
1

The Interdisciplinary Center, Herzlia
Efi Arazi School of Computer Science

Evaluation Tool for

Halftoning Algorithms

M.Sc. Dissertation

Submitted in Partial Fulfillment of the Requirements for the
Degree of Master of Science (M.Sc.) Research Track

 in Computer Science

Submitted by Ariel Shmerling

Under the supervision of

Prof. Yacov Hel-Or and Dr. Carl Staelin

October, 2015.

2

Acknowledgments

I would like to express my deep and sincere appreciation to Prof. Yacov Hel-Or and Dr. Carl

Staelin for exposing me to such a wonderful domain. Working on this research project was a

very enrichment experience, which I could not perform without their assistance. Their

knowledge, experience and profound understanding of the field led to excellent guidance,

advises and references, and helped to bring this project into conclusion. During this journey, I

learned from Prof. Yacov Hel-Or and Dr. Carl Staelin so much about Digital Halftoning in

particular and Image Processing in general.

I would like to thank to Dr. Hila Nachlieli and Dr. Mani Fischer for their kind support, advices

and patience. This assistance is very much appreciated.

Finally, I would like to thank my family for supporting and allowing me to focus on the project

in order to achieve this goal.

Thanks You!

3

Abstract

Digital Halftoning is a well-known technique used to create the illusion of a continuous tone image that

uses a smart arrangement of binary elements, and is widely used in the printing industry.

Many approaches have been defined for both grayscale and color images. Each approach has advantages

and disadvantages, but there is no single algorithm that fits all purposes. In fact, there is no general objective

measurement for evaluating Halftoning algorithms. The main problem is that some algorithms can look

very appealing to the designer and to the developer of the algorithm and look very good in the lab

environment, but when using it in the real-life environment, it yields unexpected and unwanted results. This

often happens due to the fact the designers generally assume perfect printer, but in reality, the printers have

many distortions. Each halftoning algorithm is sensitive to a different set of distortions.

The goal of this work is to build a new tool, which aims to address this issue by simulating the printing

process of real life printers including their main known distortions. The tool measures the sensitivity of the

target algorithms to these distortions. In this work, we measured six algorithms from various categories,

executed the evaluation tool and demonstrated the results of these examinations.

4

Table of Contents

Introduction ... 5

Digital Halftoning .. 5

Printer Types .. 7

Types of Distortion .. 11

Related work .. 15

The Simulator .. 18

Initialize ... 18

Input processor ... 23

Halftone .. 24

Printing ... 24

Evaluation Assessment .. 34

Results .. 38

Dot size variation ... 43

Color plane misregistration .. 51

Write-Head Banding .. 60

Conclusion ... 67

References .. 68

5

Introduction

Digital Halftoning

In this work, we widely deal with halftoning algorithms. Halftoning algorithms are a family of image

processing algorithms, which are used to reproduce an image with devices with limited number of tone

levels (usually bi-level) [27]. While the idea of halftoning was introduced in the 19th century, digital

halftoning was first introduced in the 1970s. Digital halftoning uses a binary matrix where each pixel is

1 or 0 (binary representation), representing whether that spot has an ink drop or not. There are many

types of digital halftoning algorithms, some of which are optimized for a specific printer model or

technology, but they may generally be classified into two major categories [31]: Frequency Modulation

(FM) screening and Amplitude Modulation (AM) screening. FM screening changes the density of fixed

size dots to achieve the desired gray level, while AM screening changes the size, shape and angle of the

dots, but keeps the spacing of dot centers unchanged.

Recently, hybrid methods, combining aspects of both AM and FM methods, were introduced [32] [33],

in order to mitigate or avoid the limitations of each approach. Figure 1 demonstrates two examples of FM

and AM halftoning performed with 300 DPI, along with an enlargement of each image [31].

6

Figure 1: examples of AM and FM halftoning result images. (a) AM halftone. (b) FM halftone. (c), (d) enlargements of a

portion of the images shown in (a) and (b), respectively.

7

Printer Types

In addition to wide academic research, Digital halftoning is under extensive development in the printing

industry. There are many types of devices, from desktop inkjet printers to laser and color laser printers

and commercial digital presses, which use these algorithms in order to make the appropriate optimizations

to gain the best image quality. In this work, we focus on printers were images are simulated by applying

dyed substance on a paper or any other substrate.

The three most common printers are:

 Offset presses

 Inkjet printers

 Laser printers

Each technology has a set of common or characteristic types of print defects or sources of distortions that

may affect the print quality.

Offset Presses

Offset presses use metal plates to press the ink onto the blanket, which then presses the ink onto a

substrate. As such, the relative placement of dots within a single color plane tends to be precise. Multiple

colors are printed using multiple plates, each plate printed in a separate “pass”. Between color planes, the

changes tend to be small global mis-displacement (rotations and translations) of the halftoned images as

a whole, rather than varying across the page. Offset presses may have banding issues due to small

fluctuations in dot size across the page, likely due to variations in pressure of the plates on the substrate

during the print process. Offset presses may also have problems transferring (printing) small isolated dots

(this is one reason they traditionally used AM rather than FM screens).

8

Figure 2a: schematic illustration of offset printer

(from www.offsetprintingtechnology.com)

Figure 2b: Example of digital offset printer

(from www.offsetprintingtechnology.com)

Inkjet Printers

Inkjet printers often have multiple print heads rigidly connected, so a single pass will print dots for few

lines and for all colors. This means that the relative placement of dots within a single pass tends to be

precise, but due to variations in paper transport speeds, the relative placement of dots along the print

direction can vary significantly between different passes. Generally, inkjet print heads can only print a

single size dot, but recent generations of write-heads may support two dot sizes.

Figure 3a: The basic configuration of the Tektronix's

Phaser 350 offset drum transfer ink-jet printer.

(from www.Imaging.org)

Figure 3b: Example of inkjet printer

(from www.epson.com)

9

Laser Printers

Laser printers work by charging a photosensitive plate, and then selectively discharging the plate with a

laser beam. The beam is scanned across the plate in the cross-print direction using a polygonal mirror

rotating at high speed. The plate is typically on a rotating drum, which then collects either toner (dry

powder) or ink (liquid) before transferring it to a blanket, which is then brought into contact with the

substrate. Color laser printers can only print one color at a time, similar to offset presses, so color plane

misalignment due to slight changes in substrate placement between passes is a similar or identical

problem to offset presses. In addition, variations in the rotational speed of either the polygonal mirror or

the photosensitive plate can result in slight variations in the dot density in the x- and y- directions

respectively. In addition, most laser printers have an array of lasers, so a single pass prints multiple rows

or lines of dots, somewhat analogous to the inkjet write heads. So, write head banding artifacts can be

produced due to changes in dot spacing between bands of dots (each band is a single pass of the write

head). One additional complexity with laser printers is that since the laser is digitally controlled, the

control electronics may sometimes vary the intensity of the power at a pixel, or vary the width of the

pixel. This can be used for much finer control over edge placement, but generally cannot reduce the size

of a single isolated pixel. For example, on a diagonal edge the laser wave form may be controlled so that

the actual edge of a region is smooth, even if the edge passes through a portion of a pixel (e.g. the middle).

Some laser printers may also have problems with small dot transfers similar to offset presses.

10

Figure 4a: Laser scan mechanism for electrophotographic

printer
 Figure 4b: Electrophotographic imaging process

Each halftoning algorithm may be sensitive to an artifact, which is inherent in the printing technology

and directly related to the printer’s physical limitations. Artifacts like write-head banding, color plane

misregistration and dot size variation could lead to poor image quality in the final printed images. The

visual severity of the printed image depends on the halftoning algorithm design and the basic assumptions

of the designer.

When designing a halftoning algorithm it could be problematic to assume a perfect printer, which has no

artifacts. This is the main reason why we need an objective tool, which will allow us to evaluate the

algorithm during the development phase and to obtain a detailed information about the sensitivity of the

algorithm to any printing technology or printing artifact. Another goal is to allow us to perform

comparison between existing algorithms, which might help developing improved halftoning algorithms

with reduced visual artifacts.

11

Types of Distortion

The simulator introduced in this work includes some simple models of common degradations and

transformations that occur during the printing process. These are naturally related to the physical process

and printing technology. In this work, we focus on some common and important distortions:

1. Dot Size Variation

2. Color plane misregistration

3. Write-head banding

In the following, we elaborate and explain each type of distortion.

Dot size variation

The dot size variation artifact is happening when the printing dots are not equal during the print process.

This phenomenon is more common on offset presses and laser printers, while inkjet printers generally

have a more constant dot size. Many factors affect the size of the dots, including ink amount variations,

voltage variations, laser power variations, dust on the paper, and gluiness of the ink or toner powder.

However, the most significant factor is variations in the pressure of the rollers. The direct impact of the

dot size variation is mainly banding. Banding is a general term for any type of unwanted straight stripes

that appear on images whether they are vertical or horizontal (see figure 7c).

More precisely, we model the dot variation as:

𝑆𝑑 = 𝑆0 + 𝑆1(𝑃)

where 𝑆𝑑 is the resulting size of a dot, 𝑆0 is the initial designed size, and 𝑆1 is the variation due to the

pressure P of the roller. For the sake of simplicity, in this work we choose to model only the roller pressure

phenomenon in order to model dot size variation.

12

Color plane misregistration

Color plane misregistration occurs when one of the color planes slightly shifts with respect to other color

planes (see figure 7b). This artifact is most common on offset presses and color laser printers, since each

color is printed in a different pass and slight variation in the page feeding could cause this misregistration.

This is unlike inkjet printers where all colors are printed simultaneously.

More precisely: Let I be a halftone binary image with 4 color planes (CMYK) ready for printing.

𝐼 = (𝐼𝑐 , 𝐼𝑚, 𝐼𝑦, 𝐼𝑘)

After the transformation in one of the color planes (e.g. 𝐼𝑐), we will have:

𝐼′ = (𝜏(𝐼𝑐), 𝐼𝑚, 𝐼𝑦, 𝐼𝑘)

where 𝜏 is the transformation function for this color plane. This transformation function is a combination

of translation and rotation (rigid transformation).

Figure 5: an example of 2-color planes misregistration artifact

Figure 5 shows an illustration of the color plane misregistration for 2 colors: The left figure represents

the original image and the correct registration while the right figure represents the same image after a

simulation of the color plane misregistration. The circles represent pixels from the Magenta color plane

and the X shape represents the pixels from the Cyan color plane. In this example, we introduce both,

translation and rotation distortions. The Cyan color plane was translated in both axes and rotated by 5º.

13

This illustration demonstrates the rigid transformation of the printing substrate during offset printing.

This misregistration may be caused due to a poor control of the substrate placement between color planes.

Write-head Banding

Write-head band or print-head bands are straight lines which occur when there is a slight overlap or a gap

between two adjacent passes of the printer’s write head (see figure 7a). It happens mostly due to a

misalignment of the print cartridges. It is common in inkjet and laser printers.

Figure 6: an example of write-head banding artifact

Although the gap distortions is constant along a printed page, in order to test the visible artifacts of this

distortion for a wide range of distortion parameters we generate various gap distortions in a single page

and tested the resulting print against the ideal print. Let the gap varies between [-k , k] (in unit length

along the y-axis), 𝑤 be the write-head size (in no. of lines) 𝑐 the fixed y-distance (in length units) between

two consecutive lines, and 𝑁 the maximum number of lines in a printed page.

The gap between consecutive lines 𝑖 and 𝑖 + 1 (𝑖, 𝑖 + 1 ∈{0,1,..k}) is generated to be:

∆𝑦𝑖 = 𝑦𝑖 − 𝑦𝑖−1 = {
𝑐 + 𝜀𝑖 𝑖 𝑚𝑜𝑑 𝑤 = 0

𝑐 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

}

where 𝜖𝑖 =
2𝑘𝑖

𝑁
− 𝑘

14

The following images show examples of each print defect:

Finally, the following table summarizes the most common types of printers and their vulnerability to each

type of printing defects.

 Offset Press Inkjet Laser

Dot size variation

+ - +

Color plane misregistration

+ - +

Write-head banding - + +
Figure 8: Summary of printing technologies and its vulnerability to defects

Figure 7a: Write-head banding (from

www.hp.com)

Figure 7b: Color plane

misregistration. (from

Wikipedia.com/printing

registration)

Figure 7c: Dot size variation (from

www.colorprintingforum.com)

http://www.colorprintingforum.com/canon-imagePRESS/imagepress-c1-printing-problems-8778.html

15

Related work

Designing a halftoning algorithm turns out to be a challenging task. Designing a robust algorithm is even

harder and requires a lot of knowledge and experience. Many books, studies and other publications cover

the knowledge of the theoretical science behind this craft, explaining the problems and suggesting

improvements or methods for analyzing the exact technique.

Baqai et-al [3] describe in their paper the challenges and goals stand in front of the algorithm or halftoning

screen designer. This includes the devices model, the Human Visual System, moiré and rosettes artifacts

and other topics. They also explain how the types of halftoning screens try to overcome these challenges.

In addition, the paper covers some recent trends in this field, such as, iterative approaches and direct

binary search (DBS) algorithms. Another throughout review of the color halftoning subject was

introduced in [34], which influenced our work.

The design of the screen set used in a halftoning algorithm can be evaluated in order to improve its

robustness. For example, in [15], Jin-Young Kim et el. suggested a method for analyzing mathematically

the sensitivity of clustered-dot screens to misregistration issues . This approach defines the “cost” and

“risk” when designing a screen set. The cost is defined as the impact of any amount of registration error.

The risk is defined as the summary assessment of the overall impact of misregistration, taking into

account all possible displacements between the two colorant planes.

Some works took into account the specific characteristic of the designated printed model. The first

example is the “Model Based digital halftoning” [22] by Pappas et-al, which describes a various printer

models which are being used by the halftoning algorithms in order to exploit the printer characteristic. It

describes the general model, The Sampled Grayscale Printer Model, which is the basis model for other

specific models, such as ink-jet and electrophotography model. In addition, this work also describes the

16

usage of these models in screening algorithms, error diffusion algorithms as well as Direct Binary search

(DBS). Other works [17, 18, 19] provide additional details and more advanced techniques.

Another similar technique introduced in [35]. This work explains the issues of color printing in electro-

photographic printers, such as periodic moiré, and suggests a new technique to address it. In this technique

a printer model is utilized which leads to more predictable results. The printer model aims at estimating

the absorption of the printed pixel within a 5x5 window. The experimental results show homogenous

results with reduced graininess.

In spite of all these great techniques that aim to improve the halftoning algorithms, the goal of our

simulation tool is to measure the actual printed results after using a ready-to-use halftoning algorithm

while providing benchmarks.

One of the challenges in our work is to evaluate the printed results. In this work, we focused on general

similarity, graininess and banding measures. We were inspired by a previous work, which researched

both graininess and mottle [15], but finally implemented the ISO 13660 standard [28] as our measurement

technique for the sense of simplicity.

The study around similarity, image fidelity and Image quality metrics (IQM) is also fertile. Many studies

were performed in order to effectively compare between images and mimic the Human Visual systems

(HVS). One of the most famous is the Structural Similarity Measure (SSIM) measure for the image

quality assessment [1]. Further research extends this technique to an even more robust one [8] using

Multi-scale structural similarity for image quality assessment. While both of these methods focus on

grayscale images, other works extended this approaches to color images [6, 7]. The one we choose in this

work is the Sparse Feature Fidelity (SFF) [7], which demonstrates impressive results with comparing a

reference image with related distorted image.

In banding measurement field, we were inspired by the work of Hila Nachlieli et-al. [2]. This work

introduced a tool (MBM) for measuring banding artifacts in printed images, during which, the assessment

17

results were compared to human observation and in average showed same conclusions. The tool uses the

second derivative of Gaussian and takes advantages of the multiscale scheme. However, this work is

focused on singular mechanical bands and does not accurately fit our needs for banding meter. Finally,

we implemented a simplified model for measuring bands, which measures the energy of frequency in a

specified range working in the frequency domain as described later in this work.

During our simulations, we use the “Halftoning toolbox for MATLAB” [4], which enabled us to use classic

algorithms, such as Floyd-steinberg, Stucki and Blue Noise. These algorithms were the first subjects for

testing and demonstration. This toolbox directed us to both error diffusion implementations and screening

halftoning methods.

Other books, which provided inspiration and knowledge source, are “R. Ulichney: Digital halftoning”

[26], and “H. Kang : Digital Color Halftoning” [27].

18

The Simulator

The purpose of the simulator is to provide an effective benchmark for the sensitivity of the examined

halftoning algorithm to distortions that could happen during the printing process. In fact, the simulator

establishes the foundation of many types of simulations that could be conducted to evaluate halftoning

algorithms. In this chapter, we will describe how this tool is designed and how it can be used. We used

MATLAB to implement the simulator which might be the most convenient way to test halftoning

algorithms.

Figure 9 describes the high-level design of the simulator and its steps:

Figure 9: the simulator steps

Step 1: Initialize

In this stage, the user can configure the exact parameters that will be used during the process. It consists

the following 5 sub-steps:

1.1 The Algorithms list

First, the process defines the list of halftoning algorithms to examine. An algorithm is defined as an object

that holds a pointer to the algorithm function and the type of the algorithm. Currently, there are 3 types

19

of algorithms: Generic, RGB and CMYK. Generic algorithm performs the halftoning function to each

color plane in the same way. The number of color planes is extracted in runtime from the given image.

RGB algorithm gets an RGB image as an input. CMYK algorithm gets a CMYK image as an input and

generally performs different operation to each color plane. For example, some AM algorithms might want

to define different angles for each color plane. During the process, each algorithm in the defined list is

going through the same pipeline of operations.

1.2 The Configuration

Second, a configuration object is defined to control the exact parameters, which are being used along the

process. The following table describes the parameters:

Parameter name Description Example value

1 dpi

The Dot Per Inch (DPI) which is being used during the

printing process

300

2 print_size_inches The actual print (paper) size (in inches) in both axis.

X=5 , y=5

3 write_head_size Defines the printer head size (in pixels) which is being

used during the printing process

20

4 max_gap This parameter defines the maximal number of pixels

which are being used for gap (or overlap) when

simulating write-head banding artifact

4

5 max_dot_size_variation This parameter defines the maximal increase of the dot

size when simulating dot size variation artifact

0.2

6 banding_frequency This parameter defines the frequency of the bands

when simulating the dot-size-variation distortion. It

controls the number of bands that will appear in the

printed image.

0.2

7 max_shifting This parameter defines the maximal pixels shifting

when simulating color plane misregistration

32

8 icc This parameter defines the ICC profile to be used

during color conversions (see more information in

section 2.1).

'bin/SWOP2013C5.

icc'

Figure 10: the configuration parameters

20

More information and the exact usage of these parameters will be explained in details in the following

chapters.

1.3 The Printer Model

Third, the printer model is defined. The user can determine whether to use an ideal printer or a printer

that includes some artifacts. The ideal printer model performs a simulation of the printing process without

any distortion. The other type of printer can simulate the same printing process, but in addition can include

some artifacts according to the defined configuration. In other words, this printer can be configured to

introduce real-life artifacts during the printing process.

1.4 The Dataset

Another important process within the initialization step is the image dataset setup. The user can choose

the dataset of images to be used during the printing process. The images are divided into two categories:

natural images and single color images (figure 11),

Figure 11: The left image is a natural image and the right image is a single color plain image.

The dataset can be changed easily by replacing the test images in the relevant directories. Both types of

images help us evaluate different artifacts.

21

1.5 The Calibration

Finally, the last step performs the calibration operation.

The Calibration is a process we perform once every first time we use an algorithm. This process allows

us to create a dot gain compensation. The dot gain is a well-known phenomenon which causes the printed

image to look darker than the original source image (see figure 12). This generally happens during the

printing process when the ink interacts with the paper (or other media) and each dot of ink is growing.

The effect of larger dots is a darker image.

Figure 12: An image (left) and the simulated darker result of the printed image (right) caused by dot gain [34]

We encounter this phenomenon since we print circle dots, while the input is a binary digital image. Each

circle dot must cover the whole pixel. Thus, it also covers a portion of its neighbor pixels, and the result

is a darker image.

There are many techniques to overcome this unwanted behavior and to compensate in such a way that the

printed image will look similar to the original as much as possible in terms of brightness.

For this purpose, we create flat grayscale patch images in CMYK format; each image has gray level of 0

to 255. Then, we perform the halftoning algorithm over each patch image. After applying the halftoning,

we use a perfect printer in order to produce a printed image. Then, we save the mean level of all pixels in

the image. In this case, for each gray level of original image, we have the mean gray level of the resulting

22

image, which is expected to be darker. Figure 13a describes the connection between the original and

resulting values. Note that the images are CMYK images, therefore unlike RGB or grayscale image, a

higher value means darker result. After we have a vector of all 256 resulting values,

𝑓(𝑣𝑖𝑛) = 𝑣𝑜𝑢𝑡

We calculate the “inverse” vector for these values:

𝑣𝑖𝑛 = 𝑓−1(𝑣𝑜𝑢𝑡)

While inverting the original vector we preserve a weak monotonic function to make sure the target image

will keep the same brightness order between pixels. This inverted vector will be our calibration

data. The calibration data is saved to a file for the next time we use the same algorithm.

Later in the process, we will apply the inverted vector on the source image, which will cause the image

to become lighter than the original. Eventually, the dot gain will cause the lighter image to be similar to

the original image.

Figure 13a: The plot of the mean values for blue noise

algorithm. In this algorithm, when the source image has a

graylevel of 100 the darker printed image has a value of 154.

Figure 13b: The plot of the calibrated data after the inversion.

This data will be used as the Claibration data.

23

Step 2: Input processor

Generally, color images are kept in the disk in RGB format; therefore, we need to prepare the loaded

images for printing. As a preliminary action, we process the images in order to bring them to the right

printing format. Within this process, we perform three operations: Color Conversion, dot gain

compensation, resize. In the following, we elaborate each operation we perform:

2.1 Color Conversion

This sub-step is used to convert the RGB image into CMYK image. The conversion is performed using

MATLAB’s built-in functions and using the input and output ICC profiles.

International Color Consortium (ICC) profiles contain information about the color space of a device.

Such profiles hold the color characteristics of the device and enable us to map between the input color

space and output color space. A profile dataset is generally converted into an intermediate color space

(Profile connection space) which in practice mostly uses CIELAB or CIEXYZ color spaces. Therefore,

in order to convert from RGB to CMYK we need two ICC profiles: input profile and output profile. The

exact profiles can be set in the configuration object as explained in section 1.2.

The reason we have this configuration is to allow any developer to examine his own halftone algorithm,

which might be optimized to a specific device. In this case, the ICC profile of the device represents the

inherent color attributes of the device. By default, we use SWOP2013C5.icc and sRGB ICC profiles.

2.2 Dot Gain Compensation

Within this sub-step, we apply the tone calibration to the CMYK planes of the image. The Calibration is

performed in order to overcome the dot gain phenomenon as described in section 1.5. The tone calibration

is applied to the image by converting the integer values of each pixel in the image using a lookup table.

The lookup table is the calibration data.

https://en.wikipedia.org/wiki/International_Color_Consortium

24

2.3 Resize the image

In this last sub-step, the image is resized to meet the configured print size (in inches) and the printer’s

Dot-per-inch (DPI). For example, in case the configured print size is 10” by 10” and the printer resolution

is 600 DPI, the actual output print size will be:

R = 600 * 10 = 6000

C =600 * 10 = 6000

The output image size is therefore 6000x6000 pixels.

In addition, since the input image size is unknown, we preserve the aspect ratio of the original image.

Step 3: Halftone

After all preparations are made in the previous steps, we send the processed image as an input to the

current halftone algorithm under examination. This function receives as inputs the algorithm object and

the CMYK image. This step performs the algorithm function according to the algorithm type. For

example, if the algorithm expects to get each color plane separately, we iterate over all color planes and

perform the halftoning function independently. The output of this stage is a binary image for each CMYK

plane, which is the result of the halftoning algorithm.

Step 4: Printing

In this step, we pass the halftoned image to a printer model, which simulates the printing process. In

addition to the general printing process, the printer can simulate a real-life printing artifacts such as write-

head banding, or color plane misregistration. The purpose of the printing model is to mimic the printer’s

process according to given parameters. It receives as input the halftoned image, and returns an image,

which is considered “printed”.

25

Figure 14a: The halftoned image Figure 14b: The printed image

The following sections describe the main operations performed during the printing process:

4.1 Up-sampling

In order to simulate the printing process, we up-sample the halftoned image so we can simulate the ink

dot size and manipulate the image in the sub-pixel accuracy. The up-sampling ratio value is a parameter.

In all our simulations we used up-sampling level of s=11.

Figure 15:The image from figure 14a after up-sampling

One issue we encountered during the printing process is the image resolution. The input to the printer is

typically a 300-1600 DPI halftoned image. As mentioned, this image is up-sampled by 11 in order to

26

simulate printing resolution. For printing size of 10”x10” the image size is up to 176000x176000 pixels

per color plane. (1600 * 11 * 10 = 176000)

This enormous image size is impossible to keep in the application memory. This is why all processing is

performed in blocks, which are combined together to the final resulting image. The printer model is

responsible to maintain this complexity.

4.2 Printing Dots

The halftoned image is a binary image where each pixel has a value of 0 or 1, which states whether an

ink dot should be placed at this location. Hence, during the printing process we place a virtual ink drop

at every pixel that has value of 1. To simulate the ink drop, we use a disk shape sample with a smooth

edge. This sample is used as the convolution kernel to be applied on the halftoned image. Since the

halftone image is a binary image, this convolution is equivalent to a convolution with delta kernel. Hence,

each pixel neighborhood with a center pixel value of 1 will be replaced by the disk shape.

The size of the disk must be correlated with the up-sampling level of the entire image to prevent an

oversized dots that might overlap other dots, or undersized dots that will create unwanted gaps.

 Figure 16: an illustration of two disk shapes convolved with the image from figure 15

While the ink drop has a circle shape, the sample image is square. The exact size of the square is calculated

as follows (also described in figure 17). We want an ink drop to be placed at the center of the original

27

pixel. Since the image is up-sampled by 11, an original pixel is represented as an 11x11 pixels in the up-

sampled image. In order for an ink-drop to fully cover a pixel square, the ink should be a disk with radius

of:

𝑅 = ⌈ 5.5√2 ⌉ = 8

Together with the center pixel and padding, we get a disk size of 19x19 pixels.

Figure 17: Geometrical calculation of the ink drop.
The square pixel width is 11. Half of it is 5.5. Hence, the radius of the circle is 5.5√2, rounded up to 8.

The diameter including the center pixel is 8+8+1=17. Together with the padding on each side, the outcome is 19.

In order to simulate a real ink dot, the disk’s edges needed to be smoothed. For this purpose, we scaled

up the disk sample by a factor of 10, and scaled down again by factor of 0.1, both of them use bilinear

interpolation. The immediate effect, as can be seen in figure 18, is smooth edges.

28

Figure 18a: Creating a
disk shape with radius of
8 pixels

Figure 18b: Smoother
disk

Figure 18c: Smooth disk
shape with padding

Finally, we convolve the disk sample with the up-sampled halftoned image which leads to a simulation

of ink drops (see figure 19).

Figure 19: Zoom-in of a printed image

4.3 Adding Printing Distortions

Real life printing process contains variations that sometimes leads to unexpected results, which can

mostly be visible as printing defects. In order to demonstrate such behaviors, we add distortions to the

printing model that mimics these printing defects. Halftoning algorithms might be sensitive to these

29

distortions. The printer model is getting as a parameter the distortion that needs to be added to the target

image. We have implemented the following main distortions:

4.3.1 Dot Size Variation

Dot size variation distortion changes the size of the virtual ink dot, along the page rows. More precisely,

it grows and shrinks using a continuous function. We used the sine function to simulate this behavior.

The dot size is calculated according to this formula:

𝑆𝑖𝑧𝑒(𝑖) = 𝑠0 + 𝑓0 sin (
2𝜋𝑖𝑘

𝑛
)

Where i is the row number in the image. 𝑠0 Represents the original size, 𝑓0 the maximum distortion

allowed and 𝑘 is the desired frequency (where 𝑛 is the total number of rows).

The method performs horizontal bands in the image as can be seen in figure 20. Two parameters control

this effect, the maximal change of the dot size and the frequency of the bands. Both can be easily

configured in every test execution as described in section 1.2. Figure 20 describes four examples of

printed images with the same parameters except the banding-frequency parameter, which controls the

number of bands appears on the images.

Figure 20: Examples of dot size variation for the Floyd algorithms with the following banding frequencies (left to right): 0,

0.2, 0.4, and 1.0

30

Figure 21 describes four examples of printed images with the same parameters except for the maximal

dot size parameter, which controls the size of each printed dot, and by that affects the magnitude of each

band on the image.

Figure 21: Examples of dot size variation for the Floyd algorithms with the following maximal increase in dot size (left to

right): 0, 0.1, 0.15, and 0.2

4.3.2 Color Plane Misregistration

Color plane misregistration distortion shifts one of the color planes at sub-pixel level, and simulates the

misalignment between color planes. For this purpose, we shift the first color plane (generally Cyan).

In spite of the simple definition of color plane misregistration described in the introduction chapter, we

defined the simulation of this artifact by applying multiple color plane misregistration shifts at once.

Therefore, we change the shift linearly in every row, yielding a ramp shape of shifting. The parameters

of this process is the maximal shifting allowed. The default value is 32 pixels (in simulation resolution).

The shift is defined by the following formula:

𝑠ℎ𝑖𝑓𝑡(𝑖) = (
2𝑚

𝑛
) 𝑖 − 𝑚

Where i is the row number, n is the total number of rows and m is the maximal shift.

31

Figure 22 demonstrates two printed images halftoned by the Stucki halftoning algorithm [36]. The first

image does not have any misregistration. The second image has misregistration as described with

maximal shift of 50 pixels. Color bands are visible in the second image, especially on the sky part of the

image.

Figure 22a: The reference image halftoned by stucki halftoning, printed without misregistration

Figure 22b: The reference image halftoned by stucki halftoning and printed with maximal shifting of 50 pixels

32

4.3.3 Write-head Banding

Write-head banding distortion simulates write-head bands which happens when the write head skips rows

of printing or overlaps printed rows due to misalignment during the write-head passes. It will produce

thin bands all over the page. The parameters used in this distortion are the write-head size, which is

typically 20 pixels and the maximal gap (or overlap) which is typically 4 pixels.

The write head banding is defined by the following formula:

∆𝑦𝑖 = 𝑦𝑖 − 𝑦𝑖−1 = {
𝑐 + 𝜀𝑖 𝑖 𝑚𝑜𝑑 𝑤 = 0

𝑐 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

}

Where w is the write-head size in lines, c is the fixed y-distance between two consecutive lines

 𝜖𝑖 = 𝑘 −
2𝑘𝑖

𝑛
 and k is the maximal gap.

Figure 23: Write head banding on high resolution. Horizontal bands can be seen.

33

4.4 Downscale

The last operation of the printing process is resizing the image back to the input resolution. The printer

model can be treated as a black box that get an input halftoned image, and return the resulting printed

image; therefore, it is expected to keep the same image resolution. For that purpose, we resize the up-

sampled image back to its original size using a box shaped interpolation kernel with antialiasing.

34

Step 5: Evaluation Assessment

In order to evaluate the halftone algorithm we need to provide objective measurements correlated with

the visual quality of this algorithm in real-life scenarios. Moreover, we would like to assess how the

distortions’ magnitude affect the visual artifacts. This way we can learn the inherent sensitivity of the

algorithm to specific distortions.

The evaluation is performed on the simulated “printed” image as soon as the printing process completes.

As mentioned, the image resolution is the same as the input resolution, which is given by the DPI and the

desired print size. Out of various measurements, we chose to focus on the following ones:

1. Similarity

2. Graininess

3. Banding benchmark

Similarity

Similarity is a benchmark obtained by measuring how much the source image and the printed image looks

alike to a human observer. For that purpose we need to use an Image Quality Metric (IQM) which takes

into account the characteristics of the Human Visual System (HVS). In this work we choose the Sparse

Feature Fidelity (SFF) function [7] which allows us to easily compare the two images and get a value

between 0 and 1. This value represents the benchmark of the similarity between the two images, a

reference image and a distorted image. The amount of similarity is given by the SFF function.

SFF reflects the chromatic properties of the HVS, and it is found very effective for color image quality

assessment. It is based on all of the RGB color components, and it can detect the color distortion in a

perceptual way. For that purpose, we convert the printed image from CMYK to RGB before calling SFF

the function.

35

SFF has two main components: “luminance correlation component” called SFFm and “feature similarity

component” of SFF called SFFf.

The overall score is given by:

SFF = λ ·SFFm + (1 − λ) ·SFFf.

Where 0 < λ < 1 is a parameter for adjusting the relative importance of the two components, its default

value is 0.8. Figure 24 describes the process of calculation of SFF [7]. We apply this measurement for

the natural images only.

Figure 24: Block diagram for the fidelity computation of SFF. SFF has two components, SFF f is the result of feature similarity,

and SFFm is the result of luminance correlation.

36

Graininess

The Graininess measurement evaluates how much the result image is grainy. Graininess is a subjective

perception of a mottled random pattern apparent to a viewer who sees small local density variations in an

area of overall uniform density. According to ISO 13660 [28] the graininess is periodic fluctuations of

density at a spatial frequency greater than 0.4 cy/mm in all directions. Since the color of the image is

irrelevant for graininess measurement, we convert the image to grayscale as a preliminary step of the

assessment.

For that measurement, we divided the image into blocks of 1.27x1.27mm, as illustrated in figure 25.

Figure 25: A region of interest divided into tiles [28]

The variance is calculated separately for each block. The graininess is calculated as the mean of the

variance :

𝐺𝐼 =
√∑ 𝜎𝑖

2 𝑛
𝑖=1

𝑛

We apply the graininess evaluation only on plain single color test images in order to ensure objective

measurement. Natural images were not included in this evaluation.

37

Banding benchmark

Banding is a phenomenon of straight lines, thick or thin, which appear on the printed image vertically or

horizontally. The banding benchmark measures the magnitude of the banding artifact across the image.

This reflects how the banding artifact is noticeable to the human observer.

𝐼𝑏𝑎𝑛𝑑(𝑥, 𝑦) = 𝐼𝑜𝑟𝑖𝑔(𝑥, 𝑦) + 𝑓0 sin(
2𝜋𝑘𝑦

𝑁
+ 𝜙)

The banding meter estimates the amount of banding artifacts using analysis in the frequency domain. We

define a range of frequencies the banding may appear at and use two types of scores: The first score

measures the difference between the maximum and the minimum of the power spectrum evaluated over

the frequency range. The second score accumulates the power spectrum defined over the frequency range.

Simulations show that the two scores provide similar qualitative results.

Again, we apply the banding benchmark evaluation only on plain single color test images in order to

ensure objective measurement. Natural images were not included in this evaluation.

38

Results

Our main examination is used to test the sensitivity of halftoning algorithms to specific distortions. For

this purpose, we used the Simulator with many different configured values and checked at which level

the sensitivity is detectable. These tests also demonstrate the usage of this tool and reveal its powerful

capabilities.

Testing Algorithms

Most of the algorithms we used in our tests were taken from the “Halftoning toolbox for MATLAB” [4].

With this framework, we were able to test classic color halftoning methods such as Floyd, Jarvis, Blue

Noise and un-clustered dithering screens [24, 29, 37]. In order to extend our list of halftoning algorithms,

we implement a new simple AM halftone algorithm that uses a different angle per color plane. It was

important to evaluate the results involving such an algorithm that performs the halftoning process to each

color plane independently, unlike all other algorithms from the toolbox.

Figure 26: AM color halftoning angles and rosette pattern [34].

39

The simple AM screen algorithm we developed uses threshold screens. These screens are created at the

same size of the source image. A pixel in the source image whose value is bigger than the value of the

associated pixel (same coordinates) in the screen has a value of one, otherwise zero. The screens are

created using a set of cells, one for each color plane. Each cell defines the angle of its screen. In our case:

Cyan 76º, Magenta 14º, Yellow 0º, Black 45º [27].

Figure 27: The chosen tiles in our sample AM screening algorithm [27]

As expected, our AM screen algorithm often generates the rosette patterns as can be seen in figure 28.

Figure 28: A section of result image printing using our sample AM algorithm.

40

We used the following halftoning algorithms in our tests:

1. Floyd-Steinberg error diffusion [24] (floyd)

2. Jarvis error diffusion [37] (jarvis)

3. Blue Noise [29] (bnoise)

4. Classical screen dithering algorithm, unclustered dots with 16 gray levels (Screen_16u).

5. Stucki error diffusion [36] (stucki)

6. Our custom-made halftone algorithm (AM Screen).

Figure 29 demonstrates sample images produced by each of the algorithms.

41

Floyd

Jarvis

Blue Noise

Screen 16u

Stucki

AM Screen

Figure 29: Halftoning algorithm examples

42

The Dataset

The Simulator allows the user to define the dataset of images that will be used in the simulation by

locating them in the Images directory. For the purpose of these tests, we defined a set of images for

both groups, natural images in RGB format and plain single color images in CMYK format (See figures

30 and 31). While natural images were used in similarity evaluations, the plain images are used to

evaluate graininess and banding.

The following figures show the exact images used in our tests:

C=255
M=250
Y=35
K=44

C=51
M=255
Y=255
K=35

C=63
M=255
Y=255
K=64

C=0
M=126
Y=128
K=0

C=77
M=75
Y=0
K=0

Figure 30: The single color plain images used in our tests

Figure 31: These are the natural images used in our tests. All images taken from Flickr [36]

43

The Configuration

In all our tests, we used a default set of configuration values, and updated the specific parameter under

test. The following table describes the default values:

Parameter Default Value

dpi 300 DPI
print_size_inches 5”x5”
write_head_size 20 pixels

max_gap 4 pixels

max_dot_size_variation 0.2

banding_frequency 0.2

max_shifting 32 pixels

icc 'bin/SWOP2013C5.icc

Figure 32: The default configuration

Dot size variation

The purpose of this test group is to examine the impact of the dot size variation on each of the algorithms

with respect to each one of the evaluation measurements.

Similarity Test

In this test, we examine the influence of the dot-size-variation on the SFF (similarity) measure. We run

the simulator on the entire algorithms set, using the images dataset, with various values for the

max_dot_size_variation parameter in the range of 0 to 0.2 (step of 0.05). We evaluated the result images

using our similarity evaluation function (SFF). Eventually, we calculated the average of all results among

the natural images. The results are described in the following graph:

44

Figure 33: The influence of the dot size on the similarity (SFF) score

Dot size maximal
increase

AM Screen bnoise floyd jarvis screen_16u stucki

0 0.85683 0.836706 0.861068 0.855762 0.859642 0.85583

0.05 0.85558 0.833292 0.858572 0.853582 0.858386 0.85357

0.1 0.851922 0.828342 0.852354 0.847948 0.851772 0.84766

0.15 0.84645 0.821554 0.843556 0.840376 0.840884 0.839724

0.2 0.838816 0.81344 0.831658 0.829986 0.82516 0.829062

Figure 34: The mean values of the similarity score (SFF) in dot-size-variation test

Dot size maximal
increase

AM Screen bnoise floyd jarvis screen_16u stucki

0 0.0242087 0.032121 0.022285 0.024985 0.023916724 0.025324058

0.05 0.0244581 0.033518 0.023074 0.025683 0.024005886 0.026067019

0.1 0.0254269 0.034714 0.024608 0.027181 0.025432408 0.027558622

0.15 0.0268251 0.036397 0.026422 0.02872 0.028331135 0.029123105

0.2 0.0289982 0.039001 0.029037 0.031093 0.033405758 0.031505683

Figure 35: The standard deviation values of the similarity score (SFF) in dot-size-variation test

45

Conclusions from the graph above: The similarity function returns a different result for each algorithm

where no variations are introduced (0 in x-axis). This gives us information about the quality of each

algorithm without any distortion (perfect printer). For example, Blue noise (Orange dots) has much less

similarity than other plots. These results are also consistent with the actual results as can be seen in figure

36. In this figure, we took a block from the source image, the printed result after using the Blue Noise

algorithm and the same block from the Floyd algorithm. It is plain to see that the Floyd yields a better

perceptual result than the Blue Noise, which is consistent with the graph results above.

Figure 36a: A sample of result image created using

the Blue Noise algorithm

Figure 36b: A sample of result image created using

the Floyd algorithm

46

The rest of the graph shows the trend of each algorithm when raising the maximal dot size. It can be seen

that “screen 16 un-clustered” halftoning degrades rapidly when increasing the dot size variations towards

0.2. Another observation is that our sample AM screen algorithm is less sensitive than the other

algorithms. Finally, one can locate the exact place where one algorithm is crossing another algorithm,

which means the exact value when the inferior algorithm becomes superior.

Figure 37: The influence of the dot size on the similarity score in each test. The maximal increase in dot size is 0.2

Graininess Test

This test demonstrates the influence of the dot size variation on the graininess for each algorithm. For

that purpose, we repeated the same configuration and settings as in the previous test, except for the

evaluation function. In this test, we used the graininess benchmark function. Surprisingly, we did not

encounter any exciting effect. However, we can see a slight and linear degradation in all tested algorithms.

The following graph describes the results:

47

Figure 38: The influence of the dot size on the graininess score

Dot size maximal
increase

AM
Screen bnoise floyd jarvis screen_16u stucki

0 1.408816 1.484862 1.44483 1.47976 1.64266 1.459718

0.05 1.358122 1.467936 1.403896 1.439874 1.624794 1.42021

0.1 1.306912 1.45171 1.359018 1.39773 1.60909 1.377746

0.15 1.264874 1.43839 1.31751 1.359752 1.593714 1.33915

0.2 1.22437 1.426812 1.277974 1.322768 1.578784 1.302082

Figure 39: The mean values of the graininess score in dot-size-variation test

Dot size maximal
increase

AM
Screen bnoise floyd jarvis screen_16u stucki

0 0.5603425 0.543688 0.454166 0.483216 0.643712916 0.459397978

0.05 0.5224205 0.521589 0.421743 0.456998 0.634652474 0.432153142

0.1 0.4838255 0.500204 0.39415 0.431301 0.627621442 0.408006082

0.15 0.448484 0.479432 0.367778 0.407192 0.617178825 0.384993748

0.2 0.4122762 0.459574 0.341638 0.383972 0.605149021 0.362408018

Figure 40: The standard deviation values of the graininess score in dot-size-variation test

48

Figure 41: The influence of the dot size on the graininess score in each test. The maximal increase in dot size is 0.2

Banding Test

The purpose of this test is to demonstrate the influence of the dot size variation on banding score. In this

test, the evaluation was performed using the banding meter. The results are presented in the following

graph:

49

Figure 42: The influence of the dot size variation on banding score

Dot size maximal
increase

AM
Screen bnoise floyd jarvis screen_16u stucki

0 7.036E-06 0.00038 8.8E-05 0.000237 7.42186E-12 7.84646E-05

0.05 0.0020873 0.002471 0.002805 0.002659 0.002929444 0.00267792

0.1 0.0041125 0.004784 0.00567 0.005219 0.00586366 0.00540342

0.15 0.0060444 0.007062 0.008565 0.00783 0.00891462 0.00815946

0.2 0.0079918 0.009463 0.011464 0.010468 0.0121437 0.01091252

Figure 43: The mean values of the banding score in dot-size-variation test

Dot size maximal
increase

AM
Screen bnoise floyd jarvis screen_16u stucki

0 3.65E-06 0.000151 3.67E-05 0.000304 6.87292E-12 3.07848E-05

0.05 0.0013029 0.001524 0.00155 0.001375 0.00150915 0.001396437

0.1 0.0025115 0.002683 0.002903 0.002547 0.002949192 0.002623327

0.15 0.0035672 0.003898 0.004163 0.003601 0.004313027 0.003732398

0.2 0.0046743 0.004962 0.005415 0.004595 0.00573359 0.004796295

Figure 44: The standard deviation values of the banding score in dot-size-variation test

50

It can be seen that the banding is linearly increasing with all algorithms, and the gap between the methods

is wider as we increase the dot size. Nevertheless, if we look at the next figure, we can see that the

sensitivity of screen16u is increasing from the first time we add the banding distortion. In addition, The

Blue Noise algorithm lowered its dominance compared to other algorithms.

Figure 45: The change in the trend the first time bands are introduced

51

Figure 46: The influence of the dot size on the banding score in each test. The maximal increase in dot size is 0.2

Color plane misregistration

This group of tests was performed to examine the influence of the Color plane misregistration on the

image similarity, graininess and banding. We used the same dataset and default configuration as described

in the previous section, but we changed the value of max_shifting parameter in every run and observed

the results. The max_shifting ranges from zero to fifty with a step of five pixels.

The following graph shows the results:

52

Figure 47: The influence of color plane misregistration on similarity score (SFF)

Maximal Shift AM Screen bnoise floyd jarvis screen_16u stucki

0 0.85683 0.836852 0.861068 0.855762 0.859642 0.85583

5 0.85669 0.836768 0.859736 0.854484 0.85831 0.854056

10 0.856674 0.83427 0.859138 0.853116 0.854332 0.852524

15 0.856664 0.834396 0.860282 0.854656 0.853816 0.854596

20 0.856572 0.835716 0.859692 0.85409 0.854426 0.853686

25 0.856302 0.834264 0.859564 0.854034 0.854188 0.853774

30 0.856134 0.834916 0.859046 0.853738 0.853548 0.853228

35 0.855946 0.834704 0.859062 0.853684 0.855196 0.853296

40 0.855658 0.83464 0.859118 0.853884 0.854886 0.853574

45 0.855352 0.834194 0.858664 0.853166 0.854404 0.85291

50 0.855034 0.833998 0.858418 0.853474 0.853866 0.853128

Figure 48: The mean values of the similarity score (SFF) in color-plane-misregistration test

53

Maximal Shift AM Screen bnoise floyd jarvis screen_16u stucki

0 0.024208679 0.032322863 0.022284619 0.024984616 0.023916724 0.025324058

5 0.024290447 0.032024997 0.022504087 0.025209841 0.024282231 0.025816921

10 0.024380347 0.034599347 0.022980837 0.025964076 0.025332781 0.026882035

15 0.024368594 0.034130979 0.02249899 0.025402081 0.025042764 0.025781278

20 0.024405356 0.033180112 0.022640378 0.02553367 0.025088702 0.025980482

25 0.024487738 0.034523529 0.022787087 0.025673486 0.025348412 0.026080016

30 0.024537847 0.033392477 0.022951236 0.025771796 0.025596782 0.026278372

35 0.024607455 0.03340859 0.023032288 0.025859892 0.024792209 0.026272514

40 0.02470252 0.033545616 0.022901453 0.025724125 0.02494534 0.026029785

45 0.024812424 0.033785974 0.023024682 0.025835013 0.02516629 0.026186731

50 0.024916841 0.033383251 0.023156806 0.025797532 0.025203286 0.026211924

Figure 49: The standard deviation values of the similarity score (SFF) in color-plane-misregistration test

From this graph, it can be seen that all algorithms degrade when shifting applies, even within the first

shift of 5 pixels (in simulation resolution) which are equivalent to a portion of a pixel.

Another observation is that the screen16u algorithm is much more sensitive after 10 pixels shift.

Figure 50: The influence of the color plane misregistration on the similarity score in each test. The maximal shift is 50 pixels

54

Figure 51 shows the color-plane-misregistration influence on graininess. The results show that the

screen16u algorithm generates much grainier images than other algorithms. Nevertheless, it has a trend

of reduced graininess when shifting increases. It can be explained by the fact that the image becomes

more smeared and less grainy at some level of shifting. When reaching a 30 pixels level, the graininess

is increasing (Depending on the exact screen used and its own cell size).

Figure 51: The influence of color plane misregistration on graininess score

55

Maximal Shift AM Screen bnoise floyd jarvis screen_16u stucki

0 1.408816 1.484972 1.44483 1.47976 1.64266 1.459718

5 1.396064 1.477804 1.431828 1.469786 1.618924 1.449988

10 1.392196 1.475688 1.427296 1.46623 1.60395 1.446584

15 1.395862 1.477478 1.431304 1.46942 1.585718 1.449794

20 1.392402 1.475786 1.427608 1.466296 1.569308 1.446688

25 1.395402 1.47774 1.430948 1.468998 1.567094 1.449228

30 1.392768 1.475882 1.428174 1.466834 1.558656 1.44698

35 1.394868 1.476948 1.430452 1.468688 1.55886 1.448808

40 1.393334 1.476138 1.428746 1.467398 1.5627 1.447586

45 1.39453 1.477112 1.429918 1.46832 1.57042 1.448616

50 1.393966 1.476826 1.429406 1.467922 1.574258 1.4483

Figure 52: The mean values of the graininess score in color-plane-misregistration test

Maximal Shift AM Screen bnoise floyd jarvis screen_16u stucki

0 0.560342453 0.543481577 0.45416628 0.483215789 0.643712916 0.459397978

5 0.560656902 0.544300589 0.450706909 0.48346827 0.607321322 0.460566612

10 0.560000934 0.543522818 0.447912039 0.481941672 0.580220544 0.45934794

15 0.560343953 0.544276948 0.449725145 0.482658784 0.565978144 0.459978298

20 0.559770822 0.543764619 0.44753285 0.48145798 0.560076801 0.458842669

25 0.559978009 0.544136706 0.448936563 0.482235441 0.565369047 0.459184262

30 0.559578598 0.543605296 0.447458446 0.481542149 0.560465228 0.458388453

35 0.559717299 0.543001525 0.448327177 0.482038053 0.557543256 0.458687107

40 0.559448086 0.543224047 0.447302579 0.481508768 0.557060517 0.45821821

45 0.559557344 0.54359604 0.447675336 0.481678625 0.564160308 0.458488719

50 0.55940922 0.542893894 0.447344341 0.48141548 0.566501651 0.45838044

Figure 53: The standard deviation values of the graininess score in color-plane-misregistration test

56

Figure 54: The influence of the color plane misregistration on the graininess score in each test. The maximal shift is 50 pixels

Figure 55 is the last graph for this group and it depicts the color-plane-misregistration influence on the

banding. While most algorithms show almost no influence on banding as we increase the amount of

shifting, the screen16u algorithm dramatically increases starting at the first shift, and even more so in 15

pixels shift.

57

Figure 55: The influence of color plane misregistration on banding score

Maximal Shift AM Screen bnoise floyd jarvis screen_16u stucki

0 7.03576E-06 0.000374366 0.000088002 0.00023672 7.42186E-12 7.84646E-05

5 0.000240684 0.000770796 0.000657533 0.000818806 0.000885281 0.000671322

10 0.000264676 0.00084095 0.000669425 0.000919199 0.003341965 0.000742012

15 0.000208568 0.000761128 0.000584479 0.000808318 0.004014446 0.000640942

20 0.000211804 0.000699554 0.000551226 0.000810965 0.003263585 0.000648676

25 0.000185067 0.000622416 0.000506012 0.000786175 0.003023996 0.000603434

30 0.000205016 0.000691614 0.000498536 0.000757624 0.002316774 0.000560527

35 0.000209526 0.000720184 0.000605203 0.000847766 0.002277853 0.000681206

40 0.000236126 0.000816604 0.000637064 0.000861118 0.002382079 0.000713428

45 0.000244402 0.000938334 0.000669772 0.000921274 0.003157422 0.000779476

50 0.000270536 0.00087278 0.000734064 0.000920756 0.002949494 0.00074816

Figure 56: The mean values of the banding score in color-plane-misregistration test

58

Maximal Shift AM Screen bnoise floyd jarvis screen_16u stucki

0 3.65037E-06 0.000150604 3.6712E-05 0.000304391 6.87292E-12 3.07848E-05

5 0.000147648 0.000964363 0.000822619 0.000810302 0.000726388 0.000863437

10 0.000179791 0.001022909 0.000873724 0.001083872 0.003096052 0.00107514

15 0.000132096 0.000902825 0.000710128 0.000721267 0.004002402 0.000732505

20 0.000141397 0.000896889 0.000700492 0.000871157 0.003158123 0.000881308

25 0.000117486 0.000601765 0.000573895 0.000728249 0.002735569 0.000732763

30 0.000130647 0.000774917 0.00051661 0.000642637 0.002013474 0.000628862

35 0.000136504 0.000868274 0.000805257 0.000930878 0.002010645 0.000956714

40 0.00016247 0.000982957 0.00070481 0.000723431 0.002114157 0.000803403

45 0.000160389 0.001056543 0.000881796 0.00105126 0.002839676 0.001115537

50 0.000176422 0.0010981 0.000836716 0.000876752 0.002921293 0.000885391

Figure 57: The standard deviation values of the banding score in color-plane-misregistration test

Figure 58: The influence of the color plane misregistration on the banding score in each test. The maximal shift is 50 pixels

59

While observing the result images, we see that this artifact causes color banding when using the screen16u

algorithm (see figure 59a). For the sake of comparison, no bands appear when using floyd algorithm (see

figure 59b).This phenomenon shows that some algorithms are very sensitive to the color plane

misregistration while others are less sensitive. Moreover, this observation shows that while simple and

straightforward algorithm produces good result on a “perfect” printer, it might lead to poor results when

a very small misalignment occurs, due to its inherent sensitivity.

Figure 59a: A result image create by screen16u algorithm. One can

notice color bands.

Figure 59b: A result image create by floyd algorithm. Color bands do

not exist.

60

Write-Head Banding

This group of tests examine the impact of the Write-head banding on the algorithms and its influence on

similarity, graininess and banding. Once again, we used the default configuration: The write head size is

20 pixels, and the maximal gap is 4 pixels. In these set of tests we compared two result images: first, a

result image of a banding distortion and second, a result image without one. We observed which algorithm

produces better results in average. The following figures shows a section of the result images:

Figure 60a: A section of a printing result using Jarvis

algorithm.

Figure 60b: A section of a printing result using Jarvis

algorithm, with write-head banding distortion.

61

The following diagram describes the impact of the write-head banding distortion on similarity:

Figure 61: The influence of write-head banding on similarity score (SFF).

Algorithm
mean with
write-head

banding

SD with write-
head banding

Mean with
perfect printer

SD with
perfect
printer

Difference

 floyd 0.838464 0.033697613 0.861068 0.022284619 0.022604

 am_screen 0.827178 0.039601664 0.85683 0.024208679 0.029652

 screen_16u 0.827656 0.039281255 0.859642 0.023916724 0.031986

 stucki 0.839264 0.032492158 0.85583 0.025324058 0.016566

 jarvis 0.840598 0.031706806 0.855762 0.024984616 0.015164

 bnoise 0.807636 0.043994082 0.836852 0.032322863 0.029216

Figure 62: The Standard deviation and mean values of the similarity score (SFF) in write-head banding test

Clearly, Floyd, Jarvis and Stucki have less impact than other algorithms.

62

Figure 63: The influence of the write-head banding on the Similarity score in each test.

63

The next diagram describes the impact of the write-head banding distortion on graininess:

Figure 64: The influence of write-head banding on graininess score.

Algorithm
mean with
write-head

banding

SD with
write-head

banding

Mean with
perfect printer

SD with
perfect
printer

Difference

 floyd 1.35703 0.409170504 1.44483 0.45416628 0.0878

 am_screen 1.336968 0.515233338 1.408816 0.560342453 0.071848

 screen_16u 1.574434 0.549273268 1.64266 0.643712916 0.068226

 stucki 1.387994 0.431063333 1.459718 0.459397978 0.071724

 jarvis 1.420458 0.465037413 1.47976 0.483215789 0.059302

 bnoise 1.425116 0.506902246 1.484972 0.543481577 0.059856

Figure 65: The Standard deviation and mean values of the graininess score in write-head banding test

64

Figure 66: The influence of the write-head banding on the graininess score in each test.

From this diagram, we learn that there is a small degradation in the graininess score, but it is not

substantial. In addition, there is no great difference between the examined algorithms.

65

The last diagram describes the impact of the write-head banding distortion on banding:

Figure 67: The influence of write-head banding on banding score.

Algorithm
mean with
write-head

banding

SD with write-
head banding

Mean with
perfect printer

SD with
perfect
printer

Difference

 floyd 0.000834868 0.000296714 0.000088002 3.6712E-05 0.000746866

 am_screen 0.000624596 0.000339866 7.03576E-06 3.65037E-06 0.00061756

 screen_16u 0.000929824 0.000206277 7.42186E-12 6.87292E-12 0.000929824

 stucki 0.000842972 0.000285296 7.84646E-05 3.07848E-05 0.000764507

 jarvis 0.000831412 0.000304744 0.00023672 0.000304391 0.000594692

 bnoise 0.000721964 0.000296441 0.000374366 0.000150604 0.000347598

Figure 68: The Standard deviation and mean values of the banding score in write-head banding test

66

Figure 69: The influence of the write-head banding on the banding score in each test.

Since we added bands (write-head bands) to each image, it was expected that the banding score would

increase. Most algorithms have a similar level of bands, but not an identical one. It can be seen that even

without our added distortions, most of the algorithms create some small level of banding on their own. It

is also easy to see that the contribution of the write-head banding distortion to Blue Noise algorithm’s

result was much smaller in comparison with other algorithms.

67

Conclusion

The results shown in the previous section demonstrated the assumption that some algorithms are more

sensitive to artifacts that might happen on real life printing scenarios. These results can be seen only on

printed images. When using this simulation tool it is easy to predict these errors, understand the algorithm

sensitivity and even match it to the most suitable printing technology. Therefore, the necessity of using

this evaluation on halftoning algorithms is obvious. When a new algorithm is introduced, it is not enough

to assume a perfect printer on laboratory environment. Instead, testing it on real-life printer simulator is

essential. Prior to this work, the only way to examine a new halftoning algorithm was by actual printing

on various printer models. These printing tests might include many iterations during development and

debugging process. By using this simulator, which modeled the process mathematically, the evaluation

can be made without actual printing, thus saves time, supplies and efforts.

The tests described in the previous section examine only six classic algorithms, and show a demonstration

of the tool. However, the expectation is that both the academia and the industry fields, which produce

halftoning algorithms, will use this tool. This evaluation tool will allow those developers to evaluate their

own intellectual property algorithms in real life scenarios. The evaluation result could shed a light on the

effectiveness of new sophisticated techniques.

This list of algorithms is configurable and by that can host any proprietary algorithm. Using this tool

could result better halftoning algorithms, or a better match between exiting algorithms and specific

printing technology.

For future research, additional artifacts might be added to this tool in order to assess other sensitivities

such as jitter and ghosting. Moreover, other scoring methods can be used in addition to banding,

graininess and similarity.

68

References

[1] Z. Wang, A. C. Bovik, H. R. Sheikh and E. P. Simoncelli, "Image quality assessment: From error

visibility to structural similarity", IEEE Transactions on Image Processing, vol. 13, no. 4, pp. 600-612,

April 2004.

[2] Hila Nachlieli, Doron Shaked, Shai Druckman, Maya Shalev, and Yona Yaniv, “Automatic

mechanical band perceptual evaluation”, in Proceedings IS&T International Conference Digital

Printing Technology Digital Fabrication (NIP25), September 2009, pp. 495-498.

[3] Farhan A. Baqai et-al, “Digital Color Halftoning [Problems, algorithms, and recent trends]”, IEEE

SIGNAL PROCESSING MAGAZINE [87] JANUARY 2005

[4] Vishal Monga, Niranjan Damera-Venkata, Hamood Rehman, and Brian L. Evans, “Halftoning

toolbox for MATLAB”, version 1.2.

[5] Hila Nachlieli and Doron Shaked, “Measuring the quality of quality measures”, IEEE Transactions

on Image Processing, vol. 20, no. 1, January 2011.

[6] Amir Kolaman and Orly Yadid-Pecht, “Quaternion structural similarity: A new quality index for

color images”, IEEE Transactions on Image Processing, vol. 21, no. 4, April 2012.

[7] Hua-Wen Chang et-al, “Sparse Feature Fidelity for Perceptual Image Quality Assessment”, IEEE

TRANSACTIONS ON IMAGE PROCESSING, VOL. 22, NO. 10, OCTOBER 2013

69

[8] Zhou Wang et-al, “Multi-Scale structural similarity for image quality assessment” , Proceedings of

the 37th IEEE Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, Nov. 9-

12, 2003.

[9] Y. Ju, T. Kashti, T. Frank, D. Kella, D. Shaked, M. Fischer, R. Ulichney, and J. Allebach, “Black-

Box Models for Laser Electrophotographic Printers – Recent Progress”, IS&T NIP29 (29th Int. Conf.

on Digital Printing Technologies), Seattle, WA, Sep 2013.

[10] Jason Youn, Jian Sun, Yanling Ju, Tamar Kashti, Tal Frank, Dror Kella, Mani Fischer, Robert

Ulichney, Guy Adams, and Jan Allebach, “Effect of image capture device on the accuracy of black-box

printer models”, Proc. SPIE 9015, Color Imaging XIX: Displaying, Processing, Hardcopy, and

Applications, 90150T (January 8, 2014).

[11] Weibao Wang, Peter Bauer, Jerry Wagner, and Jan P. Allebach, “MFP scanner diagnostics using a

self-printed target to measure the modulation transfer function”, Proc. SPIE 9016, Image Quality and

System Performance XI, 90160A (January 7, 2014); doi:10.1117/12.2037959.

[12] Alastair Reed, David Berfanger, Yang Bai, and Kristyn Falkenstern, “Full-color visibility model

using CSF which varies spatially with local luminance”, Proc. SPIE 9027, Imaging and Multimedia

Analytics in a Web and Mobile World 2014, 902705 (March 3, 2014); doi:10.1117/12.2045408.

[13] Isaac Amidror& Roger D. Hersch, “Analysis of the microstructures (‘‘rosettes’’) in the

superposition of periodic layers”, Journal of Electronic Imaging 11(3), 316–337 (July 2002).

[14] Carl-Magunus Fahlcrantz & Per-Ake Johansson, “A comparison of different print mottle

evaluation models”, 2004

70

[15] Jin-Young Kim et-al, “Design of Color screen sets for robustness to color plane misregistration”,

IEEE International Conference on Image Processing, 2011

[16] Roy S. Berns, Animesh Bose, and Di-Yuan Tzeng. “The Spectral modeling of large-format ink-jet

printers”, RIT Munsell Color Science Laboratory. December 1996.

[17] Thrasyvoulos N. Pappas, Chen-Koung Dong, and David L. Neuhoff, “Measurement of printer

parameters for model-based halftoning”, Journal of Electronic Imaging 2(3), pp. 193--204. July 1993.

[18] Thrasyvoulos N. Pappas and David L. Neuhoff, “Least-squares model-based halftoning”, IEEE

Transactions on Image Processing 8(8), pp. 1102--1116. August 1999.

[19] Je-Ho Lee and Jan P. Allebach, “Inkjet printer model-based halftoning”, IEEE Transactions on

Image Processing 15(5). May 2005.

[20] Yanling Ju, Dhruv Saxena, Tamar Kashti, Dror Kella, Doron Shaked, Mani Fischer, Robert

Ulichney, and Jan P. Allebach, “Modeling large-area influence in digital halftoning for

electrophotographic printers”, Proceedings SPIE-IS&T Electronic Imaging. January 2012.

[21] Lawrence A. Taplin, “Spectral modeling of a six-color inkjet printer”, Masters Thesis, RIT.

December 2001.

[22] Thrasyvoulos N. Pappas, Jan P. Allebach, and David L. Neuhoff, “Model-based digital

halftoning”, IEEE Signal Processing Magazine. July 2003.

71

[23] Farhan A. Baqai and Jan P. Allebach, “Halftoning via direct binary search using analytical and

stochastic printer models”, IEEE Transactions on Image Processing 12(1). January 2013.

[24] R.W. Floyd and L. Steinberg, “An adaptive algorithm for spatial grey scale”, in Proc. Society for

Information Display, 1976, vol. 17/2, pp. 75-77.

[25] David R. Wyble, “A Critical review of spectral models applied to binary color printing”, RIT.

2000.

[26] Robert Ulichney, “Digital halftoning”, The MIT Press 1993.

[27] Henry R. Kang, “Digital Color Halftoning”, 1999

[28] ISO-13660 “Information technology -- Office equipment -- Measurement of image quality

attributes for hardcopy output -- Binary monochrome text and graphic images”, 2001

[29] T. Mitsa and K. Parker, "Digital Halftoning using a blue noise mask", J. Opt. Soc. Am. A, Vol. 9,

November 1992, pp. 1920-1929.

[30] R. Eschbach and K. Knox, "Error diffusion algorithm with edge enhancement", J. Opt. Soc. Am.

A, Vol. 8, No. 12, December 1991, pp. 1844-1850.

[31] Michael Kriss “Handbook of Digital Imaging”

[32] Gooran, Sasan. 2005, “Hybrid Halftoning, A Useful Method for Flexography”, Journal of Imaging

Science and Technology 49(1): 85–95.

72

[33] Gooran, Sasan. 2006. “A Novel Hybrid AM/FM Halftoning Based on Multi-Level Halftoning”,

Journal of Imaging Science And Technology 50 (2): 157–167.

[34] Paula Žitinski Elías, “Halftoning for Multi-Channel Printing”, 2014

[35] Puneet Goyal et-al “Electro-Photographic model based stochastic clustered-dot halftoning with

direct binary search”, IEEE International Conference on Image Processing, 2011

[36] P. Stucki, “MECCA—A multiple-error correcting computation algorithm for bilevel image

hardcopy reproduction”, IBM Research Laboratory, Zurich, Switzerland, Res. Rep. RZ1060, 1981.

[37] J.F. Jarvis, C.N. Judice, and W.H. Ninke, “A survey of techniques for the display of continuous-

tone pictures on bilevel displays”, Comp. Graph. Image Proc., vol. 5, pp. 13-40, 1976.

[38] https://www.flickr.com.

https://www.flickr.com/

73

 תקציר

תמונת עם דרגות המשמשת כדי ליצור אשליה של הינה טכניקה ידועה (Halftone)שיטת ההפטון

בשימוש נפוץ בתעשיית תנמצא ים. טכניקה זובינארי אלמנטיםבאמצעות סידור חכם של רציפות אפור

כל גישה ל. לבן-הדפסה בשחורהדפסה צבעונית והן עבור הן עבור הוצעו ההדפסה. גישות רבות

י מדידה אין כל ,מטרות. למעשההכל המשמש עבור אלגוריתם יחיד לא קיים יתרונות וחסרונות, אך

 יםיכולשאלגוריתמים ישנם. הבעיה המרכזית היא כי מסוג זהלהערכת אלגוריתמים יםאובייקטיבי

בסביבת טוב שהתוצאות נראות, כיוון אלגוריתםה המפתחים של עבור מרשימים להיראות מאוד

 התוצאות עלולות לצאת בעיתיות ולא צפויות. ,ימוש בזמן אמתנעשה בהם שהמעבדה, אך כאשר

המדפסת מניחים שבדרך כלל פתחיםמשעקב העובדה לעתים קרובותתופעה זו עלולה לקרות

תמים שונים מדפסות יש עיוותים רבים. אלגוריל , אך במציאות"אידאליתהמיועדת הינה מדפסת "

לטפל נועד אשר בדיקה . מטרתה של עבודה זו הוא לבנות כלי לעיוותים אלויכולים להיות רגישים

אמיתיות, תוך מדפסות הלכה למעשה, כפי שקורה בהדמיית תהליך ההדפסה מידול ובבעיה זו על ידי

עבודה ב. שונים יםעיוותו ליעד אל לי מודד את הרגישות של אלגוריתמי. הככדי הדמיית אותם עיוותים

את תוצאות הבדיקה וכמו כן הצגנואת כלי נו, הפעלשונות קטגוריותמאלגוריתמים 6 מדדנוזו אנו

 הבדיקה.

74

,

 המרכז הבינתחומי בהרצליה
ספר אפי ארזי למדעי המחשב-בית

כלי להערכת אלגוריתמי

 הדפסה

תואר כמילוי חלק מהדרישות לקראת עבודת גמר המוגשת סיכום

 מוסמך במסלול מחקרי במדעי המחשב

אריאל שמרלינגיד -על

 ליןאר קרל סט"וד אור-פרופ' יעקב הלהעבודה בוצעה בהנחיית

 2015 אוקטובר

