-z

*x
* IDC Efi Arazi School
HERZLIYA | of Computer Science

Dol U

The Interdisciplinary Center, Herzlia
Efi Arazi School of Computer Science

LLOAD REBALANCING GAMES IN DYNAMIC
SYSTEMS

M.Sc. Dissertation

Submitted in Partial Fulfillment of the Requirements for
the Degree of Master of Science (M.Sc.) Research Track
in Computer Science

Submitted by Sofia Belikovetsky

Under Supervision of Prof. Tami Tamir

January, 2013

Acknowledgements

First and foremost, | express my sincerest gratitude to my supervisor, Prof. Tami
Tamir who has supported me throughout my thesis with her patience and
immense knowledge. Without Her guidance, motivation and enthusiasm, this
thesis would not have been completed. | could not have wished for a better

supervisor!

| would also like to thank my thesis committee: Prof. Yishay Mansour and Prof.
Leah Epstein for reading this work and for their important remarks and questions.

Abstract

We consider a dynamic variant of the classic load balancing game, in which selfish jobs
need to be assigned on a set of identical parallel machines, and each job’s cost is the load on
the machine it is assigned to. Given an initial assignment, the system is modified; specifically,
some machines are added or removed. When machines are added, jobs naturally have an
incentive to migrate to the new unloaded machines. When machines are removed, the jobs
assigned to them must be reassigned. As a result of these migrations, other jobs might also
benefit from migrations. The goal is to find a pure Nash Equilibrium (NE) assignment in
the modified system. A deviation from the initial assignment is associated with a penalty.
We introduce and study the job-extension penalty model. In this model, we are given an
extension parameter § > 0. If the machine on which a job is assigned to is different from its
initial machine, then the job’s processing time is extended by d.

We provide answers to the basic questions arising in this model. Namely, the existence
and calculation of a Nash equilibrium and a strong Nash equilibrium, and their inefficiency
compared to an optimal schedule. We show that, for any extension parameter, a NE exists
and BRD converges to a NE. The convergence time is linear when the jobs are activated in a
certain way. We prove lower and upper bounds for the price of stability (PoS), the price of
anarchy (PoA), the strong price of stability (SPoS) and the strong price of anarchy (SPoA).

We show that in general, the price of anarchy is unbounded when machines are either
added or removed. The PoA can be bounded if the modified schedule is achieved by perform-
ing improvement steps. Specifically, let mg, m’ denote the number of initial machines and
added /removed machines respectively. For NEs that are achieved by performing improvement

steps, we show that the PoA is (i) 2+ %;1 when machines are added, (i) mo —m’ when

machines are removed, and (ii) 2— when machines are removed, and jobs are activated

prop——
in a specific order, denoted two-phase better-response.

We show that the SPoA is 3 for the both adding and removing machines scenarios. We
also provide a closer analysis of the strong price of anarchy, and bound it as a function of the
ratio between 0 and OPT'. Specifically, we show that the SPoA is 2 + %.

Our work adds two realistic considerations to the study of job scheduling using game
theoretic approach: the analysis of the common situation in which systems are upgraded or

suffer from failures, and the practical fact according to which job migrations are associated

with a cost.

Contents

1 Introduction
1.1 Model and Preliminaries
1.2 Related Work e
1.3 Our Results e e

2 Machines’ Addition
2.1 Equilibrium Existence and Computation

2.2 Equilibrium Inefficiency

3 Machines’ Removal
3.1 Equilibrium Existence and Computation
3.1.1 The better-response policy Lo
3.1.2 The two-phase better-response policy
3.1.3 The two-phase maz-length best-response policy

3.2 Equilibrium Inefficiency L

4 Analysis of Coordinated Deviations
4.1 Equilibrium Existence and Decision Complexity

4.2 Equilibrium Inefficiency

5 Summary and Future Work

11
11
14

23
23
24
25
25
27

32
32
34

42

1 Introduction

The well-studied load balancing problem considers a scenario in which a set of jobs needs to
be assigned on a set of identical parallel machines. Each job j, is associated with a processing
time p; and the goal is to balance the load on the machines. In contrast to the traditional load
balancing problem, where a central designer determines the allocation of jobs to machines and all
the participating entities are assumed to obey the protocol, in the load balancing game, each job
is owned by a selfish agent who wishes to optimize its own objective.

Given an assignment, each job incurs a cost which is equal to the total load on the machine it
is assigned to. This cost function characterizes systems in which jobs are processed in parallel, or
when all jobs on a particular machine have the same single pick-up time, or need to share some
resource simultaneously. This problem have been widely studied in recent years from a game
theoretic perspective, see [21, 2, 6, 8, 12], and a survey in [23].

In this work, we consider a dynamic variant of this game. Specifically, we are given an
assignment, sg, of m jobs on mgy machines. The system is modified, namely, m’ machines are
added or removed. When machines are added, jobs will naturally have an incentive to migrate
to the new unloaded machines. When machines are removed, the jobs assigned to the removed
machine must be reassigned. As a result of these migrations, other jobs might also benefit from
migrations. The goal is to find a pure Nash Equilibrium (NE) assignment, s, in the modified
system. In such an assignment, no job can reduce its cost by migrating to a different machine.
Apparently, this can be viewed as a new instance of the load balancing game. However, in the
model we consider, a deviation from the initial assignment is associated with a penalty. We
introduce and study the job-extension penalty model. In this model, we are given an extension
parameter d > 0. If the machine on which job j is scheduled in s is different from its initial machine
in sg, then the processing time of j is extended to be p; + 0. Practically, this penalty is justified
by the fact the reassignment of j causes some extra work on the system, for example, if some
preprocessing or configuration set-up was already performed according to the initial assignment.

Note that this model can be seen as a restricted case of scheduling on related machines. For

every job j and machine M;, the processing time of j on M; is p; if j was scheduled on machine

M; in sp and p; 4 0 otherwise. Our analysis provides tighter results than those known for related
machines [8]. Also note that if s is produced from sy by a sequence of improvements steps, then
the extension penalty is independent of the number of steps and only the final assignment of j in
s matters. In particular, if j leaves its original machine and returns to it latter as a part of the
improvement steps sequence then j is not extended.

For the above load rebalancing game, we study the problem of equilibrium existence, cal-
culation, and inefficiency. We quantify the inefficiency incurred due to self-interested behavior
according to the price of anarchy (PoA) [21, 22] and price of stability (PoS) [1] measures, which
quantify to what extent a system can benefit from a central coordinator or regulator.

The measures of PoA and PoS are quantified according to a well-defined objective function.
In this work, we consider the egalitarian objective function, i.e., we wish to minimize the cost of
the job with the highest cost. In scheduling terms, this is equivalent to minimizing the maximal
load on some machine (also known as makespan).

We distinguish between the following scenarios:
1. The initial schedule sy might be a pure NE or not.
2. The system’s modification might be addition or removal of machines.

3. The modified schedule is achieved by performing a sequence of improvement steps, a se-

quence of best-improvement steps, or arbitrarily.

In addition, we study the existence and quality of strong equilibria in our setting. A strong
equilibrium (SE) [3] is a strategy profile from which no coalition of agents can deviate in a way
that strictly benefits each one of its members. For the static load balancing game, it is known
that a SE exists and can be computed efficiently [2]. We explore the existence of a SE in our
dynamic setting, its computation and inefficiency (also known as the strong price of stability and

strong spice of anarchy).

Applications:

Traditional analysis of job scheduling setting, assume a central utility that determines the allo-

cation of jobs to machines and all the participating entities are assumed to obey the protocol.

4

However, in practice, many systems are used by heterogeneous, autonomous agents, which of-
ten display selfish behavior and attempt to optimize their own objective rather than the global
objective. Game theoretic analysis provides us with the mathematical tools to study such situa-
tions, and indeed has been extensively used recently to analyze multiagent systems. This trend is
motivated in part by the emergence of the Internet, which is composed of distributed computer
networks managed by multiple administrative authorities and shared by users with competing
interests [22].

Our work adds two realistic consideration to the study of job scheduling using game theoretic
analysis. First, we assume that the system is dynamic and resources might be added or removed -
this reflects the common situation in which systems are upgraded or suffer from failures. Second,
we assume that job migrations are associated with a cost. Indeed, in real systems, migrations do
incur some cost.

The added cost might be due to the transferring overhead or due to set-up time that should be
added to the job’s processing time on its new location. Consider for example an initial allocation
of clients to download servers. Assume that some preprocessing is done at the time a client is
assigned to a server, before the download actually started (e.g., locating the required file, format
conversion, etc.). Clients might choose to switch to a mirror server. Such a change would require
repeating the preprocessing work on the new server. In our model, this added work is represented
by the extension penalty.

Another example of a system in which extension penalty occurs is of an RPC (Remote Proce-
dure Call) service. In this service, a cloud of servers enables service to simultaneous users. When
the system is upgraded, more virtual servers are added. Users might switch to the new servers and
get a better service (with less congestion), however, some set-up time and configuration tuning is

required for each new user.

1.1 Model and Preliminaries

A job rescheduling setting is define by the tuple G = (My, M’, N, p;,d), where M is a set of
the initial identical machines and M’ is a set of added or removed machines. If the modification

is machines’ addition, then M’ is a set of new machines, all identical to the machines in Mj.

If the modification is machines’ removal then M’ C M,. We denote by mg, m’ the number of
machines in My, M’, respectively. N =1,...,n is the set of jobs, for each job j € N, p; denotes
the processing time of job j. § > 0 is the extension parameter, i.e, the time penalty that is
added to the processing time of a migrating job. An assignment method produces an assignment
s = (s(1),...,s(n)) of jobs into machines, where s(j) is the machine to which job j is assigned.
The assignment is referred to as a schedule. The schedule sy denotes the initial schedule of the
jobs before the systems’ modification. Let s denote the assignment after the modification. In s,
the processing time of a job j € N on machine i € MyJ M’ is p; if i = s0(j) and p; + J otherwise.
The load on a machine i in a schedule s is the sum of the processing times (including the extension
penalty) of the jobs assigned to i, that is, L;(s) = 3 .5(j)=i Pj +di,; where &; ; = 0 if so(j) = i and
d otherwise. For a job j € NV, let c;(s) be the cost of job j in the schedule s, then ¢;(s) = Ly(;y. In
our job scheduling game, the objective function is minimizing the makespan, which is the load on
the most loaded machine (or equivalently, the highest cost of some job). Formally, for a schedule
s, makespan(s) = maxjc;(s) = max;L;i(s) = Lmaa(s).

An assignment s is a pure Nash equilibrium (NE) if no job j € N can benefit from unilaterally
deviating from its machine to another machine; i.e., for every j € N and every machined i # s(j),
Li +pj +6ij > Ly

The following definitions are used to evaluate the inefficiency of the NE schedule.

Definition 1.1 Let G be a family of games, and let G € G be some game in this family. Let ®(G)
be the set of Nash equilibria of the game G. If ®(G) # 0:

e The price of anarchy of the game G is the ratio between the maximal cost of a Nash equi-

librium and the social optimum of G:

PoA(G) = max Linaz(s)/OPT(G),

s€P(G)

and the price of anarchy of the family of games G is

PoA(G) = SupgegPoA(G).

e The price of stability of the game G is the ratio between the minimal cost of a Nash equi-

librium and the social optimum of G:

PoS(G) = min, Liaa(s)/OPT(G).

and the price of stability of the family of games G is:

PoS(G) = SupgegPoS(G).

In section 4 we study coordinated deviations. A set of players I' C N forms a coalition, if
there exists a move where each job j € IT" strictly reduces its cost. An assignment s is a strong
equilibrium (SE) if there is no coalition I' C N that has a beneficial move from s. Clearly, a
strong equilibrium is a refinement of the notion of Nash equilibrium (in particular, if s is a strong
equilibrium, it is resilient to migration of coalitions of size 1, which coincides with the definition

of NE).

Definition 1.2 Let G be a family of games, and let G € G be some game in this family. Let ®(G)
be the set of strong equilibria of the game G. If ®(G) # 0:

e The strong price of anarchy of the game G is the ratio between the maximal cost of a strong

equilibrium and the social optimum of G:

SPoA(G) = Limaz(8)JOPT(Q),
0A(G) = max. Lyae(s)/OPT(G)

and the strong price of anarchy of the family of games G is

SPoA(G) = SupgegSPoA(G).

e The strong price of stability of the game G is the ratio between the minimal cost of a strong

equilibrium and the social optimum of G:

SPoS(G) = sé%i(%) Linaz(s)/OPT(G),

and the strong price of stability of the family of games G is:

SPoS(G) = SupaegSPoS(G).

1.2 Related Work

The Minimum Makespan Scheduling Problem: The minimum makespan problem corre-
sponds to the centralized version of our game in which all jobs obey the decisions of one utility.
The goal is to assign the jobs on m identical machines in a balanced way — that minimizes the last
completion time. A simple reduction from the Partition problem implies that this problem is NP-
hard even for two identical machines [16]. The simple List-scheduling algorithm [17] is a greedy
algorithm that assigns the jobs in arbitrary order, each job to a machine that would minimize its
completion time, given the current schedule. List-scheduling provides a (2 — %)—approximation to
the minimum makespan problem. A bit better approximation ratio is guaranteed by the Longest
Processing Time (LPT) algorithm [18]. LPT algorithm applies List-scheduling on the jobs in
non-increasing order of their lengths. The approximation ratio of LPT is (% — 3%) A PTAS for
the minimum makespan problem on identical machines is given in [19].
Load Balancing Games: In the associated game, each job is controlled by a selfish agent who
aims to minimize its cost - given by the load on the machine it is assigned to. While List-scheduling
is not guaranteed to provide a NE schedule, Fotakis et al. show that schedules that result from
LPT algorithm are NE schedules [14]. In [9], Even-dar et al. show that a load balancing game
with unrelated machines always converges in a Nash equilibrium and determine the convergence
time to be linear, specifically reached after at most n steps by performing BRD in a specific order.
The concept of the price of anarchy (PoA) was introduced by Koutsoupias and Papadimitriou
n [21]. They studied a model of a routing game consisting of a source and a sink connected by
m parallel edges with possibly different speeds. Each agent has an amount of traffic that he seeks
to map to one of the edges such that the total load on this edge is as small as possible. They

%. Their results are in fact valid in our

proved that in this model, the price of anarchy is 2 —
model, where the parallel edges between the source and the sink correspond to the machines, and
the routing requests correspond to jobs. In [13], Finn and Horowitz presented an upper bound of
2 — miﬂ for the price of anarchy in load balancing games with identical machines. Note that in
this game, the PoA is equivalent to the makespan approximation. The upper and lower bounds
of the price of anarchy in load balancing games with uniformly related machines was studied by

Czumaj and Vocking in [8] and is bounded by logm The price of stability (PoS), measures

loglogm*

8

the best-case inefficiency of a Nash equilibrium, and is defined as the ratio between the best
NE and the optimal solution. This measure was introduced by Anshelevich et al. in [1], for
cost-sharing network formation games. It is shown that the price of stability with respect to the
total-cost objective is H(k) =1+ 3+ ...+ 1.

Other related work deals with cost functions that depend on the internal order of jobs, e.g., in
[5, 4, 20]. A different cost function, in which the job’s cost is affected by both the congestion on
the machine and the machines’ activation cost is studied by Feldman and Tamir in [11]. In [5],
Caragiannis et al. study the price of stability of load balancing games with respect to the objective
of minimizing the total completion time, and shows that it is at most 4/3. Other definitions of
the social cost are considered, e.g., by Gairing et al. in [15].

The strong price of anarchy with respect to coalitional moves was studied by Andelman et
al. in [2]. The paper proves the existence of a strong equilibrium and shows that for unrelated
machines the strong price of anarchy can be bounded as a function of the number of machines
and the size of the coalition. Specifically, for m unrelated machines and n players the worst-case
k-SPoA, that considers coalitions of size at most k, is at most O(nm?/k) and at least Q(n/k). A

survey of results on selfish load balancing and routing on parallel links appear in [7, 23].

1.3 Our Results

We study the problem of equilibrium existence, calculation, and inefficiency in the load rebalancing
game with uniform extension penalty. We show that any job scheduling game with adding or
removing machines obeys at least one Nash equilibrium schedule. Moreover, some optimal solution
is also a Nash equilibrium, and thus, the price of stability is 1. We show that in general, the price
of anarchy is unbounded when machines are either added or removed. The PoA can be bounded
if the modified schedule is achieved by performing improvement steps. Specifically, for NE’s that

are achieved by performing improvement steps, we show that the PoA is
1. 2+ % when machines are added.

2. mg — m’ when machines are removed.

3. 2— moim, when machines are removed, and jobs are activated in a specific order, denoted

two-phase better-response.

For all the above cases we prove the upper bound and provide matching lower bounds. The lower
bounds are tight for some values of mg, m’ and almost tight for other values.

We also analyze the load rebalancing game assuming coordinated deviations are allowed. We
prove that a strong equilibrium exists for all system modifications and that the SPoS is 1. We
show that the SPoA is 3 for the both adding and removing machines scenarios and that this
bound is tight. Moreover, we provide a closer analysis of the strong price of anarchy, and bound
this value as a function of the ratio between § and OPT. Specifically, we show that the strong
price of anarchy is 2 4 %. We also show that for any value of § > 0 it is NP-hard to determine
whether a given modified schedule is a SE.

The work is organized as follows: In Section 2 we examine the scenario where m’ identical
machines are added. In Section 3 we examine the scenario in which m’ machines are removed. In
Section 4 we consider coordinated deviation of jobs. For each scenario we consider the problem
of equilibrium existence, calculation, and inefficiency, distinguishing between various initial states
and convergence methods.

We note that in the load rebalancing game with no migration penalty (i.e., when § = 0) the
analysis for a fixed number of machines is valid also when machines are added. Specifically, in a
dynamic setting in which machines are added or removed and migrations are free of cost, then the
results known for classic load balancing games applied. In particular, the PoA assuming § = 0 is

2— for a game with m’ added machines and 2 — ﬁ for a game with removed machines

2
mo—+m/+1
and mj remaining machines. The proofs are identical to the proofs for a fixed number of machines.
Thus, the difference between our results and the results for the classic load balancing game are

due to the migration penalty.

10

2 Machines’ Addition

In this section we study the scenario in which the systems’ modification involves an addition of
machines and uniform extension penalty is applied. Specifically, for a given parameter § > 0, if a
job is assigned to a machine different than its original machine then its processing time is extended
to be p; + 0. Recall that mg, m’ denote the initial and added number of machines, respectively.

Let m = My + m’ denote the resulting number of machines.

2.1 Equilibrium Existence and Computation

We first prove the existence of a NE in our model and suggest a specific form of best-response

dynamics with linear convergence time.

Theorem 2.1 Fvery instance of the load rebalancing game with added machines and uniform

extension penalty admits at least one pure Nash equilibrium.

Proof: The proof follows the proof for the load balancing game. For a given schedule s, let
(L1, ..., Ly) be the sorted load vector corresponding to s. That is, L; is the load on the machine
that has the i-th highest load. If s is not a NE, then there exists a beneficial move to some job. We
show that the sorted load vector obtained after performing a beneficial move is lexicographically
smaller. This implies that a pure NE is reached after a finite number of beneficial moves.
Assume that job j can benefit by migrating from M, to M. Clearly, Ly < L,. The move
decreases the load on M, and increases the load on M;,. Before the move Ly + p; + 6 < L,
as otherwise, j would not benefit from the move. Combining this with the fact that the load
on machines other than M,, M, is unchanged, we get that the number of machines with load
at least L, is decreasing. Therefore, the improvement step yields a sorted load vector that is
lexicographically smaller than (L1, ..., Ly,). n
Best-Response Dynamics (BRD) is a local search method where in each step some player is
chosen and plays its best-response strategy, given the strategies of the others. As there is a finite
number of possible configurations, the above proof implies that any best-response-dynamics is

guaranteed to converge to a NE. In fact, our proof implies that even better response dynamics (in

11

which each player’s move is beneficial, though not-necessarily the most beneficial), must converge
to a NE.

The next question we consider is how many moves are required to reach a NE. The following
result shows that, for any given initial assignment, there exists a short sequence of beneficial
moves that leads to a NE. Assume that the jobs are sorted according to their processing length,
that is, p1 > p2 > ... > p,. The max-length best response policy activates the jobs one after the
other according to the sorted order. An activated job j plays a best response, i.e., it moves to a
machine that minimizes its cost (or remain on so(j) if no beneficial move exists).

We show that after a single pass of maz-length best response policy on the jobs, the system
reaches a NE. While this result is valid also for the classic load balancing game [23], its proof for

the load rebalancing game is more involved. We begin with the following observation.
Claim 2.2 As long as each job mowves at most once, the minimal load does not decrease.

Proof: We show that the minimum load does not decrease as a result of any first move of
a job j. Assume that j moves from M, to M,. Since this is the first move of job j, it holds
that M, = so(j). Denote by L? L! the loads on machine M; before and after the move of

0

job j respectively. Denote by L, , the minimal load before the move of job j. The move is
beneficial for j, thus, LY + p; +§ < LY. We show that min{L}, LY} < min{L}, L}}. Clearly,
the load on any machine other than a,b does not change. Since M is the best response of j,
L) =LY . =min{LY LY}. In addition, L} = LY —p;, L} = LY +p;+6 < LY and L —p; > L)+34.
Thus, min{L? — p;, LY + p; + 6} > min{LY + 6, LY + p; + d} > min{LY, LI}. N
Theorem 2.3 Let sy be any initial schedule of n jobs on mg machines. Assume that m' machines
are added. Starting from sg, the max-length best response policy reaches a pure Nash equilibrium

after each job is activated at most once.

Proof: A job j is said to be satisfied if it cannot reduce its cost by migrating to a different
machine. By the definition of the cost function with migration penalty, j is satisfied if it is
assigned to so(j) and Ly, (jy < Ly 4 pj + 6 for every i’ # so(j), or if it is assigned to M;, for some
i # s0(j), Li < Ly +pj + 0 for every i’ # so(j), and L; < Ly, (j) + pj. We show that once a job j

was activated and played its best response, it never gets unsatisfied again.

12

Assume by contradiction that the claim is false and let j be the first job for which a second
beneficial move exists. Let M, = so(j). Assume that on its first move j migrated from M, to

My. Job j might leave M; only if one of the following conditions holds:

Cy : For some machine M. # M, it holds that L. < Ly —p; — 4.
Cy : Ly < Ly —pj.

We show that none of these conditions hold. We first prove it assuming that the load on M} does

not increase, and then consider also the possibility that the load on M} increases after j joins it.

t

Denote by ¢ the time in which job j moves from M, to M,, and let L! . . L denote the minimal

load and the load on machine i, respectively, at time ¢.
Claim 2.4 Conditions C1 and Cy do not hold as long as the load on My does not increase.

Proof: Since j performs a best move, it must be that Lf ; = L!. According to Claim 2.2, the
minimal load does not decrease during the game, therefore, the load on each machine is at least
Lt ... This implies that condition C; does not hold and the only machine to which j might move
to is M,. Job j might move back to M, if L, < L! . + 6. We show that this never happens. In
order for the load on machine M, to decrease, there must be a job j’ that leaves it after the move
of j. Since we assume that j is the first job that is migrating twice, it must be that so(j') = M,.
Let My be the machine to which 7/ moves, and let ¢’ be the migration time. Before the move of
§'y LY > LY 4+ pj+6. Since LYy > Lt LY > L! . +py+ 8. After the move of j (at time #/+1),

Lit=rt —py > L, +8=L,+6. Since we assume that no job is added to M, it holds that

LYY = [!. Thus, LY+ > LE+! 4§ and condition Cy does not hold. n
Claim 2.5 Conditions C1 and Cy do not hold after any job k joins M,.

Proof: Denote by t’ the time after the move of job k to M. My # so(k) since we assume that
J is the first job that is migrating twice. We know that p; > p; because job j was activated before
job k and jobs are activated in non-increasing order of their length. Therefore, for any machine
M;

LY <L +pp+6 <LY +p;+6.

13

Thus, LZ' —pj—6 < Lf/ and condition C; does not hold. For M, we show that condition C5
does not hold, that is Lg > LZ — pj. Recall that t'-1, t' are the times before and after the move
of job k to My, respectively.

If £ moves from M, to M, then
LA > LV fpp 46 (1)

After the move LZ/ = Lg_l — pi. and LZ/ = Lzl_l + pr + 0. Job j would benefit from migrating
to M, if Lfll < Lg — pj which is equivalent to Lg_l —pr+p; < LéLl + pr + §. Since job j was
activated before job k, we have p;, < p;. Thus, Lgfl < Lfllfl —pr+pj, and Lf;*l < Lil_l +pr+6,
contradicting (1).

Next we consider the case in which job k moves to Mj from M. # M,. Job k prefers M} over
M,, therefore, LY + py, + & > L. This implies that L} > L! — pj, — §. Therefore, condition Cy
does not hold and job j will not benefit from migrating back to M,. |

We conclude that the max-length best response policy reaches a pure Nash equilibrium after

each agent is activated at most once. |

2.2 Equilibrium Inefficiency

In this section we bound the price of stability and the price of anarchy of our game, distinguishing
between various initial states and convergence methods. For the classic load balancing game, with
no extension penalty, it is known that PoA = 2 — mi—‘,—l We show that in our model PoS =1 and
the PoA is not bounded by a constant. It can be arbitrary large if the schedule is not achieved by a

m/+1

= if the schedule is achieved by a sequence

sequence of improvement steps and bounded by 2 +
of improvement steps. We also show that if the initial schedule is not a NE but the schedule is

achieved by performing a sequence of improvement steps, the PoA is bounded by mg + m/’.

Theorem 2.6 The price of stability of the selfish load rebalancing game with job extension penalty

is 1.

Proof: It is easy to see that a beneficial move does not increase the makespan. Therefore, by
preforming best-response starting from any optimal assignment, we reach a NE whose makespan

is equal to the optimum. [|

14

We turn to consider the price of anarchy (PoA). We distinguish between a modified schedule
that is an arbitrary NE, and a NE that is reached by performing a sequence of beneficial moves.
We denote by L2 . Lz, OPT the makespan of the initial schedule sq, the makespan of the final
NE s, and the minimal possible makespan, respectively. Let P = Zj pj denote the total initial
length of the jobs. We first show that for an arbitrary NE, the PoA is unbounded. The bound is

valid even if m’ = 0 and the initial schedule is a NE.

Theorem 2.7 When the NE is not necessary achieved by a sequence of beneficial moves, the PoA

1s unbounded.

Proof: Given m’,mg,d and r, we construct an instance for which the PoA is r. Let € be a

small constant such that r = %. Assume that in the initial schedule, sg, there is a single job of

length € on each machine in M (see Figure 1(a)). Independent of the number of added machines,

E+0 | €+0 | e+0 | €+0

(a) (b)

Figure 1: An instance achieving unbounded PoA. (a) the initial assignment, (b) the worst NE.

m’, a schedule in which each job is assigned to a machine in M different from s¢(j) and each
machine in My is assigned a single job, is a NE (see Figure 1(b)). In this schedule, all jobs have
the same cost of € + 4. It is easy to verify that this schedule is a NE. The optimal schedule is
identical to sg, where all jobs have the same cost of €. The PoA is % =r. |

We turn to consider the more realistic scenario in which the NE is reached by performing
beneficial moves, starting from a NE schedule sq. Our analysis depends on the parameters my

and m’. We provide an upper bound that is tight when m’ mod my = 1, and almost tight for any

other case.

Theorem 2.8 The price of anarchy in the selfish rebalancing game with job extension penalty is

=
at most 2 + mmo .

15

Proof: Recall that P = }°;p; denotes the total initial length of the jobs. Let j be the

shortest job on the most loaded machine in sg. Since sy is a NE, it holds that the gap between

0

the maximal and minimal load is at most p;. Therefore, moL,,,,

< P+ (mg — 1)p;. Implying,
LO < P + moi—lpj'

mar — myg mo

Also, since s is achieved by performing beneficial moves, it must be that Ly,q, < LY ... Clearly,

even with no migration penalties, for the minimal possible penalty it holds that OPT > ﬁ.
Also, OPT > p;. We get that the price of anarchy is bounded by
Lpas m% + L&glpj m% m&glpj mo+m’ mog—1 m' —1
< <—5—F < + =2+ .
OPT OPT oy pj mo mo mo
|

We show that this bound is tight for several combinations of mg, m’, and almost tight for any

other combination.

Theorem 2.9 For any number of machines mg, for any integer k > 0, and for any p > 0, there

exists an input with m’ = kmqg + 1 added machines, for which PoA > 2 + m' =1 _ p-

mo

Proof: Given p,mg, k, let m’ = kmg+ 1. Let B be an integer such that p > gifl. In addition,

letE:mandézl—g.

The set of jobs includes m' + mg = (k + 1)mgo + 1 jobs of length B, and 1/ = (k+ 1)m'B
jobs of length €. In the initial assignment, a single machine is assigned k + 2 jobs of length B
and each of the other my — 1 machines is assigned k + 1 jobs of length B, as well as some jobs of
length €, such that the e-jobs are assigned in a balanced way and the assignment is a NE. Note
that the load on the first machine is (k + 2) B and the load on each of the other my — 1 machines
is between (k + 1)B and (k+1)B + 1.

We demonstrate the construction of the lower bound in Figure 2. In this instance my = 3 and
k =1 (implying m’ = 4). The initial assignment is given in Figure 2(a).

Assume that m’ machines are added and improving steps are performed. A possible NE (see
Figure 2(b)) is a one in which the long jobs remain on M, and every new machine is assigned

(k4 1)B jobs of length . The load on the first machine remains (k + 2)B. The load on each of

the other mo — 1 machines of My is (k+1)B. The load on every new machine is (k+1)B(0+¢) =

16

B gs €'s B
€+0 |
B B B B B B
B B B B B B B B B B+d | B+0 | B+0 | B+
(a) (b) (c)

Figure 2: An instance achieving the maximal possible PoA. (a) the initial assignment, (b) the worst NE,

and (c) the best NE.

(k+1)B. The maximum load is (k + 2)B - achieved on the first machine. This assignment is
a NE as the shortest job on the most loaded machine has length B - which is exactly the gap
from the load on all other machines. Also, the other machines are perfectly balanced, therefore
no migrations are beneficial.

On the other hand, the following is an optimal assignment (see Figure 2(c)): One job of length
B migrates to each of the new machines. The other mg jobs of length B as well as all jobs of
length € remain on the original machines My. The maximal load on My is at most B + 1. The

load on every new machine is B+ < B + 1.

The ratio between the maximal loads of the two assignments is (kgf)lB. The value of B was
selected such that this is more than 2+ k — p =2+ mr;zl —p. |

Let m’ = kmg + « for integers k and o < mg. By Theorem 2.8, we have that the PoA is at
most 2 + % =2+ %{)&_1 =k+2+ O‘m—_ol For a = 1 and any k, by theorem 2.9, the bound is
tight. We turn to consider other values of o and k. Assume first that k£ = 0, that is, the number

of added machines is smaller than the number of initial machines.

Theorem 2.10 For any 1 < m’ < mg and p > 0, there exists an input such that PoA >

3m'—mo—2
2+ Tt p-

Proof: Given p,1 < m/ < myg, let B be an integer such that p > %. In addition, let

mo+m’
2mo+1

5:1—5ands:ﬁwhereX:B-

17

mo—m'+1

The input consists of mg+m/ long jobs of size X, mg+m’ medium jobs of size Y = X - TR

and % tiny jobs of size €. In the initial assignment, one machine, My, is assigned three jobs of
length X. Additional m’ — 2 machines are assigned two jobs of length X each, and each of the
remaining mg — m’ + 1 machines is assigned a single job of length X. In additions, each of these
mo —m’ + 1 machines is assigned % medium jobs'. Note that Y - % = X, therefore,
the total load on every machine Ma,..., My, is 2X. Finally, the tiny jobs are assigned in a
balanced way on Mo, ..., My,,.

We demonstrate the construction of the lower bound in Figure 3. In this instance my = 4 and
m’ = 3. The initial assignment is given in Figure 3(a). It is easy to verify that this assignment

is a NE. The most loaded machine, My, has load 3X. All other machines are balanced and have

load at least 2X. Since the shortest job on M; has length X, no job has a beneficial move.

X €'s €'s €'s X
Y2 | Y2 Y2 T Y2 T e+d]
Yy | v vy | v
XX Iy |y X X Iy |v L V0 [P] y a5 [Y+B | Y45 | Y45
Y Y Y Y) .) Y+
x | x| x| x x | x| x| x x | x| x| x [XO|XD|X+d
(a) (b) (c)

Figure 3: An instance achieving a high PoA for m’ < mg. (a) the initial assignment, (b) the worst NE,

and (c) the best NE.

Assume that m’ machines are added and improving steps are performed. A possible NE is a

one in which the long and the medium-size jobs remain on My and every new machine is assigned

ml,s = 2X tiny jobs. The load on the first machine is 3X. The load on each of the other mg — 1
machines of My is 2X. The load on every new machine is 2X (§ + ¢) = 2X. The maximum load
is 3X - achieved on the first machine. This assignment is a NE as the shortest job on the most

loaded machine has length X - which is exactly the gap from the load on all other machines. Also,

If % is not an integer, it is possible to replace at most mg —m’ + 1 medium jobs each by two jobs whose

total size is Y in a way that the load on the machines is balanced (see in Figure 3(a)).

18

the other machines are perfectly balanced, therefore no migrations are beneficial.

On the other hand, a better possible assignment results from the following migrations: The
tiny jobs remain on My. Every new and original machine is assigned one long job and one medium
job. The total load on every new machine is X +Y + 26 = B 4+ 20 < B 4+ 2. The total load on
every original machine is at most X +Y +9d+1 < B+ 2. The addition of § is due to the migration

of a medium job, the addition of 1 is due to the tiny jobs?.

3X

Bra- The value of B was

The ratio between the maximal loads of the two assignments is

selected such that this is more than 2 + %{T&_z —p. n

For k£ > 1 and a > 1, the worst PoA we were able to get is the following:

Theorem 2.11 For m’ > mq and every p > 0, there exists an input such that PoA > k + 2 +

(a=1)(k+3)—mo+1
mo(k+2)+1 p-

Proof: Given p,mg,m’ = kmg + a,k > 0,a < mg, let B be an integer such that p >

2(k+3)(mo+m’)
(B+2)(mo(k+2)+1)

mo+m’
(k+2)m0+1 °

. In addition, let § =1 —¢ and ¢ = m where X = B -

l—«

The input consists of mg+m’ long jobs of size X, mg+m’ medium jobs of size Y = X - Py

and é tiny jobs of size . In the initial assignment, one machine, M; is assigned k + 3 jobs of
length X. Additional & — 1 machines are assigned k + 2 jobs of length X each, and each of the
remaining mg — « machines is assigned a single job of length X. In additions, each of these my—«
machines is assigned % medium jobs® Note that Y - %_ma, = X, therefore, the total load on
every machine My, ..., M,,, due to long and medium jobs is (k + 2)X. Finally, the tiny jobs are
assigned in a balanced way on Mo, ..., My,,.

We demonstrate the construction of the lower bound in Figure 4. In this instance mg = 3
and m’ = 5, thus, k = 1 and a = 2. The initial assignment is given in Figure 4(a). It is easy to
verify that this assignment is a NE. The most loaded machine, M, has load (k + 3)X. All other
machines are balanced and have load at least (k + 2)X. Since the shortest job on M; has length

X, no job has a beneficial move.

2If some medium jobs were replaced by two jobs, it is possible to ‘unite’ these two parts in the assignment. It

would still hold that a single migrating job is assigned on each initial machine.

31f %j';/ is not an integer, it is possible to replace at most mo — o medium jobs each by two jobs whose total

size is Y, in a way that the load on the machines is balanced.

19

X €'s €'s X
Y Y e+d |
Y Y
X X v X X v
k+3 Y Y
] Y Y
Y Y
X X v X X v Y+5 | y+5 | YO | Y+O | Y40 | Y+3 | Y+3
Y Y Y +d
. X X X X X X X X X+0 [X+ | X+ | X+ | X+0
(a) (b) (c)

Figure 4: An instance achieving a high PoA for k = 1, a21. (a) the initial assignment, (b) the worst NE,
and (c) the best NE.

Assume that m’ machines are added and improving steps are performed. A possible NE is a
one in which the long and the medium-size jobs remain on My and every new machine is assigned

1 (k+2)X tiny jobs. The load on the first machine is (k+3)X. The load on each of the other

m'e

mo — 1 machines of My is 2X. The load on every new machine is (k +2)X (6 +¢) = (k + 2)X.
The maximum load is (k + 3)X - achieved on the first machine. This assignment is a NE as the
shortest job on the most loaded machine has length X - which is exactly the gap from the load
on all other machines. Also, the other machines are perfectly balanced, therefore no migrations
are beneficial.

On the other hand, a better possible assignment results from the following migrations: The
tiny jobs remain on My. Every new and original machine is assigned one long job and one medium
job. The total load on every new machine is X +Y + 26 = B 4+ 20 < B 4+ 2. The total load on
every original machine is at most X +Y +9d+1 < B+2. The addition of § is due to the migration
of a medium job, the addition of 1 is due to the tiny jobs®.

The ratio between the maximal loads of the two assignments is (kgi)QX. The value of B was

(a=1)(k+3)—mo+1

selected such that this is more than k + 2 + o (FE2) T p.

41f some medium jobs were replaced by two jobs, it is possible to ‘unite’ these two parts in the assignment. It

would still hold that a single migrating job is assigned on each initial machine.

20

The lower bounds in Theorems 2.10 and 2.11 do not match the upper bound in Theorem 2.8.
We believe that the upper bound can be reduced when o # 1.

Finally, we analyze the PoA for arbitrary initial assignment.

Theorem 2.12 If the initial assignment is not necessary a NE, and the modified schedule is

reached by performing improvement steps, then the PoA is at most mg +m/'.

Proof: Clearly, in the initial assignment, L0, .. < >_jpj. Since improvement steps are

preformed, we have L. < L° Also, the makespan of the modified schedule is at least

max*
> P L Lo > P ,
OPT > e Therefore, PoA < ot < gpE < Z]- P < mg+m.]

This bound is tight as implied by the following theorem.

Theorem 2.13 For any number of machines mg, m’' and for any p > 0, there exists a non-NE
schedule on mq machines, such that when m’' machines are added and improvement steps are

preformed, the PoA is at least mg +m' — p.

Proof: Given p,mqg,m’. Let B be an integer such that p > %ﬁ_l. In addition, let

1

€= (mo+m/)(mo+m’—1)

zand 6 =1—e¢.

In the initial assignment, a single machine is assigned mg + m’ jobs of length B and % jobs
of length €. The other machines in My are empty. Thus, the load on the first machine is
(mo+ m')B + 1 and the load on each of the other my — 1 machines is 0.

We demonstrate the construction of the lower bound in Figure 5. The initial assignment is
given in Figure 5(a). In this instance mg = 3 and m’ = 2.

Assume that m’ machines are added and improvement steps are performed. A possible NE
(see Figure 5(b)) is a one in which the long jobs remain on the first machine and every other
machine is assigned (mg + m’)B jobs of length e. The load on the first machine is (mg + m')B.
The load on each of the other mo + m’ — 1 machines is also (mg + m’)B(e + 6) = (mo +m/)B.
Since the load on all the machines is balanced, the schedule is a NE.

On the other hand, the following is an optimal assignment (see Figure 5(c)): One job of length
B is migrating to each of the empty mg + m’ — 1 machines. One job of length B and all jobs of
length € remain on the original first machine. The load on the first machine My is B 4+ 1. The

load on every other machine is B+ < B + 1.

21

€s

B B
€+0 |
B B
B B B B+0 | B+O | B+ | B+d
(a) (b) (c)

Figure 5: An instance achieving the maximal possible PoA. (a) the initial assignment (Not a NE), (b) the

worst NE, and (c) the best NE.

The ratio between the maximal loads of the two assignments is

was selected such that this is at least mg +m’ — p.

22

(motm)BHL e value of B

B+1

3 Machines’ Removal

In this section we study the scenario in which the systems’ modification involves removal of
machines, and migrations are associated with extension penalty. Recall that Mg, M’ denote the
sets of initial and removed machines, respectively. Let My = My \ M’ denote the set of remaining
machines. Let mg, m/, m; denote the corresponding number of machines, that is m; = mg — m/.
Every job originally assigned to a machine from M’ must be reassigned. As a result, additional
jobs might also be interested in migrating.

Throughout this section, we assume that the initial schedule, sg, is a Nash Equilibrium. The

last result in this section, Theorem 3.9, considers the case where sg is not a NE.

3.1 Equilibrium Existence and Computation

We prove the existence of a NE and analyze the convergence rate of several policies. We first show
that unlike the ‘adding machines’ scenario (studied in Section 2), when machines are removed, a
single phase of max-length best-response might not end up in a NE.

Consider the initial schedule on mg = 4 machines given in Figure 6(a). Assume that the two

right machines are removed and that ¢ = 1.

1+e+3)
4+0
1.5 +9 1.5+
4 4+0 4+
2 2 2 2
15 14 15 1+ 14
M, M M, M’ M, M M,

@) (b) © (d)

Figure 6: An example of single phase max-length best-response that does not converge to a NE.

The job of length 4 is the first to be activated by max-length best-response. It must move to

a machine in M; and its best-response is to join the machine with load 1.5 (Figure 6(b)). The

23

job of length 2 is not interested in moving. Next, the job of length 1.5 moves (Figure 6(c)), and
finally, the job of length 1 4+ ¢ . Figure 6(d) gives the schedule after one phase of max-length
best-response. This schedule is not NE, as the job of length 1.5 would benefit from returning to
its initial location. Thus, a single phase of maz-length best-response is not guaranteed to end up

in a NE assignment.

3.1.1 The better-response policy

In the better-response policy, all jobs are activated in an arbitrary order. When activated, each
job migrates if it is on M’ or if it can improve its cost. For every job j, if so(j) € M’, j must be
activated at least once and move to a machine in M; and be extended. Other jobs are extended if
they leave their original machine. Jobs might be activated several times. Jobs must not migrate
into machines in M’.

We first show that better-response policy terminates in a NE assignment.

Theorem 3.1 The better-response police leads to a NE assignment for every instance of the load

rebalancing game with removed machines and uniform extension penalty.

Proof: Let s1 be the schedule at the time after the last job migrated from M’. Thus, in s;
all the jobs are scheduled on M;. Let (Ly,..., Ly,) be the sorted load vector corresponding to
s1. That is, L; is the load on the machine that has the i-th highest load. If s; is not a NE, then
there exists a beneficial move to some job. We show that the sorted load vector obtained after
performing a beneficial move is lexicographically smaller. This implies that a pure NE is reached
after a finite number of beneficial moves.

Assume that job j can benefit by migrating from M, to M;. The move decreases the load on
M, and increases the load on Mj,. Before the move Ly +p;+0 < Lq if My, # so(j) or Ly+p; < Lq
if My, = so(j), as otherwise, j would not benefit from the move. In particular L, > L. Combining
this with the fact that the load on machines other than M,, M, is not changed, we get that the
number of machines with load at least L, is decreasing. Therefore, the improvement step yields

a sorted load vector that is lexicographically smaller than (L1, ..., Ly,). n

24

3.1.2 The two-phase better-response policy

The two-phase better-response policy consists of two phases. In the first phase all the jobs that
are assigned to machines in M’ are activated. Each job is activated once and performs its best
move. In the second phase all the jobs (now assigned to Mj) are activated in an arbitrary order.
In the first phase each job performs its best move and in the second phase each job performs
an improvement step (not necessary the best). The second phase terminates when there are no
more beneficial moves. In the first phase, activated jobs must migrate to a machine in M7 and be
extended. In the second phase, a job j migrates if a beneficial move exists and is extended only
if the migration is into a machine different from s¢(j). Jobs must not migrate into machines in
M'. A special case of this policy is the two-phase best-response policy, in which in both phases
an activated job performs its best response.

As this is a specific application of the better-response policy described above, the two-phase

better-response policy is guaranteed to terminate in a NE assignment.

3.1.3 The two-phase mazx-length best-response policy

The two-phase maz-length best-response policy is a special application of the two-phase better-
response policy. In the first phase all the jobs assigned to machines in M’ are activated. In
the second phase all the jobs (now assigned to M;) are activated in a non-increasing order of
processing time p; without taking into account the extension penalty. An activated job performs
its best response and is extended if it migrates to a machine it was not assigned on in sy. Note
that each job is activated exactly once in the second phase. Jobs must not migrate into machines
in M.

As demonstrated in Figure 6, a single phase of maz-length best-response policy might not end
up in a NE. As we show below, convergence to a NE is guaranteed by the two-phase max-length

best-response policy.
Theorem 3.2 The two-phase max-length best-response policy leads to a pure NE schedule.
Proof: We first show the following claim.

Claim 3.3 The minimal load does not decrease during the second phase.

25

Proof: We show that the minimal load does not decrease as a result of any move of a job j in
the second phase. Assume that j moves from M, to M. Denote by L?, L} the loads on machine
M; before and after the move of job j, respectively. We show that min{LY, LY} < min{L}, L}}.
Clearly, the load on any machine other than a,b does not change.

If so(j) € My then M, = so(j). The move is beneficial for j, thus, L+p;+8 < LY. Since M, is
the best response of j, min{L?, Lg} = Lg. In addition, L. = LY - Dj, L% = Lg +pj+d < LY, thus,
LY —p; > LY+ 5. We get, min{L}, L}} = min{L — p;, L+ p; + 8} > min{LY + 5, L) +p; + 5} >
min{LY, LY}.

If so(j) € M, then L) + p; + 6 < LO. Therefore, min{L?, LY} = LY < min{LY — p; — 6, L) +
pj + 6} =min{L}, L}}. [

We show that during the second phase, once a job j was activated and perform its best
response, it never has a beneficial move again. Assume by contradiction that the claim is false
and let j be the first job for which a second beneficial move exists. We distinguish between two

cases:

1. so(j) € M'. Assume that on its first move in the second phase, j migrated from M, to M,.

Job j might leave M, only if for some machine M, it holds that L. < L; —p; — 9.

By Claim 3.3, If the load on Mj; does not increase after the join of job j, there is no machine

M, for which L. < Ly —pj — 9.

We show that even if the load on M increases after the join of job j, there is no machine
M. for which L. < Ly — pj — 0. Assume that the load on M, increased due to a join of job
k. Denote by t' the time after the move of job k to M. My, # so(k) since we assume that
j is the first job that is migrating twice in the second phase. Since jobs are activated in

non-increasing order of their length it holds that p; > pg. Therefore, for any machine M.,
LY < LY +pr+6 <L +p;+6.
Thus, L} — pj —0 < LY.

2. so(j) € M. The proof for this case is identical to the proof of Theorem 2.3.

26

We conclude that the two-phase max-length best response policy leads to a pure NE schedule
in the case of machine removal. The convergence time is linear - at most 2n migrations are

preformed.

3.2 Equilibrium Inefficiency

In this section we analyze the price of stability and the price of anarchy with various initial states
and convergence algorithms. We show that the results differ from the classical load balancing
game as well as from the machines’ addition scenario.

We note that by Theorem 2.6, the price of stability of the selfish load rebalancing game with
removed machines and any job extension penalty is 1. As shown in Theorem 2.7, for machines’
addition, the PoA is unbounded if the NE is not reached by performing beneficial migrations. The
same example (or a similar one, if we add a request that the removed machines are non-empty)
is valid also when the modification involves machines’ removal. On the other hand, by assuming
the NE is reached by preforming the better-response policy, we can bound the PoA. Let n’ be the

number of jobs assigned to M’ in sq.

Observation 3.4 Along the application of better-response policy, Limaz < 32;pj + n's.

Proof: The maximal initial load, L . on machines in M;j is at most > jlso)em Pi- A

beneficial move of jobs that are scheduled on M; in sg does not increase the maximal load as
otherwise the move is not beneficial. A move of a job j originally assigned to a removed machine
might increase the maximal load by p; + 6. Thus, the maximal increase of the load on a single

machine is ;.0 yenr (pj + 0), resulting in maximal load at most >, p; + n's. [|

Theorem 3.5 The price of anarchy of a NE that is reached by preforming the better-response

policy is at most my.

Proof: Let P =3}, p;+ n’d. According to Observation 3.4, P is the maximal load that can be

reached. Since n’ job extensions are inevitable, we have OPT > n%. Therefore, PoA < % =
mi. [|

We show that the above analysis is tight for every my < m/, such that mq|m/.

27

Theorem 3.6 For every my < m’, my|m/, and any p > 0. There exists an instance with m’
removed machines and m1 remaining machines for which the PoA of the game, assuming NFE is

reached by performing the better-response policy is at least m1 — p.

Proof: Given p,m; < m/, mi|lm/, let B = %&:1) — . Let e = m. Also, let
6 =1 — ¢ and M, be the first machine in M;.

Consider the schedule sp in which there are % jobs of length e, forming load 1 on M,, and a
single job of length 1 on every other machine in M;. On every machine in M’ there is a single
job of length B —§ = B — 1+ ¢. Note that sg is a NE.

We demonstrate the construction of the lower bound in Figure 7. In this instance my = 3 and

m’ = 3. The initial assignment is given in Figure 7(a).

B
B
B B B
B-6 | B-6 | B-6 B
[es T 1 [T 1 €’s 1 1
M, M’ M, M,

(a) (b) ()

Figure 7: An instance achieving the maximal possible PoA by performing better-response policy. (a) the

initial assignment, (b) the worst NE, and (c) the best NE.

In a possible sequence of moves, all jobs from M’ move to M,. After each move of a job j from
M’ to M,, some e-jobs that were assigned on M, move to the other machines in M;. The amount
of e-jobs that migrate to each of the remaining machines in M; is B — 1. After (B —1)(m; — 1)
e-jobs migrate, each machines’ load increases by B—1 and the machines in M; are balanced. After
M’ such iterations, we reach a NE and the makespan is Ly,q,; < aé +(B-6+0)m' =1+ Bm/.

The final schedule s is shown in Figure 7(b).

28

In an optimal schedule, since mq|m’ the B — § jobs spread equally on M;. The load on each

machine is OPT =1+ %B = %’?m, (see Figure 7(c)). The ratio between the maximal load in

the two schedules is T}:fB”f,:, =my — %. The value of B was selected such that this is at
my
least my — p. |

While the PoA for arbitrary better-response is my, a better bound can be shown if the NE is

reached by the two-phase better-response policy.

Theorem 3.7 The PoA assuming that sy is a NE and the modified NE is reached by the two-

phase better-response policy is at most 2 — mil

Proof: Denote by L} L2 the maximal load on machines in M; after the first and the

max? max

second phase respectively. Since only beneficial moves are preformed during the second phase,

We bound L}

max

< L}

max*

Thus, Lyey = L?,,.. < L}

max max-*

we have L2 as follows. Let M, be a

max

machine with load L} after the first phase. We distinguish between two cases.

max

1
Lmax

is determined by a single job j. 1. IfL. = pj for some job j, then j is the longest

job and s¢(j) € M. Since OPT > maxy, py, = pj, then the PoA in this case is 1.

2. If L}

max

= p; + 6, then so(j) € M'. Clearly, j must migrate in any assignment, thus
OPT > p; + 9, implying PoA = 1.

L} .. is determined by two or more jobs. 1. If all the jobs on M, were assigned to M,

also in sg, then L < L9

maxr — max*

(2 - mil)OPTO. Also, OPT? < OPT because the processing time of some of the jobs

By the PoA bound on regular scheduling game LY <

increased while the number of machines decreased. Therefore, L} . < (2 — mil)OPT.
2. If some jobs on M, are extended, let j be the shortest extended job on M,. Let

P =3,pj+n'd. Since we consider the maximal load after the first phase, so(j) € M’

and OPT > p; + 6.

Since j performed its best move from M’ in the first phase, then for every machine

i, Lqg < L; + pj + 6 at the time of the move of job j. Since the minimal load on

machines in M7 does not decrease during the first phase, 7 would not have a beneficial

move at the end of the first phase. Thus, Ll ,.m1 < P+ (m1 — 1)(p; + 6), then

29

L1 S 4 M 1(p] +0) <OPT + == 1OPT < 2m1 2=l pPT. We conclude that the

maxr — ml

PoA < QmTll—l = (2— 7)OPT.

In both cases, we get Lyae < L1

maxr —

1
<(2-;;)OPT. n

The above analysis is tight even for the two-phase best-response policy.

Theorem 3.8 For any my > 1,m’' > 2, p > 0, there exists an initial schedule for which the PoA

of a schedule achieved by the two-phase best response policy is at least 2 — mil —p.

Proof: Given p, let z = ["4=1]. In addition, let £ < (’mlp) sothat ze <land § =1—c¢.

In the initial assignment, m; — 1 machines in M; are assigned a single job of length m; — 1
and one machine, M,, in M, is assigned z jobs of length . The first machine in M’ is assigned
a single job of length m; — ¢ and on each of the other machines in M’ there are z or z + 1 jobs of
length ¢, such that there are mj — 1 jobs of length € on all M’ machines. This schedule guarantees
that the jobs of length ¢ are balanced and do not have a beneficial move. The longer jobs are also
stable since each is assigned to a dedicated machine. Therefore, the initial schedule is a NE.

We demonstrate the construction of the lower bound in Figure 8. In this instance my = 3 and

m’ = 2. The initial assignment is given in Figure 8(a).

my
€'s
€'s
e+ 0
my-1 | my-1 | my-1 my — 4| my-1 [my-1 | my-1 :g mp-1|my-1|mg-1| ™
€'s €'s €+
My M, My, M, My M,
’
M, M M, M,
(@) (b) (c)

Figure 8: An instance achieving the maximal possible PoA by performing the two-phase best-response

policy. (a) the initial assignment, (b) the worst NE, and (c) the best NE.

Assume that m’ machines are removed and two-phase best-response policy is performed. A
possible NE is a one in which, in the first phase, the e-jobs migrate to M, and the job of length

mi — ¢ migrates to a different machine M in M; (see Figure 8(b)). The load on M, is (m; —

30

1)e+1—e)+2ze=mp—1+2ze. Theloadon Mpism; —1+(m3—14+ec+1—¢)=2m;—1. In
the second phase no job migrates since the load on the other mj — 2 machines of My is mq — 1.
Therefore, Lyq: = 2mq — 1.

On the other hand, the following is an optimal assignment (see Figure 8(c)): The long job
on M’ migrates to M, and each of the e-jobs migrates to a different machine in M;. The load
on My is (my —14+e+1—¢)+ 2e = my + ze. The load on each other machine in M is

mi;— 1+ (e+1—¢)=my. The e-jobs on M, do not want to migrate because it will not improve

their cost.
. . . o 2my—1 1 2
The ratio between the maximal loads of the two assignments is m’?ﬁrze =2— o= mlfzs >
2 — % — —22¢_ The value of € was selected such that the PoA is more than 2 + -1 — p. [|
1 mi+ze mi

Finally, we bound the PoA assuming the initial schedule is not be a NE. The upper bound

follows from Theorem 2.12. The lower bound follows from Theorem 3.6.

Theorem 3.9 If we ignore the demand for NE in the initial schedule, the PoA that is reached

after performing improvement steps is at most mi and this is tight.

31

4 Analysis of Coordinated Deviations

In this section we assume that agents can coordinate their strategies and preform a coordinated
deviation. Recall that a set of players I' C N forms a coalition, if there exists a move where each
job j € I' strictly reduces its cost. A schedule s is a strong equilibrium (SE) if there is no coalition
I' € N that has a beneficial move from s.

We show that a SE always exists and we bound the strong price of stability and the strong price
of anarchy in modification scenarios involving an addition or removal of machines with uniform
extension penalty. We also show that for any value of § > 0 it is NP-hard to determine whether

a given schedule is a SE.

4.1 Equilibrium Existence and Decision Complexity

We first show the existence of a SE in our model.

Theorem 4.1 Every instance of the load rebalancing game with added or removed machines

admits at least one strong equilibrium.

Proof: The proof is identical to the proof for the classic load balancing game [2]. For a given
schedule s, let (cq,...,cy) be the sorted cost vector corresponding to s. That is, ¢; is the cost of
a job that has the j-th highest cost. If s is not a SE, there is a coalition I' of size k < n that can
deviate such that each member of the coalition strictly decreases its cost. It can be seen that the
sorted cost vector obtained after performing a beneficial move is lexicographically smaller. This
implies that a SE is reached after a finite number of beneficial moves. [|

Next, we prove that it is NP-hard to determine whether a NE schedule s is a SE. Moreover,
given a set of jobs, it is NP-hard to determine whether this set has a beneficial coordinated

deviation.

Theorem 4.2 Let s be a NE schedule in a system after a modification took place. For any § > 0,

it 18 NP-hard to determine whether s is a SE.

Proof: We give a reduction from Partition. Given a set A of n integers a1, ..., a, with total

size 2B, the goal is to determine whether A can be partitioned into two sets Ay, As each having

32

total size B. We assume w.l.o.g. that min;a; > max{3,0}, otherwise, the whole instance can
be scaled. Given A, construct an initial schedule on a single machine with n + 5 jobs. One job
has length 2B — 1, two jobs have length 2B — 2 — §, two jobs have length 2B — 1 — § and n jobs
have lengths ay — 4, ...,a, — . Clearly, as my = 1, this schedule is a SE. Assume that m’ = 3
machines are added. Figure 9(a) presents a possible modified schedule. It is easy to verify that

this schedule is a NE.

A A
B-2 B-2 L 2 .
Jobs -
2B-1 of A 2B-1
B-1 B-1 B-1 B-1 B2
’ Vi
Mo M M, M

Figure 9: Partition induces a coalition. (a) a SE schedule if no partition exists (b) the schedule after a

coalitional move - if a partition exist.

Claim 4.3 The schedule in Figure 9(a) is an SE if and only if there is no partition.

Proof: If A has a partition into Aj, Ao, each having total size B, then there is a coalition
consisting of all the a;-jobs and the two jobs of length B — 2 — 4. Figure 9(b) shows the possible
coalitional move. All the partition jobs reduce their cost from 2B to 2B — 1, and the (B — 2)-jobs
reduce their cost from 2B — 3 to 2B — 4.

Next, we show that if there is no partition then the schedule in Figure 9(a) is an SE. The job
of length 2B — 1 does not participate in any coalition because it currently reaches its minimal
cost. Therefore, any possible coalition involves only jobs assigned to machines in M’. Since all
the jobs that can participate are extended and no job would return to its original machine, the
scenario is identical to the classic load balancing game. Denote by M’(i) the i-th machine in M.

As shown in [10], in any action of a coalition on three machines, jobs must migrate to M’(3) (the

33

machine with the maximal load) from both M’(1) and M’(2). In order to decrease the load from
2B — 3, the set of jobs migrating to M’(3) must be the set of two jobs of load B —2. Also, it must
be that all the partition jobs move away from M’(3) - otherwise, the total load on M’(3) will be
at least 2B — 443 = 2B — 1, which is not an improvement for the (B — 2)-jobs. This implies that
the jobs of M’(3) split between M’(1) and M’(2). However, since there is no partition, one of the
two subsets is of total load at least B 4+ 1. These jobs will join a job of load B — 1 to get a total
load of at least 2B, which is not an improvement over the 2B load in the schedule in Figure 9(a).
Thus, no coalition exists. |

This establishes the proof of the Theorem. [|

4.2 Equilibrium Inefficiency

In this section we present tight bounds for the strong price of anarchy. We note that by Theorem
2.6, the strong price of stability of the selfish load rebalancing game with any job extension penalty
is 1.

The following observation will be used in the analysis of the strong price of anarchy (SPoA).
Observation 4.4 In any SE, at least one job has cost at most OPT.

Proof: If all jobs have cost more than OPT, then the schedule is not a SE because all jobs

form together a coalition that prefers the optimal schedule. |

Theorem 4.5 The SPoA in load rebalancing games with uniform penalty with added or removed

machines is at most 3.

Proof: Denote the initial schedule by sy and the SE schedule by s. Let Liaz(80); Limaz(s) be

the makespan of schedule sy and s respectively. If § > OPT, we distinguish between two cases.

1. Adding machines: If 6 > OPT, then in the optimal solution no job migrates. Thus,
Lypaz(so) = OPT. We show that s = sg, which clearly implies that s is optimal. As-
sume that s # so. Each of the jobs for which s(j) # so(j) has cost larger than § in s. Since
0 > OPT = Lpaz(s0), all these jobs form a coalition for which returning to sq is a beneficial

move, contradicting the assumption that s is SE.

34

2. Removing machines: If no job was assigned on any of the m’ removed machines in sg, then
the analysis of "adding machines” is valid. Otherwise, at least one job must migrate in the

optimal solution. This job’s cost is at least p; + ¢. Contradicting the fact that OPT < 4.

Otherwise, § < OPT. We distinguish between two cases:

1. Lpaz(s) is determined by a single job j. First, is Liqea(s) = p; for some job j, then the
schedule is optimal since OPT > maxy pr, = p;. Second, if Ly,qz(s) = p;j + d then since

OPT > maxy, pr, = pj, we have Ly,qq(s) < OPT + 6 <20PT < 30PT.

2. Lynaz() is determined by two or more jobs. Let j be the job with the smallest processing
time on a machine with load Lyyqz(s). Let Lpn(s) be the machine with the minimal load.
It holds that Lyaz(S) < Lmin(s) + pj + 6, since the schedule is a NE. Since p; < OPT,
d < OPT and Lpn(s) < OPT by observation 4.4, we have Lyqz(S) < Limin(s) +pj + 0 <
OPT + OPT + OPT = 30PT.

Therefore, SPoA < 3. |
We show that the above analysis is tight even when the initial schedule is a SE in the cases
of adding and removing machines. The example uses specific values of my and m’. It can be

generalized for additional values of mg, m’ by scaling and/or adding dummy jobs.

Theorem 4.6 For any p > 0, there exists an instance with added machines for which SPoA >

3—p.

Proof: Given p, let € < 1 be a small constant and let B be an integer such that p > B4j6. Fix
d = B — . The initial schedule, on my = 3 machines, is given in Figure 10(a). Note that each
machine accommodates one long job of length B and one tiny job of length ¢ (the job lengthes’
indices in the figure denote so(j) - to help us follow the migrations). Since the load is perfectly

balanced, sg is a strong equilibrium. Assume that m’ = 2 machines are added. Consider the

schedule s given in Figure 10(b). We have L,4.(s) = 2B+ 6 =3B —¢.

Claim 4.7 The schedule s is an SE.

35

By+5

€ g, | & B.45 €,
1
B, | B, | B €540 B, €,+0| €540 B, | B, | B €,+0| &,+0
Mo MO M’ MO M’
(a) (b) (c)

Figure 10: An instance achieving SPOA = 3. (a) the initial assignment, (b) a possible SE, and (c) the
best SE.

Proof: We show that no job can be part of a coalition. Note that the current cost of each
g-job is € + § = B, therefore, no job will join an e-job on its current machine. Moreover, an e-job
will participate in a coalition only if it returns to its original machine alone. Therefore, after any
coalitional move, three different machines are dedicated to the e-jobs. Since there are three B;
jobs and two machines without e-jobs, there is a machine with two B; jobs on it. At least one
of which is extended. Thus, in any coalitional move, one machine has load 2B 4 § which is not
beneficial for the jobs assigned to it. Thus, no coalition exists. |

An optimal schedule for the modified instance is given in Figure 10(c). Ly (OPT) = B +¢.

3B—e __ 3B+3¢ 4e
Therefore, SPoA > Bre = “Bre — Bis >3—p. []

Theorem 4.8 For any p > 0, there exists an instance with removed machines such that SPoA >

3—p.

4
B+e-

Proof: Given p, let € < 1 be a small constant and let B be an integer such that p >
Fix 6 = B — . The initial schedule, on m; + m’ = 5 machines, in given in Figure 11(a). Note
that the first three machines accommodate one long job of length B and the other two machines

accommodate one small job of length €. Since there is a single job on each machine, sg is a strong

36

equilibrium. Assume that m’ = 1 machines are removed. Consider the schedule s given in Figure

11(b). We have Lyu:(s) =3B —e.

B,+6

B3+d
€,+0
€48 £,+5

€) L1

Figure 11: An instance achieving SPOA = 3. (a) the initial assignment, (b) a possible SE, and (c) the
best SE.

Claim 4.9 The schedule s is an SE.

Proof: Clearly, 5 does not participate in any coalition because it reaches its minimal cost on
so(e1). If g1 participate in a coalition then it would only move back to its original machine, but
it is occupied by €3, thus €1 does not participate in any coalition. The remaining three jobs have
the length of B and can be scheduled on two machines since the other machines reach the load
of B. In any schedule there would be at least two jobs of length B on a single machine. No job
except B; and By will participate in such a coalition. Thus, no coalition exists. |

An optimal schedule for the modified instance is given in Figure 11(c). Ly (OPT) = B +¢.

Therefore, SPoA > 31139;; = 3?125 - B‘*jg >3—p.
|
It is possible to provide a tighter analysis of the strong price of anarchy, by bounding this

value as a function of the ratio between d and OPT. The proof of the following theorem is similar

to the proof of Theorem 4.5.

37

Theorem 4.10 The SPoA in load rebalancing games with uniform penalty is at most 2 + %.

The examples in the proofs of Theorem 4.6 and 4.8 show that this bound is tight. Moreover,
as we show below, the above SPoA bound is tight even if the initial schedule is a SE, and the

final SE is reached by a sequence of coalitional improvement steps.

Theorem 4.11 For every p > 0, there exists an instance with added machines such that SPoA >
24 % —p.
Proof: =~ We show an instance with my = 4 initial machines and m’ = 8 added machines. By

scaling and adding dummy jobs, this example can be generalized to other values of mg, m’. Given

2

51 Select 4, 8, € such that 6 =" — ¢, z = % is an even

p, let B be an integer such that p >

integer at least 6 and € = ﬁ For example, given p = 0.1, it is possible to select B = 20,

§' =2,z = 10 and € = 5. The initial schedule is given in Figure 12(a). Note that 1/ jobs of

length ¢ are assigned on the fourth machine. The first machine has load 3B — 2§ + 1 + 2¢, the

other three machines have load 3B — 26 + 1.

7,

€S

By +¢€

Cle ¥| Ba-8 | B35 | Bu-8

Bl+8 BZ B3 B4 Bl + € BZ Bg B4 BZ+1 Bz 33 B3+1 B4 B4_ Bl+1 Bl + €

(a) (b)

Figure 12: An instance achieving SPOA =2 + O‘Sﬁ. (a) the initial assignment, (b) the best SE.

Since Linaz(80) = Limin(S0)+2¢e and the shortest job on Ly, (So) is B+e—4, s¢ is clearly a NE.
Moreover, since all the other machines are balances, it is also a SE. Assume that m’ = 8 machines
are added. Figure 12(b) presents an optimal schedule after the modification. Ly,q,(OPT) = B+-«.

Figure 14 presents a possible sequence of coalitional improvement moves.

38

First, the e-jobs migrate to two new machines. After this move, two M’ machines have z + 1
jobs of length e + & each, forming the load of (z 4+ 1)(c + &) = (2 + 1)’ = (£ +1)8' = B+ .
Two jobs migrate from machines My(2), My(3), My(4), each to an empty machine in M’. The
schedule after the first move is shown in Figure 14(a).

Next, the By + € job performs an improvement step and moves from My(1) to My(2), forming
the schedule in Figure 14(b). Then, the By job performs an improvement step and moves from
My (2) to My(3), forming the schedule in Figure 14(c). The next move is of the coalition consisting
of the two Bj jobs that are currently scheduled on My(1) and z jobs of length € that are scheduled
on the machines in M’ (3 jobs of each machine in M’). The z jobs of length ¢ migrate to My(1)
and form the load of z(e + 0) = 26’ = B. The jobs benefit from the move since they previously
paid B +¢’. The By + & — 6 and By + 1 — § jobs, each migrate to the a different machine
in M’ that the e-jobs left. Since 3 is at least 3, the resulting load on these machines is at most
B+0"—3(e+6) = B—2¢'. The By +e—4¢ job benefits from the move since it currently pays at most
B—2§+B+e=2B+e—25—2¢ = 2B—¢—2¢ instead of 2B+1+¢—26. The B;+1—4 job benefits
from the move since it currently pays at most B—2§' +B+1=2B+1-2§—2¢ =2B+1—-2¢—2§
instead of 2B + 1 4 ¢ — 2§. The schedule after the move is shown in Figure 14(d).

The final move is of e-jobs that remained on M’. They prefer to return to their original

machine, My(4), and pay B + 2(2;21), The final schedule, s, is shown in Figure 14(e).

Claim 4.12 The schedule s’ is an SE.

Proof: Consider the By job that is scheduled on My(4), it does not want to participate in any
coalition since it reached its minimal cost on My(4) even with the other e-jobs. Therefore, the
e-jobs that are scheduled on Mjy(1) cannot return to My(4). If there is a coalition that does not
includes the e-jobs from Mp(1), then there is a load of B on at least two machines. Since there
are 11 jobs of length B that may participate in the coalition and 9 other machines, after the move
there would be at least one machine with two B; jobs on it. The only jobs willing to participate
in such a coalition are By and Bs that are scheduled on Mj(3). Thus, no coalition exists.

If there is a coalition that includes the e-jobs from Mj(1), then they occupy two machines

by themselves (without any B; job). Since there are 11 jobs of length B that may participate in

39

the coalition and 8 remaining machines, after the move there would be at least one machine with
two B; jobs on it. The only jobs willing to participate in such a coalition are By and B3 that are
scheduled on mg(3). Thus, no coalition exists.]

An optimal schedule for the modified instance is given in Figure 12(b). Ly (OPT) = B + 1.

Therefore,

2B+5—2B+2+ J 2 —2B+2+ J 2 _os
orpT OPT OPT OPT B+1 OPT B+1 OPT

SPoA > p-

This example can be generalized for any mg > 4 and mg|m/'.
Next, we show that the bound of 2 + % is tight also in the case of machines’ removal where

the initial schedule is a SE.

Theorem 4.13 For any p > 0, there exists an instance with removed machines for which SPoA >
24+ % —p.

mo+3
2

Proof: Let mg be an odd integer at least 5. Let m; = . Given p, let B be an integer

such that p > BLH' Let 0'|B and 6 = §' — ¢ where ¢ = %. The initial schedule, on mg = my1 +m/
machines is given in Figure 13(a). Note that there is a single job on each machine except for the
fourth machine that is assigned % jobs of length . Each of the machines 5,...,m; is assigned a
single job of length 1. And each machine my, ..., mg, (the m’ rightmost machines) is assigned a
single job of length B — §. Note that the fourth machine is the only machine with more than a
single job, and it has the minimum load, thus sg is a SE. Assume that the rightmost m’ machines
are removed. Consider the schedule s’ given in Figure 13(b). In s, each of the jobs from M’
migrates to a different machine from 4,...,mj. The e-jobs are scheduled on the third machines

and Bo, Bs migrate to machines 1,2 respectively. The maximal load in the resulting schedule is

on the first machine. We have L. (s") = 2B + 6.
Claim 4.14 The schedule s’ is an SE.

Proof: Assume that s’ is not a SE, therefore a coalition exists. Clearly, B] will not participate

in any coalition because it reaches its minimal cost when scheduled alone on the fourth machine.

40

By B, B3 B';, | B, B'
-0 -0)
es | 1] [
M, M’
(a)
B,
+6
1 1 €’s 1 1
B3
B, +6 B'y | B, B' By B, B; Brl BIZ B’mr
M, M,
(b) (c)

Figure 13: An instance achieving SPOA = 2B + 4. (a) the initial assignment, (b) a possible SE, and (c)

the best SE.

This implies that the e-jobs will not migrate back to machine 4. If the e-jobs participate in a
coalition, then after the move they split among at least two machines without any B-job. In such
a schedule the remaining mq — 1 jobs of length at least B must be assigned on m; — 2 machines.
Therefore, at least one of the machines is assigned two jobs of length at least B. No jobs except

for By and By is ready to participate in such a coalition. Clearly, By, By alone cannot initiate

such a deviation.

An optimal schedule for the modified instance is given in Figure 13(c). Lyqz(OPT) = B + 1.

Therefore,

SPoA >

2B+5 2B +2

)

2

2B+2

)

2

oPT

OPT

OPT OPT B+1

41

_ -9
OPT B+1

OPT

5 Summary and Future Work

In this work, we consider a dynamic variant of the classic load balancing game, in which selfish
jobs need to be assigned on a set of identical parallel machines, and each job’s cost is the load
on the machine it is assigned to. Given an initial assignment, the system is modified; specifically,
some machines are added or removed. When machines are added, jobs naturally have an incentive
to migrate to the new unloaded machines. When machines are removed, the jobs assigned to them
must be reassigned. As a result of these migrations, other jobs might also benefit from migrations.
In this model, we consider an extension parameter d > 0 that is associated with migrating from the
initial schedule. In the modified schedule, if the machine on which a job is scheduled is different
from its initial machine, then the job’s processing time is extended by 0.

To the best of our knowledge, these are the first results considering games with migration costs.
We provided answers to the basic questions arising in this model. Specifically, the existence of
Nash equilibrium and strong equilibrium, the calculation of a Nash equilibrium and the lower and
upper bounds of PoS/PoA/SPoS/SPoA. Many important problems remain open. We list below

some possible directions for future work.

1. The first and most natural generalization of our work would be to consider heterogenous
systems, in particular unrelated machines. For the classic load balancing problem, there
is a significant difference between the games induced by identical and related machines. It

would be interesting to check if similar differences exist also in our model.

2. Consider settings in which the extension penalty is not uniform. That is, for each 4,7, 7 we
are given an extension parameter d;, ; such that job j is extended by d; . ; if it migrates

from machine ¢ to machine #’. This work studied the case §;; j = ¢ for all 4,7, j.

3. Study proportional extension, i.e., a migration of job j extends its processing time from p;

to pj(1+9).

4. Our analysis of the PoA is for arbitrary values of §. Another direction is to analyze instances

in which ¢ is bounded by the instance parameters, e.g., when 6 < piin-

5. Our assumption is that migrating jobs are extended. Thus, a migration of j affects all

42

the jobs assigned to j’s target machine. Another possible game can be defined by assuming
individual penalties. Specifically, migrations are associated with cost, but this cost is covered
by the job and does not affect other jobs. The cost of a job j assigned to machine i is L; if
i =so(j) and L; + § otherwise, where the load is the total processing time of jobs assigned

to machine 7.

. Consider jobs with uniform lengths, for which tighter bounds of the PoA/PoS might be
found. For uniform jobs it might also be possible to analyze the convergence time of best

response dynamics and to calculate the social optimum efficiently.

. Finally, in this work we considered the social objective function of minimizing the maximal

cost. It would also be interesting to study and analyze the total payments.

43

References

[1]

[4]

E. Anshelevich, A. Dasgupta, J. M. Kleinberg, E.Tardos, T. Wexler, and T. Roughgarden. The price
of stability for network design with fair cost allocation. In Symposium on the Foundations of Computer

Science (FOCS), pages 295-304, 2004.

N. Andelman, M. Feldman, and Y. Mansour. Strong Price of Anarchy. In Annual ACM-SIAM Sym-
posium on Discrete Algorithms (SODA), 2007.

R. Aumann. Acceptable points in general cooperative n-person games. In Contributions to the Theory

of Games, volume 4, 1959.

Y. Azar, K. Jain, and V.S. Mirrokni. (Almost) optimal coordination mechanisms for unrelated machine

scheduling. In Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 2008.

I. Caragiannis, M. Flammini, C. Kaklamanis, P. Kanellopoulos, L. Moscardelli. Tight Bounds for
Selfish and Greedy Load Balancing. Algorithmica, 61(3): 606637, 2011.

G. Christodoulou, E. Koutsoupias, and A. Nanavati. Coordination mechanisms. J. Daz, J. Karhumaki,
A. Lepisto, and D. Sannella (Eds.), Automata, Languages and Pro- gramming, LNCS Vol. 31/2:
Springer, (2):345-357, 2004.

A. Czumaj. Selfish Routing on the Internet. In Chapter 42 in Handbook of Scheduling: Algorithms,
Models, and Performance Analysis, edited by J. Leung, CRC Press, Boca Raton, FL, 2004

A. Czumaj and B. Vécking. Tight bounds for worst-case equilibria. In ACM Transactions on Algo-
rithms, vol.3(1), 2007

E. Even-Dar, A. Kesselman, and Y. Mansour. Convergence time to Nash equilibria. In Proceedings of
the 30th International Colloguium on Automata, Languages and Programming (ICALP), pages 502—
513, 2003.

[10] M. Feldman and T. Tamir. Approximate Strong Equilibrium in Job Scheduling Games. Journal of

Artificial Intelligence Research, 2009.

[11] M. Feldman and T. Tamir. Conflicting congestion effects in resource allocation games. Journal of

Operation Research. vol. 60(3), pages 529-540, 2012.

44

[12] A. Fiat, H. Kaplan, M. Levi, and S. Olonetsky. Strong Price of Anarchy for Machine Load Balancing.
In In Proceedings of the 34th International Colloquium on Automata, Languages and Programming

(ICALP), 2007.

[13] G. Finn and E. Horowitz. A linear time approximation algorithm for multiprocessor scheduling.. In

BIT, Vol. 19, No. 3, pages 312-320, 1979.

[14] D. Fotakis, S. Kontogiannis, E. Koutsoupias, M. Mavronicolas, P. Spirakis. The structure and com-
plexity of Nash equilibria for a selfish routing game. In Proceedings of the 29th International Colloquium

on Automata, Languages and Programming (ICALP), pages 125-13/, 2002.

[15] M. Gairing, T. Liicking, M. Mavronicolas, and B. Monien. Computing Nash equilibria for scheduling on
restricted parallel links.. In Proceedings of the 36th Annual ACM Symposium on Theory of Computing
(STOC), pages 613-622, 2004.

[16] M. R. Garey, David S. Johnson. Computers and Intractability: A Guide to the Theory of NP-
Completeness.W. H. Freeman& Co. 1979.

[17] R.L. Graham. Bounds for Certain Multiprocessing Anomalies. Bell Systems Technical Journal,
45:1563-1581, 1966.

[18] R.L. Graham. Bounds on Multiprocessing Timing Anomalies. STAM J. Appl. Math., 17:263-269, 1969.

[19] D.S. Hochbaum and D.B. Shmoys. Using dual approximation algorithms for scheduling problems:
Practical and theoretical results. Journal of the ACM, 34(1):144-162, 1987.

[20] N. Immorlica, L. Li, V. Mirrokni, and A. Schulz. Coordination Mechanisms for Selfish Scheduling,
Theoretical Computer Science, vol. 410(17):1589-1598, 2009.

[21] E. Koutsoupias and C. Papadimitriou. Worst-case Equilibria. Computer Science Review,3(2): 65-69,
1999.

[22] C. Papadimitriou. Algorithms, Games, and the Internet. In Proceedings of 33rd ACM Symposium on
Theory of Computing (STOC), pages 749-753, 2001.

[23] B. Vocking. In Noam Nisan, Tim Roughgarden, Eva Tardos and Vijay Vazirani, eds., Algorithmic
Game Theory. Chapter 20: Selfish Load Balancing. Cambridge University Press, 2007.

45

1-6
B+
(a) | e-0
e+d | e+6
€e+d | e+d
Bite| B, | By | By [B2#1| B, |[Bs+l| B3 | By | Bs Eig g:g
e+d | e+d
e+6 [e+8
Bi+|[B+e
1-6 | +s
e+b | e+d
(b) B €e+d | e+d
+ e+d | e+d
£-16 B, B3 By |Bx+l| B, B3+l | Bj By B, e+8 | e+6
e+d | e+d
€+8 | e+d
By +
1-6 By+6
e+d | e+d
(c) 5 B e+d | e+d
< +€ e+d [e+d
8—15 +1~6 Bs B, |By+1| B, |[B3+l| B3 B, B, e+ | £+6
€e+6 | e+d
e+6 [e+8
B,+6
€+8 31+EBI+1
£+0 B
£+ 0 +€
(d) i 15 B B, |By+1| B, |Bs+1| B3 B, B: 565 Te+3
e+d e+d [e+d
£+ 6 €+6 | e+d
B,+6 \ZE,S
£+0
£+0 B
+
(e) i:g i&g B3 By |Bz+l| B |[B3+l| B3 B, By [By+efr+l
e+
e+

A
Y
-

Figure 14: An instance achieving SPOA = 2+ %, where the SE is reached by a sequence of coalitional

improvement steps. The jobs forming the coalitions are in grey.

46

1

mo—m/

DN DTN YW NNpna NIZIVON 1 T07 NIA'WN W IWKRD NI9'W Nayn 1Ay 2 —

MaN 70w 1T ,0IPNY 7w ANYRIp YW NIE7'WO NNNM 27w 751 AWK DA 7hvnn NX NN L9011
779N 1I'Y DHNNN NYNTUDIN NNYN NNYPY NRT] .0N7Y NNYNN DX N2 0DN9WUN NNX9RIN
.3 NIN NDMIX 7Y PTRN 'NNNYIL L pPTN

%P

NN'YN N NRINI NINT NRIDN 7Y NIN'Yn 7¢ yia'y n'yaa 72pnnn nwnd Doy nTiayvn
YN NINT NNIDNA M 7Y NIN'YNN DR TAY7 W' UDNKR [7NY T 70 nvam an'vn 73,001y 0DIIKA
YXINN ,NIRIDNT NITAY 7¥ s, YIA'Y NN .17W Nn'wnn DWIN N2V N1DNN DX DR [Ny 7D
NN'YUNN 1I2Y MIY NNWN 1INAY 19TV IR 1IDI0X' DIPZNYAL PN MIARYAY NDIYN INW'7D 'Y
.on7v

NID0N NIYTN NN M’ .NRPN My 7V 'M7NNn YIA'Y [IN] :NOYN] D'MWORKN 0'MI1'Y Y |N])
I'nY Nin'wun |n"m 1vn? |2 NN NISOHNNYD .N>AyNNN NIMI* NN m’ IX NDYn?
Y7 NN |n"w NIXAIYN 'Y DIN'YNN ,NRDN DNIMI'YI NMEnn nnnnn 2V nixawn
MIpENN NRdnn 7V nin'wnn A2 NIMNIO NITITH DA 11DN' DPZ'MN 1Y .NNNRY nnnnt

772 YNNI S NIPRN NAYANNR NIYA DNYN 17W Nn'wnn 1Ay N[pIol NT'na
NIW NMIPNN NIDNN 7V IR KINEATNA p; KIN | AN'wn IR 017 .5 IN NdIXN 10Nn19]

,i NADN 2V MY j Nn'wn IN7Y1aY 210 7¢ DI7YUNN .N1NN 12NN pj + 0 IX 52 AXIN
.0MYN W2 1901NNY NIDIRNN DX 07710 178 DDIIR AWK | MIDN 7V Dim'ynn AR D100 XIN

NWYT'R 7 N'7M'oznn NIZYN X' L,NNYN 7¢ ANID'R NIX 11 0'D 7V ,N'MNaNN ANNN N'Y210
oniyn Dy NMIdNN 7¥ oniyn NKX DIN'2'N7 XN 7U N10NN NYY2197 D71RW 1T D'Y19 D10
Jmopmin

DI7WUNN NX DIN'MYT XAN7 ["M1yn 210 72 .0T 7NWN1 NI7IVn NI‘va 19017 on'Nl IT nTIAya
NT> 12yn DX NNNKR NIDNY NN'YN 11yn7 712' 210 .NNIpm I9'WY *T-9y 17U nn'wnn 11y
N7v DI7WUNN DX N'NONT7 NIV AN'wN X 'R ,WUK] 77N '1'Y 7w 2xna 17w DI7UNN DX ['on
JNNK MDY ayn Ty

NN NAWN NAYN 7W D71 (N2 NnWN) 1IN0 WX 77wn 1I'Y 2IW'NT7 NION'NNN NIXKXIN A'X)
DRI WX 77wn 1I'YT7 NI0O1dNN NNz DNAYNN 7V NI0IP D'A"PWIW RN .71 Y'Nn N7)a
,NI2Y NI 210N TYXN DX Y¥2N NINA [7NY 72,1170 ,1'9 7y D'72V19 DRY DIPNYN 7¢ IT'0
D1I'7V D'MON A'X11 N'Y7NUDIN DAY NAYN NNYRPY DRI IR NPT N'WYI DIRT NI01dNN
.(PoA) nmMaxn 'Nn? naimnni

2A'NNY AR .ANipn 1oy "y 07un XINW 'NNN DX TN |210N 1AW 12yn XIN 1I9'YW 12un
2'NN VA DT NNIX TWKD ,NNRT nni7 .navn v oM v 7Va 17101 722m 12'X N'DNIRN
:DN D'DIYNY NN L,DDI0N W 1I9'YW Mayn yIx'an 'npnnn N'DNINN

m' -1

.N1dN NooIn v NIPNII9'YW Mayn Ay 2 + -
0

.npn nTMin v NMIPNII9'Y NAyYN Y my—m' e

-z

+*«
* IDC Efi Arazi School
HERZLIYA | of Computer Science

Dol U

989N "INNIAN 199190
AVNND OYTNIY MTIN ION 190-M2

NNRNT PN DY PN SPNUN

NNIPO MYIITNN PIN N0 NUYNNN I9) NTIAY DI
AWNNN Y TN IIPNN DI1D0NI THOM ININ

YPNAIPIVA PN OIT-DY
97010 791N 9199 NMNINA NYNIA NTIAYN

2013 9N

