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P300-based spellers are one of the main methods for EEG-based brain com-

puter interface, and the detection of the P300 target event with high accuracy

is an important prerequisite. The rapid serial visual presentation (RSVP) pro-

tocol is of high interest because it can be used by patients who have lost

control over their eyes. In this study we wish to explore the suitability of

recurrent neural networks (RNNs) as a machine learning method for identi-

fying the P300 signal in RSVP data. We systematically compare RNN with

alternative methods such as linear discriminant analysis (LDA) and convo-

lutional neural network (CNN). Our results indicate that RNN shows good

results only with large amounts of data, and we show that a network com-

bining CNN and RNN is significantly more resilient to temporal noise than

other methods.
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Chapter 1

Introduction

This thesis is based on an article presented in the 7th Graz Brain-Computer Interface

Conference. While the article is focused on describing our results, in this report we

added a more detailed explanation about the method we were using in our experi-

ments.

Neural networks have recently been shown to achieve outstanding per-

formance in several machine learning domains such as image recognition

[17] and voice recognition [14]. Most of these breakthroughs have been

achieved with convolutional neural networks (CNNs) [18], but some promis-

ing results have also been demonstrated by using recurrent neural networks

(RNNs) for tasks such as speech and handwriting recognition [12, 11], usu-

ally when using the long short-term memory (LSTM) architecture [15].

There have been some studies using ’deep neural networks’ for P300 clas-

sification [5, 21]. The results reported, despite some success, do not show

the same dramatic progress achieved by ’deep learning’ methods as com-

pared to the previous state of the art; while in areas such as image or voice

recognition ‘deep’ neural networks have resulted in classification accuracy

exceeding other methods by far, this has not yet been the case with EEG in

general and in P300 detection specifically. The small number of samples typ-

ically available in neuroscience (or brain computer interface - BCI) is most
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likely one of the main reasons for theses results. In addition, the high dimen-

sionality of the EEG signal, the low signal to noise (SNR) and the existence

of outliers in the data, pose other difficulties when trying to use neural net-

works for BCI tasks (see [20]). The main question in this research is whether

the RNN model, and particularly LSTM, can enhance the accuracy of P300-

based BCI systems and if so, under what conditions.

P300-based BCI systems rely on identifying the times when a subject is

required to pay attention toward a rare event, by examining the subject’s

electroencephalogram (EEG) data. The first BCI system that used the P300

effect was presented by Farwell and Donchin [9] and since then different

versions of P300 based BCI systems were suggested. One example of such a

paradigm is the P300 rapid serial visual presentation (RSVP) speller. In this

paradigm letters are presented one after the other in a random order, and the

subject is asked to pay attention only to one of the letters called target letter

or target stimuli (by counting them silently, for example). Whenever a subject

pays attention to the target letter, a special waveform called P300 is expected

to occur. It is called P300 since there is usually a peak in the EEG amplitude

300ms after the presentation of a target event. The advantage of the RSVP

paradigm is that it does not require any eye movements, and can thus be

operated by patients who have lost control of their eye gaze completely.

1.1 Deep Neural Networks - Overview

Deep neural networks (DNN) are relatively large artificial neural networks

(ANN) with multiple layers. There are two main types of ANN architectures:

feed forward neural networks (FFNN or FF) and recurrent neural network

(RNN). In FFNN directed cycles are not allowed (i.e., data can flow only

to the next layer), while the RNN architecture allows directed cycles within

the network (specifically, data can also flow between ’neurons’ in the same
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layer). The directed cycles in RNN allows the network to ’remember’ past

events and making it suitable for sequence learning [25].

1.1.1 Layer Types

The architecture we propose is a combination of several ANN layer types

described below:

Fully connected layer - FC - a layer where each neuron in the input is

connected to each neuron in the output is often called fully connected layer

or FC. In an FC layer, the output is obtained by the following equation:

y = σ (xW + b)

where x is the input vector,W is a matrix that represents a linear mapping

and b is a vector that reflects the transformation called the bias (b holds the

value for each output unit). σ (·) represent an element-wise non-linearity

such as rectified linear unit (ReLU), sigomid or hyperbolic tangent (TanH):

ReLu (x) = max (x, 0) , sigmoid (x) =
1

1 + e−x
, TanH (x) =

ex − e−x

ex + e−z

Fig.1.1 shows an example of a simple network with two inputs and out-

puts, and one fully connected layer with 3 cells. All the nodes in the hidden

layer are connected to all input and output nodes. Since it is a feed forward

architecture, the data flows only in one direction: from the input, to the hid-

den layer, and then to the output.

Convolutional Neural Network Layer (CNN) CNN is a layer that uti-

lizes the local correlation between adjacent cells of the input layer. Since,

unlike the FC layer, the output can be of multiple dimensions, we refer to the

output as feature map. The feature maps are obtained by activating trainable
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FIGURE 1.1: Illustration of a simple feed-forward network with
one hidden layer. hi,j means the i-th hidden cell on the j-th

layer.

FIGURE 1.2: A Schematic diagram of a 1D CNN layer. The in-
put number reflects the sample’s order in time (i.e., "input 1" is

the first input and "input 5" is the last input).

multi-dimension kernels across the input layer. Fig.1.2 is an example of a 1D

CNN. The red, blue and green colors represent the trainable kernel weights

(w1, w2 and w3 respectively) across the input layer. Equation 1.1 describes

the output of element i in a 1D CNN layer feature map:

y (i) = σ (W ∗ x [i− k, ..., i+ k] + b) (1.1)

If the kernel is a 1D filter with a length of k and the next layer has M outputs,

then W is a matrix of size M × k.

Recurrent Neural Network Layer - RNN - The simplest form of a recur-

rent neural network [25, 31] is a layer where the output is connected to the
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FIGURE 1.3: A schematic diagram of a simple recurrent neural
network with one hidden layer.

input. Unlike feed forward layers, in RNN, y[t] (the layer output at time t) is

a function of both the current input x[t] and y[t− 1] (the previous state):

y (t) = σ (x [t]W + y [t− 1]U + b) (1.2)

Here, again σ is a non-linear activation function, W is the input weight

matrix and U is the previous results weight matrix. The structure of an RNN

layer, allows the network to contain memory, since it has access to infor-

mation from previous time-stamps within each predicted sample. RNN is

known to suffer from a phenomena called "vanishing gradient" and "explod-

ing gradient" [23]: while training, the gradient of the loss function may not

propagate to the first layers (i.e., layers closer to the input layer) or may have

very large values (thus update the layer weight too much). These problems

prevent learning long temporal dependencies ( see [3]) .A common solution

for these problem is called Long Short Term Memory layer.

Long Short Term Memory Layer - LSTM - LSTM is a type of RNN with

a special architecture designed to overcome RNN’s difficulties in learning

long term dependencies. In addition to the output - y[t], LSTM also has a
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(a) A schematic diagram
of the vanilla RNN

(b) A schematic diagram
LSTM block. [13]

memory cell - c[t]. LSTM uses an architecture with a set of "gates" that allow

it to decide whether a data should be stored in the memory unit or not. The

gating mechanism has been prove to overcome the vanishing and exploding

gradients problem mentioned above (see [15]). Fig.1.4a and Fig.1.4b shows

the difference between vanilla RNN and LSTM.
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Chapter 2

Previous work

There are many methods for building systems that can identify the P300 tar-

get for a BCI task. Blankertz et al. [4] suggest selecting the time intervals

with maximal separation between the target and non target samples, aver-

aging their electro-potential value and use shrinkage LDA to classify these

features. Using this method has a drawback due to the low complexity of

the LDA model [7]. The winner of the BCI competition III: dataset II used an

ensemble of support vector machines (SVM) [24], and other methods include

hidden Markov model, k-nearest neighbours, and more [7].

More recently, given the success of deep neural networks [17], there have

been several attempts to apply ‘deep learning’ for BCI related tasks. Cecotti

and Graser [5] were the first to use CNNs for a P300 speller. In their work,

they train an ensemble of CNN-based P300 classifiers to identify the existence

of a P300 event. Manor and Geva [21] used CNN for the RSVP P300 classifi-

cation task and suggested a new spatio-temporal regularization, which have

shown improvement in the performance.

Unlike feed forward network models such as CNN and multi-layer per-

ceptron (MLP), the RNN architecture allows directed cycles within the net-

work, which enable the model to “memorize past events”. LSTM [15] is a

type of RNN, which includes a special node that can be described as a dif-

ferentiable memory cell. The specific architecture of LSTM enables it to over-

come some of the weakness of simple RNNs [3].
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There are several reasons why LSTM is a good candidate for modelling

the P300 pattern. First, RNN and LSTM have shown success when modeling

time series for tasks such as handwriting and speech recognition [12, 11, 33].

In addition, RNN is known to have the capability to approximate dynamical

systems [19], which makes it a natural candidate for modelling the dynamics

of EEG data. Finally, RNN can be seen as a powerful form of hidden Markov

models (HMM), which have been shown to classify EEG successfully [27, 22,

7]; RNNs can be seen as HMMs with an exponentially large state space and

an extremely compact parametrization [28].

LSTM was already used for analysing EEG data for emotion detection

[26] and a phenomena called behavioral microsleeps [8]. Bahshivan et al. [2]

modeled inter-subject EEG features for identifying cognitive load by using

convolutional LSTM. They created a video from three different band powers

in each electrode. One of the major differences between their work and ours

is that we use the original signal without any feature extraction (such as band

power), and we focus specifically on the P300 speller domain.
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Chapter 3

MATERIALS AND METHODS

We compared the performance of LSTM based methods with other methods

on a dataset from a RSVP P300 speller study [1]. We used average prediction

across 10 trials to measure the P300 speller accuracy as applied in [1].

3.1 P300 speller experiments settings

The dataset includes 55 channels of EEG recordings from 11 subjects. Each

subject is presented with 10 repetitions of 60 to 70 sets of 30 different letters

and symbols. In total there are approximately 20,000 samples for each subject

where 1/30 of them are supposed to contain a P300 wave. While the original

experiment contains 3 different settings (interval of 116ms with/without col-

ors and 83ms with color), we used the experiment setting of 116ms intervals

with letters in different colors. For more details, see [1].

In addition to the filters applied in [1], all models that we used share

the same pre-processing stage of down-sampling the input frequency from

200Hz to 25 Hz. The result is that each learning sample is a matrix of 55

channels with 25 time samples each, or 55 ∗ 25 = 1375 features. Each sample

thus covers exactly 1 second around the target event, at times [-200,800] ms.
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3.1.1 Formulating the BCI task

In P300 speller the task is to identify the letter to which the subject paid his at-

tention by identifying a P300 pattern in the EEG. This can be done by finding

a function f(x) that when given an EEG sample – x, returns the probability

that a P300 pattern is found in it. By identifying the EEG sample with the

maximal f(x) score among the EEG samples of all the different letters we can

identify the target stimulus (i.e., the letter that the subject focused on). First,

we will formulate the single letter prediction task.

3.1.2 RSVP P300 speller trials

Notations

f(x) P300 identification function

Xc An EEG sample data that was recorded when presented character c

C The set of all the available stimuli

ĉ The predicted target stimuli

c∗ The true target stimuli (i.e. the letter the subject was suppose to

focus on)

R Group of trials (see below)

xc,r An EEG sample data that was recorded when presented character

c on trial r

A trial is the presentation of all the characters in an alphabet, one after

the other, in random order. In each trial, only one letter is the actual target

stimuli.

The predicted character ĉ in a single trial is computed by finding the char-

acter with the maximal value of f(x) among the group of letters (C):
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ĉ = argmax {f (xc)} c∈C (3.1)

In order to achieve robust character recognition prediction, a common

approach is repeating each trial several times and averaging the prediction

for each different stimulus. The set of repetitions of the same trial will be

called R . An EEG recording where stimuli c presented in trial r is called xc,r.

The formula for predicting the target stimuli across R attempts is:

ĉ = argmax

{
1

R

∑
r∈R

f (xc,r)

}
c∈C (3.2)

3.1.3 Loss function

In neural networks, the weights are updated by deriving the loss function

with respect to the network weights. If we train the neural network to iden-

tify P300 directly (as in [5]), the error only depends on whether the sample

contains P300 or not. Here yr,c refers to the true label of sample xr,c:

E = e (f (xr,c) , yr,c) (3.3)

In this research we use the binary log loss function:

e (f (xr,c) , yr,c) = − (yr,c log (f (xr,c))− (1− yr,c) log (1− f (xr,c))) (3.4)

The error in a neural network is typically calculated on multiple samples.

In this case the error is:

E =
1

M

∑M

i
e (f (xi, yi)) (3.5)

Here M indicates the size of the samples batch.



12 Chapter 3. MATERIALS AND METHODS

3.1.4 Evaluated Models

The models evaluated in this experiment are:

• LDA - A common method used in P300 classification for BCI is linear

discriminative analysis [1, 4]. Here we will use a simplified version;

unlike [1] we use all the timestamps as features, and we use a non-

shrinkage version of LDA.

• CNN (7924 free parameters) (Fig.3.1a and Fig.3.2a) – The CNN model

we use is similar to the one used in [5]. The first layer is composed

of 10 spatial filters, each of size 55 ∗ 1 – the number of channels. The

second layer contains 13 different temporal filters with size of 1∗5. Each

one of the temporal filters processes 5 subsequent time stamps without

overlapping. The third and fourth layers are simple fully connected

layers followed by a single cell with a sigmoid activation function that

emits a scalar.

• LSTM large/small (62501/10351 free parameters) (Fig.3.1b) – LSTM large/small

are both composed of single LSTM layers with 100 and 30 hidden cells

in each, correspondingly. Both models end with a single cell with a

sigmoid activation layer that emits a scalar.

• LSTM-CNN large/small (49051/5511 free parameters) (Fig.3.1c and Fig.3.2b)

– The model has CNN as a first layer (the spatial domain layer) and

LSTM as the second layer for the temporal domain. The first convolu-

tional layer is the same as in the CNN model. Unlike the CNN model,

the temporal layer is an LSTM layer with 100/30 hidden cells. The last

layer contains a single cell a with a sigmoid activation layer that emits

a scalar.
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(a) CNN model (b) LSTM model (c) CNN-LSTM model

FIGURE 3.1: Schematic diagrams of the neural networks evalu-
ated. FC stands for fully connected layers.

In order to examine the power of each method in modelling the inter-

subject and intra-subject variance we have conducted the following experi-

ments:

1. Training and testing on each subject’s data separately in order to ex-

plore intra-subject generalization.

2. Training and testing on different subjects data combined in order to

investigate the impact of larger amounts of data.

3. Transfer learning between subjects - training on all subjects expect one.

We conduct this experiment in order to explore the value of using a

model that was trained off-line, on different subjects, and then use this

model on a new subject, with or without additional calibration.

In addition to the three experiments above, we also examine the model’s

tolerance to time domain noise. A highly desired property from BCI systems

is tolerance to a small degree of noise in the stimuli onset time. In order to

evaluate the resistance to such noise, we use a model trained on the original

stimuli onset (i.e, noise level = 0ms) and evaluate its performance on differ-

ent stimuli onset to simulate small errors on the stimuli onset: noise levels

of -120ms,-80ms,-40ms, +40ms, +80ms, and 120ms. We conducted this ex-

periment using 10-fold cross validation in order to be able to get statistically
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significant results. This last experiment was conducted only on the CNN

and LSTM-CNN models and used data from all subjects (as in experiment 2

described above).

For all experiments, the different models were trained using the RM-

SProp [30] optimizer, for 30 epochs with a learning rate of 0.001 and then

continue to train for 30 epochs with the a learning rate of 0.00001.

RMSProp [30] is a stochastic gradient descent (SGD) method. Unlike sim-

ple SGD, the method can adapt different learning rates for each parameter

separately and use a moving average across the past gradient in order to

scale the learning rate per feature. We decided to use RMSProp since it is

said to be robust and fast [32, 16, 29].

3.2 Implementation Details

The code was implemented using the Keras framework [6]. Training was

conducted using a 4-core i7 laptop with 16Gb RAM. Training took 110 sec-

onds on 192000 samples for the small LSTM-CNN model and 24 seconds for

the CNN model. The considerable difference is due to the distributed nature

of CNN which allows much of the computation to be computed in parallel.

Predicting on a single example takes about 0.6 milliseconds. In term of space,

both models require less than 70kb of disk space.

One of the advantages of using ’deep learning’ models is that they allow

compressing knowledge from many samples into a compact form. As we

show in our experiments, it is possible to pre-train on multiple subjects and

then fine tune to a specific subject’s calibration data. For example, training

on 3000 calibration samples using the 4-core i7 laptop will take less than a

minute (fine-tuning for 30 epochs). After the model is trained, using it for

real-time prediction is feasible as well, since predicting each sample takes 0.6

milliseconds.



3.2. Implementation Details 15

(a) A diagram of the CNN model used in our research. All the connections are di-
rected towards the next layer.

(b) A diagram of the CNN-LSTM model used in our experiments. Unlike the CNN
model, there are connections between cells from the same layer. Only the last se-

quence is connected to the fully connected layer.

FIGURE 3.2: An additional illustration highlighting the main
differences between the CNN and LSTM-CNN architectures.
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Chapter 4

Results

Tab.4.1 summarizes the results of the different experiments; all results are

based on an average of 10 consecutive trials to detect the target letter, as in [1].

The results for training and testing on the same subject (Tab.4.2) indicate that

LSTM is inferior (82%), and even the LSTM_CNN combined model performs

less than the the simple LDA method (86 and 93% in the LSTM_CNN models

and 96% using LDA) . A possible advantage for LSTM only becomes appar-

ent with larger amounts of data – when training and testing on all the subjects

together (Tab.4.1). The large LSTM model performs poorly – 77%; we suspect

it is due to the large number of trainable parameters – 62501 (“over-fitting”);

this is why we introduced CNN as a first layer and reduced the number of

hidden LSTM cells.

Tab.4.2 summarizes the results per single subject. When comparing the

accuracy result of each subject separately, we can see that there is a signif-

icant difference among subjects, across the different models. For example,

subject fat results in higher accuracy than icn regardless of the tested model.

Eventually, the best network method – using training on other subjects and

recalibration with a combined CNN-LSTM large model, is able to boost the

results of the subject with the lowest accuracy to 86%.

In the second stage, we continue to train the model on the rest 3/4 of the

test subject’s data using a smaller learning rate (0.0001 using RMSProp) for
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TABLE 4.1: Average accuracy across all experiments.

model number of
parameter

accuracy
per subjects

accuracy
all subjects all but one

all but one
after fine

tuning

LDA 1375 0.96 0.79 0.65 x
LSTM large 62501 0.82 0.77 x x
LSTM small 10351 0.89 0.9 x x
CNN 7924 0.98 0.92 0.84 0.97
LSTM-CNN

large 49041 0.93 0.9 x x

LSTM-CNN
small 5511 0.86 0.93 0.84 0.97

TABLE 4.2: Average accuracy per subject.

subject LDA LSTM
large

LSTM-CNN
large CNN LSTM

small
LSTM-CNN

small

fat 1.00 0.98 0.98 0.98 1.00 0.95
gcb 0.91 0.82 0.88 0.92 0.74 0.75
gcc 1.00 0.84 0.92 1.00 0.92 0.97
gcd 0.97 0.80 0.90 1.00 0.76 0.93
gcf 1.00 0.92 0.94 0.95 0.97 0.95
gcg 0.94 0.74 0.96 0.96 0.80 0.87
gch 0.97 0.93 0.96 0.97 0.97 0.96
iay 0.94 0.62 0.92 0.98 0.75 0.86
icn 0.94 0.62 0.86 0.98 0.77 0.77
icr 0.93 0.97 0.98 0.98 0.98 0.98
pia 0.97 0.82 0.94 1.00 0.77 0.81
mean 0.96 0.82 0.93 0.98 0.86 0.89

30 epochs. The second training stage results are presented in columns CNN

and LSTM-CNN all except one fine tune. The results indicate that as in the other

cross-subject evaluation, the LDA accuracy is much poorer than those of the

CNN and LSTM-CNN models (65% as opposed to 84%). When we allow

calibrating the model for each subject, we achieve an average accuracy of

97% for both CNN and LSTM-CNN.
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TABLE 4.3: Accuracy when training and testing on different
subjects.

subject
LDA

all except
one

CNN
all except

one

CNN
all except

one
fine tune

SMALL
LSTM-CNN

all except
one

SMALL
LSTM-CNN

all except
one

fine tune

fat 0.94 1.00 1.00 0.98 1.00
gcb 0.43 0.83 0.91 0.86 0.92
gcc 0.79 0.98 0.98 0.95 0.97
gcd 0.66 0.80 0.99 0.83 0.97
gcf 0.68 0.89 0.98 0.79 0.98
gcg 0.52 0.81 0.94 0.77 0.90
gch 0.87 0.97 0.97 0.97 0.99
iay 0.48 0.69 0.98 0.67 0.97
icn 0.44 0.58 0.92 0.61 0.95
icr 0.63 0.81 1.00 0.89 1.00
pia 0.77 0.87 0.96 0.91 0.97
mean 0.65 0.84 0.97 0.84 0.97

Resistance to temporal noise is displayed in Tab.4. LSTM-CNN shows a

significant advantage over both LDA and CNN when testing with stimuli

onset different than the one used for training. LSTM-CNN-small achieves an

accuracy higher by 3% and 6% when adding or removing 40ms to the original

stimuli onset, and a t-test indicates that the difference between each pair of

groups is statistically significant (p < 0.05 - marked in bold). LDA accuracy

falls by more than 20% when facing temporal noise.

A possible explanation can be seen when looking at the two network’s

saliency map (Fig.4.1). In order to investigate the “attention”, or the sen-

sitivity of the LSTM model, and compare it to the CNN model, we used a

technique suggested by [10] and draw the absolute gradient of the neural

network with respect to the input.

If f(x1, ..., xn) is a differentiable, scalar-valued function, its gradient is

the vector whose components are the n partial derivatives of f , which is a

vector-valued function. In our case of f(x|θ) is the neural network with fixed
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(a) CNN (b) LSTM-CNN

FIGURE 4.1: Average gradient across target samples.

weights θ and input x. The partial derivatives of f(x|θ) with respect to x

can be interpreted as “how changing each value of x will change the pre-

diction score”. This gradient should not be confused with the gradient used

for training, where the goal is to optimize the model parameters θ when x is

fixed.

In the case of P300 prediction, x is a matrix of C × T (C - number of

channels, T - number of time steps) and f(x|θ) is the neural network where

θ is the model’s weights after training. The gradient ∇f(x|θ) (see Eq.4.1) is

a matrix with the same size as the input x, where the amplitude of each cell

reflects its impact on the function value. Cells with high absolute value can

be interpreted as the cells that have a significant influence on the prediction

function.

∇f (x|θ) =


∂f(x|θ)
∂x(c1,t1)

... ∂f(x|θ)
∂x(c1,tT )

... ... ...

∂f(x|θ)
∂x(cC ,t1)

... ∂f(x|θ)
∂x(cC ,tT )

 (4.1)
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The results displayed in Fig.4.1a and Fig.4.1b show the average absolute

gradient across all target samples of a single cross validation test data: the

warm colors correspond to high gradient values, indicating that the model is

more sensitive to change in this input feature. We can see the sensitivity of

the CNN model spread across the recording relatively evenly as opposed to

the LSTM-CNN which is focused around the 250ms and 450ms time-stamps.

Noise CNN LSTM_CNN LDA

-120 0.058 0.044 0.016

-80 0.275 0.299 0.016

-40 0.825 0.864 0.565

40 0.848 0.896 0.608

80 0.335 0.390 0.260

120 0.042 0.042 0.059

TABLE 4.4: Accuracy when introducing temporal noise. Statis-
tically significant results are highlighted in bold.
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In this work we examined the use of LSTM neural networks for the task

of BCI P300 speller. Despite its temporal nature, no version of LSTM in-

vestigated in this work has shown a significant advantage compared to the

CNN model suggested by [5]. We did see LSTM results improve with large

amounts of data from multiple subjects, and superior results with a com-

bined CNN-LSTM model; moreover, we have shown that this combined

model is significantly more robust to temporal noise in the stimuli onset. We

also show that the sensitivity of the LSTM based model is much more focused

on the area between 250ms to 450ms than CNN based model. This sensitivity

is correlated with what we know about the P300 ERP (a peak around 300ms

after the stimuli onset). We suggest that the smaller area of sensitivity ex-

plains the robustness of the LSTM model to noise in the time domain, since

it is less sensitive to the data outside the P300 phenomena.

In our research we found that the effectiveness of ’deep learning’ models

is seen as we increase our dataset size. Ideally, one could use a large database

with many samples but this may be very expensive and impractical. We have

shown, that one of the advantages of deep neural networks is their ability

for transfer learning between subjects. It can be interesting to explore the

network ability to achieve transfer learning between different experiments,

task and recording devices, and by that, increase the data set size.
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