
The Interdisciplinary Center, Herzliya

Efi Arazi School of Computer Science

Mutual Exclusion Algorithms with

Constant RMR Complexity and

Wait-free Exit Code

by

Rotem Dvir

M.Sc. dissertation, submitted in partial fulfillment of the requirements

for the Master’s degree, School of Computer Science

The Interdisciplinary Center, Herzliya

April, 2018

This work was carried out under the supervision of Prof. Gadi Taubenfeld,

from the Master’s program of Computer Science, Efi Arazi School of Computer

Science, The Interdisciplinary Center, Herzliya.

1

Acknowledgments

I would like to thank my supervisor, Professor Gadi Taubenfeld, for guiding me

through all the aspects of my research and teaching me how to write a paper.

I’ve been very fortunate to have the opportunity to work with such a professional

person. Thanks for all the endless debates, the invested time and energy, and the

encouragement along the way. Most of all, thanks for caring.

I would also like to thank my spouse, Elad Israeli, for believing in me all the

way, and for giving me all the support I needed to complete my research.

2

Thesis Summary

In this work, two mutual exclusion algorithms are presented, that have several

useful properties. Both algorithms consist of entry code and exit code. The entry

code is executed before accessing the critical section, and the exit code is exe-

cuted right after completing the critical section. Together, the entry code and exit

code assemble a lock. Both algorithms satisfy the basic requirements for mutual

exclusion:

• Mutual exclusion: No two processes are in their critical sections at the same

time.

• Deadlock-freedom: If a process is trying to enter its critical section, then

some process, not necessarily the same one, eventually enters its critical

section.

The additional useful and desired properties satisfied by both algorithms are:

1. Their exit codes are wait-free.

2. They both satisfy FIFO fairness, which (together with deadlock-freedom)

implies starvation-freedom.

3. They both have constant RMR (Remote Memory Reference) complexity in

both the CC and the DSM models.

4. It is not assumed that the number of processes, n, is a priori known, that is,

processes may appear or disappear intermittently.

5. They both use only O(n) shared memory locations, where n is the number

of processes.

3

6. They both make no assumptions on what and how memory is allocated.

The main difference between the first and second algorithm is most noticeable

when processes access more than one lock and each process accesses at most one

lock at a time. If there are L mutual exclusion locks, the first algorithm needs

O(Ln) space. The second algorithm is more efficient, and needs only O(L+ n)

space. This is the main practical difference between both algorithms.

The algorithms presented in this work are the first mutual exclusion algorithms

to satisfy all of the above properties at the same time.

4

Abstract

Two local-spinning queue-based mutual exclusion algorithms are presented that

have several desired properties: (1) their exit codes are wait-free, (2) they satisfy

FIFO fairness, (3) they have constant RMR complexity in both the CC and the

DSM models, (4) it is not assumed that the number of processes, n, is a priori

known, that is, processes may appear or disappear intermittently, (5) they use

only O(n) shared memory locations, and (6) they make no assumptions on what

and how memory is allocated.

The algorithms are inspired by J. M. Mellor-Crummey and M. L. Scott fa-

mous MCS queue-based algorithm [14] which, except for not having a wait-free

exit code, satisfies similar properties. A drawback of the MCS algorithm is that

executing the exit code (i.e., releasing a lock) requires spinning – a process exe-

cuting its exit code may need to wait for the process that is behind it in the queue

to take a step before it can proceed. The two new algorithms overcome this draw-

back while preserving the simplicity and elegance of the original algorithm.

Our algorithms use exactly the same atomic instruction set as the original MCS

algorithm, namely: read, write, fetch-and-store and compare-and-swap. In our

second algorithm it is possible to recycle memory locations so that if there are L

mutual exclusion locks, and each process accesses at most one lock at a time, then

the algorithm needs only O(L+ n) space, as compared to O(Ln) needed by our

first algorithm.

5

Contents

1 Introduction 7

2 Preliminaries 10

2.1 Computational model . 10

2.2 Mutual exclusion . 11

2.3 Counting Remote Memory References 12

3 The First Algorithm 14

3.1 An informal description . 14

3.2 The code of the algorithm and a detailed description 16

3.3 Further explanations . 19

3.4 Correctness proof . 21

4 The Second Algorithm 31

4.1 An informal description . 31

4.2 The code of the algorithm and a detailed description 33

4.3 Further explanations . 36

4.4 Correctness proof . 38

5 Related Work 48

6 Discussion 50

6

1 Introduction

Concurrent access to resources shared among several processes must be synchro-

nized in order to avoid interference between conflicting operations. Mutual exclu-

sion locks are still the de facto mechanism for concurrency control on shared re-

sources: a process accesses the resource only inside a critical section code, within

which the process is guaranteed exclusive access. The popularity of this approach

is largely due to the apparently simple programming model of such locks, and the

availability of lock implementations which are reasonably efficient.

Most of the mutual exclusion lock algorithms include busy-waiting loops. The

idea is that in order to wait, a process spins on a flag register, until some other

process terminates the spin with a single update operation. Unfortunately, under

contention, such spinning may generate lots of traffic on the interconnection net-

work between the process and the memory, which can slow other processes. To

address this problem, it is important to distinguish between remote access and lo-

cal access to shared memory, and to try to reduce the number of remote accesses

as much as possible.

We consider two machine architectures models: (1) Cache coherent (CC) sys-

tems, where each process (or processor) has its own private cache. When a process

accesses a shared memory location a copy of it migrates to a local cache line and

becomes locally accessible until some other process updates this shared memory

location and the local copy is invalidated; (2) Distributed shared memory (DSM)

systems, where instead of having the “shared memory” in one central location,

each process “owns” part of the shared memory and keeps it in its own local

memory. These different shared memory models are illustrated in Figure 1.

A shared memory location is locally accessible to some process if it is in the

7

. . .

M

. . .

M M

(a)

C

. . .

M

(b)

C

(c)

P P P P P P

Figure 1: Shared memory models. (a) Central shared memory. (b) Cache Coher-

ent (CC). (c) Distributed Shared Memory (DSM). P denotes processor, C denotes

cache, M denotes shared memory.

part of the shared memory that physically resides on that process local memory.

Spinning on a remote memory location while its value does not change, is counted

only as one remote operation that causes communication in the CC model, while

it is counted as many operations that causes communication in the DSM model.

An algorithm satisfies local spinning (in the CC or DSM models) if the only type

of spinning required is local spinning.

An algorithm that satisfies local spinning in a DSM system, is expected to

perform well also when executed on a machine with no DSM. The reason is that

each process spins only on memory locations on which no other process spins,

thus eliminating hot-spot contention caused by busy-waiting.

The MCS lock, due to John Mellor-Crummey and Michael Scott, is perhaps

the best-known and most influential local-spinning lock algorithm [14]. This im-

portant algorithm and several variants of it are implemented and used in various

environments. For example, Java Virtual Machines use object synchronization

based on variations of the MCS lock [7].

A code segment in an algorithm is wait-free if its execution by a process should

8

require only a finite number of steps and must always terminate regardless of the

behavior of the other processes. A drawback of the MCS lock is that releasing it

is not wait-free and requires spinning – a process that is releasing the lock may

need to wait for the process that is trying to acquire the lock to take a step before it

can proceed. Thus, when there is high contention, a releasing process may have to

wait for a long time until a process that is trying to acquire the lock is scheduled.

We present two new local-spinning algorithms which overcome this drawback

while preserving the simplicity and elegance of the original MCS algorithm.

The two new mutual exclusion algorithms, which are inspired by the MCS al-

gorithm, have several desired properties. These properties, formally defined in the

next section, are: (1) their exit codes are wait-free, (2) they satisfy FIFO fairness,

(3) they have constant RMR (Remote Memory Reference) complexity in both the

CC and the DSM models, (4) they do not require to assume that the number of

participating processes, n, is a priori known, that is, processes may appear or dis-

appear intermittently, (5) they use only O(n) shared memory locations, and (6)

they make no assumptions on what and how memory is allocated1.

Except for property 1 above, the other properties are satisfied also by the MCS

algorithm. No previously published algorithm satisfies all these properties to-

gether.

Our algorithms use exactly the same atomic instruction set as the original MCS

algorithm, namely: read, write, fetch-and-store and compare-and-swap. In our

second algorithm it is possible to recycle memory locations so that if there are L

locks, and each process accesses at most one lock at a time, then the algorithm

needs only O(L+n) space, as compared to O(Ln) needed by our first algorithm.

1For example, in [2] it is assumed that all allocated pointers must point to even addresses.

9

2 Preliminaries

2.1 Computational model

Our model of computation consists of an asynchronous collection of n determin-

istic processes that communicate via shared registers (i.e, shared memory loca-

tions). Asynchrony means that there is no assumption on the relative speeds of

the processes. Access to a register is done by applying operations to the register.

Each operation is defined as a function that gets as arguments one or more values

and register names (shared and local), updates the value of the registers, and may

return a value. Only one of the arguments may be a name of a shared register. The

execution of the function is assumed to be atomic. Call by reference is used when

passing registers as arguments. The operations used by all our algorithms are:

• Read: takes a shared register r and simply returns its value.

• Write: takes a shared register r and a value val. The value val is assigned to

r.

• Fetch-and-store (FAS): takes a shared register r and a local register ℓ, and

atomically assigns the value of ℓ to r and returns the previous value of r.

(The fetch-and-store operation is also called swap in the literature.)

• Compare-and-swap (CAS): takes a shared register r, and two values: new

and old. If the current value of the register r is equal to old, then the value of

r is set to new and the value true is returned; otherwise r is left unchanged

and the value false is returned.

Most modern processor architectures support the above operations.

10

2.2 Mutual exclusion

The mutual exclusion problem is to design an algorithm that guarantees mutually

exclusive access to a critical section among n competing processes [3]. It is as-

sumed that each process is executing a sequence of instructions in an infinite loop.

The instructions are divided into four continuous sections: the remainder, entry,

critical and exit sections. The entry section consists of two parts: the doorway

which is wait-free, and the waiting part which includes one or more loops. A

waiting process is a process that has finished its doorway code and reached the

waiting part, and a beginning process is a process that is about to start executing

its entry section. It is assumed that a process may crash2 in its remainder section,

but may not crash in its entry, critical or exit sections. It is also assumed that a

process always leaves its critical section.

The mutual exclusion problem is to write the code for the entry and the exit

sections in such a way that the following two basic requirements are satisfied.

• Deadlock-freedom: If a process is trying to enter its critical section, then

some process, not necessarily the same one, eventually enters its critical

section.

• Mutual exclusion: No two processes are in their critical sections at the same

time.

Satisfaction of the above two properties is the minimum required for a mutual

exclusion algorithm. For an algorithm to be fair, satisfaction of an additional

condition is required.

2A process that fails by crashing is a process that stops its execution in a definitive manner.

11

• FIFO (First-in-first-out): A beginning process cannot execute its critical

section before a waiting process executes its critical section.

• Strong FIFO: A process that has not completed its doorway cannot execute

its critical section before a waiting process executes its critical section.

All our algorithms satisfy the slightly stronger strong FIFO requirement. To sim-

plify the presentation, when the code for a mutual exclusion algorithm is pre-

sented, only the entry code and exit code are described, and the remainder code

and the infinite loop within which these codes reside are omitted.

2.3 Counting Remote Memory References

As already mentioned, for certain shared memory systems, it makes sense to dis-

tinguish between remote and local access to shared memory. Shared registers may

be locally-accessible as a result of coherent caching, or when using distributed

shared memory where shared memory is physically distributed among the proces-

sors.

We define a remote reference by process p as an attempt to reference (access) a

memory location that does not physically reside on p’s local memory. The remote

memory location can either reside in a central shared memory or in some other

process’ memory.

Next, we define when remote reference causes communication. (1) In the

distributed shared memory (DSM) model, any remote reference causes commu-

nication; (2) in the coherent caching (CC) model, a remote reference to register

r causes communication if (the value of) r is not (the same as the value) in the

cache. That is, communication is caused only by a remote write access that over-

12

writes a different process’ value or by the first remote read access by a process

that detects a value written by a different process.

Finally, we define time complexity when counting only remote memory refer-

ences. This complexity measure, called RMR complexity, is defined with respect

to either the DSM model or the CC model, and whenever it is used, we will say

explicitly which model is assumed.

• The RMR complexity in the CC model (resp. DSM model) is the maximum

number of remote memory references which cause communication in the

CC model (resp. DSM model) that a process, say p, may need to perform in

its entry and exit sections in order to enter and exit its critical section since

the last time p started executing the code of its entry section.

13

3 The First Algorithm

Our first algorithm has the following properties: (1) its exit code is wait-free, (2)

it satisfies strong FIFO fairness, (3) it has constant RMR complexity in both the

CC and the DSM models, (4) it does not require to assume that the number of

participating processes, n, is a priori known, (5) it uses only O(n) shared memory

locations, (6) it makes no assumptions on what and how memory is allocated, and

(7) it uses exactly the same atomic instruction set as the original MCS algorithm.

3.1 An informal description

The algorithm maintains a queue of processes which is implemented as a linked

list. Each node in the linked list is an object with pointer field called next, boolean

field called locked, and status bit called status. Each process p has its own two

nodes (i.e., elements), called qp[0] and qp[1], which in a DSM machine can be

assumed to be stored in process p’s local memory. In addition, a shared object

called T (tail), points to the end of the queue.

Each time a process p wants to enter its critical section it alternately uses one

of its two nodes. In the entry code, a process p threads itself (i.e., its node) to

the end of the queue. Afterwards, p checks its state which can be one of the

following: (1) it is alone in the queue, (2) its predecessor is in its exit section, or

(3) its predecessor is either in its entry or critical section. In the first two cases, p

can safety enter its critical section. In the latter case p spins locally on its boolean

locked field until it gets a signal from its predecessor that it is now at the head of

the queue. Once p is at the head of the queue it can enter its critical section.

In its exit code, a process signals to its successor to enter its critical section.

14

The main challenge is in implementing the part of the algorithm in which a releas-

ing process signals its successor, since the threading cannot be done in one atomic

operation and requires several remote accesses to the shared memory. This in-

cludes making T point to this process’ node and making the process’ predecessor

know the threaded process is its successor.

In the MCS algorithm, to prevent a race condition, the releasing process is

required in its exit code to wait until the threading is completed, and only then it

may signal its successor and exit. As a result, the exit code of the MCS algorithm

is not wait-free. To resolve this problem, we had to deal with a situation where

the releasing process is in its exit section, but the threading of its successor has

not been completed yet. In this case, the releasing process does not know who

its successor is and thus has no way to signal anything directly to its successor

(unless it waits for the threading to be completed, which is not an option in our

case).

In its exit code p first assigns the value unlocked to its status variable. Since

p may not know who its successor is, this assignment leaves a signal for p’s suc-

cessor that it may enter its critical section. However, this signal is done in p’s

memory space, so its successor cannot simply spin and wait for this signal, and

checks for this signal only once.

Then, p checks if the threading of its successor (if there is one) is completed.

If it isn’t, there are two possibilities: (1) p is alone in the queue in which case

p completes its exit code, or (2) p is not alone, in which case its successor will

check and notice the signal p left in p’s status variable. If the threading of its

successor is completed, again there are two cases: (1) the successor has already

noticed the signal in p’s status variable in which case p completes its exit code, or

15

(2) its successor is spinning locally on its locked bit, in which case p terminates

the waiting by setting its successor’s locked bit to false. There are several race

conditions which are resolved using compare-and-swap operations as explained

later. The reason for using two nodes for each process is explained in detail in

Subsection 3.3.

3.2 The code of the algorithm and a detailed description

In the algorithms, the following symbols are used: “∗” to indicate pointer of

a specified type, “&” to obtain an object’s address, and “.” (dot) for integrated

pointer dereferencing and field access. The code of the algorithm appears in Fig-

ure 2. A detailed explanation follows.

We start with the entry code. In line 1, out of its two nodes, p chooses the

node to use in the current iteration, by inspecting current’s value. We notice that

when p finishes the iteration, it toggles the value of current (in line 16). In line

2, p initializes its current node next pointer to NIL. During the execution next

points to p’s successor in the queue, and p doesn’t have a successor yet. Later,

the successor of p, if there is one, will update p’s next pointer in line 7, and p will

identify whether it has a successor, when it executes line 11. In line 3, p initializes

its current node status field to LOCKED. In line 4, p gets T ’s value, and assigns a

pointer to its node into T . This line is the last line of the doorway, and it is where

p threads its node to the queue and gets a pointer to its predecessor node (if there

is one). In line 5, p validates whether it has a predecessor. If it doesn’t, it means

that p is at the head of the queue and can safely enter its critical section. If p has

a predecessor, say q, it continues to line 6, where it initializes its locked variable

to true, which means p cannot enter its critical section at the moment. In line 7,

16

ALGORITHM 1: Program for process p.

Type: QNode: {next: QNode*, locked: bool, status ∈ {LOCKED, UNLOCKED}}

Shared: T : type QNode*, initially NIL // T points to the last item in the queue

qp[0,1]: type QNode, both nodes initially {NIL, false, LOCKED}

// queue nodes belong to process p, and local to process p in the DSM model

Local: pred: type QNode*, initial value immaterial // process’ predecessor

succ: type QNode*, initial value immaterial // process’ successor

mynode: type QNode*, initially value immaterial // currently used node

current: ∈ {0,1}, initial value immaterial // index to current node

Enter Code:

1 mynode := &qp[current] // current node for this round, doorway begins

2 mynode.next := NIL

3 mynode.status := LOCKED

4 pred := FAS(T,mynode) // enter the queue, doorway ends

5 if pred 6= NIL then // enter CS if no predecessor

6 mynode.locked := true // prepare to wait

7 pred.next := mynode // notify your predecessor

8 if CAS(pred.status, UNLOCKED, LOCKED) = false then

9 await (mynode.locked 6= true) fi fi // wait for your predecessor’s signal

Critical Section

17

Exit Code:

10 mynode.status := UNLOCKED // notify successor it can enter its CS

11 if mynode.next = NIL then // if you don’t have a successor

12 CAS(T,mynode, NIL) // set T back to NIL if you are last

13 else if CAS(mynode.status, UNLOCKED, LOCKED) then // there is a successor

14 succ := mynode.next

15 succ.locked := false fi fi // notify successor it can enter its CS

16 current := 1− current // toggle for further use

Figure 2: Algorithm 1

p notifies q that p itself is its successor. In line 8, p checks if q already enabled it

to enter its critical section, by assigning UNLOCKED to status. If the compare-

and-swap operation succeeds, p knows q already executed line 10, and exited its

critical section, so p can enter its critical section. In case the compare-and-swap

fails, p waits for its turn to enter its critical section in line 9 by local-spinning on

its locked variable, waiting for q to assign false to it (line 15).

Next, we explain the exit code. In line 10, p assigns UNLOCKED to its status

variable immediately after it finishes executing its critical section. At that time,

p may not know who its successor is, so the first operation in the exit code is to

leave a signal for the upcoming successor, so that it is able to enter its critical

section when the time comes. In line 11, p checks whether it’s been notified who

its successor is (i.e., whether its successor, if exists, already executed line 7).

If it didn’t, p may be the only one in the queue. In line 12 p checks whether

T equals mynode, which is the node p inserted to the queue in line 4. If the

18

compare-and-swap succeeds, p is indeed alone in the queue, so it assigns NIL to

T , which returns the queue to its initial state. If the compare-and-swap in line

12 fails, it means that there must be another process in the queue after p. Since

p assigned UNLOCKED to its status variable, its successor should notice it and

be able to enter its critical section later on. If p’s successor has executed line 7

before p has executed line 11, p will know who its successor is. In line 13, p

checks whether its successor already let itself enter into its critical section after

reading p’s UNLOCKED value in line 8. If the successor hasn’t done so yet, the

compare-and-swap operation succeeds, and p lets its successor enter its critical

section in lines 14-15 by setting the bit its successor spins on to false. In line

16, p toggles its current, for the next iteration. The toggle is necessary to avoid

deadlock.

3.3 Further explanations

In order to better understand the algorithm, we explain below three delicate design

issues which are crucial for avoiding deadlocks.

1. Why each process p needs two nodes qp[0] and qp[1]? The current variable

is used to avoid deadlock in the following execution: assume each process

has one node instead of two. Suppose process p is in its critical section,

and process q finished its doorway. p resumes and executes its exit code

(lines 10, 11). p finishes its exit code while q is in the queue, but q hasn’t

informed p that q is p’s successor. p leaves its status variable with the value

UNLOCKED, so that q will be able to enter its critical section. p starts

another iteration before q resumes and executes line 4. Another process q′

executes the entry code, such that q′ is p’s successor. Notice that, in that

19

execution, q and q′ share p’s node as their predecessor (from two different

iterations of p). If q′ executes line 7 before q, q can override the assignment

of q′ and assigns a pointer to its node into p’s next variable. q′ now moves

on and waits in line 9, but there is no process to free q′ and a deadlock

occurs.

This problem is resolved by having each process own two nodes. We only

need two nodes for each process, since the algorithm satisfies FIFO. p’s

successor enters its critical section before p enters its critical section in its

next iteration. After p’s successor enters its critical section, p’s node won’t

be needed anymore, and p will be able to reuse it.

2. Is the order of lines 6 and 7 important? Line 6 must be executed before line

7, and their order should not be changed. Assume we have two processes,

p and q, where q is p’s predecessor and we change the order of lines 6 and

7. We let p execute line 7 and suspend it before executing line 6. In such a

case, q can start executing its exit code. q will notice it has a successor, and

q will move on to execute line 15 and assigns f alse to p’s locked. Then,

p will continue to execute its code, and executes line 6. p assigns true to

locked and misses q’s signal to enter its critical section. p will wait forever

at line 9 and a deadlock occurs.

3. Is the order of lines 10 and the test in the if statement in line 11 impor-

tant? Line 10 must be executed before the exited process checks in line

11 whether it has a successor. If the UNLOCKED assignment is executed

afterwards, a deadlock may occur. Assume we have two processes, p and q,

where q is p’s predecessor. q executes the first line of the exit code, which is

20

(after switching) “if mynode.next = NIL then”. Assume p hasn’t executed

line 7 yet, so the condition is true. Meanwhile, process p executes lines 5-9

and waits at line 9. Process p cannot skip the compare-and-swap since q’s

status variable is LOCKED. q finishes its exit code without signaling to p,

and thus p will spin in line 9 forever, causing a deadlock.

3.4 Correctness proof

The following notions and notations are used in the proof.

1. Doorway: Process p is considered to be in its doorway while executing

statements 1-4.

2. The ith iteration: Process p during its ith iteration (i.e, its ith attempt to

enter its critical section) is denoted by pi.

3. Follows, predecessor, successor: Consider an execution e. q j follows pi in

e if and only if pi finishes its doorway before q j. pi is the predecessor of q j

in e if and only if q j follows pi, and no other process finishes its doorway

between the time pi finished its doorway and the time when q j finishes its

doorway. If pi is the predecessor of q j then q j is said to be the successor of

pi.

Lemma 1. For every process p at iteration i, pi has at most one predecessor.

Proof. The fact that a process may have only a single predecessor follows from

that fact that the last step of the doorway (line 4) is an atomic fetch-and-store

operation which updates T and pred.

21

Lemma 2. Assume that for every pi and q j, if pi is the predecessor of q j then pi

enters its critical section before q j enters its critical section. Then, for every pi

and q j, if pi is the predecessor of q j then pi enters its critical section before any

process that follows q j enters its critical section.

Proof. Proof by induction on the number of processes m that follow q j. In the base

case, when m = 1, there is only one process, say rk, that follows q j. This means

that q j is the predecessor of rk. Therefore, according to the assumption made by

the lemma, q j enters its critical section before rk enters its critical section. Since

pi enters its critical section before q j, and q j enters its critical section before rk,

by transitivity pi enters its critical section before rk.

We assume that the lemma holds for m−1 processes that follow q j, and prove

that it also holds for the mth process that follows q j. Let the mth process be rk. We

denote rk’s predecessor as r̂k. Notice that r̂k is the m−1 process that follows q j.

Thus, by the induction hypothesis, pi enters its critical section before r̂k enters its

critical section. r̂k is the predecessor of rk, and thus, according to the assumption

made by the lemma, r̂k enters its critical section before rk enters its critical section.

Since pi enters its critical section before r̂k enters its critical section and r̂k enters

its critical section before rk enters its critical section, by transitivity pi enters its

critical section before rk.

Lemma 3. For every pi and q j such that pi is the predecessor of q j, pi is the only

process that can assign false to q j’s mynode.locked.

Proof. By Lemma 1, q j has at most one predecessor. So, pi is q j’s only prede-

cessor. Clearly, except for pi, any other process that q j follows will not be able to

write to q j’s mynode.locked. Thus, throughout the algorithm, the only processes

22

that write to q j’s mynode.locked are q j itself and pi. q j does it at line 6 and pi

does it at line 15. At line 6, q j assigns true to locked, thus, the only process that

assign false is pi.

Lemma 4 (STRONG FIFO). If pi finishes its doorway before q j finishes its door-

way, then pi enters its critical section before q j enters its critical section.

Proof. pi finishes the doorway before q j finishes the doorway, therefore pi exe-

cutes line 4 before q j does. There are two cases:

1. q j is pi’s successor.

2. q j follows pi, but q j is not pi’s successor.

According to Lemma 2, once we prove that pi enters its critical section before q j

in case 1, then it would immediately follow that pi enters its critical section before

q j in case 2 as well.

Assume q j is pi’s successor and assume to the contrary that q j enters its critical

section before pi. There are two cases:

1. q j executes line 4 after pi executes line 12. In this case, pi entered its critical

section before q j, which contradicts the assumption.

2. q j executes line 4 before pi executes line 12. Therefore, T still points to pi’s

qnode when q j executes line 4 and q j writes pi’s qnode to its pred variable.

Thus pred is not NIL, and q j continues and executes line 8. Here we have

two options as well:

23

(a) The compare-and-swap operation in line 8 succeeds. The compare-

and-swap succeeds only if q j’s pred.status is equal to UNLOCKED.

pred is pi’s qnode, pi assigned its status value LOCKED at the begin-

ning of pi’s entry code. For it to change to UNLOCKED, pi should

execute line 10 in the exit code. This means that pi entered its critical

section before q j did, contradicting the assumption.

(b) The compare-and-swap operation in line 8 fails. q j continues to line

9 and local-spins on locked. The only way q j can enter its critical

section is when some other process writes false to locked. According

to Lemma 3, pi is the only process that can assign false to q j’s locked.

Notice that the only line where pi does this is at line 15, which is

in its exit code. In this case, pi entered its critical section before q j,

contradicting the assumption.

We proved that if pi finishes the doorway before q j finishes the doorway, then

there is no execution where q j enters its critical section before pi. Therefore, q j

cannot enter its critical section before pi does, implying that the algorithm satisfies

strong FIFO.

Lemma 5. For every pi and q j, if pi is the predecessor of q j such that pi and q j

are not in their critical sections at the same time, then pi and rk are not in their

critical sections at the same time, for any other process rk that follows q j.

Proof. Proof by induction on the number of processes m that follow q j. In the

base case, m = 1: there is only one process, say rk, that follows q j. This means

that q j is the predecessor of rk. Assume pi is in its critical section. Since q j is not

in its critical section at the same time as pi and by Lemma 4 the algorithm satisfies

24

strong FIFO, therefore q j enters its critical section after pi exits its critical section.

Also by Lemma 4, rk enters its critical section after q j. Therefore, rk cannot be in

its critical section at the same time as pi. Next, we assume that the lemma holds

for m−1 processes that follow q j, and prove for m processes that follow q j. Let

the mth process be rk, and let rk’s predecessor be r̂k. Notice that r̂k is the m− 1

process following q j, and therefore by the induction hypothesis pi and r̂k are not

in their critical sections at the same time. Thus, since by Lemma 4 the algorithm

satisfies strong FIFO, rk is not in its critical section at the same time as pi.

Lemma 6 (Mutual Exclusion). No two processes are in their critical sections at

the same time.

Proof. We assume that there are two processes, pi and q j at their critical sections

at the same time, and reach a contradiction. Assume, without loss of generality,

that pi enters its critical section before q j. According to Lemma 4 the algorithm

satisfies strong FIFO, so pi finishes its doorway before q j, and therefore pi exe-

cutes line 4 before q j. There are two cases:

1. q j is pi’s successor.

2. q j follows pi, but q j is not pi’s successor.

By Lemma 5, once we prove that pi and q j are not in their critical sections at

the same time in case 1, then it would immediately follow that pi and q j are not

in their critical section at the same time in case 2. Let’s prove case 1: Assuming

q j is pi’s successor, there are two cases:

1. q j executes line 4 after pi executes line 12. In this case, pi exits its critical

section before q j enters its critical section, which contradicts the assump-

tion.

25

2. q j executes line 4 before pi executes line 12. Therefore, T still points to

pi’s qnode when q j executes line 4 and q j gets pi’s qnode assigned to its

pred variable. Thus pred is not NIL, and q j continues and executes line 8.

In line 8, q j checks whether pi’s status is UNLOCKED. Since pi executed

line 4 before q j executed line 4, pi also executed line 3 before q j executed

line 8. According to the assumption pi still hasn’t exited its critical section,

so its status is still LOCKED. Therefore the compare-and-swap fails and

q j continues to line 9. q j assigned true to its locked variable in line 6,

and local-spins in line 9, waiting for some process to let it enter its critical

section. By Lemma 3, pi is the only process that can assign false to q j’s

locked. pi does this at line 15, which means that for q j to enter its critical

section, pi has to execute its exit code. This contradicts the assumption that

pi and q j are in their critical sections at the same time.

Lemma 7. For every pi and q j such that pi is q j’s predecessor, once pi assigned

the value false to q j’s locked variable, this value cannot be overwritten, until q j

completes its exit code.

Proof. By Lemma 1, q j has only one predecessor, so pi is q j’s only predecessor.

Throughout the algorithm, the only processes that write to q j’s locked variable are

q j itself and pi. q j does this at line 6 and pi does this at line 15. We will show

that if pi executes line 15, q j must have already executed line 6 before that. pi

executed line 15, therefore pi must have executed the “else” clause of the “if”

statement at line 11. So the “if” condition was false, and pi’s mynode.next was

not NIL. pi has only one successor which is q j. Since pi’s next variable was not

26

NIL, q j has already executed line 7 and assigned its node to pi’s next. This implies

that q j has already executed line 6, in which it assigns true to locked. Therefore

q j executed line 6 before pi executed line 15, and since there is no other process

that writes to q j’s locked variable, the (false) value was not overwritten.

Lemma 8 (Deadlock-freedom). If a process is trying to enter its critical section,

then some process, not necessarily the same one, eventually enters its critical

section.

Proof. Assume to the contrary that some group of processes P are in their entry

code and none of them can ever access its critical section. Let pi be the first

process in P to complete its doorway. Thus, all the other processes in P follow pi.

The fact that pi is unable to enter its critical section means that pi is local-spinning

at line 9, since all the other lines in the entry code do not contain any loops,

are wait-free and can be completed in a constant number of pi steps. Any other

execution path would lead pi to its critical section and contradicts the assumption.

From here it follows that:

• When pi completed its doorway, pred was not NIL. Therefore, there exists

a process q j that finished the doorway before pi, but did not executed line

12 that removes it from the queue.

• pi compare-and-swap operation at line 8 fails, therefore q j status was equal

to LOCKED. There are two cases:

1. q j hasn’t executed line 10.

2. q j has already executed line 13, where the compare-and-swap opera-

tion ended successfully for q j.

27

Since we assumed that pi is the first process to complete its doorway among

the waiting processes, and q j is pi’s predecessor, it follows that q j would

eventually be able to enter its critical section. Therefore, q j will necessar-

ily exit its critical section and begin the exit code. In both cases above, it

is easy to see that the execution path of q j in the exit code leads it to line

15, where q j writes false to pi’s locked variable. In addition, according to

Lemma 7, the value of pi’s mynode.locked field is never overwritten un-

til pi completes it exit code. Therefore, at some point pi will notice that

mynode.locked = f alse and can continue to its critical section. This con-

tradicts the assumption that pi will not enter its critical section.

Lemma 9 (Constant RMR complexity). The RMR complexity of Algorithm 1 is

O(1) in both the CC and DSM models.

Proof. By inspecting the algorithm, it is easy to count steps and see that except

the busy-waiting loop in line 9, it takes constant number of steps for a process to

enter and exit its critical section. Thus, it is sufficient to prove that, for every pi,

pi performs O(1) RMRs at line 9, because this is the only busy-waiting loop in

the algorithm. We will prove that while the process is executing the loop at line 9,

it performs only a constant number of remote memory references, in both models:

• DSM model: pi spins on mynode.locked. mynode can be equal to either

qp[0] or qp[1] as follows from line 1 in the algorithm. Both of them initial-

ized as local to process pi’s memory and thus the algorithm performs O(1)

RMRs in the DSM model.

28

• CC model: We prove that in one iteration of a process, there is at most one

cache invalidation. Before spinning on mynode.locked, its value migrates

to pi’s local cache, since pi assigned to it at line 6. It is updated by another

process only once, at line 15. When a process updates mynode.locked, pi

will have a cache invalidation and pi will execute one remote memory ref-

erence to read the new value of mynode.locked. Since the new value is nec-

essarily equal to false, pi stops spinning on mynode.locked and proceeds

to its critical section. By Lemma 7, there is no other process that writes to

pi’s mynode.locked in the current iteration anywhere else in the algorithm.

Therefore, there is only one remote memory reference during the loop exe-

cution, and the algorithm has O(1) RMR complexity in the CC model.

Lemma 10 (Wait-free exit code). Every process finishes its exit code within a

bounded number of its own steps.

Proof. Since the exit code is a straight-line code which does not contain either

loops or await operations, it immediately follows that any execution of the exit

code will be completed in a bounded number of a process’ own steps.

Theorem 11. Algorithm 1 satisfies mutual exclusion, deadlock freedom, wait-free

exit, strong FIFO fairness, and constant RMR complexity. Furthermore, it does

not require to assume that the number of processes, n, is a priori known, it uses

only O(n) shared memory locations, it makes no assumptions on what and how

memory is allocated, and it uses exactly the same atomic instruction set as the

original MCS algorithm.

29

Proof. The properties mutual exclusion, deadlock freedom, wait-free exit, strong

FIFO fairness and constant RMR complexity, follows from Lemma 6, Lemma 8,

Lemma 10, Lemma 4 and Lemma 9, respectively. The other properties are easily

verified by inspecting the code of the algorithm.

30

4 The Second Algorithm

The second algorithm satisfies the same properties as the first algorithm: (1) its

exit code is wait-free, (2) it satisfies strong FIFO fairness, (3) it has constant RMR

complexity in both the CC and the DSM models, (4) it does not require to assume

that the number of participating processes, n, is a priori known, (5) it uses only

O(n) shared memory locations, (6) it makes no assumptions on what and how

memory is allocated, and (7) it uses exactly the same atomic instruction set as the

original MCS algorithm.

In addition, in the second algorithm it is possible to recycle memory locations

so that if there are L locks, and each process accesses at most one lock at a time,

the algorithm needs only O(L+ n) space, as compared to O(Ln) needed by the

first algorithm.

To simplify the presentation, we will assume that processes have unique iden-

tifiers. However, for each process p, the value of one of its pointers is a unique

number which can be used as process p’s unique identifier instead of assuming

that p itself is the unique identifier. We elaborate more on this issue in Subsection

4.3, after the algorithm is presented.

4.1 An informal description

As in the previous case, the algorithm maintains a queue of processes which is

implemented as a linked list. Each process p has two different data elements that

complete each other and together represent a single node. The two data elements

are called: qp which resides in p local memory and access to it is considered local

access, while nodep is handed over from an exiting process to its successor at the

31

end of the exit code, and access to it is considered remote memory access. qp,

which is not part of the queue, is a record with pointer field called qnode which

initially points to the nodep element, and boolean field called locked. nodep is the

element that initially p tries to thread into the linked list in the entry code.

In addition, a shared object called T (tail) points to the end of the queue. Ini-

tially, when the queue is empty, T points to a dummy node, called node0, that

enables the first process which succeeds to enter the queue, to proceed to its criti-

cal section.

In the entry code, a process threads itself (i.e., threads the element qp.qnode

points to) to the end of the linked list. A process has several ways to enter its criti-

cal section: it can enter immediately if it is alone in the queue or if its predecessor

is in the exit section, otherwise, it has to spin locally until its predecessor assigns

false to locked.

In the exit code p first assigns the value p (its ID which is different than 0) to its

status field of its node in the linked list. Since p may not know who its successor

is, this assignment leaves a signal for p’s potential successor that it may enter its

critical section. Then, p checks if it has a successor. If it doesn’t, p completes its

exit code. Otherwise, if p’s successor has already noticed that p’s status variable

equals p, process p completes its exit code. If its successor is spinning locally on

its locked bit, p terminates the waiting by setting its successor locked bit to false.

In all the above cases, p always leaves its current node in the queue, because

this node includes the status field with the value p which indicates that p exited its

critical section. Since p’s predecessor’s node is the current dummy node, before

p completes its exit code, it removes its predecessor’s node from the queue and

takes ownership of it.

32

4.2 The code of the algorithm and a detailed description

As in the first algorithm, the following symbols are used: “∗” to indicate pointer

of a specified type, “&” to obtain an object’s address, and “.” (dot) for integrated

pointer dereferencing and field access.

We assume that each process has a unique identifier which is different than

0. The code of the algorithm appears in Figure 3. It is important to notice that

there are some statements in the algorithm with multiple memory references. We

use this style to keep the algorithm short and simple. Only one shared memory

location can be accessed in one atomic step! For example, the statement in line 1,

“qp.qnode.next := NIL” is equivalent to “localTemp := qp.qnode; localTemp.next :=

NIL”, and the statement in line 7 “pred.next := qp.qnode” is equivalent to “localTemp :=

qp.qnode; pred.next := localTemp”. A detailed explanation follows.

We start with the entry code. In lines 1-5, p initializes its node. Notice p

initializes all of its fields except qp.qnode, which was already initialized before

the execution began. In line 6, p executes fetch-and-store to enter the queue.

p gets T ’s value, which points to the last item in the queue (which is also p’s

predecessor), and assigns its qnode to T . Notice that p assigns only its nodep to

T , while qp can be accessed via nodep if needed. This is the end of the doorway.

In line 7, p notifies its predecessor that p is its successor. In line 8, p copies

its predecessor’s process ID to a local variable, to be used as an argument to the

compare-and-swap operation later. In line 9, p checks whether its predecessor

has already signaled p to enter its critical section. The predecessor does it by

assigning its process ID to its status in line 11. If the predecessor already assigned

its process ID but did not change it back to ZERO yet (line 13) then the compare-

and-swap succeeds and p can enter its critical section. If it fails, p continues to

33

ALGORITHM 2: Program for process p.

Type: QNode: {next: QNode*, local: LocalNode*, status: integer, pid: integer}

LocalNode: {qnode: QNode*, locked: bool}

Constant:

ZERO = 0 // it is assumed that 0 is not a process id

Shared: node0: type QNode, initially {NIL, NIL, 0, 0}

// a dummy node, enables the first process to enter its critical section

T : type QNode*, initially &node0 // T points to node0

nodep: type QNode, initial values are immaterial

qp: type LocalNode*, qnode initially &nodep, locked initial value is immaterial

// qp belongs to process p, and local to process p in the DSM model

Local: pred: type QNode*, initial value is immaterial // process’ predecessor

predPid: type integer, initial value is immaterial // process’ predecessor ID

Enter Code:

1 qp.qnode.next := NIL // initialization, doorway begins

2 qp.qnode.pid := p // process ids are unique and different than 0

3 qp.qnode.local = qp

4 qp.qnode.status := ZERO

5 qp.locked := true

6 pred := FAS(T,qp.qnode) // enter the queue, doorway ends

7 pred.next := qp.qnode // notify your predecessor

8 predPid := pred.pid

34

9 if CAS(pred.status, predPid, ZERO) = false then

10 await (qp.locked 6= true) fi // wait for your predecessor’s signal

Critical Section

Exit Code:

11 qp.qnode.status := p // notify successor it can enter its CS

12 if qp.qnode.next 6= NIL then // if you have a successor

13 if CAS(qp.qnode.status, p, ZERO) then

14 qp.qnode.next.local.locked := false fi fi // notify successor it can enter its CS

15 qp.qnode := pred // use predecessor’s node for the next iteration

Figure 3: Algorithm 2

line 10 and starts spinning locally on its locked variable, waiting for it to change

to false so it can enter its critical section.

Next, we explain the exit code. In line 11, p assigns its process ID to its status

variable, and signals its potential successor that it can enter its critical section. In

line 12, p checks whether it has a successor. If next equals NIL it doesn’t have

a successor and it continues to line 15. If next is not NIL, it means that some

process q already assigned itself as p’s successor at line 7. In such a case, p

continues to line 13, checking whether q has already executed line 9 and let itself

enter its critical section. If q executed line 9 and q’s compare-and-swap ended

successfully, p’s compare-and-swap in line 13 fails and p continues to line 15.

If p’s compare-and-swap ends successfully, it means q hasn’t entered its critical

section yet. Since p assigned ZERO to its status in line 13, p must let q enter

its critical section by setting locked to false, and does so at line 14. In line 15,

35

p assigns its predecessor’s node to itself, and leaves its node to its successor. On

p’s next iteration, it will use its predecessor’s node, thus p will not override the

status in its previous node when initializing its qnode at the beginning of its next

iteration. Therefore, p’s successor will be able to read and use p’s status when

needed and find out that it can enter its critical section.

4.3 Further explanations

In order to better understand the algorithm, we explain below several crucial de-

sign issues.

1. Do we really need to explicitly assume that the processes have unique iden-

tifiers? No, this is done only to simplify the presentation. In the first al-

gorithm, it is not assumed that processes have unique identifiers. However,

each process p has two unique memory nodes qp[0] and qp[1], and it is pos-

sible to consider &qp[0] as the unique identifier of process p. Similarly, in

algorithm 2, the value of the pointer qp is a unique number which can be

used as process p’s unique identifiers. That is, in Algorithm 2, it is possible

to replace p with qp (assuming qp 6= 0) everywhere (i.e., in lines 2,11,13).

This implies that also in Algorithm 2 there is no need to explicitly assume

that processes have unique IDs.

2. How does a process that does not need to spin know that it is at the head of

the queue? Whenever the values of the status field and of the pid field of the

first node (i.e., the dummy node) in the queue are equal, the process whose

node is the successor of the dummy node can safely enter its critical sec-

tion. Initially, node0 is the dummy node and node0.status = node0.pid = 0,

36

thus, the first process that threads itself into the queue, can immediately en-

ter its critical section. Also, when a process, say p, completes its critical

section, it always leaves its current node in the queue and takes ownership

of the node of its predecessor (which is the dummy node). Thus, its current

node becomes the new dummy node with both status and pid fields equal p,

which will not block the next process in line, since the compare-and-swap

operation in line 9 would succeed.

3. Can’t we simply use UNLOCKED in lines 2,11 and 13, as done in algorithm

1, instead of using the unique process identifier p? No, this is crucial for

avoiding deadlocks. We explain it by example. Consider the following

scenario: There are two processes, p and q.

• p starts first and enters its critical section;

• q starts, runs until after line 7 and becomes p’s successor in the queue;

• p executes the code until after line 12. Since next 6= NIL, p enters the

if statement;

• q continues and enters its critical section;

• q continues, finishes its exit code and takes p’s current qnode for its

next iteration;

• q starts the entry code, and executes until after line 11; p and q has the

same qnode!

Now, here is the difference between using process identifiers and UNLOCKED:

p continues,

37

• When process identifiers are used, the compare-and-swap operation in

line 13 fails and p takes its predecessor’s qnode for its next iteration

and completes its exit code.

• When UNLOCKED is used, the compare-and-swap operation in line

13 succeeds for p and the shared qnode for p and q now contains the

status ZERO. p will continue to line 14, and will complete its exit

code. q executes its exit code and since it has no successor, it skips

lines 12-14 and exits. We got into a situation where the queue is empty,

and T points to a dummy node with status value ZERO! The next

process to enter will be spinning in line 10 forever.

Therefore, it is crucial to use unique process identifiers to avoid deadlock.

4.4 Correctness proof

Similarly to the first algorithm, the following notions and notations are used in the

proof.

1. Doorway: Process p is considered to be in its doorway while executing

statements 1-6.

2. The ith iteration: Process p during its ith iteration (i.e, its ith attempt to

enter its critical section) is denoted by pi.

3. Follows, predecessor, successor: Consider an execution e. q j follows pi in

e if and only if pi finishes its doorway before q j. pi is the predecessor of q j

in e if and only if q j follows pi, and no other process finishes its doorway

38

between the time pi finished its doorway to the time q j finishes its doorway.

If pi is the predecessor of q j then q j is said to be the successor of pi.

Lemma 12. For every process p at iteration i, pi has at most one predecessor.

Proof. The fact that a process may have only a single predecessor, follows from

that fact that the last step of the doorway (line 6) is an atomic fetch-and-store

operation which updates T and pred.

Lemma 13. Assume that for every pi and q j, if pi is the predecessor of q j then pi

enters its critical section before q j enters its critical section. Then, for every pi

and q j, if pi is the predecessor of q j then pi enters its critical section before any

process that follows q j enters its critical section.

Proof. Proof by induction on the number of processes m that follow q j. In the base

case, when m = 1, there is only one process, say rk, that follows q j. This means

that q j is the predecessor of rk. Therefore, according to the assumption made by

the lemma, q j enters its critical section before rk enters its critical section. Since

pi enters its critical section before q j, and q j enters its critical section before rk,

by transitivity pi enters its critical section before rk.

We assume that the lemma holds for m−1 processes that follow q j, and prove

that it also holds for the mth process that follows q j. Let the mth process be rk. We

denote rk’s predecessor as r̂k. Notice that r̂k is the m−1 process that follows q j.

Thus, by the induction hypothesis, pi enters its critical section before r̂k enters its

critical section. r̂k is the predecessor of rk, and thus, according to the assumption

made by the lemma, r̂k enters its critical section before rk enters its critical section.

Since pi enters its critical section before r̂k enters its critical section and r̂k enters

39

its critical section before rk enters its critical section, by transitivity pi enters its

critical section before rk.

Lemma 14. For every pi and q j such that pi is the predecessor of q j, pi is the

only process that can assign false to q j’s qnode.locked.

Proof. By Lemma 12, q j has at most one predecessor. So, pi is q j’s only prede-

cessor. Clearly, except for pi, any other process that q j follows will not be able

to write to q j’s qnode.locked. Thus, throughout the algorithm, the only processes

that write to q j’s qnode.locked are q j itself and pi. q j does it at line 5 and pi does

it at line 14. At line 5, q j assigns true to locked, thus, the only process that assign

false is pi.

Lemma 15 (STRONG FIFO). If pi finishes its doorway before q j finishes its door-

way, then pi enters its critical section before q j enters its critical section.

Proof. pi finishes the doorway before q j finishes the doorway, therefore pi exe-

cutes line 6 before q j does. There are two cases:

1. q j is pi’s successor.

2. q j follows pi, but q j is not pi’s successor.

According to Lemma 13, once we prove that pi enters its critical section before q j

in case 1, then it would immediately follow that pi enters its critical section before

q j in case 2 as well.

Assume q j is pi’s successor and assume to the contrary that q j enters its critical

section before pi. Since q j is pi’s successor, by definition there is no other process

that executes line 6 between the time pi executes it and the time q j executes it.

40

Therefore, when q j executes line 6, T still points to pi’s qnode, and q j gets pi’s

node as its predecessor, which is assigned to its pred variable. There are two

cases:

1. The compare-and-swap operation in line 9 succeeds. The compare-and-

swap succeeds only if q j’s pred.status is equal to predPid, which was as-

signed at line 8 with the value of pred.pid. pred is pi’s qnode, so we will

check when pi’s status equals to pi’s pid. pi assigned its pid with its ID at

line 2, and its status with the value ZERO at line 4. We assumed that all

process IDs are not 0, so for the values of these variables to be equal, one of

them had to change after pi executed line 4. pi’s pid is changed only by pi

at line 2, so we will examine when status changes to be equal to pid. pi’s

status variable changes to a value which isn’t ZERO only at line 11, which

is executed by pi. Therefore, for pi’s status equals to pi’s pid, pi should

have executed line 11 in its exit code. This means that pi entered its critical

section before q j did, contradicting the assumption.

2. The compare-and-swap operation in line 9 fails. q j continues to line 10 and

local-spins on locked. The only way q j can enter its critical section is when

some other process writes false to locked. According to Lemma 14, pi is

the only process that can assign false to q j’s locked. Notice that the only

line where pi does this is at line 14, which is in its exit code. In this case, pi

entered its critical section before q j, contradicting the assumption.

We proved that if pi finishes the doorway before q j finishes the doorway, then

there is no execution where q j enters its critical section before pi. Therefore, q j

cannot enter its critical section before pi does, implying that the algorithm satisfies

41

strong FIFO.

Lemma 16. For every pi and q j, if pi is the predecessor of q j such that pi and q j

are not in their critical sections at the same time, then pi and rk are not in their

critical sections at the same time, for any other process rk that follows q j.

Proof. Proof by induction on the number of processes m that follow q j. In the

base case, m = 1: there is only one process, say rk, that follows q j. This means

that q j is the predecessor of rk. Assume pi is in its critical section. Since q j is

not in its critical section at the same time as pi and according to Lemma 15 the

algorithm satisfies strong FIFO, therefore q j enters its critical section after pi exits

its critical section. Also according to Lemma 15, rk enters its critical section after

q j. Therefore, rk cannot be in its critical section at the same time as pi. Next, we

assume that the lemma holds for m−1 processes that follow q j, and prove for m

processes that follow q j. Let the mth process be rk, and let rk’s predecessor be r̂k.

Notice that r̂k is the m− 1 process following q j, and therefore by the induction

hypothesis pi and r̂k are not in their critical sections at the same time. Thus, since

by Lemma 15 the algorithm satisfies strong FIFO, rk is not in its critical section

at the same time as pi.

Lemma 17 (Mutual Exclusion). No two processes are in their critical sections at

the same time.

Proof. We assume that there are two processes, pi and q j at their critical sections

at the same time, and reach a contradiction. Assume, without loss of generality,

that pi enters its critical section before q j. According to Lemma 15 the algo-

rithm satisfies strong FIFO, so pi finishes its doorway before q j, and therefore pi

executes line 6 before q j. There are two cases:

42

1. q j is pi’s successor.

2. q j follows pi, but q j is not pi’s successor.

By Lemma 16, once we prove that pi and q j are not in their critical sections at

the same time in case 1, then it would immediately follow that pi and q j are not

in the critical section at the same time in case 2. Let’s prove case 1: Assuming q j

is pi’s successor. Since q j is pi’s successor, by definition there is no other process

that executes line 6 between the time pi executes it and the time q j executes it.

Therefore, when q j executes line 6, T still points to pi’s qnode, and q j gets pi’s

node as its predecessor, to its pred variable. At line 9, q j checks whether pi’s

status equals to pi’s pid. Since pi executed line 6 before q j executed line 6, pi

also executed lines 2 and 4 before q j executed line 9. According to the assumption

pi still hasn’t exited its critical section, so its status is still ZERO, and its pid still

equals to p, that we assumed is different from 0. Therefore pi’s status and pi’s

pid are not equal, the compare-and-swap fails and q j continues to line 10. q j

assigned true to its locked variable at line 5, and local-spins at line 10, waiting for

some process to let it enter its critical section. According to Lemma 14, pi is the

only process that can assign false to q j’s locked. pi does this at line 14, which

means that for q j to enter its critical section, pi has to execute its exit code. This

contradicts the assumption that pi and q j are in their critical sections at the same

time.

Lemma 18. For every pi and q j such that pi is q j’s predecessor, once pi assigned

the value false to q j’s locked variable, this value cannot be overwritten until q j

completes its exit code.

Proof. By Lemma 12, q j has only one predecessor, so pi is q j’s only predecessor.

43

Throughout the algorithm, the only processes that write to q j’s locked variable are

q j itself and pi. q j does this at line 5 and pi does this at line 14. We will show that

if pi executes line 14, q j must have already executed line 5 before that. pi executed

line 14, therefore pi’s qnode.next was not NIL. pi has only one successor which

is q j. Since pi’s next variable was not NIL, q j has already executed line 7 and

assigned its node to pi’s next. This implies that q j has already executed line 5, in

which it assigns true to locked. Therefore q j executed line 5 before pi executed

line 14, and since there is no other process that writes to q j’s locked variable, the

(false) value was not overwritten.

Lemma 19 (Deadlock-freedom). If a process is trying to enter its critical section,

then some process, not necessarily the same one, eventually enters its critical

section.

Proof. Assume to the contrary that some group of processes P are in their entry

code and none of them can ever access its critical section. Let pi be the first

process in P to complete its doorway. Thus, all the other processes in P follow pi.

The fact that pi is unable to enter its critical section means that pi is local-spinning

at line 10, since all the other lines in the entry code do not contain any loops,

are wait-free and can be completed in a constant number of pi steps. Any other

execution path would lead pi to its critical section and contradicts the assumption.

From here it follows that: pi compare-and-swap operation at line 9 fails, there-

fore pi’s pred.status was not equal to pi’s pred.pid. Therefore, pi’s predecessor,

say q j, has a node in that state. Notice that the first dummy node in the queue ini-

tialized with status = pid = 0, so pi cannot be the first process. Since we assumed

that pi is the first process to complete its doorway from all the waiting processes,

and q j is pi’s predecessor, it follows that q j would eventually be able to enter its

44

critical section. Therefore, q j will necessarily exit its critical section and begin

the exit code.

q j executes line 11, which assigns q’s ID to its status variable, therefore in this

point in time q j’s status = q j’s pid. When q j will execute line 13, the comapre-

and-swap operation will end successfully, since q j’s status = q j’s pid. Then,

q j proceeds to line 14, and assigns false to its successor’s locked variable. Its

successor is pi, thus when pi local-spins at line 10, at some point q j assigns false to

pi’s locked variable. According to Lemma 18, the false value is never overwritten,

and therefore at some point pi will notice that qnode.locked = f alse and will

continue to its critical section. This contradicts the assumption that pi will not

enter its critical section.

Lemma 20 (Constant RMR complexity). The RMR complexity of Algorithm 2 is

O(1) in both the CC and DSM models.

Proof. By inspecting the algorithm, it is easy to count steps and see that except for

the busy-waiting loop in line 10, it takes a constant number of steps for a process

to enter and exit its critical section. Thus, it is sufficient to prove that for every

pi, pi performs O(1) RMRs at line 10, because this is the only busy-waiting loop

in the algorithm. We will prove that while the process is executing the loop at

line 10, it performs only a constant number of remote memory references in both

models:

• DSM model: pi spins on qp.locked. qp was initialized as local to pro-

cess pi’s memory and thus the algorithm performs O(1) RMRs in the DSM

model.

• CC model: We prove that in one iteration of a process, there is at most

45

one cache invalidation. Before spinning on qp.locked its value migrates to

pi’s local cache, since pi assigned to it at line 5. It is updated by another

process only once, at line 14. When a process updates qp.locked, pi will

have a cache invalidation and pi will execute one remote memory reference

to read the new value of qp.locked. Since the new value is necessarily equal

to false, pi stops spinning on qp.locked and proceeds to its critical section.

By Lemma 18, there is no other process that writes to pi’s qp.locked in the

current iteration anywhere else in the algorithm. Therefore, there is only

one remote memory reference during the loop execution, and the algorithm

has O(1) RMR complexity in the CC model.

Lemma 21 (Wait-free exit code). Every process finishes its exit code within a

bounded number of its own steps.

Proof. Since the exit code is a straight-line code which does not contain either

loops or await operations, it immediately follows that any execution of the exit

code will be completed within a bounded number of a process’ own steps.

Theorem 22. Algorithm 2 satisfies mutual exclusion, deadlock freedom, wait-free

exit, strong FIFO fairness, and constant RMR complexity. Furthermore, it does

not require to assume that the number of processes, n, is a priori known, it uses

only O(n) shared memory locations, it makes no assumptions on what and how

memory is allocated, and it uses exactly the same atomic instruction set as the

original MCS algorithm.

Proof. The properties mutual exclusion, deadlock freedom, wait-free exit, strong

FIFO fairness and constant RMR complexity, follows from Lemma 17, Lemma

46

19, Lemma 21, Lemma 15 and Lemma 20, respectively. The other properties are

easily verified by inspecting the code of the algorithm.

47

5 Related Work

Mutual exclusion algorithms were first introduced by Edsger W. Dijkstra in [3].

Since then, numerous implementations have been proposed [16, 7, 18]. The first

queue-based local-spinning mutual exclusion algorithms for the CC model were

presented in [1, 6]. The algorithm from [1] used the fetch-and-increment

operation, while the algorithm from [6] used the fetch-and-store (swap) oper-

ation. In these two algorithms different processes may spin on the same memory

location at the different times. Their RMR time complexity in the CC model is a

constant, while their time complexity in the DSM model is unbounded.

The famous MCS algorithm is from [14]. Unlike the previous two algorithms,

the MCS algorithm satisfies local spinning in both the CC model and the DSM

model. In [9], a simple correctness proof of the MCS lock is provided. An exten-

sion of the MCS Algorithm that solves the readers-writers problem is presented

in [15]. In [17] queue-based algorithm is presented, which uses unbounded space,

in which it is possible for a spinning process to “become impatient” and leave the

queue before acquiring the lock. A recoverable version of the MCS algorithm, in

which processes can fail and recover, was presented recently [4].

Another queue-based lock was developed by Craig [2] and, independently by

Magnusson, Ladin and Hagersten [12, 13]. As the MCS lock, the queue is imple-

mented as a linked list, but with pointers from each process to its predecessor. The

algorithm uses fetch-and-set operations and may outperform the MCS lock on

cache-coherent machines. Its time complexity in the CC model is a constant,

while its time complexity in the DSM model is unbounded.

A variant of the above algorithm from [2], with constant time complexity in

both the CC and the DSM models was presented in [2]. For this variant to work,

48

it must be assumed that all allocated pointers point to even addresses. This as-

sumption enables to pack two shared registers into a single 32-bit word so that it

is possible to atomically swap the two registers as a unit. In [11], four local-spin

mutual exclusion algorithms for the DSM model using fetch-and-set opera-

tions were presented; all these algorithms use arrays of fixed size, assume that the

number of processes is a priori known, and are not suitable for a model where

processes may appear or disappear intermittently.

49

6 Discussion

We have presented two new mutual exclusion algorithms, that overcome a draw-

back of the famous MCS algorithm, while preserving its simplicity, elegance and

properties. It would be interesting to design additional new algorithms, which

would be based on our algorithms, that implement other types of locks, such as

readers-writers locks [15], abortable locks [8, 17], recoverable locks [4, 5] and

group mutual exclusion [10], and would have constant RMR complexity, satisfy

the wait-free exit code property and other desired properties.

50

References

[1] T. E. Anderson. The performance of spin lock alternatives for shared-

memory multiprocessor. IEEE Trans. on Parallel and Distributed Systems,

1(1):6–16, January 1990.

[2] T.S. Craig. Building FIFO and priority-queuing spin locks from atomic

swap. Technical Report TR-93-02-02, Dept. of Computer Science, Univ.

of Washington, February 1993.

[3] E. W. Dijkstra. Solution of a problem in concurrent programming control.

Communications of the ACM, 8(9):569, 1965.

[4] W. Golab and D. Hendler. Recoverable mutual exclusion in sub-logarithmic

time. In Proceedings of the 2017 ACM Symposium on Principles of Dis-

tributed Computing, pages 211–220, 2017.

[5] W. Golab and A. Ramaraju. Recoverable mutual exclusion. In Proceedings

of the 2016 ACM Symposium on Principles of Distributed Computing, pages

65–74, 2016.

[6] G. Graunke and S. Thakkar. Synchronization algorithms for shared-memory

multiprocessors. IEEE Computers, 28(6):69–69, June 1990.

[7] M. Herlihy and N. Shavit. The Art of Multiprocessor Programming. Morgan

Kaufmann Publishers, 2008. 508 pages.

[8] P. Jayanti. Adaptive and efficient abortable mutual exclusion. In Proc. 22nd

ACM Symp. on Principles of Distributed Computing, pages 295–304, July

2003.

51

[9] T. Johnson and K. Harathi. A simple correctness proof of the MCS

contention-free lock. Information Processing Letters, 48(5):215–220, 1993.

[10] Y.-J. Joung. Asynchronous Group Mutual Exclusion. Distributed Computing

(DC), 13(4):189-206, 2000.

[11] H. Lee. Local-spin mutual exclusion algorithms on the DSM model using

fetch&store objects. Mater thesis, University of Toronto, 2003.

[12] P.S. Magnusson, A. Landin, and E. Hagersten. Efficient software synchro-

nization on large cache coherent multiprocessors. Technical Report T94:07,

Swedish Institute of Computer Science, February 1994.

[13] P.S. Magnusson, A. Landin, and E. Hagersten. Queue locks on cache coher-

ent multiprocessors. In Proc. of the 8th International Symposium on Parallel

Processing, pages 165–171, April 1994.

[14] J. M. Mellor-Crummey and M. L. Scott. Algorithms for scalable synchro-

nization on shared-memory multiprocessors. ACM Trans. on Computer Sys-

tems, 9(1):21–65, 1991.

[15] J.M. Mellor-Crummey and M.L. Scott. Scalable reader-writer synchro-

nization for shared-memory multiprocessors. ACM SIGPLAN Notices,

26(7):106–113, 1991.

[16] M. Raynal. Algorithms for mutual exclusion. The MIT Press, 1986. Trans-

lation of: Algorithmique du parallélisme, 1984.

52

[17] M.L. Scott. Non-blocking timeout in scalable queue-based spin locks. In

Proc. 21th ACM Symp. on Principles of Distributed Computing, pages 31–

40, July 2002.

[18] G. Taubenfeld. Synchronization Algorithms and Concurrent Programming.

Pearson / Prentice-Hall, 2006. ISBN 0-131-97259-6, 423 pages.

53

 הזתה ריצקת

 .תופסונ תוישומיש תונוכת רפסמ םימייקמה ,תידדה העינמל םימתירוגלא ינש םיגצומ וז הדובעב

 השיגה רחאל עצובמה ,האיצי דוקו ,יטירקה עטקל השיגה ינפל עצובמה ,הסינכ דוקמ םיבכרומ םימתירוגלאה

 .'לוענמ' םיארקנ האיציה דוקו הסינכה דוק ,וידחי .יטירקה עטקל

 :תידדה העינמל תויסיסבה תושירדה תא םימייקמ םימתירוגלאה ינש ,תישאר

 יטירקה עטקב תינמז-וב םיאצמנ אל םיכילהת ינש -

 חרכהב אל ,והשלכ ךילהת יזא ,יטירקה עטקל סנכיהל הסנמ ךילהתו הדימב - רמולכ ,ןואפיק תעינמ -

 יטירקה עטקל סנכיהל חילצי ףוסבל ,ךילהת ותוא

 :ןניה םימתירוגלאה ינש םימייקמ ןתוא תופסונה תובוטה תונוכתה

 ידי לע ולש האיציה דוק תא םייסל לוכי ךילהת רמולכ ,םיכילהת רובע 'הנתמה רסח' וניה האיציה דוק .1

 .םירחא םיכילהתב תולת אלל ,עובק םידעצ רפסמ עוציב

 םע דחי(עבונ ןאכמ .ןושאר אצוי םג ןושאר סנכנש ךילהת רמולכ ,רות לע םיססובמ םימתירוגלאה ינש .2

 .ירשפא וניא 'הבערה' לש בצמש)ןואפיק תעינמ

 ינש רובע תאזו ,קחורמ ןורכיזל תושיג לש עובק רפסמ םיעצבמ םיכילהתה םימתירוגלאה ינשב .3

 :ןורכיזה לש םילדומה

a. רזובמ ףתושמ ןורכיז (DSM)

b. ןומטמ ללוכה ןורכיז (CC)

 .'םיכילהת יוביר' לש בצמב רקיעב ,רתוי םיריהמו םיליעי תויהל םימתירוגלאל תרשפאמ וז הנוכת

 .ןיגוריסל םלעיהלו עיפוהל םילוכי םיכילהת רמולכ ,שארמ עודי אל םיכילהתה רפסמ .4

 גציימ n רשאכ ,ףתושמה ןורכיזל םיכיישה ,דבלב םינתשמ O(n) -ב שומיש םישוע םימתירוגלאה ינש .5

 .םיכילהתה רפסמ תא

 .ןורכיזה הצקומ דציכו ךיא לע רבד םיחינמ םניא םימתירוגלאה ינש .6

 שומיש םישוע םיכילהת וב בצמב יוטיב ידיל אב ינשה םתירוגלאל ןושארה םתירוגלאה ןיב ירקיעה לדבהה

 L -ב שומיש םישועו הדימב .ןותנ עגר לכב דחא לוענמב רתויה לכל שמתשמ ךילהת לכו ,דחא לוענממ רתויב

 ינשה םתירוגלאהש דועב ,ףתושמה ןורכיזב םינתשמ O(Ln) -ב שומיש השוע ןושארה םתירוגלאה ,םילוענמ

 ןיב ירקיעה יטקרפה לדבהה השעמל והז .ףתושמה ןורכיזב םינתשמ O(L + n) -ב קר שומיש השועו ,רתוי ליעי

 .םימתירוגלאה ינש

 .וידחי ליעל תורכזנה תונוכתה לכ תא םייקל םינושארה םה וז הדובעב םיגצומה םימתירוגלאה יכ ןייצל שי

הילצרה ימוחתניבה זכרמה

בשחמה יעדמל יזרא יפא רפס תיב

 תויכוביס םע תידדה העינמ ימתירוגלא

 קחורמ ןורכיזל תושיג לש העובק

 'הנתמה רסח' האיצי דוקו

ראות תארקל תושירדהמ קלח יולימכ תשגומה הזת תדובע
בשחמה יעדמב ירקחמ לולסמב ךמסומ

 ריבד םתור ידי לע

דלפנבואט ידג 'פורפ תייחנהב העצוב הדובעה

2018 לירפא

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

