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Abstract

In recent years, the field of implicit neural representation has progressed significantly.
Models such as neural radiance fields (NeRF) [11], which uses relatively small neu-
ral networks, can represent high-quality scenes and achieve state-of-the-art results for
novel view synthesis. Training these types of networks, however, is still computation-
ally very expensive. We present depth distribution neural radiance field (DDNeRF),
a new method that significantly increases sampling efficiency along rays during train-
ing while achieving superior results for a given sampling budget. DDNeRF achieves
this by learning a more accurate representation of the density distribution along rays.
More specifically, we train a coarse model to predict the internal distribution of the
transparency of an input volume in addition to the volume’s total density. This finer
distribution then guides the sampling procedure of the fine model. This method allows
us to use fewer samples during training while reducing computational resources.
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Chapter 1

Introduction

The field of implicit representation for 3D objects and scenes has been growing rapidly
in the last several years. Methods such as Occupancy Networks [9] and DeepSDF [14]
(Signed Distance Function) have achieved state-of-the-art results in 3D reconstruction,
which led to increased interest in this field. The two main advantages of implicit repre-
sentation are compactness and continuity (compared to explicit representation methods
such as meshes or voxels that are discrete and less compact). It also enables us to recon-
struct the 3D shape for any level of detail (LOD) by increasing/decreasing the number
of samples in space. Due to their performance and accuracy, implicit methods became
very popular, adopted by many papers and various domains.

Neural Radiance Fields (NeRF) [11] use the same architecture as DeepSDF to represent
a scene as a radiance field by answering the following query: given an (x,y,z) location
and a viewing direction (¢, 8), what is the RGB color and the density ¢ in this location?
When rendering an image, a pixel color is evaluated by sampling points along the ray
that passes from the center of projection (COP) through the pixel, and applying a ray
marching rendering technique for volume rendering [15].

At the time this method was published it achieved cutting-edge results for novel view
synthesis. This led to what is called the “NeRF explosion”. In the past two years, nu-
merous follow-up works improved the NeRF model and extended it to new domains.
We briefly review a few of those works in the Chapter 2.

Nevertheless, NeRF has one major drawback: its extensive training time and space re-
quirements. Because the quality of the model depends on the number of samples drawn
along each ray (more samples produce better results), the training process has a trade-
off between efficiency (number of samples) and quality.

Most NeRF models use two-stage hierarchical sampling techniques. The first stage
(coarse model) samples uniformly with respect to the depth axis along the ray and di-
vides the ray into intervals according to these samples. The opacity (@) and the total
transparency of each interval i are used to determine the amount of influence w; of each
interval on the pixel color (see Equation (2.2)). The w;’s values are normalized and
interpreted as a piecewise-constant PDF (or discrete PDF) between the intervals. The
second stage (fine model) samples points according to this PDF function. Fig. 1.1 (a)
illustrates this method.

In this paper we propose to represent the PDF of the first hierarchical sampling stage as
a mixture of Gaussian distributions and we will show its advantages over the piecewise-
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Figure 1.1: Hierarchical sampling: The horizontal axis represents the depth of the ray
for a scene with max depth of 5. First, the coarse samples (blue dots) are taken; then the
density values are transformed into a PDF function (blue line). The fine model samples
(purple dots) are taken with respect to the coarse model PDF. The orange rectangles
represent points that have an influence on the pixel color (similar in both plots). The left
plot illustrates the sampling procedure in the regular model, The right plot illustrates our
scheme. Notice how the finer samples are concentrated around the informative areas in
our representation.

constant PDF. The input to the model is a specific sub-section of the ray (interval), and
the output is the Gaussian distribution parameters (U, o) of the density influence in that
interval (in addition to the color and the total density). By using this technique, we
achieve a more accurate density representation along the rays, which will allow us to
receive more accurate samples in the second stage of the hierarchical sampling. Fig. 1.1
(b) illustrates our method. We will demonstrate and analyze its superiority over the
piecewise-constant PDF representation for a variety of domains and sampling budgets.
Our model and PDF representation are versatile and can be applied to almost each of
the existing NeRF Models. Our main contributions can be described as follow:

1. A finer and more continuous representation of the density distribution along the
ray in NeRF based models, which leads to better results for a given number of
samples. This allows us to train the model with less computational resources.

2. A novel distribution estimation (DE) loss, which provides an additional path for
information to flow from the fine to the coarse model and improve the overall
model performance.



Chapter 2

Related Works

2.1 Implicit 3D representation

Two of the first methods to achieve very good results for implicit representation of 3D
objects were Occupancy Networks [9] and DeepSDF [14]. The Occupancy Networks
[9] was trained to answer the query: “is this point inside or outside the 3D object?”. The
DeepSDF [14] was trained to answer the query: given an (x,y,z) location in space, what
is the distance to the zero-level surface?, where positive and negative distances represent
whether the point is located outside or inside the shape. By answering the above queries
for enough 3D points in a space, combined with a variant of the marching cube algo-
rithm, the 3D shape of an object can be extracted. These methods became very popular
due to their good results, compactness and continuity characteristics. Additional papers
(such as Pifu [18]) tried to answer similar queries to extract 3D shapes and textures.
More advanced implicit models, e.g., SAL [2] and SALD [3], were developed to train
directly from the raw 3D data without ground truth (GT).

2.2 NeRF models

As described above, the NeRF [11] method uses a neural network to imply implicit
representation of radiance field for volumetric rendering. It gets as an input an (x,y,z)
location and a view direction (¢, 6), and predicts as outputs the RGB color and the
density « in this location. When this method was published, it achieved state-of-the-art
results in the task of novel view synthesis. In the past two years, many works extended
the NeRF model to additional tasks and domains. NeRF++ [22] extends the model to
unbounded-real world scenes using additional neural network for background modeling
and new background parametrization. NeRF-W [8] extend the model for unconstrained
image collection, and [16] extend it for dynamic scenes. MipNeRF [4] addresses the
model aliasing problem with different resolution images. Many works also tried to re-
duce the required training time and, especially, the inference time [13] [5] [17] [7].

The connection between sampling around informative depth locations and the compu-
tational complexity appeared in some of the above-mentioned works. DSNeRF [5] uses
some prior depth information to improve training time. It also allows training the model



with a small number of images. NSVF [7] uses sparse voxel fields to achieve better
sampling locations. DONeRF [13] improves inference time by using a depth oracle
for sampling in informative locations. The depth oracle is trained with GT Depth (or
a trained NeRF model) to predict an accurate location for the second stage sampling.
DONEeRF [13] also uses log-sampling and space warping techniques to increase model
quality on areas far from the camera.

Our model is a direct extension of NeRF [11] and MipNeRF [4]. The next two sub-
sections are dedicated to describe those models in more detail.

2.2.1 NeRF

As mentioned above, NeRF receives a 5D input: (x,y,z, 0, ¢), and produces a 4D output:
(R,G,B, o), where o is the density of the input point that translates later into opacity o
(value between 0 and 1) by considering the distance 0 along the ray that is affected by
o. For sample i:

o=1 —exp(—G,-S,-) (2.1)

To avoid confusion with the o in our model that represents standard deviation, we will
omit ¢ in the notation from now on and refer directly to &¢. The influence of each sample
i on the final color prediction w;, is a combination of the accumulated transparency from
sample i to the pixel and sample i opacity value (;):

i—1

Wi:OCi‘H(l—OCj) (2.2)

j=0

The NeRF architecture is composed of two identical networks (coarse and fine) with
eight fully connected (FC) layers. The input is first encoded using positional encoding
(PE) and then inserted into the network. As described in Chapter 1 (Introduction), the
model uses two-stage hierarchical sampling where the w;’s values of the coarse model
are normalized and can be interpreted as a discrete PDF A°:

Wi

K[i] =

o (2.3)
]:

Where n is the number of samples along the ray.

The fine model samples the second stage of the hierarchical sampling with respect to
h¢. Fig. 1.1 (a) illustrates this process. Color rendering is performed using ray marching
[15] for volumetric rendering and calculated as follow:

é@:fmq (2.4)
i=1

where C(r) is the predicted pixel color for ray r, ¢; is the RGB prediction for sample
i and w; is the influence that sample i has on the final RGB image. C.(r) and Cy(r)



a) NeRF b) Mip-NeRF

Figure 2.1: NeRF vs mip-NeRF (image and caption was taken from mip-NeRF
paper[4]): “NeRF (a) samples points x along rays that are traced from the camera center
of projection through each pixel, then encodes those points with a positional encoding
(PE) 7 to produce a feature y(x). Mip-NeRF (b) instead reasons about the 3D conical
frustum defined by a camera pixel. These conical frustums are then featurized with our
integrated positional encoding (IPE), which works by approximating the frustum with
a multivariate Gaussian and then computing the (closed form) integral E[y(x)] over the
positional encodings of the coordinates within the Gaussian.”

are the coarse and fine model color predictions. The calculations of w; and ¢; are made
separately for the coarse and the fine models. The loss function is defined as:

Luers = Y [1C(r) = C4(0)[]* + |IC(r) — Ce(r)] ] (2.5)

reR

where R is the rays batch for loss calculation and C(r) is the ground truth color for ray r.

2.2.2 MipNeRF

MipNeRF [4] is an extension of the regular NeRF model that was suggested to handle
aliasing produced when rendering images at different resolutions or in different dis-
tances than the images used in the training process. Instead of a line, MipNeRF refers
to a ray as a cone [1] with a vertex in the COP that passes through the relevant pixel
with a radius related to the pixel size. The cone is divided into intervals (parts of the
cone) along the depth axis and the network receives the encoding of an interval as input.
Each ray is divided into » intervals bounded by n + 1 partitions {#;} where interval i is
the cone volume bounded between partitions #; and ¢, 1. The bounded volumes are en-
coded using the novel integrated positional encoding (IPE) method for volume encoding
before being passed through the network. With this new ray representation the model
prediction can encapsulate the entire volume that will affect the pixel value. Fig. 2.1
illustrates the main difference between NeRF and mipNeRF.

MipNeRF uses a single neural network for both the coarse and the fine models. The rest
of the process is similar to the original NeRF. In our model we also use the idea that the
model predicts information regarding the interval of a cone and not for a point on a ray.



Chapter 3

Problem definition

When looking deeper into the NeRF hierarchical sampling strategy we observed two
inherent disadvantages. The first one is that for n samples, the second pass sampling
resolution cannot be better than an of the scene depth. In other words, even if the first
pass predicts that 100 percent of the samples of the second pass should be placed in a
single interval, the finer sampling will sample this interval uniformly because the PDF
along the ray is discrete.

To overcome this problem we are forced to use a large number of samples during train-
ing (a small number of samples will lead to a non-accurate depth estimation). Another
derivative of this problem is that for a deep or unbounded scene, even when using a
large number of samples, the model still struggles to achieve good results and there is
a trade-off between background to foreground quality (as shown in Nerf++[22]) as a
function of the sample’s depth range. Fig. 3.1 illustrates this problem.

The second disadvantage we observed in the traditional NeRF sampling strategy is that
most of the samples in the first pass contribute almost nothing to the training process be-
cause they predict zero influence from a very early stage in the training until its end. De-
spite this we still need to use them because of the first problem we mentioned. Fig. 3.2
illustrates the inherent trade-off between the two problems.



(a) bounding volume for the truck only (b) bounding volume for the entire scene

Figure 3.1: Foreground-Background Trade-off demonstration from NeRF++ paper
[22]: Scenes was rendered using regular NeRF model with the same number of sam-
ples. (a) The samples where taken in the foreground volume only. (b) The samples
where taken in the entire scene volume. Foreground comparison: Note how the truck
quality in the right image is lower due to a sparser samples around the truck location.
Background comparison: Note how the background quality in the left image is lower
because samples was taken with limited depth range.
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Figure 3.2: Left plot: Limited depth resolution when using a small number of samples
(inside the green rectangle). Right plot: Many samples with zero contribution (inside
the red rectangles).
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Chapter 4

Method

4.1 Preliminaries

Our model is a direct extension of NeRF [11] and MipNeRF [4]. For this reason we
described those models in more detail in section 2.2.1 and section 2.2.2.

4.2 General Description

As mentioned above, we are trying to extract additional information about the distri-
bution of the density along the ray from our coarse model. We will show that a more
accurate estimation of the influence distribution of the density along the ray predicted
by the coarse network will lead to better fine samples and improved results.

To distinguish between the coarse and fine samples, we denote 7¢ = {t{}"_ as the

coarse model samples and 77/ = {tlf H, as the fine model samples. Similar to Mip-
NeREF, our coarse model gets, as an input, an interval of a cone, but in addition to the
regular RGBa output, it also predicts an estimation of the density influence distribution
inside this interval. More specifically, it predicts the mean t and s.t.d. o of the distribu-
tion inside that interval. We assume the distribution inside each interval is Gaussian and
it does not affect or is affected by adjacent intervals. The importance of this assumption
will be clarified later in this chapter.

The coarse network learns to predict the distribution by trying to mimic the fine network
distribution. We assume that the fine network has a better estimation of the density along
the ray. This process will be described in more detail in Section 4.3. The entire pipeline
of our model is shown in Fig. 4.1.

4.2.1 Architecture:

We use the MipNeRF[4] architecture with two modifications: (1) We use two different
networks for the coarse and fine models - similar to what was done in the original NeRF
paper. (2) We change the final FC layer of the coarse model, adding ¢ and ¢ to the
predictions. Fig. 4.2 describe our coarse network architecture.

11
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Figure 4.1: DDNeRF full pipeline: (1) Drawing a cone in space and splitting it into
relatively uniform intervals along the depth axis. (2) Pass these intervals through an
IPE and then through the coarse network to get predictions. (3) Render the coarse RGB
image. (4) Approximate the density distribution and include the interval’s internal dis-
tribution inside the coarse sections boundaries (red dots); then sample the fine samples
(green dots). (5) Pass these samples through an IPE and thereafter through the fine net-
work to get predictions. (6) Render the final RGB image and depth map.
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Figure 4.2: DDNeRF Coarse network architecture: The location input is after IPE.
The direction input is after regular PE. Green arrows denote fully connected layers and
the yellow arrow if for concatenation. Note that the density « is independent of the view
direction while the other outputs depend on the view direction.
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Similar to MipNeRF, we use IPE to encode the input sections before inserting them
into the network. Although we chose to use the MipNeRF model, our model can be
integrated with any variant of NeRF that uses hierarchical sampling by changing the
coarse model.

4.3 Estimation of Density Distribution

The predicted p and ¢ are limited to be in the range between 0 and 1. Those constraint
are implemented by passing the predicted values through the sigmoid activation func-
tion. Those values are interpreted relative to length of the interval. The notation i/, o7
stands for the relative mean and s.t.d. of interval i. The transformation from the relative
interpretation to the absolute location and scale along the ray (u;, o;) is calculated as
follows:

=] (11— 1) (.
Gj — Gl'r . (tic_‘_l — th) (42)

These additional outputs allow us to achieve a finer distribution estimation along the ray.
That means, that in addition to the discrete PDF estimation A¢ between the intervals,
we also estimate the distribution inside each interval. The total distribution along the
ray is approximated as a combination of Gaussian distributions (one Gaussian for each
interval) that allows us to focus the fine samples in a smaller area along the ray.

The PDF inside interval i is denoted as fj(r) = -4 (¢|1;, 0;) and its CDF denoted as
Fi(t) = [*.. fi(t)dt. Because we want f; to be bounded inside the interval, we need
to truncate the Gaussian to be inside the interval boundaries, normalize it and define a
truncated Gaussian distribution f’. The truncated Gaussian distribution f; inside interval
i is defined as follows:

filty = fi(t) : ki=F(t,) - F(f) (4.3)

The truncation procedure is illustrated in Fig. 4.3 (a). The discrete function 4¢ between
the intervals is calculated as is done in the regular NeRF model (eq. (2.3)). The total
density distribution estimated by the coarse model is a mixture of the truncated Gaussian
models when /€ is used as the Gaussian weights. This distribution is denoted as f;,.
The calculation of f;, is defined in eq. (4.4). The entire procedure illustrated in Fig. 4.3.

faa(t) = KC[i] - f{(r) when t € [1f,1f ] (4.4)

The main reason we prefer the mixture of truncated Gaussians over the regular mixture
of Gaussians is that we want each Gaussian to affect only a single interval. This property
is necessary for two reasons. First, because the model calculates each interval indepen-
dently; we do not want the results of one interval to affect others. Second, assigning
each Gaussian to one specific interval allows us to calculate the second pass samples
and the additional loss component (described below) efficiently and without requiring
significant extra time or memory.

13
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Figure 4.3: (a) The PDF truncation process. The tails that exceed the section boundaries
are gray. The blue and orange curves are the PDF before (f;) and after ( fi’ ), i.e., before
and after the truncation. (b) Different intervals truncated PDF distributions and weights.
Each color represents an interval. The vertical dashed lines are the interval bounds and
the horizontal lines are the intervals weights (k). (c¢) The union of all distributions into
one finer distribution fz,.

4.4 Distribution Estimation Loss

To help the coarse network learn to approximate the density distribution, we assume
that the density distribution of the fine network is always closer to the real density dis-
tribution. Hence we are forcing the predicted coarse distribution to be close to the fine
one.

The fine PDF function 4/ is a discrete function computed similarly to eq. (2.3) with
respect to density output & of the fine samples 7/. We want to estimate 4/ using the
coarse model PDF function f;;. We use h' to denote the estimated #/. Because Sfaa 18
defined for every location on the ray, we can estimate hf using fy4 and its CDF function
F;, as follows:

f
~ liv
Wi =pPr(d <t<i,)) = [f* faa(t)dt = Faa(t], ) — Faat]) (4.5)

We use KL divergence to measure the divergence between the two discrete probabilities
hf and i/

Using the KL loss naively tends to push u and o toward values close to 0 or 1 and
impairs the model convergence (by over-shrinking the Gaussians or leading the model
predictions to the vanishing gradient area of the sigmoid function). To avoid these is-
sues, we add two regularization terms encouraging the Gaussian (before truncation) to
remain in the center of the interval, with s.t.d. large enough to avoid over-shrinking.
This regularization also keeps the model inside the effective range of the sigmoid func-
tion. The regularization components of the loss function are Z eraw and Z Grzaw where

l l
Wraw and Oy, are the model outputs values before passing through the sigmoid function
to limit the range to be between 0 to 1. The overall DE loss is defined as follows:

A 1
DEj 5 = KL(A 1) + (M ; w2, + As Zl: 62, (4.6)

where 7 is the number of coarse samples and A, and A are the regularization coeffi-
cients. We set the coefficient values to be in the range 0.01 to 0.1. The specific value

14



depends on the number of samples along the rays (the specific value for n samples is
approximately 078).

The DE] s 1s added to the regular NeRF loss (eq. (2.5)) so the overall loss is:
L= Ly f + )LDE - DE] os5 4.7)

where Apg is the DEj .z coefficient, set to be 0.1 in our experiments.

4.5 Sampling and Smoothing

Except for the unbounded scene case, the first sampling stage in our model is always
sampled uniformly along the ray. As in MipNerf, we use a 2-tap max filter followed by
a 2-tap blur filter for smoothing h¢ before sampling the second stage. For a small num-
ber of samples (up to 16), the smoothness method became a simple 1D blur filter with
[0.1,0.8,0.1] values during training, which helps to achieve better accuracy in space
(we found that this method works better for a small samples number in most scenes).
For internal interval smoothing we defined an uncertainty factor # > 1 that smooths the
truncated f’ Gaussians inside the intervals by increasing 6: 6 = u- ¢. This uncertainty
factor is decreased during training toward 1 and it corresponds to our increased cer-
tainty in the fine network estimation. This strategy also helps our model to refine the
second stage sample locations throughout the entire training process, while MipNeRF
retains similar location from early stage in the training process. Fig. 4.4 visualizes the
differences between the two sampling methods.

For an unbounded scene first pass, we also tried a different sampling strategy, a com-
bination of principles from two methods. Similar to NeRF++[22], we dedicated half of
the samples to uniformly sample the foreground volume. We do so by defining a maxi-
mum distance r,,,, from the origin (the scene center) that we considered as a foreground
sphere. That sphere contains all camera locations in the scene, so when rendering an
image, the maximum distance along the ray considered as foreground will be Y =2 1,4«
(See Fig. 4.5 for visual example). Outside the foreground range we used the DONeRF
log-sampling method [13]. Using this method we can cover deep scenes more effi-
ciently, by allocating more samples to the foreground area, then gradually decreasing
the sampling rate in far areas. For n samples, the 5 foreground uniform samples guniform
was taken according to eq. (4.8):

z‘iuniform:nea’,_(l_ )+7-(5) when ie[(),g] (4.8)

RIS| ~
RIS| ~.

While near is the rendered frustum near plane.

The background log-sampling #/°8=5@mPles yalyes is calculating using eq. (4.9):

_ log(di—y+1)
log(far—vy+1)

log—samples

1 Y+ (1

)+ (far—7y) (4.9)
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Figure 4.4: Density distribution during training. Training with eight intervals: 20k
iterations (left), 150k iterations (middle), RGB image after 200k iterations (right). The
blue line is 4¢ and the green line is f;;. The red line is the smoothed f;;; Note how the
divergence between the red and green curves has closed during training as u decreased
toward 1. The blue dots are the coarse samples. The purple dots are the fine samples and
the purple line is /. Our model (second row) keeps refining its fine sample’s locations,
while the MipNeRF (firts row) sample’s locations remain relatively similar from 20K to
the end of the training process. Our model also achieves more accurate samples and a
better RGB image than the regular mip-NeRF model.
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Figure 4.5: Sampling strategy for unbounded scenes: The blue rectangles represents
camera locations. Left part: The yellow star is a foreground object located in the scene
origin, the gray circle represent the foreground sphere that is used to calculate r,,,, and
Y. Right part: The yellow star is a foreground object located inside the foreground
range. The blue dots are the coarse samples (7) locations along the ray. Note the
difference in the samples rate between the uniform sample from the near plane to y and
the log-samples from ¥ to the end of the ray (far plane).

Where far is the rendered frustum far plane and d; values are calculated as follows:

di=y-(2)+ far-(1— 1) when ie[O,g] (4.10)

NIS| ~.
DIS| ~.

Fig. 4.5 illustrated the first stage sampling strategy for unbounded scenes.
The second sampling stage remained the same.

This method performed better for this unbounded scene. Detailed results are described
in Chapter 4.
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Chapter 5

Experiments and Results

5.1 General description

We tested our model in three main domains: real-life forward facing scenes, synthetic
360° scenes and real life 360° scenes. We compare the model’s performance for dif-
ferent sampling budgets. We used the same number of samples for the coarse and fine
networks. Thus, the number of samples listed in the results refers to one network. We
used three different metrics when evaluating our results: structural similarity (SSIM),
perceptual (LPIPS) and PSNR.

We divide our experiments into two parts. In part 1, we focus on domains in which
NeRF achieved excellent results: real-life forward facing and synthetic 360°. Part 2
contains domains that NeRF is struggling with: real life 360° bounded and unbounded.
All our training used a single GeForce GTX 1080.

5.1.1 Partl:

For the forward facing scene we chose the fern scene from the LLFF paper [10]. We
used the NDC transformation as in NeRF and MipNeRF. For the synthetic 360° scene
we chose the LEGO scene from the NeRF [11] example datasets. We trained each
model with 200K iterations using 2048 rays per iteration. To challenge the model we
reduced the number of samples and repeated the training routine several times. Each
time we used different numbers of samples along the rays — 4, 8, 16, 32. Validation
was performed using the same number of samples as in the training. We compare our
results with those of MipNeRF, which trained and validated the model results under the
same conditions. Results are presented in Table 5.1 and in Fig. 5.1. Our model achieved
better results in each one of the evaluation metrics for every number of samples.

Another indication of the additional information our model gathers relative to the other
models is its depth estimation. We extract the depth as the mean of the PDF along the
ray, for the regular coarse model — E[h¢(¢)] and for our coarse model — E|[fy,(t)]. For
the fine models the depth calculated as E[h/(¢)]. Our coarse model produces a much
better depth estimation than MipNeRF coarse model. Fig. 5.2 shows the qualitative
results.
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Table 5.1: Experiment results on the LLFF fern dataset (real-world forward facing) and
synthetic 360 deg LEGO scene. We trained each model for 200k iterations. Our model
achieved better results than the regular models for every number of samples.

FERN LEGO
Samples Model PSNR{ SSIM{ LPIPS| PSNRt SSIMt LPIPS|

4 MipNeRF 20.20 0.521  0.606 21.64 0733  0.281
DDNeRF 20.81 0577 0507 21.79 0.741  0.274
8 MipNeRF  21.6 0.614 0477 2464 0813 0.184
DDNeRF  22.23  0.659 0.384 2492 0.836 0.160
16 MipNeRF 23.37  0.707  0.327 27.83  0.888  0.092
DDNeRF 23.51  0.727  0.285 28.67 0917  0.062
32 MipNeRF 2385 0.740  0.279 3038 0932 0.045
DDNeRF 23.87 0.748  0.264 3153 0948  0.031

4 samples 16 samples 32 samples

8 samp\es_

Figure 5.1: Lego results: First row — MipNeRF model. Second row — our model. The
number of samples is marked at the top of each column. Our model achieves better
results for any number of samples.
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MipNeRF coarse DDNeRF coarse o MipNeRF fine - DDNeRF fine

Figure 5.2: Disparity comparisons: Comparison between MipNeRF ans DDNeRF
estimated disparity on the fern scene. Both models were trained and evaluated using
eight samples and without NDC warping. Notice how the depth estimation of our coarse
model is closer to the fine model’s estimation than to the MipNeRF coarse model.

5.1.2 Part2:

In the 360° domains we did not perform any space warping, excluding scale normal-
ization of the world coordinate such that the main part of the scene is at a maximum
distance of 1 from the origins.

For the bounded scene we created our own scene of a motorcycle inside a warehouse.
We acquired 200 snapshots from 360° views, where 10% of the images were saved for
validation purposes. Although its depth is bounded, restoring this scene is not straight-
forward because it includes a big complex object and many small objects with fine
details. We used the COLMAP structure from motion model [21] [20] to extract the
relative orientation of the cameras. We trained each model with 300K iterations using
2048 rays per iteration. As in the first part of our experiment, we used a different num-
ber of samples. In this case — 32, 64, 96. Results are shown in Table 5.2 and Fig. 5.3. As
can seen from Table 5.2, our model achieved better results in all metrics for any number
of samples. More than that, our 32 sample model achieved better results than the 96
sample MipNeRF model. Table 5.3 present more details about the computation-quality
trade-off, which help to emphasize and analyze our model superiority. We can also see
that our model produced more accurate depth estimation and better RGB prediction,
especially around complex shapes (see Fig. 5.3).

In order to demonstrate the contribution for each of the components in our model we
performed an ablation study. Result are presented in table 5.4.

For an unbounded scene we chose the playground scene from the Tanks and Temples
dataset [6]. We compare our model with both the MipNeRF and NeRF++ models. We
trained and tested each model using 64 and 96 samples. For NeRF++, we split the
sample budget equally between the foreground and the background models. For the 96
samples we also compared the unbounded scene sampling method that we described in
section 4.5. The model is notate as DDNeRF* in Table 5.2. Our model achieved the
best LPIPS and SSIM scores from the models we tested. NeRF++ achieved a better
PSNR score (see Table 5.2). When looking at the output images we can see that our
model achieved better quality in the foreground and in the close background parts but
struggles with far background parts; see Fig. 5.4
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DDNeRF

Figure 5.3: Motorcycle scene results: First row— RGB predictions. Second
row— disparity estimation from the fine model results. Our model achieves better depth
estimation and better RGB prediction. Notice the crop for how our model is able to
catch complex shapes such as the motorcycle’s off road tires and the frame and small
wheel of the tool cart.

Table 5.2: Experiments results for real world 360deg scenes. “Smpl” column stands
for the number of samples in each of the networks (coarse and fine). All models were
trained for 300K iterations. The left part of the table compares DDNeRF with MipNeRF
for different numbers of samples. The right part compare alse to NeRF++ model.

Bounded scene — Motorcycle Unbounded scene — Playground
Smpl Model PSNRT SSIM?T LPIPSHSmpl Model PSNR7? SSIMT LPIPS|

32 MipNeRF 20.36 0.533 0.532 MipNeRF 21.47 0.547 0.540
DDNeRF 20.84 0.577 0.453 | 64 DDNeRF 21.71 0.568 0.498
64 MipNeRF 20.7 0.554 0.502 NeRF++ 21.73 0.575 0.524
DDNeRF 21.07 0.592 0.422 MipNeRF 21.67 0.551 0.550
96 MipNeRF 20.8 0.563 0.488 | 96 DDNeRF 21.69 0.569 0.498
DDNeRF 21.12 0.593 0.418 NeRF++ 21.74 0.589 0.511
DDNeRF* 21.43 0.596 0.451

21



Table 5.3: Computation-Quality trade-off. We trained mip-NeRF with 96 samples for
300k iterations on the motorcycle scene, and comparing it to DDNeRF with differ-
ent sample numbers and training iterations. We demonstrate the computational-quality
trade-off using up to 300k iterations and 96 samples on DDNeRF. Our model achieves
better results with a % of the samples or iterations. Green results are better than baseline,
Red are inferior to baseline. x samples refers to x coarse samples and x fine samples.

Model Samples Iterations PSNR1 SSIMT LPIPS|
MipNeRF 96 300k 20.8 0.563 0.488

DDNeRF 32 300k 20.84 0.577 0.453
DDNeRF 96 80k 20.37 0.556 0.458
DDNeRF 96 100k  20.63 0.566 0.447
DDNeRF 96 140k  20.89 0.581 0.429

DDNeRF 96 300k 21.12 0.593 0.418

Table 5.4: Ablation study: Motorcycle scene, 32 samples, 300k iterations. We train
with constant variance value, without using uncertainty factor, using constant uncer-
tainty factor, and finally our full model. The results show that predicting the variance is
better than using constant variance for the learned distribution. The table is also demon-
strates the importance of the uncertainty factor to the learning process.

Model Version PSNR1 SSIM?T LPIPS|
MipNeRF standard 2036 0.532 0.532

DDNeRF  constant variance 20.62 0.567 0.462
DDNeRF w/o uncertainty factor 20.39 0.555 0.453
DDNeRF const uncertainty factor 20.67 0.571 0.450

DDNeRF full model 20.84 0.577 0.452
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DDNeRF NeRF++

Figure 5.4: DDNeRF vs NeRF++: Left image was rendered using the DDNeRF* model,
the right image using NeRF++. Notice that DDNeRF works better for the large fore-
ground object. Two left crops: Far background — NeRF++ works better. Two middle
crops: Small foreground objects — DDNeRF works better. Two right crops: Combina-
tion of foreground and close background — DDNeRF works better.
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Chapter 6

Discussion and Conclusions

In this paper we introduced DDNeRF. An extension of the MipNeRF model that pro-
duces more accurate representation of the density along the rays while improving the
sampling procedure and the overall results. We showed that our model provides superior
results on various domains and sample numbers. DDNeRF uses fewer computational
resources and produces better results.

Our method is robust, self-supervised and can be adjusted to most of the NeRF models
to increase their performance. We successfully tested this assumption with:

1. Different space warping and reparameterization - NDC.

2. Different sampling method - log-sampling.

We expect our method to work better with any method who uses the same spatial rep-
resentation. For example, methods that use OCTrees or multiple tiny NeRFs for re-
ducing/parallel computations. We also expect our method to improve DONeRF perfor-
mance. DONeRF uses depth GT or trained NeRF to train its oracle, producing better
NeRF model could improve the oracle performance.

Due to the above properties we compared our model to a general NeRF model - mip-
NeRF and general unbounded scenes NeRF model - NeRF++. For unbounded scenes,
despite the good results we got, we believe that combining our model for foreground
and close background together with the NeRF++ [22] background model will lead to
better results. We leave this for future work.

Integrating with two other recent works - Multi-resolution Hash Encoding [12] (SIG-
GRAPH 2022) and Plenoxels [19] (CVPR 2022) is less immediate and can also be a
good future works.
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PPN

JININND DIV TR NNANNY DIND NIN DN THNYI MYSNNI DIND NNY
NP DONDY PO MNVP DONIP) MNVYIL DVNNYND NeRF WD DYTN
PR MY PR ONE DY .M MR IVTN NON NN DVPPIIN
D29 2N 2ARYND YNT YTV

TN MO Depth Distribution NeRF — DDNeRF NN DPNN DN % Nyl
MY NV NPT NNXL DTN NON DVPPINY NIND I 1D NIVINNDY
YARYN NN POPNY D) T2 Y'Y ANY MV MNRSIN PYND NN NPT Nd
oV ANy NPT NTND Y ARG DOPYN DR IOTIND ND DVITH 2NN
NN J0PON YA DY MITHIMN OPIPN TNNRD MPANN NYIYN NNOONN
TPAN TNDONNN NN D) PYNRIN I2YNN ToNNA IRND DTN NN DINNN
NI MYSNND YOPNRN HY NONON MPAND Q0N ,YOPN 5951 MOPYn Sv
PYUNDY YIPN TN NP DPMTH DMPPNA ONTO 213 MWD Naynn MmN
DNV MV RN

27



AN I90N MPAN , T TR T MNRON 2APY '8 7PNINA NAND R NTAY
YA NVXOIDVNN ,AVNNN PYTND RN

28



¥

* . _
~ Reichman Efi Arazi School

University  of Computer Science
-

- ..

Y2577 NVIOIDIIN
2AUNNN PYTIRD RIN 9N 190"
PN 50N ~(M.Sc) Y ININD 10NN

oV NN NN Y'Y NeRF DT MY
D”)IPN TNND MPARN NYIVN NNOANN

NIT M7

TROM NN NP DYO MATIN POND IYUINN MN NTAY
LAVNNN OYTND RIN 9N 990 17’22 IIPNNN D1DDNA M.Sc.
25”7 NVOIDNIN

2022 Y



