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Abstract 
Shape-changing materials development strives to 
generate motion in new ways, extending the traditional 
motor-based and mechanism-based techniques. We 
present a system that uses continuous magnetic force 
to create movement in a range of soft materials such as 
textile, foam, paper or silicon. The system has two 
parts: a control platform and a multi-material layer. 
The control platform is an array of electromagnets 
controlled by a microcontroller. The multi-material layer 
is made of a soft material with embedded 
ferromagnetic elements. The subtle electromagnetic 
force manipulates the embedded ferromagnetic 
material, resulting in continuous and organic-like 
movement in the material layer. We hope our system 
can empower designers to generate expressive 
movement with a broad range of materials. In our own 
work, we aim to extend our Empathy Objects research 
with soft materials, creating physical objects that 
convey emotion through expressive movement.  
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Introduction 
As HCI researchers we always look for new ways to 
enrich human computer interactions. Engelbart and 
Sutherland pioneered the field with a human-centered 
approach to technology that emphasizes the human 
experience. Buxton, Fitzmaurice and Ishii [2] presented 
the vision of physical-digital interaction with Bricks, an 
interactive projection-based surface. Ishii and Ullmer 
continued this work with the Tangible Bits vision [6], 
defining the field of Tangible User Interfaces (TUI), and 
laying out three main categories of TUI: interactive 
surfaces, coupling bits and atoms, and ambient media. 
Since then HCI researchers have been striving for an 
even tighter coupling between bits and atoms.  

Ishii et al. published in 2012 the Radical Atoms vision 
paper, laying out the vision for Material User Interfaces 
(MUI), defined as “Materials that can change form and 
appearance dynamically”. In the past few years, 
pioneering work has been done to realize the vision of 
radical atoms or MUI (see related work). We wish to 
extend the MUI exploration towards animated matter, 
and leverage it in our research of Empathy Objects [5], 
in which we add expressive gestures to non-
anthropomorphic robotic objects to convey emotion in 
general and empathy in particular.  

We propose a new system with a magnetic force control 
platform and a soft material layer (Figure 3), striving to 
create continuous organic-like movement in soft 
materials. We hope that using magnetic force will 
enable smooth, non-discrete looking manipulation, with 
a non-mechanical nature. Our modular system design 
enables a range of materials to be used as material 
layer, from textile with embedded magnets through 
silicon infused with metal balls to multi-material 

mixtures of plastic and magnets (Figure 1). The unique 
physical properties and internal structure of each 
material results in different types of movements and 
behaviors, which we hope will enable new forms of 
digitally-controlled expressive movement. 

Related Work 
Shape-change and Material User Interfaces 
Shape-changing interfaces have been introduced in 
work such as inform [4], Recompose [10] and 
Transform [7] where motor-based actuators move 
vertically and form 3D discrete topologies. Jamsheets 
[11] uses air pressure to stabilize free-formed 
structures while aeroMorph [8] expands the use of air 
pressure rather than motors to move between specific 
pre-defined states. TableHop [13] uses soft fabric 
manipulated by electrostatic force to create a subtle 
and gentle interaction which conveys more than data to 
the user. 

Magnetic Force Interfaces 
Since the pioneering work of the 2002 Actuated 
Workbench [12], which used an array of 
electromagnets for controlling pucks movement on a 
surface, a growing number of projects utilized magnetic 
force to generate physical movement. ForceForm [14] 
uses a similar magnetic grid to the Actuated 
Workbench, but adds a stretched overlaying silicon 
surface with an embedded grid of small magnets that 
can move only in the Z axis, causing subtle pattern 
changes to be formed. The ZeroN [9] used magnetic 
force to create a digitally-controlled levitating ball, and 
BubbleWrap [1] leveraged the same technique to 
create a shape-changing haptic display. 

 

Figure 1: Material 
experimentation. From the top: 
fluted foam, Tyvek, plastic and 
textile. Each with 4 magnets. 
Some include acrylic disks added 
to acentuate the form. 

 

 



  

Empathy Objects 
We previously defined Empathy Objects [15] as robotic 
devices that use physical expressive gestures to convey 
emotion. For example, Kip is a small robotic object 
reminiscent of a desktop lamp that can extend in a 
"Curious" gesture or retract in a "Scared" gesture. The 
expressive movement we designed for our Empathy 
Objects is limited to motor-based mechanisms. In 
addition, the current design is highly focused on 
tangible representation and does not enable direct 
physical manipulation. Our proposed system strives to 
extend the Empathy Objects research in two ways: (1) 
extending the range of soft materials we can use in our 
designs while controlling their movement to 
communicate emotion or empathy, without the need for 
motor-based mechanisms, and (2) enabling gentle 
physical manipulation with a range of soft materials. 

Our Approach 
We propose an interface with a shape-changing 
material layer that produces organic-like movement 
using continuous magnetic forces. The surface can be 
manipulated using digital control of electromagnets that 
enables antialiasing, resulting in a smooth, non-discrete 
motion. In our current initial prototype, we 
implemented a control platform using a small array of 
electromagnets for actuation using magnetic force. 

The material layer is a composition of a formable soft 
material and concentrations of actuated material 
elements (a magnet or a ferromagnetic material). 

As the actuated material is manipulated in 2D, 3D 
shapes are formed in the soft material. Their form and 
the movement characteristics are dependent on the 

material features, such as thickness and flexibility 
(Figure 4).  

The control platform is capable of sensing the relative 
location of the actuated material within the material 
layer, resulting in a two-way interface. 

Our unique system design that separates between the 
non-discrete control platform and the material layer 
enables experimentation with a large variety of 
materials and different types of movement. We hope 
this approach brings us one step closer to organic-like 
movement. 

The System 
Control platform 
In the current setup, we use a control platform that is 
similar to the one presented in the classic Actuated 
Workbench [12] - an array or electromagnets, applying 
magnetic force on an actuated material - either 
magnets or ferromagnetic materials embedded in a soft 
surface. 

Our current proof-of-concept prototype is implemented 
using 4 off-the-shelf electromagnets (Figure 2). In our  
next prototype, we plan to use a similar setup to the 
Actuated Workbench - a 16.5cm (6.5”) fixed array of 
64 custom-made  electromagnets arranged in an 8 x 8 
grid under a layer of acrylic.  

We control the interface with an Arduino board that 
clocks each magnet’s polarity using a set of octal flip-
flops that connect to motor driver chips (H-bridge 
transistor configuration frequently used for driving 
electric motors), which in turn control the 
electromagnets. The strength of each electromagnet's 

 

Figure 2: Control platform proof-
of-concept prototype. A 2X2 
arrangement. 

 

Figure 3: System diagram. A 
material layer is manipulated 
using magnetic forces applied by 
the control platform on the 
ferromagnetic elements 

 

Figure 4: Actuated material 
movement in 2D forming a 3D 
shape in the material layer. 

 

 

 



  

field is controlled through pulse-width-modulation 
(PWM). 

For sensing the location of the magnets, we intend to 
track the electromagnetic a current. We found that the 
current created in the electromagnets themselves when 
moving objects on the surface, could be sufficiently 
noticeable to use as a sensor. 

Formable multi-material layer 
The first material layer we created is made of two 
layers of textile with 4 embedded magnets. The 
magnets are positioned so that they can be aligned 
with the corners of the inner 7x7 magnet array (Figure 
5). We added acrylic disks to match the rest of the grid, 
so to create a uniform appearance and emphasize the 
shape of the surface formed.  

To explore the movement type and behavior of 
different materials as well as the forces involved, we 
experimented with additional material layers, including 
paper, foam and plastic (Figure 1). 

Our next steps are to create a variety of silicon layers 
each with a different hardness level, probably with a 
lubricant between the surface and control platform to 
reduce friction. 

System capabilities and further system 
development 
The system in many ways expands the Actuated 
Workbench ability to create a smooth motion into a 3D 
space. It also allows for the use of material properties 
and its construction in designing the interaction. One 
added benefit of the translation of 2D motion to 3D is 
the ability to sense a pulling motion and a side motion 

(Figure 6), a unique property of this design over most 
shape-changing systems. 

By relying on the material properties and measuring 
the location of only a few points in the material layer, 
the system design has an unaviodable inaccuracy level. 
It is nearly impossible to perfectly predict the exact 
features of the material movement. While this could 
prove as a limitation for many applications, we see it as 
an advantage when the goal is to create organic-like 
movement that evokes empathy. 

Conclusion 
We would like to extend the range of materials that can 
be used to convey emotion through expressive 
movement, without the need for motor-based 
mechanisms. Our proposed system enables 
experimentation with various materials and structures, 
and can empower designers to create new interactive 
experiences. Following are a few of the directions we 
would like to pursue and experiment with: explore the 
effect of different types of materials on the behavior of 
the material layer (for example, with the same 
electromagnetic force one material might bend while 
another might wrinkle); create non-homogenous 
surfaces by shape and texture with less and more 
flexible parts; add inner “skeleton” structure to define 
the range of possible forms. 
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Figure 5: Locations of the 
actuated material in the material 
layer. 

 

Figure 6: 3D pulling motion on 
the material layer results in 2D 
movement of the ferromagnetic 
elements, allowing sensing and 
continuously holding in position.  
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