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Abstract

Cultural evolution of cooperation under vertical and non-vertical cultural transmission is

studied, and conditions are found for fixation and coexistence of cooperation and defection. The

evolution of cooperation is facilitated by its horizontal transmission and by an association between

social interactions and horizontal transmission. The effect of oblique transmission depends on

the horizontal transmission bias. Stable polymorphism of cooperation and defection can occur,

and when it does, reduced association between social interactions and horizontal transmission

evolves, which leads to a decreased frequency of cooperation and lower population mean fitness.

The deterministic conditions are compared to outcomes of stochastic simulations of structured

populations. Parallels are drawn with Hamilton’s rule incorporating relatedness and assortment.

A paper based on this work was published in Proceeding of the Royal Society B [1].
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1 Introduction

Cooperative behavior can reduce an individual’s fitness and increase the fitness of its conspecifics or

competitors [2]. Nevertheless, cooperative behavior appears to occur in many animals [3], including

humans, primates [4], rats [5], birds [6, 7], and lizards [8]. Evolution of cooperative behavior has been

an important focus of research in evolutionary theory since at least the 1930s [9]. Since the work of

Hamilton [10] and Axelrod and Hamilton [2], theories for the evolution of cooperative and altruistic

behaviors have been intertwined often under the rubric of kin selection. Kin selection theory posits

that natural selection is more likely to favor cooperation between more closely related individuals. The

importance of relatedness to the evolution of cooperation and altruism was demonstrated by Hamilton

[10], who showed that an allele that determines cooperative behavior will increase in frequency if the

reproductive cost to the player that cooperates, 2, is less than the benfit to the recipient, 1, times the

relatedness, A, between the recipient and the player. This condition is known asHamilton’s rule:

2 < 1 · A, (1)

where the relatedness coefficient A measures the probability that an allele sampled from the cooperator

is identical by descent to one at the same locus in the recipient.

There is an ongoing debate about to what extent kin selection explains evolution of cooperation and

altruism. It has been suggested that kin selection cannot explain the cooperative behaviour of eusocial

insects like the honey bee. The most significant argument against kin selection is that cooperation can

evolve with zero relatedness [11]. This makes Hamilton’s rule incomplete according to Wilson [11].

Foster et al. [12] reject this claim. They argue that altruism without relatedness cannot evolve. They

refer us to Hamilton who claimed that relatedness can arise without recent common ancestry. Wilson

also criticises kin selection on the grounds that environmental or ecological factors probably be more

important than relatedness in determining social actions. On the other hand, Foster et al. [12] argue

that kin selection does not ignore ecology. Hamilton’s rule shows that environmental factors causing

a high benefit: cost ratio will favour cooperation.

Beside kin selection, two other major theroies were suggested to explain the evolution of coopera-

tion.

Reciprocity suggests repeating interactions or individual recognition as key factors for explaining the

evolution of cooperation. In direct reciprocity there are a repeated encounters between the same two

individuals. In every encounter, each player has a choice between cooperation and defection. If I

cooperate now, you may cooperate later. Hence, it may pay off to cooperate. This game-theoretic

framework is known as the repeated Prisoner’s Dilemma. Direct reciprocity can only lead to the
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evolution of cooperation if the cost is smaller than F the probability for another encounter between

the same two individuals multiplied by the benefit,

2 < 1 · F . (2)

Direct reciprocity assumes that both players are in a position to cooperate. Direct reciprocity cannot

explain cooperation in asymmetric interactions[13]. In humans, such interactions happen often, for

example, humans donate money. Indirect reciprocity has been suggested to explain this behavior.

Nowak [14] claims that direct reciprocity is like a barter economy based on the immediate exchange

of goods, while indirect reciprocity resembles the invention of currercy. The currercy that "fuels the

engines" of indirect reciprocity is reputation. However, reciprocity assumes repeating interactions and

therefore, has difficulty explaining evolution of cooperation if no repeating interactions occurs.

Group Selection theory posits that cooperation is favoured because of the advantage to the whole

group, if selection acts at the group level in addition to the individual level. A common model

for group selection work as follows: the population is divided into groups. In each group there

are cooperators, which help other group members, and defectors, which do not help. Individuals

reproduce proportional to their fitness. Offspring are added to the same group. If a group reaches

a certain size it can split to two groups. A group that grows faster will split more often. Groups of

cooperators grow faster than groups of defectors. Therefore, cooperation can evolve in this model

when
1

2
> 1 + =

<
, (3)

where n is the maximum group size and m is the number of groups.

All three theories mentioned above assume that cooperation is genetically determined. This raise

the question, is it possible that cooperation is determined by environmental or social influences.

Cooperative behavior may be subject to cultural transmission, which allows an individual to acquire

attitudes or behavioral traits from other individuals in its social group through imitation, learning, or

other modes of communication [15, 16]. Cultural transmission may bemodeled as vertical, horizontal,

or oblique: vertical transmission occurs between parents and offspring, horizontal transmission occurs

between individuals from the same generation, and oblique transmission occurs to offspring from the

generation to which their parents belong (i.e. from non-parental adults). Evolution under either of

these transmission models can be more rapid than under pure vertical transmission [15, 17, 18].

Eshel and Cavalli-Sforza [19] studied a related model for the evolution of cooperative behavior. Their

model included assortative meeting, or non-random encounters, where a fraction < of individuals in

the population each interact specifically with an individual of the same phenotype, and a fraction 1−<
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interacts with a randomly chosen individual. Such assortative meeting may be due, for example, to

population structure or active partner choice. In their model, cooperative behavior can evolve if [19,

eq. 3.2]

2 < 1 · < , (4)

where 1 and 2 are the benefit and cost of cooperation1.

The role of assortment in the evolution of altruism was emphasized by Fletcher and Doebeli [20].

They found that in a public-goods game, altruism will evolve if cooperative individuals experience

more cooperation, on average, than defecting individuals, and “thus, the evolution of altruism requires

(positive) assortment between focal cooperative players and cooperative acts in their interaction

environment.” With some change in parameters, this condition is summarized by [20, eq. 2.3]

2 < 1 · (?� − ?�) , (5)

where ?� is the probability that a cooperator receives help, and ?� is the probability that a defector

receives help2. Bĳma and Aanen [21] obtained a result related to inequality 5 for other games.

Cooperation can also evolve when interactions are determined by population structure. For example,

Ohtsuki et al. [22] studied populations on graphs with average degree : , that is, the average individual

has : potential interaction partners. Assuming that selection is weak and that the population size is

much larger than : (i.e. sparse structure), they found that cooperative behaviour can evolve if [22]

2 < 1 · 1
:
. (6)

They thus interpret 1/: as social relatedness or social viscosity [22].

Feldman et al. [23] introduced the first model for the evolution of altruism by cultural transmission

with kin selection and demonstrated that if the fidelity of cultural transmission of altruism is i, then

the condition for evolution of altruism in the case of sib-to-sib altruism is [23, Eq. 16]

2 < 1 · i − 1 − i
i

. (7)

In inequality 7, i replaces relatedness (A in inequality 1) or assortment (< in inequality 4), but the ef-

fective benefit 1 ·i is reduced by (1−i)/i. This shows that under a cultural transmission, the condition

for the evolutionary success of altruism entails a modification of Hamilton’s rule (inequality 1).

1In an extended model, which allows an individual to encounter # individuals before choosing a partner, the right hand

side is multiplied by � [#], the expected number of encounters [19, eq. 4.6].
2Inequality 5 generalizes inequalities 1 and 4 by substituting ?� = A+?, ?� = ? and ?� = <+(1−<)?, ?� = (1−<)?,

respectively, where ? is the frequency of cooperators.

5



BothWoodcock [24] andLewin-Epstein et al. [25] demonstrated that non-vertical transmission can help

explain the evolution of cooperative behavior, the former using simulations with cultural transmission,

the latter using a model where cooperation is mediated by host-associated microbes. Indeed, models

in which microbes affect their host’s behavior [25, 26, 27] are mathematically similar to models of

cultural transmission, and they also emphasize the role of non-vertical transmission [15].

Handley and Mathew [28] studied the importance of culture on human behavior. They showed that

the probablity of indvidual to cooperate with unrelated strangers from a different group in transient

interactions corresponds to the degree of cultural similarity between those groups. Therefore, they have

suggested that group-level selection on culturally differentiated populations can explain cooperation

between unrelated humans from different groups.

To understand the evolution of cooperation we are going to use replicator dynamics. The replicator

in replicator dynamics has the ability to make one or more copies of itself. The replicator can be

a gene, a phenotype, a strategy in a game, etc. In evolutionary game theory context, a replicator

is a different strategy in the game. For example, in the case of cooperation whether the individual

is a cooperative or a defector. In replicator dynamics we assume large population of replicators,

which interact with respect to their frequency. Interactions of different replicator affect the fitness

acorrding to some payoff matrix. This payoff matrix depands on the game which is played. The

most common game to describe cooperation is the Prisoner’s Dilemma[29]. Similar to dominant

strategies bringing forth Nash equilibria when games are repeated, strategies in replicator dynamics

can become evolutionary stable. Such strategies are called evolutionarily stable strategies (ESS).

Such strategies cannot be invaded by any other strategy that is initially rare. Evolutionarily stable

strategies maximize the expected fitness of its replicators and therefore, maximize the population mean

fitness. A fundamental question is to test if natural selection, operating within the framework of known

genetical models, leads to ESS. The answer to the question above is that natural selection in many

cases does not lead to an increase in the population mean fitness. Therefore, it is not generally true

that natural selection does operate as to maximize the average individual fitness resulting in an ESS.

Sacks [30] even showed that natural selection at a diploid locus model, when relative fitnesses of the

different genotypes are functions of gene frequency, leads to stable equilibrium gene frequencies that

corresponds to not maximum mean fitness. Instead of searching for evolutionarily stable strategies,

we focus on evolutionary genetic stblility (EGS) [31]. EGS occurs when the frequencies of types

(genotypes, phenotypes etc.) remains stable. Here, we study both local stability and external stability.

Local stability occurs when a system near the equilibrium wiil approach it. External stability [32, 33]

is local stability of the equilibrium to invasion by a modifier allele m. One of the main questions in
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the evolution of cooperation is under what conditions such invasions are possible, or in other words

under what conditions the system is externally unstable?

Here, we study models for the cultural evolution of cooperation that include both vertical and non-

vertical transmission. In our models behavioral changes are mediated by cultural transmission that

can occur specifically during social interactions. For instance, there may be an association between

the choice of partner for social interaction and the choice of partner for cultural transmission, or when

an individual interacts with an individual of a different phenotype, exposure to the latter may lead the

former to convert its phenotype. Our results demonstrate that cultural transmission, when associated

with social interactions, can enhance the evolution of cooperation even when genetic transmission

cannot, partly because it facilitates the generation of assortment [20], and partly because it diminishes

the effect of selection (due to non-vertical transmission from non-reproducing individuals [18]).

2 Models

2.1 Basic model

Consider a large population whose members can have one of two phenotypes: q = � for cooperators or

q = � for defectors. An offspring inherits its phenotype from a single parent via vertical transmission

with probability E or from a random individual in the parental population via oblique transmission

with probability (1 − E) (Figure 1a). Following Ram et al. [18], given that the parent’s phenotype is

q and assuming uni-parental inheritance [34], the conditional probability that the phenotype q′ of the

offspring is � is

%(q′ = � | q) =


E + (1 − E)?, if q = �

(1 − E)?, if q = �

, (8)

where ? = %(q = �) is the frequency of � among all adults in the parental generation.

Not all adults become parents, and we denote the frequency of phenotype � among parents by ¤?.

Therefore, the frequency ?̂ of phenotype � among juveniles (after selection and vertical and oblique

transmission) is

?̂ = ¤? [E + (1 − E)?] + (1 − ¤?) [(1 − E)?] = E ¤? + (1 − E)? . (9)

Individuals are assumed to interact according to a Prisoner’s Dilemma. Specifically, individuals

interact in pairs; a cooperator suffers a fitness cost 0 < 2 < 1, and its partner gains a fitness benefit

1, where we assume 2 < 1. Figure 1a shows the payoff matrix, i.e. the fitness of an individual with
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Figure 1: Model illustration. (a) First, offspring inherit their parent’s phenotype via vertical cultural

transmission with probability E, or the phenotype of a random non-parental adult via oblique cultural

transmission with probability 1 − E. (b) Second, adults socially interact in pairs in a Prisoner’s

Dilemma game. Horizontal cultural transmission occurs from a random individual in the population,

with probability 1 − U, or from the social partner, with probability U, where U is the interaction-

transmission association parameter. (c) The Prisoner’s Dilemma payoff matrix shows the fitness of

phenotype q1 when interacting with phenotype q2. (d) The probabilities of successful horizontal

cultural transmission of phenotypes � (cooperator) and � (defector) are )� and )�, respectively.

phenotype q1 when interacting with a partner of phenotype q2. The choise of Prisoner’s Dilemma

as the interaction model was motividated by the fact that prisoner’s dilemma is a common game

used to study evolution of cooperation[2], [35], [29]. Although we decided to focus on Prisoner’s

Dilemma, other games such as stag hunt[36] may be a better explaination of cooperation behavior in

humman[37].

Social interactions occur randomly: two juvenile individuals with phenotype � interact with proba-

bility ?̂2, two juveniles with phenotype � interact with probability (1 − ?̂)2, and two juveniles with

different phenotypes interact with probability 2?̂(1 − ?̂). Horizontal cultural transmission occurs

between pairs of individuals from the same generation. It occurs between socially interacting partners

with probability U, or between a random pair with probability 1 − U (see Figure 1b). However,

horizontal transmission is not always successful, as one partner may reject the other’s phenotype. The

probability of successful horizontal transmission of phenotypes � and � are )� and )�, respectively

(Table 1, Figure 1d). Thus, the frequency ?′ of phenotype � among adults in the next generation, after
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horizontal transmission, is

?′ = ?̂2 [U + (1 − U) ( ?̂ + (1 − ?̂) (1 − )�)) ] +
?̂(1 − ?̂)

[
U(1 − )�) + (1 − U)

(
?̂ + (1 − ?̂) (1 − )�)

) ]
+

(1 − ?̂) ?̂
[
U)� + (1 − U) ?̂)�

]
+ (1 − ?̂)2

[
(1 − U) ?̂)�

]
= ?̂2()� − )�) + ?̂(1 + )� − )�) .

(10)

The frequency of � among parents (i.e. after selection) follows a similar dynamic, but also includes

the effect of natural selection, and is therefore

F̄ ¤?′ =?̂2(1 + 1 − 2)
[
U + (1 − U)

(
?̂ + (1 − ?̂) (1 − )�)

) ]
+

?̂(1 − ?̂) (1 − 2)
[
U(1 − )�) + (1 − U)

(
?̂ + (1 − ?̂) (1 − )�)

) ]
+

(1 − ?̂) ?̂(1 + 1)
[
U)� + (1 − U) ?̂)�

]
+ (1 − ?̂)2

[
(1 − U) ?̂)�

]
,

(11)

where fitness values are taken from Figure 1c and Table 1, and the population mean fitness is

F̄ = 1 + ?̂(1 − 2). Starting from Eq. 9 with ?̂′ = E ¤?′ + (1 − E)?′, we substitute ?′ from Eq. 10 and ¤?′

from Eq. 11 and obtain

?̂′ =
E

F̄

[
?̂2(1 + 1 − 2)

(
1 − (1 − ?̂) (1 − U))�)

)]
+

E

F̄

[
?̂(1 − ?̂) (1 − 2)

(
?̂(1 − U))� + 1 − )�

) ]
+

E

F̄

[
?̂(1 − ?̂) (1 + 1)

(
?̂(1 − U) + U

)
)�

]
+

E

F̄
(1 − ?̂)2 ?̂(1 − U))� + (1 − E) ?̂2()� − )�) + (1 − E) ?̂(1 + )� − )�) .

(12)

Table 2 lists the model variables and parameters.

2.2 Modifier model

In this section, we extend the model described in subsection 2.1. We assume coexistence of both

phenotypes (cooperators and defectors) and that the frequency of each phenotype stays stable over

time. Hence, we assume that the we start from a stable equilibrium. Denote the frequency of

cooperators in the population as ?̂∗ and frequency of defectors as 1 − ?̂∗.

We investigate the evolution of interaction-transmission association U. We assume that the initial

population has interaction-transmission association U1. What would happen to cooperators frequency

if a newmutation would occur that changed the interaction-transmission association to a different value

U2 without direct effect on fitness? Here, the invaders are the individuals with interaction-transmission

association U2. Figure 2 illustrates the invasion.
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Table 1: Interaction frequency, fitness, and transmission probabilities.

Phenotype q1 Phenotype q2 Frequency Fitness of q1
%(q1 = �) via horizontal transmission:

from partner, U from population, (1 − U)

� � ?̂2 1 + 1 − 2 1 ?̂ + (1 − ?̂) (1 − )�)

� � ?̂(1 − ?̂) 1 − 2 1 − )� ?̂ + (1 − ?̂) (1 − )�)

� � ?̂(1 − ?̂) 1 + 1 )� ?̂)�

� � (1 − ?̂)2 1 0 ?̂)�

Table 2: Model variables and parameters.

Symbol Description Values

� Cooperator phenotype

� Defector phenotype

? Frequency of phenotype � among adults [0, 1]

¤? Frequency of phenotype � among parents [0, 1]

?̂ Frequency of phenotype � among juveniles [0, 1]

E Vertical transmission rate [0, 1]

2 Cost of cooperation (0, 1)

1 Benefit of cooperation 2 < 1

U Probability of interaction-transmission association [0, 1]

)�, )� Horizontal transmission rates of phenotype � and � (0, 1)
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Figure 2: Modifier model illustration. Starting from stable equilibrium with coexistence of both

phenotypes (red and green) and the resident modifier allele with interaction-transmission association

U1. An invading modifier allele that modifies the interaction-transmission association to U2 invades

the population.

2.3 Spatial model

Interaction-transmission association may also emerge from population structure. Consider a pop-

ulation colonizing a two-dimensional grid of size 100-by-100, where each site is inhabited by one

individual, similarly to the model of Lewin-Epstein and Hadany [26]. Each individual is characterized

by its phenotype: either cooperator, �, or defector, �. Initially, each site in the grid is randomly

colonized by either a cooperator or a defector, with equal probability. In each generation, half of the

individuals are randomly chosen to "initiate" interactions, and these initiators interact with a random

neighbor (i.e. individual in a neighboring site) in a Prisoner’s Dilemma game (Figure 1c) and a random

neighbor (with replacement) for horizontal cultural transmission (Figure 1b). The expected number of

each of these interactions per individual per generation is one, but the realized number of interactions

can be zero, one, or even more than one, and in every interaction both individuals are affected, not just

the initiator. The effective interaction-transmission association U in this model is the probability that

the same neighbor is picked for both interactions, or U = 1/" , where " is the number of neighbors.

On an infinite grid, " = 8 (i.e. Moore neighbourhood [38]), but on a finite grid " can be lower

in neighbourhoods close to the grid border. As before, )� and )� are the probabilities of successful

horizontal transmission of phenotypes � and �, respectively.

The order of the interactions across the grid at each generation is random. After all interactions take

place, an individual’s fitness is determined byF = 1+1·=1−2·=2, where =1 is the number of interactions
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that individual had with cooperative neighbors, and =2 is the number of interactions in which that

individual cooperated (note that the phenotype may change between consecutive interactions due to

horizontal transmission). Then, a new generation is produced, and the sites can be settled by offspring

of any parent, not just the neighboring parents. Selection is global, rather than local, in accordance

with our deterministic model: The parent is randomly drawn with probability proportional to its

fitness, divided by the sum of the fitness values of all potential parents. Offspring are assumed to have

the same phenotype as their parents (i.e. E = 1).

3 Results

We determine the equilibria of the model in Eq. 12 and analyze their local stability. We then analyze

the evolution of a modifier of interaction-transmission association, U. Finally, we compare derived

conditions to outcomes of stochastic simulations with a structured population.

3.1 Evolution of cooperation

To learn about the evolution of cooperation we investigate local stability of the equilibria of the model

in Eq. 12. The equilibria are the solutions of ?̂′ − ?̂ = 0. Note that Eq. 12 may look simple cubic

polynomial. However, because F̄ is a function of ?̂, Eq. 12 is not simple polynomial but a fractional

polynomial. The solution of fractional polynomial is not trivial and that is why it is better to find the

equilibria and analyze the stability. Let 5 ( ?̂) = F̄( ?̂′ − ?̂). Then, using SymPy [39], a Python library

for symbolic mathematics, this simplifies to

5 ( ?̂) = F̄( ?̂′ − ?̂) = V1 ?̂
3 + V2 ?̂

2 + V3 ?̂ , (13)

where
V1 =

[
2(1 − E) − 1(1 − UE)

]
()� − )�) ,

V2 = −V1 − V3 ,

V3 = U1E)� − 2E(1 − )�) + ()� − )�) .

(14)

If ) = )� = )� then V1 = 0 and V3 = −V2 = U1E) − 2E(1 − )), and 5 ( ?̂) becomes a quadratic

polynomial,

5 ( ?̂) = ?̂(1 − ?̂)
[
U1E) − 2E(1 − ))

]
. (15)

Clearly the only two equilibria are the fixations ?̂ = 0 and ?̂ = 1, which are are locally stable if

5 ′( ?̂) < 0 near the equilibrium (see Appendix A), where 5 ′( ?̂) = (1 − 2?̂)
[
U1E) − 2E(1 − ))

]
, so
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that
5 ′(0) = U1E) − 2E(1 − )) ,

5 ′(1) = −U1E) + 2E(1 − )) .
(16)

In the general case where )� ≠ )�, the coefficient V1 is not necessarily zero, and 5 ( ?̂) is a cubic

polynomial. Therefore, three equilibria may exist, two of which are ?̂ = 0 and ?̂ = 1, and the third

is

?̂∗ =
V3
V1

=
U1E)� − 2E(1 − )�) + ()� − )�)[
2(1 − E) − 1(1 − UE)

]
()� − )�)

. (17)

Note that the sign of the cubic (Eq. 13) at positive (negative) infinity is equal (opposite) to the sign of

V1. If )� > )�, then

V1 < [2(1 − UE) − 1(1 − UE)] ()� − )�) = (1 − UE) (2 − 1) ()� − )�) < 0 , (18)

since 2 < 1 and UE < 1. Hence the signs of the cubic at positive and negative infinity are negative and

positive, respectively. First, if V3 < V1 then 1 < ?̂∗. Also, 5 ′(0) < 0 and 5 ′(1) > 0; that is, fixation

of the defector phenotype � is the only locally stable feasible equilibrium. Second, if V1 < V3 < 0

then 0 < ?̂∗ < 1 and therefore 5 ′(0) < 0 and 5 ′(1) < 0 so that both fixations are locally stable

and ?̂∗ separates the domains of attraction. Third, if 0 < V3 then ?̂∗ < 0 and therefore 5 ′(0) > 0

and 5 ′(1) < 0; that is, fixation of the cooperator phenotype � is the only locally stable legitimate

equilibrium.

Similarly, if )� < )�, then

V1 > [2(1 − UE) − 1(1 − UE)] ()� − )�) = (1 − UE) (2 − 1) ()� − )�) > 0 , (19)

since 2 < 1 and UE < 1, and the signs of the cubic at positive and negative infinity are positive and

negative, respectively. First, if V3 < 0 then ?̂∗ < 0 and therefore 5 ′(0) < 0 and 5 ′(1) > 0; that

is, fixation of the defector phenotype � is the only locally stable legitimate equilibrium. Second, if

0 < V3 < V1 then 0 < ?̂∗ < 1 and therefore 5 ′(0) > 0 and 5 ′(1) > 0; that is, both fixations are locally

unstable and ?̂∗ is a stable polymorphic equilibrium. Third, if V1 < V3 then ?̂∗ > 1 and therefore

5 ′(0) > 0 and 5 ′(1) < 0, and fixation of the cooperator phenotype � is the only locally stable feasible

equilibrium.

This analysis can be summarized as follows:

1. Fixation of cooperation: if (i) ) = )� = )� and 2 < 1 · U)1−) ; or if (ii) )� > )� and 0 < V3; or if

(iii) )� < )� and V1 < V3.
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2. Fixation of the defection: if (iv) ) = )� = )� and 2 > 1 · U)1−) ; or if (v) )� > )� and V3 < V1 < 0;

or if (vi) )� < )� and V3 < 0.

3. polymorphism of both phenotypes at ?̂∗: if (vii) )� < )� and 0 < V3 < V1.

4. Fixation of either phenotype depending on initial frequency: if (viii) )� > )� and V1 < V3 < 0.

Define the following cost thresholds, W1 and W2, and the vertical transmission threshold, Ê,

W1 =
1EU)� + ()� − )�)

E(1 − )�)
, W2 =

1EU)� + (1 + 1) ()� − )�)
E(1 − )�) + (1 − E) ()� − )�)

, Ê =
)� − )�
1 − )�

. (20)

Wenowproceed to use the cost thresholds, W1 and W2, and the vertical transmission threshold, Ê (Eq. 20).

First, assume)� < )�. V3 < 0 requires W1 < 2. For V3 < V1 we need 2
[
E(1−)�) + (1−E) ()�−)�)

]
>

1EU)� + (1 + 1) ()� − )�). Note that the expression in the square brackets is positive if and only if

E > Ê. Thus, for V3 < V1 we need E > Ê and W2 < 2 or E < Ê and 2 < W2, and for 0 < V3 < V1 we need

E > Ê and W2 < 2 < W1, or E < Ê and 2 < min(W1, W2). For V1 < V3 we need E > Ê and 2 < W2 or E < Ê

and W2 < 2. However, some of these conditions cannot be met, since E < Ê implies 2 < 1 < W2.

Second, assume)� > )�. V3 > 0 requires W1 > 2. For V1 < V3 weneed 2
[
E(1−)�)+(1−E) ()�−)�)

]
<

1EU)� + (1+ 1) ()� −)�). Thus for V1 < V3 we need E > Ê and 2 < W2 or E < Ê and 2 > W2. But Ê < 0

when )� > )�, and therefore we have V1 < V3 if 2 < W2. Similarly, we have V3 < V1 if 2 > Ŵ2.

Then we have the following result.

Result 1. With vertical, horizontal, and oblique transmission, the cultural evolution of a cooperation

follows one of the following scenarios in terms of the cost thresholds W1 and W2 and the vertical

transmission threshold Ê (Eq. 20):

1. Fixation of cooperation: if (i) )� ≥ )� and 2 < W1; or if (ii) )� < )� and E > Ê and 2 < W2.

2. Fixation of defection: if (iii) )� ≥ )� and W2 < 2; or if (iv) )� < )� and W1 < 2.

3. Stable polymorphism: if (v) )� < )� and E < Ê and 2 < W1; or if (vi) )� < )� and E > Ê and

W2 < 2 < W1.

4. Unstable polymorphism: if (vii) )� > )� and W1 < 2 < W2.

Thus, cooperation can take over the population if it has either a horizontal transmission advantage, or

if it has a horizontal transmission disadvantage, but the vertical transmission rate is high enough. In

either case, the cost of cooperation must be small enough. A stable polymorphism can exist between

cooperation and defection only if defection has a horizontal transmission advantage. In this case,
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the existence of a stable polymorphism depends on the interplay between the benefit and cost of

cooperation and the vertical transmission rate. These conditions are illustrated in Figures 3a, 3b, 4a,

and 4b. Note that stable and unstable polymorphism are also called, respectively, coexistence and

bistable competition.

Much of the literature on evolution of cooperation focuses on conditions for an initially rare coopera-

tive phenotype to invade a population of defectors. The following remarks address this condition.

Remark 1. If the initial frequency of cooperation is very close to zero, then its frequency will increase

if the cost of cooperation is low enough,

2 < W1 =
1EU)� + ()� − )�)

E(1 − )�)
. (21)

This unites the conditions for fixation of cooperation and for stable polymorphism, both of which

entail instability of the state where defection is fixed, ?̂ = 0.

Importantly, increasing interaction-transmission association U increases the cost threshold (mW1/mU >

0), making it easier for cooperation to increase in frequency when initially rare. Similarly, increasing

the horizontal transmission of cooperation, )�, increases the threshold (mW1/m)� > 0), facilitating

the evolution of cooperation ((Figure 4a and 4b). However, increasing the horizontal transmission of

defection, )�, can increase or decrease the cost threshold, but it increases the cost threshold when

the threshold is already above one (2 < 1 < W1): mW1/m)� is positive when )� > 1
1+U1E , which

gives W1 > 1/E. Therefore, increasing )� decreases the cost threshold and limits the evolution of

cooperation, but only if )� < 1
1+U1E .

Increasing the vertical transmission rate, E, can either increase or decrease the cost threshold, depending

on the horizontal transmission bias, )�−)�, because sign(mW1/mE) = −sign()�−)�). When )� < )�

we have mW1/mE > 0, and as the vertical transmission rate increases, the cost threshold increases,

making it easier for cooperation to increase when rare (Figure 3b). In contrast, when )� > )� we get

mW1/mE < 0, and therefore as the vertical transmission rate increases, the cost threshold decreases,

making it harder for cooperation to increase when rare (Figure 3a).

In general, this condition cannot be formulated in the form of Hamilton’s rule due to the bias in

horizontal transmission, represented by )� − )�. If )� = )�, then, from Result 1 and inequality 21,

cooperation will take over the population from any initial frequency if the cost is low enough,

2 < 1 · U)
1 − ) , (22)
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and regardless of the vertical transmission rate, E. This condition can be interpreted as a version of

Hamilton’s rule (2 < 1 · A, inequality 1) or as a version of inequality 5, where U)/(1 − )) can be

regarded as the effective relatedness or effective assortment, respectively. Note that the right-hand side

of inequality 22 equals W1 when ) = )� = )�.

From inequality 21, without interaction-transmission association (U = 0), cooperation will increase

when it is rare if there is horizontal transmission bias for cooperation, )� > )�, and

2 <
)� − )�
E(1 − )�)

. (23)

Figure 4a illustrates this condition (for E = 1), which is obtained by setting U = 0 in inequality 21.

In this case, the benefit of cooperation, 1, does not affect the evolution of cooperation, and the

outcome is determined only by cultural transmission. Further, inequality 21 shows that with perfect

interaction-transmission association (U = 1), cooperation will increase when rare if

2 <
1E)� + ()� − )�)

E(1 − )�)
. (24)

In the absence of oblique transmission, E = 1, the only equilibria are the fixation states, ¤? = 0 and

¤? = 1, and cooperation will evolve from any initial frequency (i.e. ¤?′ > ¤?) if inequality 24 applies

(Figure 4). This is similar to case of microbe-induced cooperation studied by Lewin-Epstein et al.

[25]; therefore when E = 1, this remark is equivalent to their eq. 1.

It is interesting to examine the general effect of interaction-transmission association U on the evolution

of cooperation. Define the interaction-transmission association thresholds, 01 and 02, as

01 =
2 · E(1 − )�) − ()� − )�) (1 + 1 − 2)

1 · E · )�
, 02 =

2 · E(1 − )�) − ()� − )�)
1 · E · )�

. (25)

Remark 2. Cooperation will increase when rare if interaction-transmission association is high

enough, specifically if 02 < U.

Figures 3c and 3d illustrate this condition. With horizontal transmission bias for cooperation, )� > )�,

cooperation can fix from any initial frequency if 02 < U (green area in the figures). With horizontal

bias favoring defection, )� < )�, cooperation can fix from any frequency if U is large enough, 01 < U

(green area with )� < )�), and can reach stable polymorphism if U is intermediate, 02 < U < 01

(yellow area). Without horizontal bias, )� = )�, fixation of cooperation occurs if U is high enough,
2
1
· 1−)
)
< U (inequality 22; in this case 01 = 02).
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Interestingly, because sign(m02/mE) = sign()� − )�), the effect of the vertical transmission rate E

on 01 and 02 depends on the horizontal transmission bias. That is, if )� > )�, then evolution of

cooperation is facilitated by oblique transmission, whereas if )� < )�, then evolution of cooperation

is facilitated by vertical transmission (Figures 3c and 3d).

Next, we examine the roles of vertical and oblique transmission in the evolution of cooperation.

Fixation of cooperation is possible only if the vertical transmission rate is high enough,

E > Ê =
)� − )�
1 − )�

. (26)

This condition is necessary for fixation of cooperation, but it is not sufficient. If horizontal transmission

is biased for cooperation, )� > )�, cooperation can fix with any vertical transmission rate (because

Ê < 0). In contrast, if horizontal transmission is biased for defection, )� < )�, cooperation can fix

only if the vertical transmission rate is high enough: in this case oblique transmission can prevent

fixation of cooperation (see Figures 3b and 3d).

With only vertical transmission (E = 1), from inequality 21, cooperation increases when rare if

2 <
1U)� + ()� − )�)

1 − )�
, (27)

which can also be written as
2(1 − )�) − ()� − )�)

1)�
< U . (28)

In the absence of vertical transmission (E = 0), from recursion 12 we see that the frequency of the

cooperator phenotype among adults increases every generation, i.e. ?′ > ?, if there is a horizontal

transmission bias in favor of cooperation, namely )� > )�. That is, if E = 0, then selection plays no

role in the evolution of cooperation (i.e. 1 and 2 do not affect ?̂′). The dynamics are determined solely

by differential horizontal transmission of the two phenotypes. With no bias in horizontal transmission,

)� = )�, phenotype frequencies do not change, ?̂′ = ?̂.

Cooperation and defection can coexist at frequencies ?̂∗ and 1 − ?̂∗ (Eq. 17). When it is feasible,

this equilibrium is stable or unstable under the conditions of Result 1, parts 3 and 4, respectively.

The yellow and blue areas in Figures 4 and 3 show cases of stable and unstable polymorphism,

respectively. When ?̂∗ is unstable, cooperation will fix if its initial frequency is ?̂ > ?̂∗, and defection

will fix if ?̂ < ?̂∗ as shown in Figure 5a. ?̂∗ is unstable when there is horizontal transmission bias

for cooperation, )� > )�, and the cost is intermediate, W1 < 2 < W2. Figure 4d shows ?̂′ − ?̂ as a

function of ?̂ and Figure 5 shows the frequency of cooperation over time in both stable and unstable

equilibrium regimes.
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(a) (b)

(c) (d)

Figure 3: Evolution of cooperation under vertical, oblique, and horizontal cultural transmission.

The figure shows parameter ranges for global fixation of cooperation (green), global fixation of

defection (red), fixation of either cooperation or defection depending on the initial conditions, i.e.

unstable polymorphism (blue), and stable polymorphism of cooperation and defection (yellow). In all

cases the vertical transmission rate E is on the x-axis. (a-b) Cost of cooperation 2 is on the y-axis and

the cost thresholds W1 and W2 (Eqs. 20) are represented by the solid and dashed lines, respectively. (c-

d) Interaction-transmission association U is on the y-axis and the interaction-transmission association

thresholds 01 and 02 (Eqs. 25) are represented by the solid and dashed lines, respectively. Horizontal

transmission is biased in favor of cooperation, )� > )�, in (a) and (c), or defection, )� < )�, in (b)

and (d). Here, )� = 0.5, and (a) 1 = 1.2, , )� = 0.4, U = 0.4; (b) 1 = 2, )� = 0.7, U = 0.7; (c)

1 = 1.2, )� = 0.4, 2 = 0.5; (d) 1 = 2, )� = 0.7, 2 = 0.5.

18



(a) (b)

(c) (d)

Figure 4: Evolution of cooperation under vertical and horizontal cultural transmission (v=1).

The figure shows parameter ranges for global fixation of cooperation (green), global fixation of

defection (red), fixation of either cooperation or defection depending on the initial conditions, i.e.

unstable polymorphism (blue), and stable polymorphism of cooperation and defection (yellow). (a-

c) The horizontal transmission bias ()� − )�) is on the x-axis. In panels (a) and (b), the cost of

cooperation 2 is on the y-axis and the cost thresholds W1 and W2 (Eq. 20) are the solid and dashed lines,

respectively. In panel (c), interaction-transmission association U is on the y-axis and the interaction-

transmission association thresholds 01 and 02 (Eqs. 25) are the solid and dashed lines, respectively.

Here, 1 = 1.3, )� = 0.4, E = 1, (a) U = 0, (b) U = 0.7, (c) 2 = 0.35. (d) Change in frequency of

cooperation among juveniles (?̂′ − ?̂) as a function of the frequency (?̂), see Eq. 12. The orange

curve shows convergence to a stable polymorphism ()� = 0.4, )� = 0.9, 1 = 12, 2 = 0.35, E = 1, and

U = 0.45). The blue curve shows fixation of either cooperation or defection, depending on the initial

frequency ()� = 0.5, )� = 0.1, 1 = 1.3, 2 = 0.904, E = 1, and U = 0.4). Black circles show the three

equilibria.
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(a) (b)

Figure 5: Unstable and stable equilibriumdynamics. Thefigure shows the frequency of cooperation

over time (generations) starting from different initial frequencies. (a) The system has an unstable

equilibrium and therefore all the curves are moving away from it. (b) The system has a stable

equilibrium and therefore all the curves moves towards it. Here, )� = 0.5, 2 = 0.5, E = 0.59 and (a)

)� = 0.4, U = 0.1 and 1 = 1.2. (b) )� = 0.7, U = 0.6 and 1 = 2.3.

3.2 Evolution of interaction-transmission association

We now focus on the evolution of interaction-transmission association, assuming that the population

is initially at a stable polymorphism of the two phenotypes, cooperation � and defection �, where the

frequency of � among juveniles is ?̂∗ (Eq. 17). Note that for a stable polymorphism, there must be

horizontal bias for defection, )� < )�, and an intermediate cost of cooperation, W2 < 2 < W1 (Eq. 20),

see Figure 4b. The equilibrium population mean fitness is F̄∗ = 1 + ?̂∗(1 − 2), which is increasing

in ?̂∗, and ?̂∗ is increasing in U (Appendix B). Therefore, F̄∗ increases as U increases. But can this

population-level advantage lead to the evolution of increased U?

To answer this question, we add a “modifier locus” [32, 40, 41, 42] that determines the value of U

but has no direct effect on fitness. This locus has two alleles, " and <, which induce interaction-

transmission associations U1 and U2, respectively. Suppose that the population has evolved to a stable

equilibrium ?̂∗ when only allele " is present. We study the local stability of this equilibrium to

invasion by the modifier allele <; this is called “external stability” [32, 33].

Denote the frequencies of the pheno-genotypes �" , �" , �<, and �< by p̂ = ( ?̂1, ?̂2, ?̂3, ?̂4). The
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frequencies of the pheno-genotypes in the next generation are defined by the recursion system,

F̄ ?̂′1 =E ?̂1G(1 + 1 − 2) (1 − (1 − U1) (1 − G))�) +

E ?̂1(1 − G) (1 − 2) (1 − U1)�G − )� (1 − G)) +

E ?̂2G(1 + 1))� (G + U1(1 − G)) +

E ?̂2(1 − G)G(1 − U1))� +

(1 − E) ?̂1(1 − (1 − G))�) +

(1 − E) ?̂2G)� ,

F̄ ?̂′2 =E ?̂1G(1 + 1 − 2) (1 − U1) (1 − G))� +

E ?̂1(1 − G) (1 − 2) (U1)� + (1 − U1) (1 − G))�) +

E ?̂2G(1 + 1) (1 − U1)� (1 − G) − )�G) +

E ?̂2(1 − G) (1 − (1 − U1)G)�) +

(1 − E) ?̂2(1 − G)�) +

(1 − E) ?̂1)� (1 − G) ,

F̄ ?̂′3 =?̂3G(1 + 1 − 2) (1 − (1 − U2) (1 − G))�) +

?̂3(1 − G) (1 − 2) (1 − U2)�G − )� (1 − G)) +

?̂4G(1 + 1))� (G + U2(1 − G)) +

?̂4(1 − G)G(1 − U2))� +

(1 − E) ?̂3(1 − (1 − G))�) +

(1 − E) ?̂4G)� ,

F̄ ?̂′4 =?̂3G(1 + 1 − 2) (1 − U2) (1 − G))� +

?̂3(1 − G) (1 − 2) (U2)� + (1 − U2) (1 − G))�) +

?̂4G(1 + 1) (1 − U2)� (1 − G) − )�G) +

?̂4(1 − G) (1 − (1 − U2)G)�) +

(1 − E) ?̂4(1 − G)�) +

(1 − E) ?̂3)� (1 − G) ,

(29)

where G = ?̂1 + ?̂3 is the total frequency of the cooperative phenotype �, and F̄ = 1 + (1 − 2)G is the

population mean fitness.

The stable equilibrium where only allele " is present is p̂∗ = ( ?̂∗, 1 − ?̂∗, 0, 0), where

?̂∗ =
U1E)� − 2E(1 − )�) + ()� − )�)[
2(1 − E) − 1(1 − U1E)

]
()� − )�)

, (30)
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setting U = U1 in Eq. 17. ?̂∗ is a feasible polymorphism (0 < ?̂∗ < 1) if )� < )� and W2 < 2 < W1

(Result 1).

The local stability of p̂∗ to the introduction of allele < is determined by the linear approximation L∗

of the transformation in Eq. 29 near p̂∗ (i.e. the Jacobian of the transformation at the equilibrium).

L∗ is known to have a block structure, with the diagonal blocks occupied by the matrices L∗
8=
and L∗4G

[32, 33] . The latter is the external stability matrix: the linear approximation to the transformation

near p̂∗ involving only the pheno-genotypes �< and �<, derived from Eq. 29, with F̄∗ = 1+ (1− 2) ?̂∗

as the stable population mean fitness,

L∗4G =
1
F̄∗


;11 ;12

;21 ;22

 =
1
F̄∗


mF̄ ?̂′3
m ?̂3
(p̂∗) mF̄ ?̂′3

m ?̂4
(p̂∗)

mF̄ ?̂′4
m ?̂3
(p̂∗) mF̄ ?̂′4

m ?̂4
(p̂∗)

 . (31)

Because we already assumed that p∗ is internally stable at the beginning of the analysis (i.e. locally

stable to small perturbations in the frequencies of �" and �"), the stability of p∗ is determined by

the eigenvalues of the external stability matrix L∗4G . This is a positive matrix, and due to the Perron-

Frobenius theorem, the leading eigenvalue ofL∗4G is real and positive. Thus, if the leading eigenvalue is

less (greater) than one, then the equilibrium p∗ is externally stable (unstable) and allele< cannot (can)

invade the population of allele" . The eigenvalues ofL∗4G are the roots of the characteristic polynomial,

'(_), which is a quadratic with a positive leading coefficient. Therefore, lim_→±∞ '(_) = ∞, and the

leading eigenvalue is less than one (implying stability) if and only if '(1) > 0 and '′(1) > 0. Thus,

a sufficient condition for external instability of p∗ is '(1) < 0. '(_) is defined as a determinant,

'(_) = det(L∗4G −_I), where I is the 2-by-2 identity matrix. We will use SymPy [39], a Python library

for symbolic mathematics to simplify '(1) in the general case when 0 < E ≤ 1 (We did a full analysis

without SymPy for the special case when E = 1 in Appendix C),

'(1) = 2E ?̂∗ [)�1?̂∗2(EU2 − 1) − 2)�1?̂∗EU2 + )�1?̂∗(1 + EU2)]
1?̂(1?̂∗ − 2?̂∗ + 2) + 2?̂∗(2?̂∗ − 2) + 1

+ 2E ?̂
∗ [)�2?̂∗2(1 − E) + )�2?̂∗(E − 1) − )� ?̂∗(1 − 2) + )�]

1?̂(1?̂∗ − 2?̂∗ + 2) + 2?̂∗(2?̂∗ − 2) + 1

+ 2E ?̂
∗ [)�1?̂∗2(1 − EU2) + )�1?̂2(EU2 − 1) + )�2?̂∗2(E − 1)]

1?̂(1?̂∗ − 2?̂∗ + 2) + 2?̂∗(2?̂∗ − 2) + 1

+ 2E ?̂
∗ [)�2?̂∗(1 − E) + )�2E(1 − ?̂∗ + )� ( ?̂∗ − 1) + 2E( ?̂∗ − 1))]

1?̂(1?̂∗ − 2?̂∗ + 2) + 2?̂∗(2?̂∗ − 2) + 1

(32)

We should find when '(1) < 0. Using SymPy we saw that when U1 = U2, '(1) = 0 which means that

there is an eigenvalue that is equal to 1. Now, assume that n = U2 − U1. Using the derivative of '(1)

with respect to n we will find the sign of '(1) when U2 < U1.

m'(1)
mn

=
21E2 ?̂∗ [()� − )�) ?̂∗2 + ()� − 2)�) ?̂∗ + )�]

( ?̂∗(1 − 2) + 1)2
(33)
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The denominator is always positive. The numerator is quadratic polynomial of ?̂∗ with the following

roots:

?̂∗1 =
)�

)� − )�
?̂∗2 = 1 (34)

We assumed )� > )� thus, ?̂∗1 < 0. The quadratic polynomial has negative leading coefficient

()� − )�), and therefore,the numerator is positive for any ?̂∗1 < ?̂∗ < 1. Thus, the derivative of '(1)

with respect to n is positive for any n and R(1) grows as U2 − U1 grows. Therefore, because '(1)

grows as U2 − U1 grows and '(1) = 0 when U2 − U1 = 0, we get that '(1) < 0 if and only if U2 < U1.

This is a sufficient condition for external instability. In addition, we also saw that m'(1)
mn

> 0 for every

n whichmakes U2 < U1 necessary and sufficient condition for successful invasion (external instability).

Result 2. From a stable polymorphism between cooperation and defection, a modifier allele can

successfully invade the population if it decreases the interaction-transmission association U.

This reduction principle entails that successful invasions will reduce the frequency of cooperation, as

well as the population mean fitness (Figure 6). Furthermore, if we a modifier allele that decreases U

appears and invades the population from time to time, then the value of U will continue to decrease,

further reducing the frequency of cooperation and the population mean fitness. This evolution will

proceed as long as there is a stable polymorphism, that is, as long as 02 < U < 01 (Remark 2,

Figure 4c). Thus, we can expect the value of U to approach 02, the frequency of cooperation to fall to

zero, and the population mean fitness to decrease to one (Figure 6).

3.3 Population structure

Here, we are going to run stochastic simulations to learn more about evolution of Cooperation when

the population is structured. The model is described in subsection 2.3. All the simulations in this

section were made by Ohad Lewin-Epstein from Tel Aviv University. The outcomes of stochastic

simulations with such a structured population are shown in Figure 7, which demonstrates that the

highest cost of cooperation 2 that permits the evolution of cooperation agrees with the conditions

derived above for our model without population structure or stochasticity. An example of stochastic

stable polymorphism is shown in Figure 7c. Changing the simulation so that selection is local (i.e.

sites can only be settled by offspring of neighboring parents) had only a minor effect on the agreement

with the derived conditions (Figure 8).

These comparisons between the deterministic unstructured model and the stochastic structured model

show that the conditions derived for the deterministic model can be useful for predicting the dynamics
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(a) (b) (c)

Figure 6: Reduction principle for interaction-transmission association. Consecutive fixation

of modifier alleles that reduce interaction-transmission association U in numerical simulations of

evolution with two modifier alleles (Eq. D1). When an invading modifier allele is established in

the population (frequency > 99.95%), a new modifier allele that reduces interaction-transmission

association by 5% is introduced (at initial frequency 0.5%). (a) The frequency of the cooperative

phenotype � over time. (b) The frequency of the invading modifier allele < over time. (c) The

population mean fitness (F̄) over time. Here, E = 1, 2 = 0.05, 1 = 1.3, )� = 0.4 < )� = 0.7, initial

interaction-transmission association U1 = 0.7, lower interaction-transmission association threshold

02 = 0.605.

under complex scenarios. Moreover, this structured population model demonstrates that our parameter

for interaction-transmission association, U, can represent local interactions between individuals.

4 Discussion

Under a combination of vertical, oblique, and horizontal transmission with payoffs in the form

of a Prisoner’s Dilemma game, cooperation or defection can either fix or coexist, depending on

the relationship between the cost and benefit of cooperation, the horizontal transmission bias, and

the association between social interaction and horizontal transmission (Result 1, Figures 3 and 4).

Importantly, cooperation can increase when initially rare (i.e. invade a population of defectors) if and

only if, rewriting inequality 21, 2 · E(1 − )�) < 1 · EU)� + ()� − )�) , namely, the effective cost of

cooperation (left-hand side) is smaller then the effective benefit plus the horizontal transmission bias

(right-hand side). This condition cannot be formulated in the form of Hamilton’s rule, 2 < 1 · A, due to

the effect of biased horizontal transmission, represented by ()� − )�). Remarkably, a polymorphism

of cooperation and defection can be stable if horizontal transmission is biased in favor of defection

()� < )�) and both 2 and U are intermediate (yellow areas in Figures 3 and 4).
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(a) (b) (c)

Figure 7: Evolution of cooperation in a structured population. (a-b) The expected frequency of

cooperators in a structured population after 10,000 generations is shown (red for 0%, green for 100%)

as a function of both the cost of cooperation, 2, on the y-axis, and either the symmetric horizontal

transmission rate, ) = )� = )�, on the x-axis of panel (a), or the transmission bias, )� − )�, on the

x-axis of panel (b). Black curves represent the cost thresholds for the evolution of cooperation in a

well-mixed population with interaction-transmission association, where U = 1/8 in inequality 22 for

panel (a) and in Eqs. 20 for panel (b). The inset in panel (b) focuses on an area of the parameter

range in which neither phenotype is fixed throughout the simulation, maintaining a stochastic locally

stable polymorphism [43]. This stochastic polymorphism is illustrated in panel (c), which shows the

frequency of cooperators (green) and defectors (red) over time for the parameter set marked by an x

in panel (b). In all cases, the population evolves on a 100-by-100 grid. Cooperation and horizontal

transmission are both local between neighbouring sites, and each site has 8 neighbours. Selection

operates globally (see Figure S2 for results from a model with local selection). Simulations were

stopped at generation 10,000 or if one of the phenotypes fixed. 50 simulations were executed for each

parameter set. Benefit of cooperation, 1 = 1.3; perfect vertical transmission E = 1. (a) Symmetric

horizontal transmission,) = )� = )�; (b)Horizontal transmission rate)� is fixed at 0.4, and)� varies,

0.3 < )� < 0.5. (c) Horizontal transmission rates )� = 0.4 < )� = 0.435 and cost of cooperation

2 = 0.02.
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(a) (b)

Figure 8: Evolution of cooperation in a structured population with local selection. The expected

frequency of cooperators in a structured population after 10,000 generations is shown (red for 0%,

green for 100%) as a function of both the cost of cooperation (2) on the y-axis, and the symmetric

horizontal transmission rate () = )� = )�) on the x-axis of panel (a), or the transmission bias

)� − )� on the x-axis of panel (b). Cooperation and horizontal transmission are both local between

neighbouring sites, and each site had 8 neighbours. Selection operates locally (see Figure 4 for results

from a model with global selection). The black curves represent the cost thresholds for the evolution

of cooperation in a well-mixed population with interaction-transmission association, where U = 1/8 in

inequality 14 for panel (a) and in Eqs. 12 for panel (b). The population evolves on a 100-by-100 grid.

Simulations were stopped at generation 10,000 or if one of the phenotypes fixed. 50 simulations were

executed for each parameter set. Here, benefit of cooperation, 1 = 1.3; perfect vertical transmission

E = 1. (a) Symmetric horizontal transmission, ) = )� = )�. (b) Horizontal transmission rate )� is

fixed at 0.4, and )� varies, 0.3 < )� < 0.5.
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We find that stronger interaction-transmission association U leads to evolution of higher frequency

of cooperation and increased population mean fitness. Nevertheless, when cooperation and defection

coexist, U is expected to be reduced by natural selection, leading to extinction of cooperation and

decreased population mean fitness (Result 2, Figure 6). With U = 0, the benefit of cooperation cannot

facilitate its evolution; it can only succeed if horizontal transmission is biased in its favor.

Indeed, in our model, horizontal transmission plays a major role in the evolution of cooperation:

increasing the transmission of cooperation, )�, or decreasing the transmission of defection, )�, facili-

tates the evolution of cooperation. However, the effect of oblique transmission is more complicated.

When there is horizontal transmission bias in favor of cooperation, )� > )�, increasing the rate of

oblique transmission, 1 − E, will facilitate the evolution of cooperation. In contrast, when the bias is

in favor of defection, )� < )�, higher rates of vertical transmission, E, are advantageous for cooper-

ation, and the rate of vertical transmission must be high enough (E > Ê) for cooperation to fix in the

population.

Our deterministic model provides a good approximation to outcomes of simulations of a complex

stochastic model with population structure in which individuals can only interact with and transmit

to their neighbors. In these structured populations interaction-transmission association arises due to

both social interactions and horizontal cultural transmission being local (Figure 7 and Figure 8). We

did not find any significant difference between local and global selection.

In this work, we have studied a cultural evolution model in which interactions are modeled as a

Prisoner’s Dilemma game. We also assumed that in each generation individuals have only one

meaningful interaction. It would be interesting to investigate a model in which multiple games are

played in each generation. This would make the model more realistic and more complicated to solve.

To overcome the math complication, numerical simulations can be used. The model can be further

expanded by changing the game to Stag Hunt game. Tomasello et al. [37] claim that Stag Hunt game

can better explain evolution of cooperation in humans, because humans often collobrate in Stag Hunt

type situations in which all participants had alternatives but anticipated an even greater benefit from

successful capturing of the stag [44]. Therefore, changing the model so each interaction would be

model as Stag Hunt game could help us better understand cooperartion in humans. e In our model we

assumed that the model parameters such as vertical transmission(E), horizontal transmission ()� , )�),

benfit from cooperartion (1), cost of cooperartion (2) and interaction-transmission association (U) do

not change over time. However, in reality things are changing. For example, during different time of

the year, behavior can be changed due to weather [45], predator abundance [46] and food abundance

[47]. This could lead to changes in the model parameters. Further investigation is needed to learn
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about the effect of such changes in behavior.

Mechanism that was suggested by Traxler and Spichtig [48] showed that conditional cooperation

based on norm-dependent relational utilities, i.e. individual will only cooperate if it knows that others

will cooperate too, can sustain cooperation in a community|provided that cooperation is already at

a high frequency. Unlike conditional cooperation, interaction-transmission association can sustain

cooperation in a community even if cooperation is initially rare. Morsky and Akcay [49] suggested

that false beliefs on the frequencies of the cooperator can affect the individual decision whether to

cooperate or not. If the individual over-estimates the number of cooperators it will be more likely to

cooperate. This false belief can help sustain cooperation even if cooperartion is initially rare.

Feldman et al. [23] studied the dynamics of an altruistic phenotype with vertical cultural transmission

and a gene that modifies the transmission of the phenotype. Their results are very sensitive to

this genetic modification: without it, the conditions for invasion of the altruistic phenotype reduce

to Hamilton’s rule. Further work is needed to incorporate such genetic modification of cultural

transmission into our model. Woodcock [24] stressed the significance of non-vertical transmission for

the evolution of cooperation and carried out simulations with Prisoner’s Dilemma payoffs but without

horizontal transmission or interaction-transmission association (U = 0). Nevertheless, his results

demonstrated that it is possible to sustain altruistic behavior via cultural transmission for a substantial

length of time. He further hypothesized that horizontal transmission can play an important role in the

evolution of cooperation, and our results provide strong evidence for this hypothesis.

To understand the role of horizontal transmission, we first review the role of assortment. Eshel and

Cavalli-Sforza [19] showed that altruism can evolve when the tendency for assortative meeting, i.e.

for individuals to interact with others of their own phenotype, is strong enough. Fletcher and Doebeli

[20] further argued that a general explanation for the evolution of altruism is given by assortment: the

correlation between individuals that carry an altruistic trait and the amount of altruistic behavior in

their interaction group (see also Bĳma andAanen [21]). They suggested that to explain the evolution of

altruism, we should seek mechanisms that generate assortment, such as population structure, repeated

interactions, and individual recognition. Our results highlight another mechanism for generating

assortment: an association between social interactions and horizontal transmission that creates a

correlation between one’s partner for interaction and the partner for transmission. This mechanism

does not require repeated interactions, population structure, or individual recognition. We show that

high levels of such interaction-transmission association greatly increase the potential for evolution of

cooperation. With enough interaction-transmission association, cooperation can increase in frequency

when initially rare even when there is horizontal transmission bias against it ()� < )�).
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Howdoes non-vertical transmission generate assortment? Lewin-Epstein et al. [25] and Lewin-Epstein

and Hadany [26] suggested that microbes that induce their hosts to act altruistically can be favored

by selection, which may help to explain the evolution of cooperation. Indeed, it has been shown

that microbes can mediate behavioral changes in their hosts [50, 51]. Therefore, natural selection

on microbes may favor manipulation of the host so that it cooperates with others. From the kin

selection point-of-view, if microbes can be transmitted horizontally from one host to another during

host interactions, then following horizontal transmission the recipient host will carry microbes that

are closely related to those of the donor host, even when the two hosts are (genetically) unrelated.

From the assortment point-of-view, infection by behavior-determining microbes during interactions

effectively generates assortment because a recipient of help may be infected by a behavior-determining

microbe and consequently become a helper. Cultural horizontal transmission can similarly generate

assortment between cooperators and enhance the benefit of cooperation if cultural transmission and

helping interactions occur between the same individuals, i.e. when there is interaction-transmission

association, so that the recipient of help may also be the recipient of the cultural trait for cooperation.

Thus, with horizontal transmission, “assortment between focal cooperative players and cooperative

acts in their interaction environment” [20] is generated not because the helper is likely to be helped,

but rather because the helped is likely to become a helper.

Acknowledgements

We thank Lilach Hadany, Ayelet Shavit, and Kaleda Krebs Denton for discussions and comments. This work was

supported in part by the Clore Foundation Scholars Programme (OLE), the Morrison Institute for Population

and Resources Studies at Stanford University (MWF), Israel Science Foundation (YR 552/19), and Minerva

Stiftung Center for Lab Evolution (YR).

29



5 References
[1] Dor Cohen, Ohad Lewin-Epstein, Marcus W Feldman, and Yoav Ram. Non-vertical cultural transmission,

assortment and the evolution of cooperation. Proceedings of the Royal Society B, 288(1951):20203162,
2021.

[2] Robert Axelrod and William D Hamilton. The evolution of cooperation. Science, 211(4489):1390–1396,
1981.

[3] Lee Alan Dugatkin. Cooperation among Animals: An Evolutionary Perspective. Oxford University Press
on Demand, 1997.

[4] Adrian V Jaeggi and Michael Gurven. Natural cooperators: food sharing in humans and other primates.
Evolutionary Anthropology: Issues, News, and Reviews, 22(4):186–195, 2013.

[5] George ERice and Priscilla Gainer. “Altruism” in the albino rat. Journal of Comparative and Physiological
Psychology, 55(1):123, 1962.

[6] Peter B Stacey and Walter D Koenig, editors. Cooperative breeding in birds: long term studies of ecology
and behaviour. Cambridge University Press, 1990.

[7] Indrikis Krams, Tatjana Krama, Kristine Igaune, and Raivo Mänd. Experimental evidence of reciprocal
altruism in the pied flycatcher. Behavioral Ecology and Sociobiology, 62(4):599–605, 2008.

[8] Barry Sinervo, Alexis Chaine, Jean Clobert, Ryan Calsbeek, Lisa Hazard, Lesley Lancaster, Andrew G
McAdam, Suzanne Alonzo, Gwynne Corrigan, and Michael E Hochberg. Self-recognition, color signals,
and cycles of greenbeard mutualism and altruism. Proceedings of the National Academy of Sciences, 103
(19):7372–7377, 2006.

[9] J. B. S. Haldane. The Causes of Evolution. Longmans, London, 1932.
[10] William D Hamilton. The genetical evolution of social behaviour. ii. Journal of Theoretical Biology, 7

(1):17–52, 1964.
[11] Edward O Wilson. Kin selection as the key to altruism: its rise and fall. Social Research, pages 159–166,

2005.
[12] Kevin R Foster, Tom Wenseleers, and Francis LW Ratnieks. Kin selection is the key to altruism. Trends

in Ecology & Evolution, 21(2):57–60, 2006.
[13] Qi Su, Joshua Plotkin, et al. Evolution of cooperation with asymmetric social interactions. arXiv preprint

arXiv:2105.01167, 2021.
[14] Martin A Nowak. Five rules for the evolution of cooperation. Science, 314(5805):1560–1563, 2006.
[15] Luigi Luca Cavalli-Sforza and Marcus W Feldman. Cultural transmission and evolution: A quantitative

approach. Number 16. Princeton University Press, 1981.
[16] Peter J Richerson and Robert Boyd. Not by Genes Alone: How Culture Transformed Human Evolution.

University of Chicago Press, 2008.
[17] Stephen J Lycett and John AJ Gowlett. On questions surrounding the acheulean ‘tradition’. World

Archaeology, 40(3):295–315, 2008.
[18] Yoav Ram, Uri Liberman, and Marcus W Feldman. Evolution of vertical and oblique transmission under

fluctuating selection. Proceedings of the National Academy of Sciences, 115(6):E1174–E1183, 2018.
[19] Ilan Eshel and Luigi Luca Cavalli-Sforza. Assortment of encounters and evolution of cooperativeness.

Proceedings of the National Academy of Sciences, 79(4):1331–1335, 1982.
[20] Jeffrey A. Fletcher and Michael Doebeli. A simple and general explanation for the evolution of altruism.

Proc. R. Soc. B Biol. Sci., 276(1654):13–19, 2009.
[21] Piter Bĳma and Duur K. Aanen. Assortment, Hamilton’s rule and multilevel selection. Proc. R. Soc. B

Biol. Sci., 277(1682):673–675, 2010.
[22] Hisashi Ohtsuki, Christoph Hauert, Erez Lieberman, andMartin A. Nowak. A simple rule for the evolution

of cooperation on graphs and social networks. Nature, 441(7092):502–505, 2006.
[23] Marcus W Feldman, Luca L Cavalli-Sforza, and Joel R Peck. Gene-culture coevolution: models for the

evolution of altruism with cultural transmission. Proceedings of the National Academy of Sciences, 82
(17):5814–5818, 1985.

30



[24] Scott Woodcock. The significance of non-vertical transmission of phenotype for the evolution of altruism.
Biology and Philosophy, 21(2):213–234, 2006.

[25] Ohad Lewin-Epstein, Ranit Aharonov, and Lilach Hadany. Microbes can help explain the evolution of
host altruism. Nature Communications, 8:14040, 2017.

[26] Ohad Lewin-Epstein and Lilach Hadany. Host-microbiome coevolution can promote cooperation in a
rock-paper-scissors dynamics. Proc. R. Soc. B Biol. Sci., 287(1920):20192754, feb 2020.

[27] Yael Gurevich, Ohad Lewin-Epstein, and Lilach Hadany. The evolution of paternal care: a role for
microbes? Philos. Trans. R. Soc. B Biol. Sci., 375(1808):20190599, sep 2020.

[28] Carla Handley and Sarah Mathew. Human large-scale cooperation as a product of competition between
cultural groups. Nature communications, 11(1):1–9, 2020.

[29] Martin A Nowak and Karl Sigmund. Tit for tat in heterogeneous populations. Nature, 355(6357):250–253,
1992.

[30] Jerome M Sacks. A stable equilibrium with minimum average fitness. Genetics, 56(4):705, 1967.
[31] Sabin Lessard et al. Evolutionary stability: one concept, several meanings. Theoretical population biology,

37(1):159–170, 1990.
[32] Uri Liberman and Marcus W. Feldman. Modifiers of mutation rate: A general reduction principle. Theor.

Popul. Biol., 30:125–142, 1986.
[33] Lee Altenberg, Uri Liberman, and Marcus W. Feldman. Unified reduction principle for the evolution of

mutation, migration, and recombination. Proc. Natl. Acad. Sci. U. S. A., 114(12):E2392–E2400, mar 2017.
[34] Matthew R. Zefferman. Mothers teach daughters because daughters teach granddaughters: the evolution

of sex-biased transmission. Behav. Ecol., 27(4):1172–1181, 2016.
[35] Manfred Milinski. Tit for tat in sticklebacks and the evolution of cooperation. nature, 325(6103):433–435,

1987.
[36] Brian Skyrms. The stag hunt and the evolution of social structure. Cambridge University Press, 2004.
[37] Michael Tomasello, Alicia PMelis, Claudio Tennie, EmilyWyman, Esther Herrmann, Ian CGilby, Kristen

Hawkes, Kim Sterelny, Emily Wyman, Michael Tomasello, et al. Two key steps in the evolution of human
cooperation: The interdependence hypothesis. Current anthropology, 53(6):000–000, 2012.

[38] Edward F Moore. Machine models of self-reproduction. In Proceedings of symposia in applied mathe-
matics, volume 14, pages 17–33. American Mathematical Society New York, 1962.

[39] Aaron Meurer, Christopher P Smith, Mateusz Paprocki, Ondřej Čertík, Sergey B Kirpichev, Matthew
Rocklin, AMiT Kumar, Sergiu Ivanov, Jason K Moore, Sartaj Singh, et al. Sympy: symbolic computing
in python. PeerJ Computer Science, 3:e103, 2017.

[40] Marcus W. Feldman. Selection for linkage modification: I. Random mating populations. Theor. Popul.
Biol., 3:324–346, 1972.

[41] Uri Liberman and Marcus W. Feldman. A general reduction principle for genetic modifiers of recombina-
tion. Theor. Popul. Biol., 30(3):341–71, dec 1986.

[42] Uri Liberman. External stability and ESS: criteria for initial increase of new mutant allele. J. Math. Biol.,
26(4):477–485, 1988.

[43] Samuel Karlin and Uri Lieberman. Random temporal variation in selection intensities: One-locus two-
allele model. J. Math. Biol., 6(3):1–17, 1975.

[44] John CMitani, Josep Call, Peter M Kappeler, Ryne A Palombit, and Joan B Silk. The evolution of primate
societies. University of Chicago Press, 2012.

[45] Francisco M Azcárate, Eva Kovacs, and Begoña Peco. Microclimatic conditions regulate surface activity
in harvester ants messor barbarus. Journal of Insect Behavior, 20(3):315–329, 2007.

[46] Mark Briffa, Simon D Rundle, and Adam Fryer. Comparing the strength of behavioural plasticity and
consistency across situations: animal personalities in the hermit crab pagurus bernhardus. Proceedings of
the Royal Society B: Biological Sciences, 275(1640):1305–1311, 2008.

[47] Chris J Johnson, Katherine L Parker, and Douglas C Heard. Foraging across a variable landscape:
behavioral decisions made by woodland caribou at multiple spatial scales. Oecologia, 127(4):590–602,
2001.

31



[48] Christian Traxler andMathias Spichtig. Social norms and the indirect evolution of conditional cooperation.
Journal of Economics, 102(3):237–262, 2011.

[49] Bryce Morsky and Erol Akcay. False beliefs can bootstrap cooperative communities through social norms.
2020.

[50] Andrew P Dobson. The population biology of parasite-induced changes in host behavior. The Quarterly
Review of Biology, 63(2):139–165, 1988.

[51] Robert Poulin. Parasite manipulation of host behavior: an update and frequently asked questions. In
Advances in the Study of Behavior, volume 41, pages 151–186. Elsevier, 2010.

32



Appendices

Appendix A Local stability criterion

Let 5 (?) = _ · (?′ − ?), where _ > 0, and 0 and 1 are equilibria, that is, 5 (0) = 0 and 5 (1) = 0.

Set ? > ?∗ = 0. Using a linear approximation for 5 (?) near 0, we have

?′ < ? ⇔ 5 (?)/? < 0⇔ 5 ′(0) · ? +$ (?2)
?

< 0⇔ 5 ′(0) +$ (?) < 0 . (A1)

Therefore, by definition of big-O notation, if 5 ′(0) < 0 then there exists n > 0 such that for any local perturbation

0 < ? < n , it is guaranteed that 0 < ?′ < ?; that is, ?′ is closer to zero than ?.

Set ? < ?∗ = 1 Using a linear approximation for 5 (?) near 1, we have

1 − ?′ < 1 − ? ⇔ − 5 (?)
1 − ? < 0⇔

5 ′(1) (? − 1) +$
(
(? − 1)2

)
? − 1

< 0⇔ 5 ′(1) −$ (1 − ?) < 0 . (A2)

Therefore, if 5 ′(1) < 0 then there exists n > 0 such that for any 1 − n < 1 − ? < 1 we have 1 − ?′ < 1 − ?; that

is, ?′ is closer to one than ?.

Appendix B Effect of interaction-transmission association onmean
fitness

To determine the effect of increasing U on the stable population mean fitness, F̄∗ = 1 + (1 − 2) ?̂∗, we must

analyze its effect on ?̂∗,
m ?̂∗

mU
=
1)� − 2(1 − )�) + ()� − )�)

1(1 − U)2()� − )�)
. (B1)

Note that stable polymorphism implies 2 < W1, and because U < 1, we have

2 < W1 =
1U)� + ()� − )�)

1 − )�
<
1)� + ()� − )�)

1 − )�
. (B2)

Therefore, the numerator in Eq. B1 is positive. Since )� < )�, the denominator in Eq. B1 is also positive, and

hence the derivative m ?̂∗/mU is positive. Thus, the population mean fitness increases as interaction-transmission

association U increases.
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Appendix C Reduction principle

Here, we assume perfect vertical transmission E = 1. We start from Eq. 31 and we substitute E = 1 and we

get

L∗4G =
1
F̄∗


;11 ;12

;21 ;22

 =
1
F̄∗


mF̄ ?̂′3
m?̂3
(p̂∗) mF̄ ?̂′3

m?̂4
(p̂∗)

mF̄ ?̂′4
m?̂3
(p̂∗) mF̄ ?̂′4

m?̂4
(p̂∗)

 =

1
F̄∗


(1 + 1 ¤?∗ − 2) (1 − )� (1 − ¤?∗)) + 1 ¤?∗U2)� (1 − ¤?∗) (1 + 1 ¤?∗))� ¤?∗ + 1 ¤?∗U2)�(1 − ¤?∗)

(1 + 1 ¤?∗ − 2))� (1 − ¤?∗) − 1 ¤?∗U2)� (1 − ¤?∗) (1 + 1 ¤?∗) (1 − )� ¤?∗) − 1 ¤?∗U2)�(1 − ¤?∗)


(C1)

Since multiplication by a positive factor doesn’t change the sign, and using the properties of the determinant,

we have
sign '(1) = sign det(L∗4G − I) = sign(F̄∗)2 det(L∗4G − I) =

sign det(F̄∗L∗4G − F̄∗I) = sign det


;11 − F̄∗ ;12

;21 ;22 − F̄∗

 ,
(C2)

where ;8 9 are defined in Eq. 31. Adding the second row in Eq. C2 to the first row, which does not change the

determinant, and substituting F̄∗ = 1 + (1 − 2) ¤?∗, we get

sign '(1) = sign det


−2(1 − ¤?∗) 2 ¤?∗

(1 − ¤?∗)
[
(1 + 1 ¤?∗ − 2))� − 1U2)� ¤?∗

]
¤?∗

[
− (1 + 1 ¤?∗))� − 1U2)�(1 − ¤?∗) + 2

] =

sign

[
2 ¤?∗(1 − ¤?∗) · det


−1 1

(1 + 1 ¤?∗ − 2))� − 1U2)� ¤?∗ −(1 + 1 ¤?∗))� − 1U2)�(1 − ¤?∗) + 2


]
=

sign det


−1 1

(1 + 1 ¤?∗ − 2))� − 1U2)� ¤?∗ −(1 + 1 ¤?∗))� − 1U2)�(1 − ¤?∗) + 2

 ,
(C3)

since 2 > 0, 0 < ¤?∗ < 1. That is,

sign '(1) = sign
[
(1 + 1 ¤?∗))� + 1U2)�(1 − ¤?∗) − 2 − (1 + 1 ¤?∗ − 2))� + 1 ¤?∗U2)�

]
=

sign
[
(1 + 1(1 − U2) ¤?∗) ()� − )�) + 1U2)� − 2(1 − )�)

]
.

(C4)

Substituting ¤?∗ from Eq. 30, we get

'(1) < 0⇔
[
2(1 − )�) − 1U1)� − ()� − )�)

] 1 − U2
1 − U1

− 2(1 − )�) + 1U2)� + ()� − )�) < 0⇔

(1 − U2)
[
2(1 − )�) − 1U1)� − ()� − )�)

]
< (1 − U1)

[
2(1 − )�) − 1U2)� − ()� − )�)

]
⇔

− 1U1)� − U22(1 − )�) + U2()� − )�) < −1U2)� − U12(1 − )�) + U1()� − )�) ⇔

U1
[
2(1 − )�) − 1)� − ()� − )�)

]
< U2

[
2(1 − )�) − 1)� − ()� − )�)

]
⇔

U1
[
1)� + ()� − )�) − 2(1 − )�)

]
> U2

[
1)� + ()� − )�) − 2(1 − )�)

]
.

(C5)
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We assumed 2 < W1, and since 0 ≤ U1 ≤ 1,

2 < W1 =
1U1)� + ()� − )�)

1 − )�
⇔

0 < 1U1)� + ()� − )�) − 2(1 − )�) ⇒

0 < 1)� + ()� − )�) − 2(1 − )�) .

(C6)

Combining inequalities C5 and C6, we find that '(1) < 0 if and only if U1 > U2, which is a sufficient condition

for external instability. Therefore, if U2, the interaction-transmission association of the invading modifier allele

<, is less than U1, the interaction-transmission association of the resident allele " , then invasion will be

successful.

Determining a necessary and sufficient condition for successful invasion is more complicated, requiring analysis

of the sign of '′(1). We did it in the general case (starting from Eq. 33).
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 תקציר 

 

.  יש הסוברים שאבולוציה תרבותית יכולה לעזור להסביר את האבולוציה של שיתוף פעולה

. באמצעות  מודל של אבולוציה תרבותית הכולל הורשה אנכית ולא אנכית פיתחנובעבודה זו 

הורשה  פעולה" ו"רמאים". -אפשרים קיום משותף של "משתפימהתנאים  מצאנוהמודל 

ציה חברתית לבין הורשה אופקית מסייעים לאבולוציה של שיתוף  ת וקשר בין אינטרק אופקי

 פעולה. 

( יציבה שבה קיימים גם משתפי פעולה וגם רמאים יכולה  polymorphismרב צורניות )

שבין אינטרקציה   (assortment) קשרהו כאשר נמצאים ברב צורניות יציבהלהתקיים. 

נחנו רואים ירידה באחוז משתפי הפעולה באוכלוסיה נחלש, א  חברתית להורשה אופקית

 ( הממוצעת באוכלוסיה.  fitnessוירידה בכשירות )

בו האוכלוסיה מעורבבת היטב, נבחן גם מודל מרחבי בעל  ניסטייהדטרמלמודל   בנוסף

השוואה בין תוצאות הסימולציה   מבוצעת. הנחקר באמצעות סימולציה אקראייםמאפיינים 

 ניסטי. ידטרמלתוצאות המודל ה

  relatedness-במודל שלנו דומה ל assortment-לבסוף, נדון בחוק המילטון ונראה כיצד ה

 בחוק המילטון. 

 

 

 

 



הפוקלטה למדעי החיים  ,זואולוגיהל מבי"ס   יואב רםעבודה זו בוצעה בהדרכתו של דר' 

 .אוניברסיטת תל אביב

  



 
 

 

 המרכז הבינתחומי בהרצליה
דעי המחשב ספר אפי ארזי למ-בית   

 מחקרי מסלול   -  (.M.Scהתכנית לתואר שני )

 

 

אבולוציה תרבותית, הקשר  
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