (51)

The total duration of a cycle, including scaling up and scaling down k-m
machines is:

Td = k tme (Igp + WUP + [:iiown + Wdown) (52)

IThis is an upper bound, that we use in order to simplify the analysis. To be more
exact it is enough for the attacker to trigger the scale up of k- m machines be activate for
(k-m) - (Iffp + Wap) — Wep.

16



Under the adaptive scaling policy, after the attack has been perpetrated
for I}, time, the scaled up is trigger of the additional & - m machines. Thus,
in the adaptive policy:

te = I3, (5.3)
and

TCL = ]gp _|_ Wup + [Cclbown _|_ Wdown (54)

Note that here the duration of the on-attack phase and the duration of a
cycle do not depend on the number of machines to scale.

Figure 4 shows our use case under the adaptive scaling policy with n = 2.
The parameter values of the use case are summarized in Table 2.

’ Parameter H Value ‘
r 10000 Requests per minute
m 10 machines
1 1 s Iy 1oy || 1 minutes
Weps Waown 2 minutes
k 2

Table 2: Parameters values of use case example that is a representative of
medium-size commercial site

5.3 Damage analysis

In this section we derive closed formulas to quantify the damage inflicted by
an attacker and the cost of the attack for the attacker. We define D;/ oYo
the performance damage caused by the attack and assess it as the average
absolute extra load on the system during the total attack time. We define
DY°Y° the economic damage caused by the attack and assess it as the average
absolute extra machines running in the system during the total attack time.

For each of the absolute damage above, we derive the formula of the
relative damage as a function of k, RD)Y°¥°(k), RD}°°(k). Relative damage
is defined as the ratio between the damage following the attack and the
corresponding value at steady state.

17
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5.3.1 Yo-Yo attack with discrete scaling policy

Figure 3 shows the damage under the Yo-Yo attack with the discrete policy.
The economic damage is estimated as the additional number of machines as
a result of the attack and their running duration. Note that in the discrete
policy the number of machines increases and decreases linearly. Note that in
the scaling up of a machine, during the warming time, W,,,, the user pays for
the machine but the machine is not fully activated, and thus does not help
to reduce the load. Thus:

DYoYe' = (5.5)

= Zm(lmrl)( — ) . (Igp+wup+lgown+wdown)'n o
- i=m t—m Td.n -

kem-(k-m+1) I AWup+IS A Waown

down

2 Td

By assigning the value of T? (see Equation 5.2), and normalize it by the
number of machine in the steady state, we receive:

k-m-(k-m+1)

m T 2.m 2

(5.6)

The performance damage is estimated as the overload on a machine as a
result of the attack 2. In the steady state the load on a machine is --. During

2We note that this is a simplified assumption, since due to network protocols (such as
TCP and HTTP), the actual impact on client performance is more complicated to analyze.
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the attack the general load r-(k+1) is divided on a linearly increasing number
of machines. This results in a harmonic series. 3

D;/OYod _ (57)
_ Zm-(k+1)<r~(k:+1) Ly (Id+Wup)-n _

i=m T m Td.n

d
~ v (k1) (k1) — k— L) LatWer)
In order to simplify the equation of relative damage, here we made the
simplified assumption that Iffp =1 flloum and Wy, = Waown. We then assigning
the value of T (see Equation 5.2), and normalized it by the load on a machine

in the steady state, obtaining,

r In g1
RD) " () re M) L L (5.8)
(k41D -In(k+1)—k __ In(k+1)-1
2-k ~ 2

5.3.2 Yo-Yo attack with adaptive scaling policy

Figure 4 shows the damage under the Yo-Yo attack with the adaptive pol-
icy. In adaptive scale policy, all the machines are scaled at once. Thus the
economic damage is:

DYV = (m (k+ 1) —m). Tl (5.9)
To-1Ig,
= kem- =

In the general case, with respect to the economic state in the steady-state,
the relative damage is:
T‘ngp

RDYY" (k) = km e g Tl

m Ta

(5.10)

The performance damage is experienced until the machines are running

and functioning, i.e, until I3, plus W,
Dyt = (PO = ) - Bt = (5.11)
o kr I +Wap
o m Te

In the general case, with respect to the load in steady-state, the relative
performance damage is :

RDYY' (k) = =T = . ol (5.12)

I TCL

3Note that during ¢,7¢ the load on the machine is better than in the steady state. This
fact is insignificant in our model.
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5.4 Cost and potency analysis

For the above Yo-Yo attack, we define PY°Y°(k), the attack economic po-
tency, to be the ratio between the relative economic damage RDY°Y°(k) for
customers caused by attack with power k and CY°Y°(k), the cost of mounting
such an attack.

YoYo
PYY°(k) = Zrooi) (5.13)

We define similar notations for performance damage. Clearly, an attacker
would be interested in maximizing the damage per unit cost —i.e., maximizing
the attack potency.

In Yo-Yo attack, the attack cost is directly affected by the power of attack
k and t,, period relative to attack cycle length.

CYYok)y = k-l (5.14)

In our use case with discrete policy the attack economic potency is:

PYYl ) 2 — 1 (5.15)

NI

The attack performance potency is:

In(k+1)—1 ln(k + 1) -1
2 = 1
- (5.16)

PpYOYOd (k?) ~

In our use case with adaptive policy the attack economic potency is:

prove gy~ Eemt o T Ly (5.17)
e k- upTa up Igp + Wup

The attack performance potency is:

T(l

ByYo (k) = Ty = 1 (5.18)
Ty W

5.5 Discussion

Table 3 summarizes and compares our model with different attacks and envi-
ronments. The table also shows the DDoS attack with and without autoscal-
ing. The bottom row indicates whether the system stabilizes to the steady
state. In DDoS the system reaches a steady state, without auto-scaling the

20



DDoS DDoS Yo-Yo Yo-Yo
with autoscaling Discrete policy Adaptive Policy
T k-m- (I {,'p + Wap + 13 s + Waown) Iy + Wap + L + Waouwn
ton k-m- (I + Wap) I, + Wy
Attack Cost k k k- "}—’ k- ";—’
Relative Economic Damage 0 3 ok i T-I2,
RD.(k) T2 '
Relative Performance Damage 8 0 o In(Et1)-1 b Fet W
RD, (k) T s
Attack Economic Potency 0 1 1 TO-1g,
P.(k) I+ Wap
Attack Performance Potency 1 0 n InlEt1)-1 1
Py (k) T
Stabilization v v X X

Table 3: Model Summary

— Discrete -
- - Adaptive /,/'

A economic
O L N W s U o N @ ©
\
\

Figure 5: Relative economic damage of YoYo attack with different scaling
policy as function of the attack’s power.

relative performance damage is equal to k, while with autoscaling the relative
economic damage is equal to k. In the Yo-Yo attack, the attacked system
suffers from combined economic and performance damages.

In the discrete scale policy, the victim will pay for approximately % more
machines, and an average extra load on each machine will be logarithmic in
k. In the adaptive model, on the other hand, the economic damage and the
extra load are linear with k.

Figure 5 shows the relative economic damage case as a function of k for the
two auto-scaling policies. Figure 6 shows the relative performance damage
as a function of k for the two auto-scaling policies. Although the adaptive
policy responds more quickly to changes, we can see, in both graphs, that
the relative damage is larger for the adaptive policy than for the discrete
policy. Therefore, it can be concluded that the adaptive policy type is more
vulnerable to such attacks.

In order to receive some sense of the actual damage inflicted by Yo-Yo
attack, we analyze the results of the representative use case of a medium-
size commercial site (see Table 2 for the parameters of the site). Table 4
summarizes our findings. With attack cost of 50% compared to the DDoS
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Figure 6: Relative performance damage of YoYo attack with different scaling
policy as function of the attack’s power.

attack, the damage with the adaptive policy is an extra of 160% machines
as opposed to 200% in DDoS, and an extra load on each machine of 100%
to 0% in DDoS. We note that one of the main reasons the Yo-Yo attack is
so harmful under adaptive scaling is the extensive performance damage that
results from the relative long W, time (see the discussion of the warning
time in Section 7).

Attack DDoS Yo-Yo Yo-Yo
Scale policy || Adaptive | Adaptive | Discrete
G, o [0 (gl [[5:]
) 2 1 1
RD,(2) ~200% | ~166% |~ 100%
RD,(2) ~ 0% ~ 100% | ~ 30%
P.(2) ~ 100% | ~166% | ~ 100%
P,(2) ~ 0% ~ 100% | =~ 30%

Table 4: Use-case analysis

Note that any attack, of any kind, requires botnet attack force propor-
tional to the attacked service; thus large-scale services are harder to attack.
Nowadays, the cost of attack often translates to a real cost of renting the
army of botnets. The fact that the Yo-Yo attack reduces the total cost of
the attack, opens the door to attackers to be harmful to larger services.

5.6 Additional variants of the Yo-Yo attack

Up to now we analyzed the Yo-Yo attack under the assumption that the
attacker aims to inflict both types of damages: performance and economic.
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Figure 7: Maximum performance damage

In this section, we show that attacker can compose different attacks, with
different damages. We present a variation of the Yo-Yo attack that maximizes
the performance damage, and another variation that maximizes the economic
damage.

It is important to emphasize that in the Yo-Yo attack that was presented
so far, the precision of the on and off attack periods was not essential. The
attack will take place even if the malicious bots will start sending around the
same time, and not exactly at the same second. However, in the variants we
present in this section, the precision of the on and off attack periods is more
important and therefore these attacks are more difficult to carry out.

5.6.1 Variant that maximize performance damage

In this case the attacker sends bursts with duration close to the scale-up
interval but smaller, i.e, t,, is chosen to be the maximum ¢,, such that
ton < Iyp. Thus the scale-up process does not occur, but throughout t,,,
a drop in performance is experienced. Note that in this case, in order to
optimize the performance damage, the attacker needs to know the exact
value of I,,, which is more difficult to learn under the discrete policy (see
discussion in Subsection 6.1).

Figure 7 simulates this attack on our use case example environment with
the adaptive policy but the graph for the discrete policy will be the same.

Damage analysis:

In order to realize the attack requires to set ¢,, < I,,.
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Note that in this variant of Yo-Yo attack, scale-up process does not occur,

thus there is no economic damage:
YoYoy
e

D

YoY ol
eo op(

=0 (5.19)

RD k)= 0 (5.20)

However, the performance damage is significant and close to the maxi-
mum:

D[})/OYOZ _ (r(l::l) . %) . ETZ — (521)
~ kr 1= kr

In the general case, with respect to the load in steady-state, the relative
performance damage is :

RD, (k) ~ = =k (5.22)

In order to receive some sense of the actual damage inflicted by this
variant of Yo-Yo attack, we analyze the results of our use case example (see
Table 2 for the parameters of the site use case). For example, we chose
ton, = 0.8 I;jp in order t,, to be smaller than [gp, thus the attack cost is 80%
compared to the DDoS attack. The performance damage in this case, with
the adaptive policy is an extra load of 160% on each machines as opposed
to 200% in DDoS. Of course that these numbers are changing depending on

the chosen t,,.

5.6.2 Variant that maximize economic damage

In order to maximize the economic damage, the attacker does not let the
machines scale back down after the initial scale up. Thus after the initial
ton, which will be long enough to finish scaling all the required machines,
the attacker sends small bursts at a frequency of less than [j,,,, such that
toff < Igouwn and the scale-down conditions will not occur.

Figure 8 simulates this attack on our use case environment with adaptive
scaling. The discrete case is similar but with a longer first burst.

This variant of the Yo-Yo attack inflicts the same economic damage as the
DDoS attack, but the cost of the attack is lower (see Figure 1 for reference).

Damage analysis:

In order to realize the attack requires to set the initial ¢,, to be greater than
the scale-up interval I,,,, after that the rest of t,, are not significant for the
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Figure 8: Maximum economic damage

economic damage. Additionally requires to set t,r; < Igoun during the entire
attack, in order to prevent scale-down.

In this analysis we relates TY°Y% as the entire time of attack that max-
imize economic damage on system with adaptive policy. (Note that in this

case TY°Y% is not equal to t,, + t,s; as the other analyses).

TYoYog 713:1)
TYoYod -

DYoYot — (m-(k+1) —m)-

Y oY o% a
TYoYol o

In the general case, with respect to the economic state in the steady-state,
the relative damage is:

Y oY oZ a
T e _IUP

km—_up
YoY o2 _ TYoYod _
RDe © (k) - m -
TYoYog _Ja
= k- TYTo’gup ~ k (524)

Note that in this case, in order to optimize the cost against performance
damage, the attacker needs to know the exact value of I;,,,, which is more
difficult to learn under the discrete policy (see discussion in Subsection 6.1).

The performance damage is felt only before scale-up process end, then, the
performance damage is chaged from t,, periods to ¢,¢; periods, but anyway
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not greater than the steady state.

toff

(5.25)

DYoyol _ (r~(k+l) B L) Lt Wap (r(k+l) _ L) . __ton + ( r _ L) . _
D o m m TYoYog m(k+1) m/  TYoYog m(k+1) m/ TYoYod T
_ ko Lo tWup (0 ton k| lopr o
- m TYoYoZ TYoYoZ m(k+1) TYoYol ~
~ kr  LiptWup
~ m : TY oY od

In the general case, with respect to the load in steady-state, the relative
performance damage is :

ke I$p+Wup

RDI})/OYOZ (k) ~ m TLY"YOg = k- LiptWap (526)

Y oY od
m T ¢

Because we relates TY°Y% as the entire time of attack and scale-up occurs
only once at the beginning, we can see that as T °Y % is larger, so RDZ ovoe (k)
close to 0.

While analyzing the results of our use case example in this variant of Yo-
Yo attack, we chose t,;r = 0.5- 13, in order t,r¢ to be smaller than I3, .
thus the attack cost is 50% compared to the DDoS attack. The damage with
the adaptive policy is the same as DDoS, an extra of 200% machines, and
an extra load on each machine close to 0%. In this variant, the attack cost
is changing depending on the chosen ¢,s¢, but the damage remains more or

less the same.
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Chapter 6

Experimental Evaluation

In this section, we show proof of concept of the Yo-Yo attack on Amazon
cloud service.

Our environment in Amazon consists of a simple HTTP server, front-end
side stateless without back-end.! In our experiment we choose the CPU uti-
lization criterion, and correspondingly implement the http server where each
connection requires high CPU consumption. We use Amazon CloudWatch [1]
to monitor our instances and manage the auto-scale group for scale triggers
on high or low CPU utilization. It is important to note that the http-based
implementation sometimes causes http errors (errors from type NoHttpRe-
sponseException are usually thrown when the server is under heavy load and
may be able to receive requests but not be able to process them). These
situations are not included in the average response calculation, but are rep-
resented in a separate plot of error percent. In addition, according to the
http protocol, the client tries to resend the request in case of an error. The
large number of retries further increases the error percent.

In our experiments, we begin with a single machine, the minimum num-
ber allowed, and set the maximum number of machines high enough to not
restrict us in practice. In the steady state our http server handles 10 requests
per second, and in the on-attack phase, the attacker implements an attack
with power of attack 4, i.e, adds an additional 40 requests per second.

Under the discrete policy type, we configure scale-up to be performed if
CPU utilization is over 50% for 1 minute, and scale-down to be performed if
CPU utilization is below 10% for 1 minute. See results in Figure 9.

Under the adaptive policy type we configure scaling with steps, which
scales up to 4 machines, on a scale from 50% to 80% and scales down, on a

"'We wanted to evaluate the damages at front-end side without being influenced by
damages at back-end side.
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Figure 9: Yo-Yo attack on system with discrete scale policy

scale from 10% to 30%. Figure 10 shows the Yo-Yo attack on a system with
the adaptive scaling policy.

The figures in adaptive and discrete policy clearly shows that in both
cases there is economic damage, and the number of machines increases as
the model predict. The figures of response time are similar in shape to the
graphs of load per machine that were produced using our model. Clearly
there is a correlation between the load on the machine and the repose time.
Note that our system still suffers from errors after the attack has ended.
We speculate that there are two reasons for this behavior: first, it takes
the Amazon load balancer time to recover [13], and second, due to the http
request there is still overload due to the http retries after the attacker has
stopped sending traffic. We want to model these phenomena in the future.

In addition, the performance degregation in our model got even worse
while using HTTPS [22], and other recommendation of Amazon for DDoS
mitigation like CloudFront and Route 53 are not relevant to the autoscal-
ing vulnerability discussed here or cannot help, since the requests require
dynamic pages and cannot use CDN.

6.1 Detecting scale policy

In this subsection we show how an attacker can approximate the autoscaling
state and configuration in order to optimize the attack damage. Note that
for the basic Yo-Yo attack, which optimizes the economic and performance
damage, the attacker only needs to know when the scale-up and scale-down
ended.
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Figure 10: Yo-Yo attack on system with adaptive scale policy

In order to detect when the scale-up has ended, the attacker can send
probe requests, and check their response time. From Figure 9 it is clear that
if the scale-up process has not yet ended the probe requests will suffer from
high response time and high packet loss. Our rule of thumb was that the
scale-up process has not yet ended if the response time is over 1000ms. Note
that this technique applies both to the discrete and the adaptive policy.

Identifying when the scale-down process has ended is much more compli-
cated. The basic technique is to send a small burst of traffic (small enough
not to trigger the scaling mechanism), and to send in parallel probe packets
to measure the response time. We use the fact that the impact of the extra
load will be immediately noticed in the response time (in our experiments it
was noticeable in less than 1 second) .

In a pure adaptive policy, all the extra machines can be up or down, and
there it never happens that only part of the extra machines remain up or
down. If the response is smaller than 1000ms, then all the extra machines
are still up; Otherwise, the scale-down process has ended.

Under the discrete policy is much more delicate, since the process of
scale-down is a continuous process where the extra machines are gradually
shut down. However, as our experiments show, there is a clear correlation
between the number of extra machines and the response time. Thus the
attacker would need to first learn the response time when there is a burst in
the load but no extra machine. The attacker can check this before lunching
the attack.

The other variations of Yo-Yo attacks (described in Subsection 5.6), re-
quire more intricate knowledge of the autoscaling configuration. Specifically,
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the Yo-Yo attack with maximum performance damage requires learning the
I, and the Yo-Yo attack with maximum economic damage requires learning
the Igown- An attacker cannot distinguish the exact scaling interval I, and
Liown from outside. However, in the adaptive policy, the attacker can learn
the scale-up time, which is equal to I, + W,,;, and thus have some estimate
as to I,,. The attacker can try to find the value of 7, by trying to deploy the
attack in bursts with different intervals between them and observe whether
the scale-up has occurred, with the goal of finding the maximum frequency of
bursts that would not triggering scale-up. Similarly, the attacker can try to
estimate the I;,,, from the scale-down interval. The discrete policy is much
more complicated, since the scale-up interval is proportional to the I,,, + W,
multiplied by the number of machines loaded during the scale-up process.
This scenario is part of our future work.

Note that for some of the techniques, the attacker would like to distin-
guish between the adaptive and discrete scaling policies. We think that the
response time of probe messages can be used by the attacker to reveal the
policy. This because the response time varies more under the discrete policy
(see Figure 9), due to the fact that the scaling up is done gradually. This is
also part of our future work.

30



Chapter 7

Discussions About Defense
Strategy For The Yo-Yo Attack

In this section we discuss possible mitigation techniques against the Yo-Yo
attack. One obvious remedy is to mitigate the "DDoS attack parts” in the
Yo-Yo attack, i.e., identify the fake requests, using a DDoS scrubber that
filters out the attack. Thus, by doing so, we are not relaying exclusivly on
the auto-scaling mechanism as a remedy, or at least not as the only remedy.
Note that handling Yo-Yo attacks also requires that adjustments be made to
scrubber solutions, since they would need to be able to analyze and identify
attacks that come in waves, even short ones.

Here, we focus on auto-scaling configuration changes which can be used
to further decrease the problem.

e Scaling configuration: Scale up early, Scale down slowly.

Performance damage can be reduced by early scale-up. A closer look
at the model of the attack shows that warming time plays a major
role in scale up the machines, especially in discrete model. During the
scale-up warming time, the user pays for the machine but the machine
does not help to cope with the load. Thus one effort should be to
minmize the warming time. Intensive efforts have been made to reduce
that warming time [19] but this is a challenging task, since it takes
time for the application to set up. As reported in [18], this duration
can reach more than 13 minutes for some services, and usually it is
at least a few minutes. Additional recommendation offer keep unused
capacity available for quick response, in this approach the user pays for
the unused machine all the time.

Another recommendation is not to rush to scale down the machines
immediately after the attack stops. In other words, the idea is to
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Figure 11: Yo-Yo attack on system with adaptive scale up policy and discrete
scale down policy

configure a longer I;,,,. This is also part of the recommendation of
Amazon [4], due to the evidence that many attacks come in waves. We
note that in the Google cloud, scaling operations are adaptive and the
autoscaler has a fixed scale-down delay of 10 minutes built-in. From a
discussion with several cloud users, we learned that many of them have
configured 1oy, to be much longer than I,,,, in order to handle DDoS
attacks that come in waves.

Hence, we recommend a solution with adaptive scale up and discrete
scale down rules. Figure 11 shows a simulation of the Yo-Yo attack
cause on such an environment. The on-periods of the Yo-Yo attack
cause scale-up action and the system responds quickly to overload, but
it takes a long time until the machines scale down and the attacker can
return to attack again.

The phrase ”scale up early, scale down slowly” appeared in Netflix’s
recommendation [23] for auto-scaling in Amazon EC2 environment not
in the context of attacks. This solution does reduce the performance
damage, but increases the economic damage.

e Restrictions: Resource limitation.

In order to avoid unexpected expenses, it is possible to set the max-
imum number of machines allowed to scale and limit the system re-
sources. An attacker could not cause economic damage beyond this
limit. In our use case example, the maximum number of machines
that were in use is 30. While limiting this number to be less than 30,
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the amount of resources used during the attack decreases and thus, re-
ducing the service cost. However, resource limitation also restricts the
autoscaler operating range and may cause denial-of-service, so atten-
tion is required when employing this strategy.

There is a trade-off between paying for high service cost (while scaling down
slowly) or suffering low performance (while limiting resources). Each system
administrator can configure his system differently depending on what he
compromise. An interesting and challenging problem is to find the suitable
defense strategy for each service, and analyze its behavior, which is a subject
of a forthcoming work.
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Chapter 8
Conclusions And Future Work

In this work we shed light on the potential of exploiting the auto-scaling
mechanism to perform an efficient attack that impacts the cost and the qual-
ity of a service. We discuss various auto-scaling parameters and their influ-
ence on the damage inflicted by the Yo-Yo attack.

An open question is how to fully cope with Yo-Yo and similar attacks
that leverage the trade-off between DDoS and EDoS in cloud-based services.
We proposed some preliminary thoughts on this complex issue. However, we
believe that autoscaling mechanism alone is not enough, alternative remedies,
such as DDoS scrubbers middleboxes or DDoS scrubber cloud service [6, 24],
are still necessary.

The trend of virtualization, and cloud services, also impact the area of net-
work services, which are part of the Network Function Virtualization (NFV)
revolution. While part of the promise of NFV is that network services, among
them middleboxes, will enjoy the auto-scaling property, our work shows that
special care should be taken to prevent attackers from using these mecha-
nisms to reduce the value of NF'V and attack crucial services in the network.

Finally, we quote from Netflix’s blog[23]: ” Auto scaling is a very powerful
tool, but it can also be a double-edged sword. Without the proper config-
uration and testing it can do more harm than good”. Our work sheds new
light on problematic aspects of auto-scaling.
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