
The Interdiciplinary Center, Herzliya
Efi Arazi School of Computer Science

M.Sc. Program - Research Track

Discovering Discrete Hidden Variables
in Mixed Networks: A Statistical

Hypothesis-Testing Approach

by
Aviv Peled

M.Sc. dissertation, submitted in partial fulfillment of the requirements
for the M.Sc. degree, research track, School of Computer Science

The Interdisciplinary Center, Herzliya

September, 2020

This work was carried out under the supervision of Dr. Shai Fine from the

Data Science Institute, The Interdiciplinary Center, Herzliya.

1

Acknowledgements

I would like to thank my supervisor Dr. Shai Fine for guiding me through this

process. Thank you for many hours of discussions, many hours of late-night work

and for encouraging and empowering me. I would not have been able to do it

without your help.

I would also like to thank Tali, my soon to be wife, my family and my friends

for encouraging me and supporting me through the emotional roller coaster of

these couple of years.

2

Abstract

Latent variables pose a challenge for accurate modelling, experimental design, and

inference, since they may cause non-adjustable bias in the estimation of effects.

While most of the research regarding latent variables revolves around accounting

for their presence and learning how they interact with other variables in the exper-

iment, their bare existence is assumed to be deduced based on domain expertise.

In this work we focus on the discovery of such latent variables, utilizing statisti-

cal hypothesis testing methods and Bayesian Networks learning. Specifically, we

present a novel method for detecting discrete latent factors which affect continu-

ous observed outcomes, in mixed discrete/continuous observed data, and device

a structure learning algorithm that adds the detected latent factors to a fully ob-

served Bayesian Network. Finally, we demonstrate the utility of our method with

a set of experiments, in both controlled and real-life settings

3

Contents

1 Introduction 6

1.1 Motivation . 6

2 Background 11

2.1 Statistical Hypothesis Testing . 11

2.1.1 Dip Test . 12

2.2 Bayesian Networks . 15

2.2.1 Definition . 15

2.2.2 Conditional Independence and d-separation 17

2.2.3 Parameters Learning . 21

2.2.4 Structure Learning . 24

2.3 Conditional Gaussian Bayesian Networks 26

3 Previous Work 28

4 Methodology 33

4.1 Discovering Latent Variables . 33

4.2 Structure Learning in the Presence of Latent Variables 38

5 Empirical Results 47

5.1 Health Insurance . 48

5.2 Activity Recognition in-the-Wild 51

5.3 COVID19 Test Results Prediction 55

4

6 Summary 59

7 Appendix 61

7.1 Dip Test Sensitivity to Multi-Modality 61

5

1 Introduction

1.1 Motivation

Consider a researcher attempting to assess the effectiveness of a drug X from a

population data, where drug usage is the patient’s choice. Furthermore, consider

a scenario where gender (Z) differences influence the patient’s choice to use the

drug (i.e. compliance) as well as their chances of recovery (Y). In this scenario,

Z (gender) confounds the relation between X and Y , since Z affects both X and Y .

The effect of a confounder on an experiment is that it may lead to biased estimates.

For example (c.f Figure 1), if the drug has a better effect on women than it has on

men, and the test group consists mostly of women and only a handful of men, the

statistical test may falsely indicate that the drug is more effective than it really is.

Figure 1: The gender variable is a confounder in the drug experiment

Another interesting effect a latent variable may have is when the relation

between the latent confounding factor and the observed explanatory variable is

reversed. For example, a clinical study aimed at testing the efficacy of a new

painkiller drug, which has a rare paradoxical side effect (such as headaches, mus-

6

cle aches, and nausea) that interferes with pain levels assessed in patients as part

of the clinical study (c.f. Figure 2). Discovering such an anomaly, modelling it

and accounting for it, would lead to a more accurate estimate of the drug’s ef-

fectiveness, as well as a better model that suggests explanations and insights into

side effects, adverse events, and possibly also drug-drug-interaction (DDI), if the

latent factor is correlated with additional drug administration.

Figure 2: The side effect latent variable is effected by the painkiller drug admin-
istration

Thus, confounding factors are an important issue in experimental design, and

researchers invest many efforts in controlling for all known confounding factors,

e.g. to reduce selection bias. However, once we observe the outcome of an ex-

periment, how can we be sure that there are no additional factors that we did not

7

include in our design which may effect the observed outcomes?

The problem of detecting and accounting for latent effects is manifested in

many domains and real-life settings. Another notable example is in social net-

works analysis, where researchers have been trying to figure out a way to measure

“Social Contagion” or “Social Influence” - The transmission or transfer of deviant

behavior from one person to another. A well studied implication is the design

of a marketing campaign: In a seeding campaign, a new product is provided in

a discount price (or free of charge) to influential key opinion leaders (KOL) that

hopefully will recommend the product, thus contributing to a positive sentiment

and increased sales. In order to have a more effective campaign, a seeding strat-

egy (namely to which KOL should the product be provided) must be devised.

Such a strategy usually employs a social influence measurement, by which indi-

viduals are ranked, simulations of the diffusion process generated by “gifting” the

top influencers, and predictive models to assess how much value will this seed-

ing campaign produce. Social influence or social contagion is often measured by a

statistical hypothesis testing - The test group consists of people who own the prod-

uct and the control group consists of people who do not own that product. Then,

the group of friends of the people in the test group and of the people in the con-

trol group are examined to see if they buy the product (or present the contagious

behavior in question). If we see a difference in the number of friends who buy the

product between the test and the control group (i.e. the effect size), we may con-

clude that social influence is responsible for that. But here is where we meet the

latent confounders in the form of homophily, which is the tendency of individuals

8

to associate and bond with similar others, or as the known saying goes “Birds of

a feather flock together”. Homophily provides an alternative causal explanation

- Maybe the friends of the people who bought the product (the test group) had a

higher chance to buy that product to begin with, since they all like the same prod-

ucts, and this is why they are friends. Figure 3 demonstrates this phenomenon

with a concrete example: Ian and Joey are friends and also gadget enthusiasts.

Ian bought the newest smartphone model, and soon after, Joey bought the same

smartphone. Is it because Ian influenced Joey, or maybe Ian was just quicker and

Joey would have bought the smartphone anyway?

Figure 3: Homophily - Did Ian influence Joey, or maybe Ian was just quicker and
Joey would have bought the smartphone anyway?

In this work we focus on the discovery of such latent variables that can provide

a better explanation to the observed outcomes. In the current study we focus

attention on settings where the observed cause and the latent variable are both

discrete, and the observed effect is continuous.

Our solution scheme follows: Given the data, we start by devising a Bayesian

9

Network to model the relations between the observed variables. Next, we pose

the detection of additional latent factors as a hypothesis testing problem, and use

Hartigans’ dip test (Hartigan and Hartigan, 1985) to decide whether or not there’s

enough evidence to suggest that latent variables exist. Finally, we provide an

algorithm that uses d-separation to decide if and how to enhance the network

structure with latent variables, what will their cardinalities be, and how to connect

the added latent variables to the existing network.

The rest of the dissertation is organized as follows: In Section 2 we give

some definitions and essential information on Hartigans’ dip test, on Bayesian

Networks, and on Conditional Gaussian Bayesian Networks. Section 3 reviews

some related works. In section 4.1 we describe our dip test based approach for

detecting latent variables. This section includes (controlled) demonstration for

the detection of variables in simulated and real-life settings. Section 4.2 presents

our structure learning scheme. Section 5 describes the results of applying the

complete process, namely latent variables discovery and structure learning, in a

series of experiments. We conclude in Section 6 with a few insights and an open

question for future research.

10

2 Background

2.1 Statistical Hypothesis Testing

In statistics, hypothesis testing is a method for testing a claim or hypothesis about

a population, using data measured in a sample assumed to be drawn from that

population. In hypothesis testing a researcher begins by stating two mutually ex-

clusive and exhaustive statistical hypotheses, the null H0 and the alternative H1.

The alternative hypothesis typically reflects the researcher’s guess or prediction

which requires testing, while the null hypothesis is the negation of the alternative

hypothesis, that is assumed to be true until proved otherwise. The researcher now

performs a procedure which involves measuring how surprising the value of an

observed test statistic (which is relevant to the hypotheses) is when H0 is assumed

to be true. This assessment is carried out by calculating a probability, called a

p-value, so that small values of the p-value indicate that the observed test statistic

value is surprising. The researcher needs to set the level of significance α for the

test, that is the criterion upon which a decision is made regarding the null hypoth-

esis. To make a decision, the p-value is compared to the level of significance, and

if it is lower than it, the null hypothesis is rejected with significance.

For example, take a medical researcher who is claiming that the mean weight

of Israeli men aged between 30 and 39 has increased since the 80s. Based on

official data from that period, the mean weight for Israeli men of the age group in

question was µ = 77kg with standard deviation σ = 19kg. To prove his claim, the

researcher devices a hypothesis test as follows: He states the null hypothesis based

11

on the official records H0 : µ = 77kg which implies that there has been no change

in the mean weight over time, and the alternative hypothesis (which he is trying

to prove) H1 : µ > 77kg (the mean weight has increased). The researcher then

sets a significance level 0.05, and decides to make use of an appropriate statistical

hypothesis test based on the problem setting - the one sided Z-test, which is appli-

cable for normally distributed data, and ”greater than” claims. The researcher col-

lects a sample x̄ of n = 64 weight records, computes the sample mean µx̄ = 83kg,

and uses the known σ and n to compute the standard error sx̄ = σ√
n = 2.375,

finally computing the Z-statistic Z = µx−µ0
sx

= 83−77
2.375 = 2.652 which is the normal-

ized sample mean assuming H0 was true. To complete the test, the researcher now

has to make a decision based on the significance level he set earlier. For that, he

computes the p-value - the likelihood of the Z-statistic given that the null hypoth-

esis H0 was true, that is the area under the curve of a normal distribution beyond

the value of Z (one sided test) which for Z = 2.652 is 0.109 (see Fig 4). Since the

p-value is larger than the significance level (0.109 > 0.05) the researcher accepts

the null hypothesis H0 since he does not have enough evidence to reject it, which

sadly for him means that the increased weight he witnessed in his test is probably

attributed to sampling, and not to a change in the population parameters.

2.1.1 Dip Test

In our work, we make use of a specific statistical hypothesis test named ”Dip

Test” (Hartigan and Hartigan, 1985) which allows us to decide whether a sam-

ple in question is from a uni-modal distribution or not. The test’s hypotheses

12

Figure 4: The p-value of the statistic in the one-sided test is the area under the
curve beyond the value of the statistic

are: H0: The sample was drawn from a uni-modal distribution and H1: The

sample was drawn from a multi-modal distribution. The Dip test statistic is the

maximum difference between the observed distribution of the data and a uni-

modal distribution that is chosen to minimize this maximum difference: D(F) =

minu∈U maxx|F(x)− u(x)| where U is the set of all uni-modal distributions. In

his paper, Hartigan suggests an efficient method of computing his test statistic,

linear in the size of the input data. Hartigan provided an empirical table with

probabilities for different dip test statistic values based on repetitive computation

of the test statistic on several samples with varying sample sizes from the uniform

13

distribution. Based on the table, it is possible to compute p-values for any Dip

test statistic using interpolation. Hartigan chose the uniform distribution as the

reference null distribution in his power calculations, since, in his words, it is the

least favorable uni-modal distribution, considering its Dip test statistic values are

stochastically larger than other unimodal distributions, such as those having expo-

nentially decreasing tails. Hartigan suggested to use a significance level 0.05 for

his multi-modality test, that is if the p-value for the dip statistic is lower than 0.05,

there is enough evidence to reject the null hypothesis and conjecture that the sam-

ple is from a multi-modal distribution with high significance, otherwise, we accept

the null hypothesis and say that the sample is from a uni-modal distribution.

The Dip test has many advantages: It is non-parametric and works with all

kinds of uni-modal distributions such as Gaussian, beta, uniform and so on. It is

invariant to scaling and shifting, robust to noise, and finally, it is deterministic and

fast to compute.

The Dip test is used a lot as a statistical tool in many life sciences works, such

as (Freeman and Dale, 2013) that make use of the test to detect multi-modality in

psychology data, for research on dual-cognitive processes, or (Fulton et al., 2017)

which used dip test to detect a multi-modality in radius measurements of planets,

collected from the California-Kepler Survey. While not wide-spread in the AI

community, an example of its usefulness can be seen in (Maurus and Plant, 2016),

that presents a noise invariant clustering method based on the Dip test.

14

2.2 Bayesian Networks

Bayesian networks (BNs) are probabilistic graphical models that represent a set

of variables and their conditional (in)dependencies using a directed acyclic graph

(DAG). Their generative nature allows using them for a wide spectrum of mod-

elling problems, such as prediction, classification, diagnosis, etc. In our work we

rely heavily on Bayesian networks for our modelling and reasoning purposes. We

start by describing the dependencies in the data with a Bayesian network, we then

detect the existence of latent variables in the network, and finally we present the

new variables and their interactions with the observed data in a Bayesian network.

2.2.1 Definition

The structure of a Bayesian network is defined by two sets: the set of vertices

V and the set of directed edges E. The nodes represent random variables and the

edges represent direct dependence among the variables, such that an edge from

node Xi to node X j represents a statistical dependence between the corresponding

variables and informally implies that Xi ”influences” X j. From graph theory, Xi is

the parent of X j (and X j is the child of Xi). The parent-child terminology allows

the definition of sets of ”descendants” and ”ancestors” for the different nodes in

the network’s graph. The Bayesian network’s graph should be acyclic, making

it a directed acyclic graph (DAG). Other than the structural component of the

model (the DAG), the quantitive parameters of the Bayesian network should also

be stated: the conditional probability distributions (CPDs) for each node, given all

15

of its parents in the network’s structure. Using the DAG structure and the aformen-

tioned CPDs, the Bayesian network reflects a simple and very useful conditional

independence statement - each variable is independent of its non-descendants in

the graph given its parents. This property is called the local Markov property and

is used to reduce the number of parameters that are required to characterize the

joint probability distribution of the variables via factorization (Pearl, 1988). This

is one of the most important qualities of the Bayesian network since it provides

an efficient way to perform Bayesian inference on the different variables. More

Figure 5: Left: An example of a Bayesian network including its graph structure
and parameters. Right: The joint distribution encoded in the network without
factorization requires more parameters.

formally, a Bayesian network B= (G,θ), where G= (V,E) is a DAG, represents a

joint probability distribution P over the set of random variables V using the CPDs

encoded in θ and the conditional independence statements encoded in E, such

that each variable Xi is independent of its non-descendants given its parents in G.

θ contains the set of CPDs θi = P(Xi|πXi) where πXi are the parents of the node Xi

in G. The joint probability distribution P as described by the Bayesian network B

16

is factorized as such: P(X1,X2, ...,Xn) = ∏
n
i=1 P(Xi|πXi) = ∏

n
i=1 θi. (Pearl, 1988;

Friedman et al., 1997)

2.2.2 Conditional Independence and d-separation

Conditional independence between variables is very useful as it allows knowledge

discovery, better reasoning, and as we’ve seen before, the use of simpler, more ef-

ficient models since there are less dependencies to model. The Markov property

stated above says that in a Bayesian network, a node is conditionally independent

of all its non-descendants given its parents, but are these all of the conditional

independence statements we can make about the variables in the network? The

answer is no. Expanding on the Markov property stated above and using local

conditional independence rules, we can define d-separation - a practical graph-

ical criteria which allows easy exploration of the different conditional indepen-

dence statements encoded in a Bayesian network. Let us explore the concept of

d-separation.

Definition 2.1. Conditional Independence

Let P be a joint probability distribution over the set of random variables V. Let

a,b ∈V be random variables and A,B,C ⊆V be sets of random variables

1. Variables a and b are conditionally independent given C if P(a,b|C) =

P(a|C)P(b|C).

2. A is conditionally independent of B given C if for every a ∈ A and b ∈

B, a and b are conditionally independent given C. We will notate it as

17

Ind(A,B|C).

Suppose we have a DAG G = (V,E), and a set of nodes {X1,X2, ...,Xk}, where

k ≥ 2, such that (Xi−1,Xi) ∈ E or (Xi,Xi−1) ∈ E for 2 ≤ i ≤ k. We call the set of

edges connecting the k nodes a chain between X1 and Xk. A chain containing two

nodes, such as X−Y , is called a link. A directed link, such as X → Y , represents

an edge. Given the edge X → Y , we say the tail of the edge is at X and the head

of the edge is Y. We also say the following:

• A chain X → Z→ Y is a head-to-tail meeting, the edges meet head-to-tail

at Z, and Z is a head-to-tail node on the chain.

• A chain X← Z→Y is a tail-to-tail meeting, the edges meet tail-to-tail at Z,

and Z is a tail-to-tail node on the chain.

• A chain X→ Z←Y is a head-to-head meeting, the edges meet head-to-head

at Z, and Z is a head-to-head node on the chain.

Figure 6: Left: head-to-tail meeting at Z. Center: head-to-head meeting at Z.
Right: tail-to-tail meeting at Z.

Definition 2.2. Blocked Chain

Let G = (V,E) be a DAG, A⊆V a set of evidence variables, X ,Y ∈V \A two

nodes, and ρ be a chain between X and Y. Then ρ is blocked by A if one of the

following holds:

18

1. There is evidence on a node Z ∈ A in the chain ρ , and the edges incident to

Z in ρ meet head-to-tail at Z.

2. There is evidence on a node Z ∈ A in the chain ρ , and the edges incident to

Z in ρ meet tail-to-tail at Z.

3. There is a node Z in the chain ρ , such that Z and all of its descendants are

not in A (there’s no evidence on them), and the edges incident to Z in ρ

meet head-to-head at Z.

To provide some intuition for the following definition and theorem, notice

that for any joint PDF that complies to the conditional independence statements

implied by the structures stated in figure 6, using the factorization implied by the

network structure it is easy to see that if we’re given no evidence whatsoever, then

in the left and right structures, the variables X and Y are dependent (through Z),

and in the center structure they are marginally independent. Given the value of Z

as evidence, in the left and right structures, X and Y are conditionally independent

given Z, while in the center structure, conditioning on Z introduces a dependence

between them (explaining away). We can now define d-separation:

Definition 2.3. d-separation

1. Let G = (V,E) be a DAG, A ⊆ V , and X ,Y ∈ V \A. We say X and Y are

d-separated by A in G if every chain between X and Y is blocked by A.

2. Let G = (V,E) be a DAG, and A, B and C be mutually disjoint subsets of

V. We say A and B are d-separated by C in G if for every X ∈ A and Y ∈ B,

19

X and Y are d-separated by C.

We worked through all these definitions to be able to state the powerful d-

separation theorem, which without getting too formal or proving it, follows the

following lines: Let G = (V,E) be a DAG, A, B and C mutually disjoint subsets

of V, and P a distribution function defined on the set of variables V, which is

compatible with the conditional independence statements entailed in G. If A and

B are d-separated given C in G, then IndP(A,B|C). The d-separation theorem

Figure 7: Given E, every chain from R to any other node is blocked

is very useful since it allows the discovery of conditional independence between

groups of variables through a simple examination of the graph G - To find out

if IndP(A,B|C) you simply need to check the paths between A and B and see if

they’re blocked or active given C. For example, consider the Bayesian network in

figure 7. Given the value of node E as an evidence, we can see that every chain

from the node R to every other node in the graph is blocked since all these chains

have a tail-to-tail meeting on E which is observed, thus R is d-separated from

20

all the other nodes given E, which thanks to the d-separation theorem means that

Ind(R,{A,B,C}|E).

2.2.3 Parameters Learning

So far we’ve described the Bayesian network model, its components, assumptions,

usages, and advantages. We did not discuss however how they are constructed.

When using Bayesian networks to model real-world problems, in some cases the

network (either structure, parameters, or both) is known - that is, designed by

an expert who utilized domain knowledge to construct the networks. Eliciting

Bayesian networks from experts can be a laborious and difficult procedure in the

case of large networks, so researchers developed methods that could learn the

network’s structure and parameters (conditional probabilities) from data. This

problem is known as the BN learning problem, which can be stated informally as

follows: Given training data and prior information (domain knowledge), find the

network structure and parameters that best fit the data. Learning the structure is

considered more difficult than learning its parameters. On top of that, in some

cases you have to deal with missing data and hidden nodes, which complicate

the task. In general, there are four BN learning cases, to which different learning

methods are proposed (Murphy, 1998):

1. Known Structure, Full Data - Maximum Likelihood Estimation (MLE)

2. Known Structure, Partial/Hidden Data - Expectation Maximization (EM)

3. Unknown Structure, Full Data - Searching through model space - Score and

21

constraint based approaches

4. Unknown Structure, Partial/Hidden Data - EM + Search through the model

space

We will present some of these methods in the following sections, starting with

parameter learning (known structure).

To discuss the parameters learning process, we will begin by giving an exam-

ple of some CPDs and their respective parameters, to clarify what is it that needs

to be learned in this step.

The CPD of a node in a BN corresponds to its type (discrete/continuous etc.),

its parent nodes types, and the connection between them. For example, in our

work we primarily used a couple of CPDs:

1. For discrete nodes, we used the categorical distribution, which means that

given the values of all of the node’s discrete parents (we did not allow con-

tinuous parents for discrete nodes), each state of the variable has some prob-

ability which sums to 1 over all states, given a certain set of parent values.

Parameters of this sort are represented using a Conditional Probability Ta-

ble (CPT), which notes the probability for each state given the different

combinations of values that the node’s parents can take - P(Xi = j|πXi)

2. For continuous nodes, we used a conditional linear Gaussian (see 2.3) CPD

which allows discrete and continuous parents, such that the discrete parents

affect the node as in a mixture of Gaussians connection, and the continuous

22

parents affect the node as in a multivariate gaussian connection. The param-

eters for such a node Xi, given its discrete parents Q and continuous parents

Y are the mean µQ, covariance σQ and regression coefficients matrix WQ so

that Xi|Q,Y ∼N (µQ +WQ×Y,σQ) (Murphy, 1998).

When learning parameters using full data, the goal is to find the parameters for

each CPD in the BN, that maximize the log-likelihood of the training data. Say

the dataset contains m cases (which are often assumed to be independent). Given

training dataset D = {d1, ...,dm}, where di = (di1, ...,din), the set of parameters

Θ = (θ1, ...,θn), where θi is the vector of parameters for the CPD of variable

Xi, the log-likelihood of the training dataset is a sum of terms: logL(Θ|D) =

∑
m
l=1 ∑

n
i=1 logP(dli|πi,θi). Notice that using the BN conditional independence as-

sumptions, the log-likelihood function decomposes nicely. We can now optimize

the parameters Θ to maximize the log-likelihood, and return the optimal param-

eters as the result of the learning procedure. In the case of learning parameters

with partial observability, that is either there are latent variables in the model,

or randomly missing values for some of the variables in some of the examples,

an accepted method of dealing with the missing data is using the Expectation-

Maximization(EM) algorithm to find a locally optimal maximum likelihood esti-

mate for the parameters. The EM algorithm is an iterative algorithm which alter-

nates between an Expectation (E) step which creates a function for the expectation

of the log-likelihood evaluated using the current estimate for the parameters, and

a maximization (M) step, which computes parameters maximizing the expected

log-likelihood found on the E step. These parameter-estimates are then used to

23

determine the distribution of the latent variables in the next E step. The EM algo-

rithm converges to a local optima of the log-likelihood function, and as with many

different optimization algorithms, it is sensitive to the initialization stage - the ini-

tial model parameters in our case. Some solutions to the initialization sensitivity

include trying several starting parameters (either randomly or not), and choosing

the best run as the final model parameters, or using clustering to get good starting

parameters for the optimization. A common initialization method when dealing

with mixture models is to initialize the parameters based on the results of a k-

means clustering algorithm run on the data, such that the k-means centroids will

serve as the initial means, and the initial covariance will be based on the distances

from the centroids.

2.2.4 Structure Learning

The third case of Bayesian networks learning deals with unknown structure and

full observability. The goal in this case is to learn a DAG that best explains the

available data. This problem is called Structure Learning and it is considered to be

more difficult than parameter learning. In fact, in the general case, structure learn-

ing is an NP-hard problem (Chickering, 1996), but it can be solved efficiently

in specific cases, for instance, the Chow-Liu algorithm is an efficient structure

learning algorithm for BNs with a tree structure (Chow and Liu, 1968). There

are several approaches to structure learning: constrained-based methods, which

revolve around discovering conditional independencies in the data and construct-

ing a network that models them, and score-based methods which define a score

24

that evaluates the fit of a network to the data, and search for a network that has

the best score given the training data. (Neapolitan et al., 2004) The first scor-

ing function that comes to mind for this use case is the log-likelihood of the data

given the model, but one has to be careful when using it in a structure learn-

ing procedure, since the log-likelihood score will only improve the more edges

(complexity) are added to the model and so an optimization algorithm based on

log-likelihood alone might return an overfitting model. A scoring function that

tries to overcome the aformentioned problem, is the Bayesian information criteria

(BIC) score: BIC = ln(n)k− 2ln(L̂) (Schwarz, 1978). The BIC score, is based

on the log-likelihood of the data given the parameters, but takes into considera-

tion a regularization term which penalizes complex models. This second factor

keeps the optimization algorithms in check, and helps produce models with better

generalization. As for the fourth case (structure learning with missing data), an in-

teresting approach is suggested in (Friedman, 1998) to conduct local search steps

inside of the M step of the EM algorithm. This method is known as structural EM,

and presumably converges to a local maximum of the BIC score. In our work we

made use of the Bayesian information criterion (BIC) score for different model

selection tasks, such as deciding whether it is beneficial to add a latent variable to

the model, and deciding on its optimal size, all while penalizing the extra added

compelxity.

25

2.3 Conditional Gaussian Bayesian Networks

While the BN model accommodates both discrete and continuous variables, BNs

are more commonly used with discrete variables. Inference and learning algo-

rithms have been optimized with discrete variables in mind, and some popular

software packages for BNs don’t support continuous variables. Because of this,

a popular method that researchers employ when analyzing a mixture of continu-

ous and discrete data is to discretize the continuous data, which results in some

loss of information. The Conditional Gaussian Bayesian Network (CGBN) is

a type of BN in which continuous and discrete variables are mixed, under the

restriction that continuous nodes have Gaussian distributions linearly dependent

on their continuous parents with parameters conditioned on the values of their

discrete parents. In this kind of BN, edges from continuous nodes to discrete

nodes are disallowed, thus a discrete node cannot be modeled as statistically de-

pendent upon continuous nodes (Lauritzen, 1992; Heckerman and Geiger, 1995;

McGeachie M. J., 2014). The CGBN structure is a graph, in which the set of vari-

ables V is partitioned to D∪C where D is the set of discrete variables and C the set

of continuous variables. In the CGBN model, only the following directed edges

and their respective connection models are allowed: continuous→ continuous for

linear multivariate Gaussian, discrete→ discrete for correlated discrete variables,

and discrete→ continuous for a mixture of Gaussians. Following these rules, the

joint distribution of the continuous variables given the discrete is assumed to be

multivariate Gaussian: P(Y |I = i) = N (µi,Σi), where Y denotes the continuous

variables, I = i is a specific combination of the discrete variables, µi and Σi the

26

means vector and covariance matrix given the i− th combination. The CGBN as-

sumptions and restrictions enable the use of efficient inference algorithms that are

based on exact local computation schemes designed specifically for linear con-

ditional Gaussian models (on which the CGBN model is based)(Lauritzen and

Jensen, 2001). The CGBN model remains viable in many fields despite its re-

strictions. For example, in genomics, researchers generally model continuous

gene expression values as being dependent upon discrete genetic polymorphisms

(McGeachie M. J., 2014), and in classification tasks, the popular Gaussian Naive

Bayes classifier can be thought of as a simple CGBN. In our work we used the CG-

BayesNets package (McGeachie M. J., 2014) for learning and inference on CGBN

models. For inference tasks, the CGBayesNets package uses different algorithms

on the discrete and continuous portions of the network - the Cowell algorithm

for inference in conditional Gaussian network nodes (Cowell et al., 2006), and a

simple variable elimination algorithm for inference between discrete nodes in the

network (Koller and Friedman, 2009). For structure learning, we used the hill-

climbing algorithm implemented in CGBayesNets, which is a greedy, exhaustive,

search algorithm that starts with an empty network and adds the best edge in each

step, based on the improvement it introduces to the likelihood of the training data.

The algorithm is exhaustive in that it considers all possible legal edges, between

any two nodes. It may run with or without backtracking, which if enabled will also

consider the removal of any existing edge, if that removal results in the greatest

increase in likelihood. This algorithm is slower than the other options available in

CGBayesNets, but sometimes provides better results.

27

3 Previous Work

The impact of latent variables is well studied in many domains. Of a particular

interest is the impact of including latent variables in studies aimed at estimating

the effects of social contagion. A well-known and somewhat controversial study

by (Christakis and Fowler, 2007) claimed that obesity is contagious. Critics of that

article pointed out that unaccounted latent homophily may provide an alternative

explanation - obese people have more obese friends. This debate initiated an

extensive study aimed at distinguishing between social contagion and homophily

effects. A significant progress was made by Aral et al. (Aral et al., 2009), who

were able to bound the effect of homophily on the estimation of social contagion.

They provided an upper bound for social contagion effects, and showed that it

drops dramatically when adjusting for about 50 covariates (confounders), but it

doesn’t diminish. This enables the inclusion of latent homophily as an additional

source for the observed effects. Finally, Shalizi and Thomas (Shalizi and Thomas,

2011) used graphical models arguments to claim that social contagion and latent

homophily can be indistinguishable, and it is difficult to differentiate the effect

sizes, respectively.

Latent structure discovery and analysis is the subject of intensive research ef-

forts in statistics and machine learning realms for many years. Factor analysis is

one of the oldest structural models, originally conceived by Spearman in 1904.

The fundamental assumption in Factor analysis is that dependency between ob-

served variables can be explained solely by one or more latent variables. This

28

is known as the local independence assumption. Thus, the observed variables

are conditionally independent given the latent factors. Figure 8 depicts a (latent)

factor analysis model. Notice that there are no direct connections between the

observed variables.

Figure 8: A factor analysis graphical model. Figure adapted from (Zhang, 2004)

Focusing attention on the special case where only two discrete variables exist,

Gilula (Gilula, 1979) suggests a sufficient and necessary condition based on the

Singular Value Decomposition (SVD) of the matrix of deviations from statistical

independence, for the existence of a binary discrete latent variable affecting both

of the observed variables. While this method deals with the discovery of latent

variables, it has several limitations: Gilula’s requires that both the variables be of

size 3 or more (usually discrete variables in Bayesian networks are binary), it only

detects latent variables of size 2, and it does not work with more than 2 discrete

variables that interact with each other.

29

Hierarchical Latent Class models (Zhang, 2004), suggest some form of re-

laxation to the the local independence assumption, where connections between

observed variables can be explained given a hierarchy of latent variables, c.f. Fig-

ure 9

Figure 9: Modelling a direct connection with an added level of latent variable.
Figure adapted from (Zhang, 2004)

Our method expands beyond the independence assumption, by preserving the

direct connection between observed variables given the latent variable.

Furthermore, Factor Analysis and more broadly (Hierarchical) Latent class

models require that the number of latent factors and the number of categories that

they represent (the cardinality) be specified in advance. To this end, it is very

common to iterate over various options and use measures (such as BIC score) to

balance between accuracy and model complexity (i.e. number latent factors and

the cardinality). Our method discovers the existence of the latent variables and

their cardinality, rather than specifying them in advance.

Most related to our study is the line of work concerning Bayesian networks

30

structure learning with mixed observed and latent variables, and specifically El-

idan et al. work on latent variable discovery (Elidan et al., 2001; Elidan and

Friedman, 2005; Elidan et al., 2007).

Figure 10: Latent variables reduce complexity. Figure adapted from (Elidan et al.,
2001)

In (Elidan et al., 2001), Elidan et al. were motivated to discover latent variables

that decrease the complexity of the models, which in turn accelerates learning and

improves the fit to the data. Consider the network in Figure 10. The model with

latent variable (10(a) on the left) uses only 17 parameters (assuming all of the

nodes are discrete binary) while the one with only observed variables (10(b) on

the right) uses 59 parameters. Elidan et al. developed an approach based on the

graph structure of the models, to identify exactly such dependency patterns as in

figure 10(b), and explain (simplify) them using a latent variable. Once such a

”structural signature” of a latent variable has been detected, a latent variable can-

didate is inserted to the network. The cardinality of the latent variable candidate

is learned (Elidan and Friedman, 2001), and the latent variable candidate stays in

31

the network if the BIC score of the network has improved. Their main structure

learning vehicle is the Structural EM algorithm (Friedman, 1998) and its exten-

sions. In (Elidan and Friedman, 2005), Elidan et al. introduce the Information-

Bottleneck EM (IB-EM) algorithm which utilizes a tradeoff between minimizing

the information in the hidden variables about the identity of the training instances

and maximizing the information in the hidden variables about the observed data.

They combined their method with SEM to deal with model selection with hidden

variables allowing SEM to use a step of hidden variable addition and a step of

alteration of the cardinality of hidden variables based on information cues in the

data. In (Elidan et al., 2007), Elidan et al. describe the ”Ideal Parent” method

for speeding up the structure learning of continuous variable networks, while also

suggesting possible hidden variables and incorporating the most promising ones.

In this method, for every variable, Elidan et al. construct an ideal parent profile

of a new hypothetical parent that would lead to the best possible prediction of the

variable. A candidate parent of a variable will only be considered if it is similar to

the ideal parent. If no candidate is similar to the ideal parent, that might be a cue

to add a latent variable (and construct it to be similar to the ideal parent).

Our method cast the discovery of latent variables in mixed networks in a sta-

tistical hypothesis testing setting, seeking for sufficient evidence for the inclusion

of latent variables, rather than aiming to reduce model complexity. The structure

learning scheme that we suggest becomes much simpler than Structural EM. For

parameter estimation (learning) though, we keep using EM.

32

4 Methodology

In this section we will describe our latent variable detection method, discuss its as-

sumptions and limitations, and present a practical use for our method by present-

ing a structure learning algorithm for Conditional Gaussian Bayesian Networks

(CGBNs) which is capable of discovering and modelling latent variables.

4.1 Discovering Latent Variables

Our latent variable detection method is based on the assumption that given ob-

servations on all known discrete causes of a continuous variable, its (conditional)

distribution is uni-modal. We call this assumption the conditional uni-modality

assumption. Under this assumption, we use Hartigan’s dip test (see 2.1.1) to de-

cide if multi-modalities exist in subsets of the data where we expect to see uni-

modality due to our assumption. If we find unexplained multi-modalities, we

report the existence of a potential latent variable. First, we assume that the in-

put data contains a mixture of continuous and discrete variables. Then, given a

BN that models the data, we make the assumption that fixing observations on all

the discrete ancestors of a continuous variable in the network, the subset of its

samples which matches the ancestors’ state is uni-modal. In other words, condi-

tioning on its discrete ancestors’, the continuous variable has a uni-modal distri-

bution. This should be true for all possible conditioning states. Thus, detecting

a conditioning state which leads to a multi-modal distribution of the continuous

variable, is an evidence to the existence of an accountable latent variable. For the

33

detection of multi-modal distributions in the data we chose Hartigan’s dip test. An

interesting analysis was made by Freeman et al. (Freeman and Dale, 2013), who

compared dip test’s bi-modality detection capabilities to two other bi-modality

tests (bi-modality Coefficient and the difference in Akaike’s information criterion

between one-component and two-component distribution models) based on their

sensitivity to different parameters of the generating distribution, such as distance

between the modes, skew, kurtosis, etc. They found that the Dip test outperforms

the other tests, having the highest sensitivity to bi-modality and lowest false pos-

itive rate. Before utilizing dip test to our needs, we first verified that the Dip test

performs well in the multi-modal case (as opposed to bi-modal). We extended

the aforementioned sensitivity tests and verified the validity of the results above

in the detection of multi-modal distributions (See section 7.1). Next, we used the

Dip test to detect latent variables in a BN containing a mixture of continuous and

discrete variables, where continuous variables cannot be ancestors of a discrete

variable. We then perform the following test: for every continuous variable in the

BN, we condition over all the possible combinations of its discrete ancestors and

use the Dip test on the resulting subsets of samples. If the p-value is lower than

0.05 for any of the combinations (one is enough), we declare it as multi-modal

and due to the conditional uni-modality assumption, conclude that there is an ad-

ditional discrete latent variable affecting the continuous variable in question. If all

the p-values are higher than 0.05, then we conclude that the continuous variable’s

different modes are fully explained by its discrete ancestors. Note that our detec-

tion sensitivity is increased since it requires only one unexplained multi-modality

34

to add a latent variable. We demonstrate the ability of this procedure to detect

hidden variables in two controlled settings, one using synthetic data and the other

using real-life data. In both cases, we ”hide” one of the discrete variables, i.e. re-

move its measurements from the data, and check that our process is able to detect

its presence.

In the synthetic setting, we demonstrate our detection capabilities on a very

small network. The data generation process is outlined in figure 11. This data,

and the DGP structure, were used to construct and train a fully observed BN.

The marginal distribution of B is multi-modal by construction (c.f. Figure 12),

Figure 11: Data generating process for the synthetic setting. A,H are discrete, and
B is Gaussian with conditional means (equal variance σ = 1)

however all conditioned distributions of the continuous variable B are uni-modal

(since all the explanatory variables are observed). Now let’s remove the (discrete)

H variable from the BN. The distribution of B cannot be fully explained by the

remaining A variable. For example, conditioning B on A = 2 (Figure 12, top

right) results in a bi-modal distribution, which the dip test detected with p-value

≤ 0.00001. This bi-modality is attributed to the H variable that was hidden.

35

Figure 12: On the left: The distribution of B is clearly multi-modal (p-value
≤ 0.00001). Bottom Right: Given A and H we get one of the modes (p-value
1). Top Right: Hiding the H variable and conditioning only on A results in a
bi-modal distribution (p-value ≤ 0.00001)

Next, we turn to detect latent variables in a controlled manner in real-life data,

where data generation (and hence BN structure) is not fully understood, and the

parametric form of the distribution of the variables is not known and can only be

approximated. To this end, we used a dataset of train ticket prices of the Span-

ish high-speed train company “renfe” collected by a system which scrapes tick-

ets pricing periodically. The dataset was collected by Pedro Muñoz and David

36

Cañones and is publicly available from Kaggle 1. The full dataset contains infor-

mation about 1 million train tickets prices, and has information such as the origin

and destination, the dates of the trip, train type, ticket type (2nd class/1st class

etc.) and ticket fare type (elder/student/regular etc.). We selected only the train

tickets from Madrid to Sevilia and only 2 fare types (flexible and promo+). Thus,

we were left with 3 categorical variables which affect the ticket price and fully

explain it’s modes – train type, ticket type, and ticket fare type. The price variable

is ordinal in nature, so we used kernel density estimation to smooth the data in

order to achieve stable mode detection results. We then fed our algorithm with all

the data, and a BN with all 3 discrete variables as parents of the price variable. As

expected, the algorithm reported that there are no conditioned multi-modalities in

the data (Figure 13, left plate), namely no hidden variables were detected. Next,

we hid the ticket fare type variable and fed the remaining observed data to the

algorithm. The algorithm detected the bi-modality caused by different values of

ticket fare type hidden in the data and reported the existence of a latent factor with

high confidence (p-value ≤ 0.00001) (Figure 13, center plate).

Finally, we fed our algorithm with the full data of ticket prices from Madrid to

Sevilia, which includes all fair types (rather than only two fair types), and used all

the observed variables. This is not a controlled setting anymore, and any detected

hidden variable is new. Indeed our algorithm detected an unexplained multi-

modality, which occurs whenever the fare type variable takes the value Promo.

A suggested explanation might be that the Promo ticket fare type is a promotion

1 https://www.kaggle.com/thegurusteam/spanish-high-speed-rail-system-ticket-pricing

37

ticket whose price is subject to change due to supply and demand changes (Fig-

ure 13, right plate).

Figure 13: Left: Using only Flexible and Promo+ fare types, every combination
was reported as uni-modal (p-value 1) Center: Hiding the fare type variable cre-
ates multi-modality (p-value ≤ 0.00001) Right: A real latent effect is reported
when considering the full data (p-value ≤ 0.00001)

4.2 Structure Learning in the Presence of Latent Variables

Our starting point is to model the observed discrete/continuous data with a Condi-

tional Gaussian Bayesian Networks (CGBN). We will now show that the CGBN

model adheres to our conditional uni-modality assumption.

Lemma 4.1. Let G=(V,E) be a CGBN, cn ∈V a continuous variable, and DA(cn)

the set of discrete ancestors of cn. It holds that P(cn|DA(cn)) is Gaussian.

Proof. Let C⊂V be the set of continuous variables, and D⊂V the set of discrete

variables.

From the properties of CGBN, P(C|D) is Multivariate Gaussian (Lauritzen, 1992),

hence P(cn|D) is Gaussian.

From the CGBN structure properties and following d-separation rules, it holds

38

that cn is d-separated from D/DA(cn), given DA(cn). Thus, cn and D/DA(cn) are

conditionally independent given DA(cn).

Therefore P(cn|DA(cn)) = P(cn|D) is Gaussian

Furthermore, we make the observation that not all of the discrete ancestors

of a continuous node take part in setting its modality. This is important since as

discussed in the previous section, we use all the different combinations of the dis-

crete ancestors of a continuous node in order to detect if its affected by any latent

variables. Reducing the number of ancestors that should be accounted for when

testing for multi-modality reduces the run time of our algorithm dramatically.

Definition 4.1. Effective Discrete Ancestors Let G = (V,E) be a DAG for a

CGBN, thus G is a graph with the set of discrete nodes D, and the set of con-

tinuous nodes C, and there are no edges from C to D. We say that d ∈ D is an

Effective Discrete Ancestor of c ∈C if there exists a path π from d to c such that

there are no discrete nodes in π other than d.

We will call the set of all the effective discrete ancestors of a continuous node

c the Effective Discrete Ancestors Set (EDAS)

Consider figure 14 for clarification. From left to right: In the first case D1 is

in the EDAS because of the path D1 → C2 → C1. In the second case D1 is not

in the EDAS since its effect is ”blocked” by D2 and D3. In the third case, D1 is

not in the EDAS because of D2. In the fourth case, D1 is in the EDAS since the

intermediate node is continuous.

39

Figure 14: EDAS Examples. Shaded nodes are in the EDAS of continuous vari-
able C1.

Lemma 4.2. Let c be a continuous node in a CGBN, DA(c) be the set of all the

discrete ancestors of c and EDAS(c) be the effective discrete ancestors set of c.

Then P(c|EDAS(c)) = P(c|DA(c)).

Proof. By construction EDAS(c)⊆DA(c). Consider the set of nodes EDAS(c) =

DA(c)/EDAS(c). For any node d ∈ EDAS(c), in any path π from d to c, there

is an intermediate discrete variable d∗ ∈ EDAS(c) between d and c. From d-

separation rules, for the chain structure that π represents, conditioning on d∗

blocks the path π . Thus, conditioning on EDAS(c), we get that EDAS(c) is d-

separated from c, making them conditionally independent given EDAS(c), and

we get P(c|EDAS(c)) = P(c|EDAS(c),EDAS(c)) = P(c|DA(c))

The construction of the EDAS of a continuous node can be done efficiently

using a DFS algorithm from the node and up the ancestry paths, collecting the

first occurrences of discrete nodes in each of the run’s branches. It is important to

note that conditioning on the immediate discrete parents of the continuous node

in question is not enough to detect unexplained multi-modalities. Claiming that a

40

latent variable should be added based on such a test might not be accurate since in-

direct discrete ancestors can propagate their multi-modal effect through a chain of

descendants. In such a case the multi-modality wouldn’t be unexplained, but per-

fectly reasonable when accounting for the non-direct discrete ancestors and that

is why we have to condition on the entire EDAS when testing for latent variables.

Consider the experiment portrayed in figure 15 which demonstrates this effect: We

created a network where a discrete ancestor created bi-modality in its immediate

child node and sampled randomly from the network. We presented both a scatter

of the joint distribution of X and Y, and a histogram of the marginal distribution of

the indirect descendant Y which clearly show that the bi-modality that was gen-

erated in X by D was passed to Y. The phenomena can also be witnessed in the

factorization implied by the CGBN: Marginalizing to inspect the distribution of Y

gives us: P(Y) =
∫

X ∑D P(D)P(X |D)P(Y |X) = ∑D P(D)
∫

X P(X |D)P(Y |X) which

resembles the mixture of Gaussians distribution and hints at a modal nature.

Our structure learning algorithm method is as follows: given a data set of

mixed variables (discrete and continuous) we start by applying the greedy hill-

climbing structure learning algorithm for CGBNs implemented in the CGBayesNets

package. Next, we employ the dip test based detection method to identify poten-

tial latent factors. In order to incorporate a detected hidden variable in the BN

structure, a few decisions should be made: how to connect it to the relevant vari-

ables, estimate its cardinality and learn its parameters. We base our decisions

regarding the cardinality and connection type on the Bayesian Information Crite-

rion (BIC) (Schwarz, 1978), as follows: Start with the simplest model - a binary

41

Figure 15: An ancestor can create modes in its non direct descendants. Left: The
model Middle: A scatter of random sample of the nodes X and Y from the model
on the left Right: The distribution of a random sample of node Y from the model
on the left. Notice the multi-modality caused by the non-direct discrete ancestor
D.

latent covariate connected only to the continuous variable in question; Apply the

EM algorithm to estimate the model parameters and record the updated BIC score.

We use a standard EM procedure broadly used in estimation of Mixture of Gaus-

sians models. We have tried both random parameters initialization with multiple

repetitions, and parameter initialization based on K-means which provided better

results. We use a standard stopping criteria for EM based on the convergence of

the log-likelihood of the training data. We continue the process by increasing the

cardinality of the potential latent variable, thus raising the model’s complexity as

long as we see improvement in the BIC score. We then select the connection type

and cardinality that provided the best BIC score, and introduce the new latent vari-

able to the model based on them. We keep iterating on all the continuous variables

in this fashion, detecting and introducing new latent variables to the network. No-

tice that the decision whether or not to add the latent variables is based solely on

42

dip test’s detection of unexplained multi-modalities, but once that has been de-

cided, the cardinality and connections are determined using BIC score. Because

of that, it is possible that we will detect and add a latent variable to the model,

even if its addition to the model decreases the overall BIC score of the network.

BIC based decisions regarding the addition of latent variables are dependant on

the paramaters learning stage, and more specifically, on the convergence of the

EM algorithm, since the increase in likelihood attributed to the addition of the

latent variable might not be enough to compensate for the added structural com-

plexity in BIC’s penalty term, for example in the cases where EM converges to

non-ideal prarameters due to a bad initialization. Consider the simple example in

figure 16: We generated a random sample from the network depicted on the right

(a mixture of Gaussians with means at 0 and 2.5, and standard deviation of 1), hid

the discrete variable from the data, and computed a dip test p-value of 0.048 which

suggests multi-modality. Using our method, we would choose to add a latent vari-

able since there’s an unexplained multi-modality in the data. Checking the BIC

scores of the different possible networks show the following: the BIC score of

the original network with the sampled data is -7478, the BIC score of the single

node network with parameters learned from the sampled data is -7588, and the

BIC score of the network with a latent variable learned from the sampled data is

-7601 (using a non-optimal random initialization of EM). Had we used BIC score

to make a decision regarding the existence of the latent variable in this case, we

would have chosen the single node network and declared that no latent variables

exist. Our dip test based method is more stable, and even though we use EM and

43

BIC to estimate the parameters in our method, which may not converge correctly

in some of the cases, we gain an evidence that the latent variable exists (under

the conditional uni-modality assumption). Another interesting point to note lies

Figure 16: Left: A distribution of a random sample of the continuous variable X
from the network on the right Middle: One possible model for the data, a uni-
modal Gaussian Right: The original network.

in the local nature of the decisions that our algorithm takes. On the one hand, the

local decisions are very advantageous: they simplify the problem and make the

algorithm more efficient computationally, but on the other hand, they can result

in wasteful addition of variables to the model. Consider figure 17 - running our

algorithm on data generated from the network on the left (with the discrete parent

hidden), results in the network on the right. The algorithm discovers an anomaly

in each of the continuous variables, and adds the new latent variables D1 and

D2, while a simpler, more accurate model which represents the knowledge better

could be achieved by combining the latent variables to a single common parent as

in the original network. This can be achieved by applying a post processing step

44

that checks the resulting network on a global scope. One method we suggest is to

generate most probable explanations for the newly added latent variables, and to

compute mutual information for all pairs of latent variables to try and find latent

variables that could be combined. We leave this problem for future research.

Figure 17: Left: The original model, a CGBN with a common discrete parent of
two continuous variables Right: The result of our structure learning with latent
variables algorithm on data generated from the model on the left.

The following is a detailed pseudo-code describing the flow of our algorithm.

45

Algorithm 1 LearnCGBNStructureWithLatentVariables(data)
1: InitialCGBN← LearnCGBNStructureAndParams(data)
2: SuggestedNetwork← InitialCGBN
3: C← GetContinuousVariables(InitialCGBN)
4: for each c in C do
5: Multimodal← False
6: EDAS← FindE f f ectiveDiscreteAncestors(c, InitialCGBN)
7: Combinations← ListAllValueCombinations(EDAS)
8: for each combination in Combinations do
9: CoherentSamples← FindCoherentSamples(D,c,combination)

10: p← DipTest(CoherentSamples)
11: if p < 0.05 then
12: Multimodal← True
13: Break
14: end if
15: end for
16: if Multimodal then
17: CurrentBIC←CalculateBICScore(SuggestedNetwork)
18: ConnectionTypesScores← InitializeDictionary()
19: ConnectionTypesSuggestedNetworks← InitializeDictionary()
20: for ConnectionType in {Covariate,Con f ounder,SideE f f ect} do
21: U pdatedNetwork← SuggestedNetwork
22: LatentSize← 2
23: while LatentSize < MaxLatentSize do
24: U pdateNetAndLearnParams(U pdatedNetwork,D,c,LatentSize,ConnectionType)
25: if BICScoreImproved(U pdatedNetwork,D) then
26: Score← BICScoreBN(U pdatedNetwork,D)
27: ConnectionTypeScore[ConnectionType]← Score
28: ConnectionTypeSuggestedNetwork←U pdatedNetwor
29: LatentSize++
30: Continue
31: else Break
32: end if
33: end while
34: end for
35: BestScoreIndex← Argmin(ConnectionTypesScores)
36: SuggestedNetwork←ConnectionTypesSuggestedNetworks[BestScoreIndex]
37: end if
38: end for
39: Return SuggestedNetwork 46

5 Empirical Results

We performed a set of experiments to evaluate the success of our procedure in

detecting and modelling hidden variables. The following experiments were con-

ducted using real life data that contains a mixture of continuous and discrete ob-

servations. The experiments were aimed to explore the usefulness of our method

for detecting and including latent variables to better explain the data, gain insights

and discover knowledge, as well as improving prediction capabilities. In all of the

following experiments, we compare the performance of our method to the perfor-

mance of the fully observed network, and to that of a ”baseline” latent network

that is constructed by adding a single discrete latent parent to all of the observed

network’s nodes. The different networks are compared by: BIC score on the

training data, likelihood of the test data, and when applicable - prediction related

metrics. The ”baseline” latent network is constructed in the following manner:

A discrete latent variable is added to the fully observed network and connected

as a parent of every other node in the network. Notice that no cycles are being

created this way. We then use the training data to choose the best cardinality for

the new variable. We try different cardinalities between 2 and 10, for each cardi-

nality we learn the best parameters for the network using several runs of EM with

random initialization, and measure the BIC score of the resulting network on the

training data. The latent network with the best BIC score is chosen to be used in

the respective experiment as a ”baseline” latent network to compare to the latent

network obtained using our method.

47

5.1 Health Insurance

The Health Insurance dataset (available from Kaggle 2) includes 1300 records of

health insurance charges, along with several discrete and ordinal covariates such

as age, gender, BMI etc. We started by splitting the data to a training dataset

and test dataset using a 80-20 split. Then, given the training data, our algorithm

first learns the structure of an initial fully observed CGBN model that fits the data

(c.f. Figure 19 the white nodes represent the observed network). Next, it applies

dip test on the variables age, bmi and charges to detect potential latent variables

affecting them given their discrete ancestors. For the detected hidden variables,

the algorithm sets the optimal cardinalities, learns their parameters and decides

how the detected hidden variables should be added to the model.

Figure 18: Left: Unexplained bi-modality for the age of people who don’t have
children: dip test p-value ≤ 0.00001. Right: Unexplained multi-modality in the
distribution of the charges variable given its discrete ancestors: dip test p-value
≤ 0.00001

2https://www.kaggle.com/bmarco/health-insurance-data

48

Our algorithm detected a latent covariate of size 2 affecting the age variable,

and added it to the model. The observed bi-modality happens when fixing chil-

dren=0 (Figure 18 on the left), thus indicating that there are two sub-populations

of people who don’t have children, where one group is significantly younger than

the other. Thus, the hidden variable is indicative of the two sub-populations - a

piece of information we could not deduce directly from the given features (the

observed variables).

Figure 19: The Insurance Bayesian Network with two added hidden variables

In addition to that, our algorithm detected several unexplained multi-modalities

that occur in the distribution of the charges variable, given its discrete ancestors

(Figure 18 on the right). Our algorithm chose to connect this node to the network

as a confounder of size 4 (Figure 19). Adding the detected hidden variables to

the model improved the BIC score on the training data, and the likelihood of the

test data both compared to the fully observed network and to the baseline latent

network (Figure 20). The results are presented in table 1. These results show

49

Table 1: The performance of our method compared to the fully observed network
and the baseline latent network in the insurance experiment

Network Training BIC Score Test Likelihood
Fully Observed -7.7792e+03 -2.0703e+03
Baseline Latent -7.1013e+03 -1.8969e+03
Our method -7.0353e+03 -1.8503e+03

that the addition of latent variables enhance the fit to the data significantly even

when taking into consideration the added complexity, as shown by the improved

BIC score which penalizes complexity, and the increased likelihood of the held-

out test data on both the latent networks. The latent network obtained using our

method includes 2 new latent variables that are connected locally only to the nodes

that require the higher complexity. Our latent network outperforms the baseline

latent network which uses a single global latent variable. We attribute this to the

fact that we use significantly less edges than the baseline method, resulting in a

simpler and more focused model. In this case, this fact allowed our model to use

a confounder of size 4, while the baseline latent model selected a latent parent

of size 3 since increasing its cardinality any further would increase the complex-

ity so much so that it’ll outweigh the increase in likelihood (since it affects the

parameters of all the other nodes).

50

Figure 20: The baseline latent Bayesian network with a single discrete latent par-
ent connected to every node

5.2 Activity Recognition in-the-Wild

The ExtraSensory dataset was collected and made publicly available by Vaizman

et al. for research purposes related to behavioral context recognition in-the-wild

from mobile sensors (Vaizman et al., 2017). It holds data from 60 users, each

identified with a universally unique identifier. It contains thousands of examples

for every user where each example includes multiple sensors measurements from

the user’s smartphone and smartwatch. Most examples also have self-reported

labels which describe the user’s activity at the time. The data comes from many

different sensors such as: accelerometer, gyroscope, magnetometer, location ser-

vices, audio, compass, phone state indicators and more. The Data was collected

using the ExtraSensory mobile application which periodically records the sensory

data and asks the user for an activity label.

We focused attention on the audio sensors data which is composed of 26

51

features that represent the means and standard deviations of 13 Mel-frequency

cepstral coefficients (MFCC) that were recorded over a 30 seconds window. We

wanted to test the effect of our structure learning with latent variables algorithm

on the predictive power of a classifier which uses the sensor data to predict the

different labels. We selected to model the problem with a Gaussian Naı̈ve Bayes

(NB) classifier due to its simplicity, d-separability (Pearl, 1988) and the fact that it

contains edges only from discrete variables to continuous variables, which fits our

algorithm’s prerequisite. We selected labels that were potentially predictable with

the NB model: Trained an NB classifier on pairs of activity label and an MFCC

feature and tested the balanced accuracy (BA = 1
2(Sensitivity + Speci f icity) =

1
2(

T P
P + T N

N)) performance on held-out data. Two activity labels that had a suffi-

cient number of samples and presented a high BA score were selected: sleeping

and lying down.

To evaluate our algorithm’s performance, we used the 5-folds cross validation

setting defined at (Vaizman et al., 2017), which partitions the data according to

user IDs. This ensures that there is no leakage of information from the train set to

the test set. For each fold, and each of the two labels, we trained an NB model on

the training data with a set of selected audio features. We used the NB model as the

initial fully observed structure model for our algorithm, which seeks to enhance

it by detecting and adding hidden variables. We used the dip test to discover

potential hidden variables, added them to the model using two edges – from the

label node to the new hidden variable, and from the hidden variable node to the

corresponding MFCC feature (c.f. Figure 21). We chose this type of connection

52

to account for the fact that the discovered multi-modalities occurred in only one

of the states of the label.

Figure 21: Left: An initial Gaussian NB model for the sleeping label Center:
The baseline latent model Right: The NB model enhanced with latent variables

To evaluate the predictive performance of our model, we followed (Vaizman

et al., 2017) and averaged the BA scores of the enhanced models over the defined 5

folds and compared them to the BA scores of the corresponding initial NB models,

and baseline latent networks. To evaluate the goodness of fit of our model, we

took note of the BIC score on the training data, and the likelihood of the held-out

test data in each of the folds. Table 2 compares the performance of the different

models averaged over the 5 folds and the 2 labels.

Table 2: The performance of our method compared to the fully observed network
and the baseline latent network in the activity experiment. Results averaged over
the 5 folds and the 2 labels
Network Training BIC Score Test Likelihood BA
Fully Observed -3.67307e+05 -8.95478e+04 0.720
Baseline Latent -2.02964e+05 -4.86670e+04 0.753
Our method -2.26232e+05 -5.99941e+04 0.755

In this experiment, both the latent models outperform their fully observed

counterparts, but while our method slightly outperforms the baseline latent model

in balanced accuracy, the baseline model presents better goodness of fit to the

53

data. We attribute this to the fact that the fully observed networks were relatively

small, and contained a majority of variables with unexplained multi-modalities,

causing our method to add a large amount of hidden variables that could have

been merged.

54

5.3 COVID19 Test Results Prediction

The COVID19 Clinical Data Repository (Health and Health, 2020) by Carbon

Health and Braid Health is an effort to compile a repository of the clinical charac-

teristics of patients who have taken a COVID-19 test. While relatively small with

1610 rows (at the time of writing), the dataset is of very high quality, clean, in-

formative, and compliant with HIPAA Privacy Rule’s De-Identification Standard.

Each row in the dataset contains information about a patient’s COVID19 test re-

sult, including further detail regarding the testing procedure such as swab type

and the kind of test taken, his reported symptoms such as cough, fever and sob,

some measurements taken from him such as temperature, pulse and lung oxygen

saturation levels, his comorbidities, and several epidemiological factors such as

whether he has been in contact with infected people, his age etc. This dataset can

be used to train classifiers that will predict whether a person is infected or not

based on a questionnaire and tests that are cheaper and more available than the

current COVID19 tests. In this experiment, we present how the hidden variables

detected using our method can be used to improve the performance of widely used

classifiers. First, we stratified split the COVID19 dataset to train (80%) and test

(20%) sets with respect to the label (the test result). We used the mean of each

column to impute missing values in the train and test sets, and normalized the

continuous columns. Once the preparations were over, we ran a structure learn-

ing algorithm on the train set to get an initial CGBN to feed to our algorithm

(c.f. Figure 23), the yellow nodes are the fully observed MB network). We used

a structure learning algorithm originally used for phenotype prediction problems

55

Figure 22: An unexplained multi-modality exists in the distribution of the temper-
ature variable given its discrete ancestors

(Chang and McGeachie, 2011) which is better suited for classification problems.

The algorithm produces a Markov Blanket (MB) of the target variable which is

comprised of its parents, children, and other parents of those children. Based on

the conditional independence assumptions of the BN, only these nodes are re-

quired to predict the value of the target variable. Thus, for prediction tasks, the

full network is not required, and we can get by using a much smaller network.

We chose to use this type of structure learning in order to focus our algorithm’s

attention on variables which have predictive power over the target label - a sort

56

of dimensionality reduction that will help the optimization steps in our algorithm

provide more accurate results. We fed the MB network to our algorithm, which

detected a latent variable that had an effect on the temperature variable with high

significance (dip test p-value ≤ 0.0001) (c.f. Figure 22). and incorporated it into

the network as a parent of the temperature variable (c.f. Figure 23).

Figure 23: The latent-enhanced network our algorithm learned for the COVID
dataset. Yellow nodes are observed.

The BIC score of the network with respect to training data, and the likelihood

of the held-out test data improved thanks to the addition of the latent variable, and

57

despite of the complexity added due to its inclusion. On top of that, our network

fit to the data better than the baseline latent model. See a summary of the results

in table 3

Table 3: The performance of our method compared to the fully observed network
and the baseline latent network in the COVID19 experiment.

Network Training BIC Score Test Likelihood
Fully Observed -1.0356e+04 -2.5208e+03
Baseline Latent -1.0234e+04 -2.5173e+03
Our method -1.0164e+04 -2.5005e+03

We then used the latent enhanced network to generate the posterior probabil-

ity of the hidden variable given the observed variables of each example in both

training and test sets. The augmented train and test sets were used to train and test

several classifiers, and their performance (accuracy and AUC of the ROC curve)

were matched against the same models trained and tested on the original data sets

(i.e. without the hidden variable’s posterior probabilities) and on the original data

sets enhanced with the posterior probability of the latent from the baseline net-

work. The results are depicted in table 4. In all of the cases, the AUC of the

models trained on the enhanced dataset (using our method) was better than their

counterparts. Some models improved more significantly than others. We attribute

this to capacity factors, and the ability of the models to discover the latent infor-

mation on their own. The improvement of the AUC is more significant due to the

highly unbalanced nature of the data.

58

Table 4: The performance of several models is improved with the addition of the
latent information

Base Dataset Dataset + Hidden Dataset + Hidden
Our Method Baseline

Model Accuracy AUC Accuracy AUC Accuracy AUC
kNN 0.928571 0.547103 0.931677 0.561507 0.934783 0.554801
Linear SVM 0.683230 0.696854 0.742236 0.756291 0.686335 0.676325
RBF SVM 0.773292 0.680795 0.776398 0.745530 0.782609 0.685265
Gaussian Process 0.937888 0.671523 0.937888 0.695861 0.937888 0.649338
Random Forest 0.934783 0.734106 0.940994 0.772185 0.940994 0.703311
Neural Net 0.934783 0.668543 0.937888 0.772351 0.934783 0.709768
AdaBoost 0.928571 0.605132 0.922360 0.610017 0.931677 0.552566

6 Summary

In this dissertation we present a novel method for discovering latent variables that

interact with observable variables that are directly related, where the observable

parent and the latent variables are both discrete, and the observed child is a con-

tinuous variable. To this end, we take a statistical hypothesis testing approach,

and base our method on Hartigans’ dip test, seeking for sufficient evidence for the

inclusion of latent variable, rather then a structure-based approach which aimed

at reducing model complexity (Elidan et al., 2001).

We demonstrated the utility of our method with a set of experiments, in both

controlled and real-life settings. In these experiments we demonstrated how the

inclusion of latent variables can better explain the data, reveal additional insights,

enhance understanding, as well as enhance the fit to the data and accuracy. We

compared our latent enhanced networks to baseline latent networks built from

the fully observed networks by adding a single latent discrete parent to all of the

59

nodes. Our method presented either better predictive power (higher BA in the

activity experiment and higher AUC in the COVID experiment) or better fit to the

data (in the insurance and COVID experiments) than the baseline network. We

think that if we find a way to effectively merge new latent variables with existing

ones, we will present better fit to the data in all of the experiments above, but that

will be left for future research.

The discovery of latent factors that are added to an already existing direct con-

nection, rather than replacing it (i.e. latent class models), is of particular interest

in many domains, as it has the potential capacity to provide an additional insight

and explanation to an observed phenomenon. Such is the case in latent homophily

vs. social contagion, and also in drug efficacy vs. side effects, placebo, and DDI.

The use of dip test as the main tool for detecting latent factors enables to relax

the assumption about the parametric form of the observed continuous child - All

we need to assume is that unconditionally it has a uni-modal distribution (unlike

many latent models that assume Gaussian distribution). Practically speaking, this

allows us to apply kernel density estimation, as a preprocess, to handle ordinal

variables as well.

However, we are currently not handling latent factors discovery in parent-child

relations between discrete categorical variables. This is a rather difficult problem,

which is commonly handled by employing conditional independence assumptions

(c.f. (Gilula, 1979; 1983) for necessary and sufficient conditions for such a decom-

position). Extending it to handle additional forms of observed and latent variables

interaction is left for future research.

60

7 Appendix

7.1 Dip Test Sensitivity to Multi-Modality

We expanded on the set of experiments performed by Freeman et al (Freeman and

Dale, 2013), to test the sensitivity of dip test to multi-modality (as opposed to

bi-modality). We reproduced the basic results by showing that without sufficient

distance between the generating Gaussian’s means (lower than 3-4 standard devi-

ations), dip test fails to identify the multi-modality (p-value > 0.05). This result

is consistent with the bi-modality sensitivity tests, and has been reproduced with

varying sample sizes (50,500,1000,2000) and different number of modes (3,4,6,8).

Figure 24: On the left: 4 Gaussians with means: 0,2,4,6, standard deviation is 1.

With sufficient distance between the generating gaussian’s means (higher than

3-4 standard deviations), dip test identifies the multi-modality with high signifi-

cance (p-value < 0.05). This result is consistent with the bi-modality sensitivity

61

tests, and has been reproduced with varying sample sizes (50,500,1000,2000) and

different number of modes (3,4,6,8).

Figure 25: On the left: 4 Gaussians with means: 0,4,8,12. On the right: 6 Gaus-
sians with means: 0,4,8,12,16,20. Standard deviation 1.

An interesting result in the multi-modal case is that introducing a larger gap

between two consecutive means in a series of equally spaced and close Gaussians

(in terms of standard deviations) creates a bi-modal effect which triggers dip test to

report multi-modality with smaller minimal distances than the bi-modal case. (in

the figure, small distance between means is 1 standard deviation, the larger gap is

2 standard deviations). This result has been reproduced with varying sample sizes

(50,500,1000,2000) and different number of modes (3,4,6,8,10).

62

Figure 26: On the left: 8 different Gaussians with means: 0, 1, 2, 3, 5, 6, 7, 8 and
standard deviation 1. Notice the larger gap between 3 and 5.

References

S. Aral, L. Muchnik, and A. Sundararajan. Distinguishing influence-based con-

tagion from homophily-driven diffusion in dynamic networks. Proceedings of

the National Academy of Sciences, 106(51):21544–21549, 2009.

H.-H. Chang and M. McGeachie. Phenotype prediction by integrative network

analysis of snp and gene expression microarrays. In 2011 Annual International

Conference of the IEEE Engineering in Medicine and Biology Society, pages

6849–6852. IEEE, 2011.

D. M. Chickering. Learning bayesian networks is np-complete. In Learning from

data, pages 121–130. Springer, 1996.

C. Chow and C. Liu. Approximating discrete probability distributions with depen-

dence trees. IEEE transactions on Information Theory, 14(3):462–467, 1968.

63

N. A. Christakis and J. H. Fowler. The spread of obesity in a large social network

over 32 years. New England journal of medicine, 357:370–379, 2007.

R. Cowell, S. Lauritzen, and J. Mortera. Maies: A tool for dna mixture analysis.

In Proceedings of the Twenty-Second Conference Conference on Uncertainty in

Artificial Intelligence (UAI-06), pages 90–97. AUAI Press, 2006.

G. Elidan and N. Friedman. Learning the dimensionality of hidden variables. In

Proceedings of the Seventeenth conference on Uncertainty in artificial intelli-

gence, pages 144–151, 2001.

G. Elidan and N. Friedman. Learning hidden variable networks: The information

bottleneck approach. Journal of Machine Learning Research, 6:81–127, 2005.

G. Elidan, N. Lotner, N. Friedman, and D. Koller. Discovering hidden variables:

A structure-based approach. In Advances in Neural Information Processing

Systems, pages 479–485, 2001.

G. Elidan, I. Nachman, and N. Friedman. ” ideal parent” structure learning for

continuous variable bayesian networks. Journal of Machine Learning Research,

8(8), 2007.

J. B. Freeman and R. Dale. Assessing bimodality to detect the presence of a dual

cognitive process. Behavior research methods, 45(1):83–97, 2013.

N. Friedman. The bayesian structural em algorithm. In Proceedings of the Four-

teenth conference on Uncertainty in artificial intelligence, 1998.

64

N. Friedman, D. Geiger, and M. Goldszmidt. Bayesian network classifiers. Ma-

chine learning, 29(2-3):131–163, 1997.

B. J. Fulton, E. A. Petigura, A. W. Howard, H. Isaacson, G. W. Marcy, P. A.

Cargile, L. Hebb, L. M. Weiss, J. A. Johnson, T. D. Morton, et al. The

california-kepler survey. iii. a gap in the radius distribution of small planets.

The Astronomical Journal, 154(3):109, 2017.

Z. Gilula. Singular value decomposition of probability matrices: Probabilistic

aspects of latent dichotomous variables. Biometrika, 66(2):339–344, 1979.

Z. Gilula. Latent conditional independence in two-way contingency tables: A di-

agnostic approach. British Journal of Mathematical and Statistical Psychology,

36:114–122, 1983.

J. A. Hartigan and P. M. Hartigan. The dip test of unimodality. The Annals of

Statistics, 13:70–84, 1985.

C. Health and B. Health. Coronavirus disease 2019 (covid-19) clinical data repos-

itory. Accessed from https://covidclinicaldata.org/., 2020.

D. Heckerman and D. Geiger. Learning bayesian networks: a unification for dis-

crete and gaussian domains. In Proceedings of the Eleventh conference on

Uncertainty in artificial intelligence, pages 274–284, 1995.

D. Koller and N. Friedman. Probabilistic graphical models: principles and tech-

niques. MIT press, 2009.

65

S. L. Lauritzen. Propagation of probabilities, means, and variances in mixed

graphical association models. Journal of the American Statistical Association,

87:1098–1108, 1992.

S. L. Lauritzen and F. Jensen. Stable local computation with conditional gaussian

distributions. Statistics and Computing, 11(2):191–203, 2001.

S. Maurus and C. Plant. Skinny-dip: Clustering in a sea of noise. In Proceedings

of the 22nd ACM SIGKDD international conference on Knowledge discovery

and data mining, pages 1055–1064, 2016.

W. S. T. McGeachie M. J., Chang H. H. Cgbayesnets: Conditional gaussian

bayesian network learning and inference with mixed discrete and continuous

data. PLoS Computational Biology, 10, 2014.

K. Murphy. A brief introduction to graphical models and bayesian net-

works, 1998. Available electronically at http://www. cs. ubc. ca/ mur-

phyk/Bayes/bnintro. html, 1998.

R. E. Neapolitan et al. Learning bayesian networks, volume 38. Pearson Prentice

Hall Upper Saddle River, NJ, 2004.

J. Pearl. Probabilistic reasoning in intelligent systems: networks of plausible

inference. Elsevier, 1988.

G. Schwarz. Estimating the dimension of a model. The annals of statistics, 6:

461–464, 1978.

66

C. R. Shalizi and A. C. Thomas. Homophily and contagion are generically con-

founded in observational social network studies. Sociological Methods and

Research, 40:211–239, 2011.

Y. Vaizman, K. Ellis, and G. Lanckriet. Recognizing detailed human context in-

the-wild from smartphones and smartwatches. IEEE Pervasive Computing, 16:

62–74, 2017.

N. L. Zhang. Hierarchical latent class models for cluster analysis. Journal of

Machine Learning Research, 5:697–723, 2004.

67

 ריצקת

 ומכ ,םינותנ תיירכו הקיטסיטטס לש תונוש תומישמב רגתא םיווהמ םייובח םינתשמ
 אשונב השענש רקחמה בור .הקסה תויעבו לודימ תויעב ,םייטסיטטס םייוסינ ןונכת
 העפשהה ךורעשבו ,תכרעמה לש םילוקישה ףסואל םתסנכהב קסוע םייובח םינתשמ
 הדובעב .תכרעמב םימייק םהש אצומ תחנה ךותמ ,םתביבסב םינתשמה ראש לע םהלש
 תורעשה ינחבמ סיסב לע הלאכש םייובח םינתשמ לש יוהיזב םידקמתמ ונא וז

 .תוינאיסייב תותשרב שומיש ידכ ךות םייטסיטטס
 לע םיעיפשמ רשא ,םידידב םייובח םינתשמ לש יוהיזל תינשדח הטיש םיגיצמ ונחנא
 םיבלשמ ונחנא .םיפיצרו םידידב םינתשמ תברעמש תכרעמב ,םיפיצר םייולג םינתשמ
 תא םיגיצמו ,תוינאיסייב תותשר לש הנבמ תדימלל םתירוגלאב ונלש יוהיזה תולוכי תא
 .יתימא עדימו יטטניס עדימ לע םיוסינ לש הרדסב וללה תולוכיה לש תוישומישה

 ,ימוחתניבה זכרמה ,םינותנה יעדמל ןוכמהמ ןייפ יש ר״ד לש ותכרדהב העצוב וז הדובע
 .הילצרה

 הילצרהב ימוחתניבה זכרמה
 בשחמה יעדמל יזרא יפא רפס-תיב
 ירקחמ לולסמ -).M.Sc(ינש ראותל תינכתה

 םידידב םייובח םינתשמ יוהיז
 םינחבמ תרזעב תוברועמ תותשרב
 םייטסיטטס

 תאמ
 דלפ ביבא

 .M.Sc ךמסומ ראות תלבק םשל תושירדהמ קלחכ תשגומה הזת תדובע
 ימוחתניבה זכרמה ,בשחמה יעדמל יזרא יפא רפס תיבב ירקחמה לולסמב
 הילצרה

 2020 רבמטפס

	hebrew-thesis-cover.pdf
	Thesis.pdf

