

The Interdisciplinary Center, Herzlia

Efi Arazi School of Computer Science

LOAD REBALANCING GAMES IN DYNAMIC

SYSTEMS

M.Sc. Dissertation

Submitted in Partial Fulfillment of the Requirements for

the Degree of Master of Science (M.Sc.) Research Track

in Computer Science

Submitted by Sofia Belikovetsky

Under Supervision of Prof. Tami Tamir

January, 2013

Acknowledgements

First and foremost, I express my sincerest gratitude to my supervisor, Prof. Tami

Tamir who has supported me throughout my thesis with her patience and

immense knowledge. Without Her guidance, motivation and enthusiasm, this

thesis would not have been completed. I could not have wished for a better

supervisor!

I would also like to thank my thesis committee: Prof. Yishay Mansour and Prof.

Leah Epstein for reading this work and for their important remarks and questions.

Abstract

We consider a dynamic variant of the classic load balancing game, in which selfish jobs

need to be assigned on a set of identical parallel machines, and each job’s cost is the load on

the machine it is assigned to. Given an initial assignment, the system is modified; specifically,

some machines are added or removed. When machines are added, jobs naturally have an

incentive to migrate to the new unloaded machines. When machines are removed, the jobs

assigned to them must be reassigned. As a result of these migrations, other jobs might also

benefit from migrations. The goal is to find a pure Nash Equilibrium (NE) assignment in

the modified system. A deviation from the initial assignment is associated with a penalty.

We introduce and study the job-extension penalty model. In this model, we are given an

extension parameter δ ≥ 0. If the machine on which a job is assigned to is different from its

initial machine, then the job’s processing time is extended by δ.

We provide answers to the basic questions arising in this model. Namely, the existence

and calculation of a Nash equilibrium and a strong Nash equilibrium, and their inefficiency

compared to an optimal schedule. We show that, for any extension parameter, a NE exists

and BRD converges to a NE. The convergence time is linear when the jobs are activated in a

certain way. We prove lower and upper bounds for the price of stability (PoS), the price of

anarchy (PoA), the strong price of stability (SPoS) and the strong price of anarchy (SPoA).

We show that in general, the price of anarchy is unbounded when machines are either

added or removed. The PoA can be bounded if the modified schedule is achieved by perform-

ing improvement steps. Specifically, let m0,m
′ denote the number of initial machines and

added/removed machines respectively. For NEs that are achieved by performing improvement

steps, we show that the PoA is (i) 2 + m′−1
m0

when machines are added, (ii) m0 −m′ when

machines are removed, and (iii) 2− 1
m0−m′ when machines are removed, and jobs are activated

in a specific order, denoted two-phase better-response.

We show that the SPoA is 3 for the both adding and removing machines scenarios. We

also provide a closer analysis of the strong price of anarchy, and bound it as a function of the

ratio between δ and OPT . Specifically, we show that the SPoA is 2 + δ
OPT .

Our work adds two realistic considerations to the study of job scheduling using game

theoretic approach: the analysis of the common situation in which systems are upgraded or

suffer from failures, and the practical fact according to which job migrations are associated

with a cost.

1

Contents

1 Introduction 3

1.1 Model and Preliminaries . 5

1.2 Related Work . 8

1.3 Our Results . 9

2 Machines’ Addition 11

2.1 Equilibrium Existence and Computation . 11

2.2 Equilibrium Inefficiency . 14

3 Machines’ Removal 23

3.1 Equilibrium Existence and Computation . 23

3.1.1 The better-response policy . 24

3.1.2 The two-phase better-response policy . 25

3.1.3 The two-phase max-length best-response policy 25

3.2 Equilibrium Inefficiency . 27

4 Analysis of Coordinated Deviations 32

4.1 Equilibrium Existence and Decision Complexity . 32

4.2 Equilibrium Inefficiency . 34

5 Summary and Future Work 42

2

1 Introduction

The well-studied load balancing problem considers a scenario in which a set of jobs needs to

be assigned on a set of identical parallel machines. Each job j, is associated with a processing

time pj and the goal is to balance the load on the machines. In contrast to the traditional load

balancing problem, where a central designer determines the allocation of jobs to machines and all

the participating entities are assumed to obey the protocol, in the load balancing game, each job

is owned by a selfish agent who wishes to optimize its own objective.

Given an assignment, each job incurs a cost which is equal to the total load on the machine it

is assigned to. This cost function characterizes systems in which jobs are processed in parallel, or

when all jobs on a particular machine have the same single pick-up time, or need to share some

resource simultaneously. This problem have been widely studied in recent years from a game

theoretic perspective, see [21, 2, 6, 8, 12], and a survey in [23].

In this work, we consider a dynamic variant of this game. Specifically, we are given an

assignment, s0, of n jobs on m0 machines. The system is modified, namely, m′ machines are

added or removed. When machines are added, jobs will naturally have an incentive to migrate

to the new unloaded machines. When machines are removed, the jobs assigned to the removed

machine must be reassigned. As a result of these migrations, other jobs might also benefit from

migrations. The goal is to find a pure Nash Equilibrium (NE) assignment, s, in the modified

system. In such an assignment, no job can reduce its cost by migrating to a different machine.

Apparently, this can be viewed as a new instance of the load balancing game. However, in the

model we consider, a deviation from the initial assignment is associated with a penalty. We

introduce and study the job-extension penalty model. In this model, we are given an extension

parameter δ ≥ 0. If the machine on which job j is scheduled in s is different from its initial machine

in s0, then the processing time of j is extended to be pj + δ. Practically, this penalty is justified

by the fact the reassignment of j causes some extra work on the system, for example, if some

preprocessing or configuration set-up was already performed according to the initial assignment.

Note that this model can be seen as a restricted case of scheduling on related machines. For

every job j and machine Mi, the processing time of j on Mi is pj if j was scheduled on machine

3

Mi in s0 and pj + δ otherwise. Our analysis provides tighter results than those known for related

machines [8]. Also note that if s is produced from s0 by a sequence of improvements steps, then

the extension penalty is independent of the number of steps and only the final assignment of j in

s matters. In particular, if j leaves its original machine and returns to it latter as a part of the

improvement steps sequence then j is not extended.

For the above load rebalancing game, we study the problem of equilibrium existence, cal-

culation, and inefficiency. We quantify the inefficiency incurred due to self-interested behavior

according to the price of anarchy (PoA) [21, 22] and price of stability (PoS) [1] measures, which

quantify to what extent a system can benefit from a central coordinator or regulator.

The measures of PoA and PoS are quantified according to a well-defined objective function.

In this work, we consider the egalitarian objective function, i.e., we wish to minimize the cost of

the job with the highest cost. In scheduling terms, this is equivalent to minimizing the maximal

load on some machine (also known as makespan).

We distinguish between the following scenarios:

1. The initial schedule s0 might be a pure NE or not.

2. The system’s modification might be addition or removal of machines.

3. The modified schedule is achieved by performing a sequence of improvement steps, a se-

quence of best-improvement steps, or arbitrarily.

In addition, we study the existence and quality of strong equilibria in our setting. A strong

equilibrium (SE) [3] is a strategy profile from which no coalition of agents can deviate in a way

that strictly benefits each one of its members. For the static load balancing game, it is known

that a SE exists and can be computed efficiently [2]. We explore the existence of a SE in our

dynamic setting, its computation and inefficiency (also known as the strong price of stability and

strong spice of anarchy).

Applications:

Traditional analysis of job scheduling setting, assume a central utility that determines the allo-

cation of jobs to machines and all the participating entities are assumed to obey the protocol.

4

However, in practice, many systems are used by heterogeneous, autonomous agents, which of-

ten display selfish behavior and attempt to optimize their own objective rather than the global

objective. Game theoretic analysis provides us with the mathematical tools to study such situa-

tions, and indeed has been extensively used recently to analyze multiagent systems. This trend is

motivated in part by the emergence of the Internet, which is composed of distributed computer

networks managed by multiple administrative authorities and shared by users with competing

interests [22].

Our work adds two realistic consideration to the study of job scheduling using game theoretic

analysis. First, we assume that the system is dynamic and resources might be added or removed -

this reflects the common situation in which systems are upgraded or suffer from failures. Second,

we assume that job migrations are associated with a cost. Indeed, in real systems, migrations do

incur some cost.

The added cost might be due to the transferring overhead or due to set-up time that should be

added to the job’s processing time on its new location. Consider for example an initial allocation

of clients to download servers. Assume that some preprocessing is done at the time a client is

assigned to a server, before the download actually started (e.g., locating the required file, format

conversion, etc.). Clients might choose to switch to a mirror server. Such a change would require

repeating the preprocessing work on the new server. In our model, this added work is represented

by the extension penalty.

Another example of a system in which extension penalty occurs is of an RPC (Remote Proce-

dure Call) service. In this service, a cloud of servers enables service to simultaneous users. When

the system is upgraded, more virtual servers are added. Users might switch to the new servers and

get a better service (with less congestion), however, some set-up time and configuration tuning is

required for each new user.

1.1 Model and Preliminaries

A job rescheduling setting is define by the tuple G = ⟨M0,M
′, N, pj , δ⟩, where M0 is a set of

the initial identical machines and M ′ is a set of added or removed machines. If the modification

is machines’ addition, then M ′ is a set of new machines, all identical to the machines in M0.

5

If the modification is machines’ removal then M ′ ⊆ M0. We denote by m0,m
′ the number of

machines in M0,M
′, respectively. N = 1, . . . , n is the set of jobs, for each job j ∈ N , pj denotes

the processing time of job j. δ > 0 is the extension parameter, i.e, the time penalty that is

added to the processing time of a migrating job. An assignment method produces an assignment

s = (s(1), . . . , s(n)) of jobs into machines, where s(j) is the machine to which job j is assigned.

The assignment is referred to as a schedule. The schedule s0 denotes the initial schedule of the

jobs before the systems’ modification. Let s denote the assignment after the modification. In s,

the processing time of a job j ∈ N on machine i ∈ M0
∪
M ′ is pj if i = s0(j) and pj + δ otherwise.

The load on a machine i in a schedule s is the sum of the processing times (including the extension

penalty) of the jobs assigned to i, that is, Li(s) =
∑

j:s(j)=i pj + δi,j where δi,j = 0 if s0(j) = i and

δ otherwise. For a job j ∈ N , let cj(s) be the cost of job j in the schedule s, then cj(s) = Ls(j). In

our job scheduling game, the objective function is minimizing the makespan, which is the load on

the most loaded machine (or equivalently, the highest cost of some job). Formally, for a schedule

s, makespan(s) = maxjcj(s) = maxiLi(s) = Lmax(s).

An assignment s is a pure Nash equilibrium (NE) if no job j ∈ N can benefit from unilaterally

deviating from its machine to another machine; i.e., for every j ∈ N and every machined i ̸= s(j),

Li + pj + δi,j ≥ Ls(j).

The following definitions are used to evaluate the inefficiency of the NE schedule.

Definition 1.1 Let G be a family of games, and let G ∈ G be some game in this family. Let Φ(G)

be the set of Nash equilibria of the game G. If Φ(G) ̸= ∅:

• The price of anarchy of the game G is the ratio between the maximal cost of a Nash equi-

librium and the social optimum of G:

PoA(G) = max
s∈Φ(G)

Lmax(s)/OPT (G),

and the price of anarchy of the family of games G is

PoA(G) = SupG∈GPoA(G).

• The price of stability of the game G is the ratio between the minimal cost of a Nash equi-

6

librium and the social optimum of G:

PoS(G) = min
s∈Φ(G)

Lmax(s)/OPT (G),

and the price of stability of the family of games G is:

PoS(G) = SupG∈GPoS(G).

In section 4 we study coordinated deviations. A set of players Γ ⊆ N forms a coalition, if

there exists a move where each job j ∈ Γ strictly reduces its cost. An assignment s is a strong

equilibrium (SE) if there is no coalition Γ ⊆ N that has a beneficial move from s. Clearly, a

strong equilibrium is a refinement of the notion of Nash equilibrium (in particular, if s is a strong

equilibrium, it is resilient to migration of coalitions of size 1, which coincides with the definition

of NE).

Definition 1.2 Let G be a family of games, and let G ∈ G be some game in this family. Let Φ(G)

be the set of strong equilibria of the game G. If Φ(G) ̸= ∅:

• The strong price of anarchy of the game G is the ratio between the maximal cost of a strong

equilibrium and the social optimum of G:

SPoA(G) = max
s∈Φ(G)

Lmax(s)/OPT (G),

and the strong price of anarchy of the family of games G is

SPoA(G) = SupG∈GSPoA(G).

• The strong price of stability of the game G is the ratio between the minimal cost of a strong

equilibrium and the social optimum of G:

SPoS(G) = min
s∈Φ(G)

Lmax(s)/OPT (G),

and the strong price of stability of the family of games G is:

SPoS(G) = SupG∈GSPoS(G).

7

1.2 Related Work

The Minimum Makespan Scheduling Problem: The minimum makespan problem corre-

sponds to the centralized version of our game in which all jobs obey the decisions of one utility.

The goal is to assign the jobs on m identical machines in a balanced way – that minimizes the last

completion time. A simple reduction from the Partition problem implies that this problem is NP-

hard even for two identical machines [16]. The simple List-scheduling algorithm [17] is a greedy

algorithm that assigns the jobs in arbitrary order, each job to a machine that would minimize its

completion time, given the current schedule. List-scheduling provides a (2− 1
m)-approximation to

the minimum makespan problem. A bit better approximation ratio is guaranteed by the Longest

Processing Time (LPT) algorithm [18]. LPT algorithm applies List-scheduling on the jobs in

non-increasing order of their lengths. The approximation ratio of LPT is (43 − 1
3m). A PTAS for

the minimum makespan problem on identical machines is given in [19].

Load Balancing Games: In the associated game, each job is controlled by a selfish agent who

aims to minimize its cost - given by the load on the machine it is assigned to. While List-scheduling

is not guaranteed to provide a NE schedule, Fotakis et al. show that schedules that result from

LPT algorithm are NE schedules [14]. In [9], Even-dar et al. show that a load balancing game

with unrelated machines always converges in a Nash equilibrium and determine the convergence

time to be linear, specifically reached after at most n steps by performing BRD in a specific order.

The concept of the price of anarchy (PoA) was introduced by Koutsoupias and Papadimitriou

in [21]. They studied a model of a routing game consisting of a source and a sink connected by

m parallel edges with possibly different speeds. Each agent has an amount of traffic that he seeks

to map to one of the edges such that the total load on this edge is as small as possible. They

proved that in this model, the price of anarchy is 2 − 1
m . Their results are in fact valid in our

model, where the parallel edges between the source and the sink correspond to the machines, and

the routing requests correspond to jobs. In [13], Finn and Horowitz presented an upper bound of

2 − 2
m+1 for the price of anarchy in load balancing games with identical machines. Note that in

this game, the PoA is equivalent to the makespan approximation. The upper and lower bounds

of the price of anarchy in load balancing games with uniformly related machines was studied by

Czumaj and Vocking in [8] and is bounded by logm
log log logm . The price of stability (PoS), measures

8

the best-case inefficiency of a Nash equilibrium, and is defined as the ratio between the best

NE and the optimal solution. This measure was introduced by Anshelevich et al. in [1], for

cost-sharing network formation games. It is shown that the price of stability with respect to the

total-cost objective is H(k) = 1 + 1
2 + . . .+ 1

k .

Other related work deals with cost functions that depend on the internal order of jobs, e.g., in

[5, 4, 20]. A different cost function, in which the job’s cost is affected by both the congestion on

the machine and the machines’ activation cost is studied by Feldman and Tamir in [11]. In [5],

Caragiannis et al. study the price of stability of load balancing games with respect to the objective

of minimizing the total completion time, and shows that it is at most 4/3. Other definitions of

the social cost are considered, e.g., by Gairing et al. in [15].

The strong price of anarchy with respect to coalitional moves was studied by Andelman et

al. in [2]. The paper proves the existence of a strong equilibrium and shows that for unrelated

machines the strong price of anarchy can be bounded as a function of the number of machines

and the size of the coalition. Specifically, for m unrelated machines and n players the worst-case

k-SPoA, that considers coalitions of size at most k, is at most O(nm2/k) and at least Ω(n/k). A

survey of results on selfish load balancing and routing on parallel links appear in [7, 23].

1.3 Our Results

We study the problem of equilibrium existence, calculation, and inefficiency in the load rebalancing

game with uniform extension penalty. We show that any job scheduling game with adding or

removing machines obeys at least one Nash equilibrium schedule. Moreover, some optimal solution

is also a Nash equilibrium, and thus, the price of stability is 1. We show that in general, the price

of anarchy is unbounded when machines are either added or removed. The PoA can be bounded

if the modified schedule is achieved by performing improvement steps. Specifically, for NE’s that

are achieved by performing improvement steps, we show that the PoA is

1. 2 + m′−1
m0

when machines are added.

2. m0 −m′ when machines are removed.

3. 2− 1
m0−m′ when machines are removed, and jobs are activated in a specific order, denoted

9

two-phase better-response.

For all the above cases we prove the upper bound and provide matching lower bounds. The lower

bounds are tight for some values of m0,m
′ and almost tight for other values.

We also analyze the load rebalancing game assuming coordinated deviations are allowed. We

prove that a strong equilibrium exists for all system modifications and that the SPoS is 1. We

show that the SPoA is 3 for the both adding and removing machines scenarios and that this

bound is tight. Moreover, we provide a closer analysis of the strong price of anarchy, and bound

this value as a function of the ratio between δ and OPT . Specifically, we show that the strong

price of anarchy is 2 + δ
OPT . We also show that for any value of δ > 0 it is NP-hard to determine

whether a given modified schedule is a SE.

The work is organized as follows: In Section 2 we examine the scenario where m′ identical

machines are added. In Section 3 we examine the scenario in which m′ machines are removed. In

Section 4 we consider coordinated deviation of jobs. For each scenario we consider the problem

of equilibrium existence, calculation, and inefficiency, distinguishing between various initial states

and convergence methods.

We note that in the load rebalancing game with no migration penalty (i.e., when δ = 0) the

analysis for a fixed number of machines is valid also when machines are added. Specifically, in a

dynamic setting in which machines are added or removed and migrations are free of cost, then the

results known for classic load balancing games applied. In particular, the PoA assuming δ = 0 is

2− 2
m0+m′+1 for a game with m′ added machines and 2− 2

m1+1 for a game with removed machines

and m1 remaining machines. The proofs are identical to the proofs for a fixed number of machines.

Thus, the difference between our results and the results for the classic load balancing game are

due to the migration penalty.

10

2 Machines’ Addition

In this section we study the scenario in which the systems’ modification involves an addition of

machines and uniform extension penalty is applied. Specifically, for a given parameter δ > 0, if a

job is assigned to a machine different than its original machine then its processing time is extended

to be pj + δ. Recall that m0,m
′ denote the initial and added number of machines, respectively.

Let m = M0 +m′ denote the resulting number of machines.

2.1 Equilibrium Existence and Computation

We first prove the existence of a NE in our model and suggest a specific form of best-response

dynamics with linear convergence time.

Theorem 2.1 Every instance of the load rebalancing game with added machines and uniform

extension penalty admits at least one pure Nash equilibrium.

Proof: The proof follows the proof for the load balancing game. For a given schedule s, let

(L1, . . . , Lm) be the sorted load vector corresponding to s. That is, Li is the load on the machine

that has the i-th highest load. If s is not a NE, then there exists a beneficial move to some job. We

show that the sorted load vector obtained after performing a beneficial move is lexicographically

smaller. This implies that a pure NE is reached after a finite number of beneficial moves.

Assume that job j can benefit by migrating from Ma to Mb. Clearly, Lb < La. The move

decreases the load on Ma and increases the load on Mb. Before the move Lb + pj + δ < La,

as otherwise, j would not benefit from the move. Combining this with the fact that the load

on machines other than Ma,Mb is unchanged, we get that the number of machines with load

at least La is decreasing. Therefore, the improvement step yields a sorted load vector that is

lexicographically smaller than (L1, . . . , Lm).

Best-Response Dynamics (BRD) is a local search method where in each step some player is

chosen and plays its best-response strategy, given the strategies of the others. As there is a finite

number of possible configurations, the above proof implies that any best-response-dynamics is

guaranteed to converge to a NE. In fact, our proof implies that even better response dynamics (in

11

which each player’s move is beneficial, though not-necessarily the most beneficial), must converge

to a NE.

The next question we consider is how many moves are required to reach a NE. The following

result shows that, for any given initial assignment, there exists a short sequence of beneficial

moves that leads to a NE. Assume that the jobs are sorted according to their processing length,

that is, p1 ≥ p2 ≥ . . . ≥ pn. The max-length best response policy activates the jobs one after the

other according to the sorted order. An activated job j plays a best response, i.e., it moves to a

machine that minimizes its cost (or remain on s0(j) if no beneficial move exists).

We show that after a single pass of max-length best response policy on the jobs, the system

reaches a NE. While this result is valid also for the classic load balancing game [23], its proof for

the load rebalancing game is more involved. We begin with the following observation.

Claim 2.2 As long as each job moves at most once, the minimal load does not decrease.

Proof: We show that the minimum load does not decrease as a result of any first move of

a job j. Assume that j moves from Ma to Mb. Since this is the first move of job j, it holds

that Ma = s0(j). Denote by L0
i , L

1
i the loads on machine Mi before and after the move of

job j respectively. Denote by L0
min the minimal load before the move of job j. The move is

beneficial for j, thus, L0
b + pj + δ < L0

a. We show that min{L0
a, L

0
b} ≤ min{L1

a, L
1
b}. Clearly,

the load on any machine other than a,b does not change. Since Mb is the best response of j,

L0
b = L0

min = min{L0
a, L

0
b}. In addition, L1

a = L0
a−pj , L

1
b = L0

b+pj+δ < L0
a and L0

a−pj > L0
b+δ.

Thus, min{L0
a − pj , L

0
b + pj + δ} ≥ min{L0

b + δ, L0
b + pj + δ} ≥ min{L0

a, L
0
b}.

Theorem 2.3 Let s0 be any initial schedule of n jobs on m0 machines. Assume that m′ machines

are added. Starting from s0, the max-length best response policy reaches a pure Nash equilibrium

after each job is activated at most once.

Proof: A job j is said to be satisfied if it cannot reduce its cost by migrating to a different

machine. By the definition of the cost function with migration penalty, j is satisfied if it is

assigned to s0(j) and Ls0(j) ≤ Li′ + pj + δ for every i′ ̸= s0(j), or if it is assigned to Mi, for some

i ̸= s0(j), Li ≤ Li′ + pj + δ for every i′ ̸= s0(j), and Li ≤ Ls0(j) + pj . We show that once a job j

was activated and played its best response, it never gets unsatisfied again.

12

Assume by contradiction that the claim is false and let j be the first job for which a second

beneficial move exists. Let Ma = s0(j). Assume that on its first move j migrated from Ma to

Mb. Job j might leave Mb only if one of the following conditions holds:

C1 : For some machine Mc ̸= Ma it holds that Lc ≤ Lb − pj − δ.

C2 : La ≤ Lb − pj .

We show that none of these conditions hold. We first prove it assuming that the load on Mb does

not increase, and then consider also the possibility that the load on Mb increases after j joins it.

Denote by t the time in which job j moves from Ma to Mb, and let Lt
min, L

t
i denote the minimal

load and the load on machine i, respectively, at time t.

Claim 2.4 Conditions C1 and C2 do not hold as long as the load on Mb does not increase.

Proof: Since j performs a best move, it must be that Lt
min = Lt

b. According to Claim 2.2, the

minimal load does not decrease during the game, therefore, the load on each machine is at least

Lt
min. This implies that condition C1 does not hold and the only machine to which j might move

to is Ma. Job j might move back to Ma if La < Lt
min + δ. We show that this never happens. In

order for the load on machine Ma to decrease, there must be a job j′ that leaves it after the move

of j. Since we assume that j is the first job that is migrating twice, it must be that s0(j
′) = Ma.

Let Md be the machine to which j′ moves, and let t′ be the migration time. Before the move of

j′, Lt′
a > Lt′

d + pj′ + δ. Since Lt′
d ≥ Lt

min, L
t′
a > Lt

min+ pj′ + δ. After the move of j′ (at time t′+1),

Lt′+1
a = Lt′

a − pj′ > Lt
min + δ = Lt

b + δ. Since we assume that no job is added to Mb, it holds that

Lt′+1
b = Lt

b. Thus, L
t′+1
a > Lt′+1

b + δ and condition C2 does not hold.

Claim 2.5 Conditions C1 and C2 do not hold after any job k joins Mb.

Proof: Denote by t′ the time after the move of job k to Mb. Mb ̸= s0(k) since we assume that

j is the first job that is migrating twice. We know that pj ≥ pk because job j was activated before

job k and jobs are activated in non-increasing order of their length. Therefore, for any machine

Mi,

Lt′
b ≤ Lt′

i + pk + δ ≤ Lt′
i + pj + δ.

13

Thus, Lt′
b − pj − δ ≤ Lt′

i and condition C1 does not hold. For Ma we show that condition C2

does not hold, that is Lt′
a ≥ Lt′

b − pj . Recall that t′-1, t′ are the times before and after the move

of job k to Mb, respectively.

If k moves from Ma to Mb, then

Lt′−1
a > Lt′−1

b + pk + δ (1)

After the move Lt′
a = Lt′−1

a − pk and Lt′
b = Lt′−1

b + pk + δ. Job j would benefit from migrating

to Ma if Lt′
a ≤ Lt′

b − pj which is equivalent to Lt′−1
a − pk + pj < Lt′−1

b + pk + δ. Since job j was

activated before job k, we have pk ≤ pj . Thus, L
t′−1
a < Lt′−1

a −pk+pj , and Lt′−1
a < Lt′−1

b +pk+δ,

contradicting (1).

Next we consider the case in which job k moves to Mb from Mc ̸= Ma. Job k prefers Mb over

Ma, therefore, L
t′
a + pk + δ ≥ Lt′

b . This implies that Lt′
a ≥ Lt′

b − pk − δ. Therefore, condition C2

does not hold and job j will not benefit from migrating back to Ma.

We conclude that the max-length best response policy reaches a pure Nash equilibrium after

each agent is activated at most once.

2.2 Equilibrium Inefficiency

In this section we bound the price of stability and the price of anarchy of our game, distinguishing

between various initial states and convergence methods. For the classic load balancing game, with

no extension penalty, it is known that PoA = 2− 2
m+1 . We show that in our model PoS = 1 and

the PoA is not bounded by a constant. It can be arbitrary large if the schedule is not achieved by a

sequence of improvement steps and bounded by 2+ m′+1
m0

if the schedule is achieved by a sequence

of improvement steps. We also show that if the initial schedule is not a NE but the schedule is

achieved by performing a sequence of improvement steps, the PoA is bounded by m0 +m′.

Theorem 2.6 The price of stability of the selfish load rebalancing game with job extension penalty

is 1.

Proof: It is easy to see that a beneficial move does not increase the makespan. Therefore, by

preforming best-response starting from any optimal assignment, we reach a NE whose makespan

is equal to the optimum.

14

We turn to consider the price of anarchy (PoA). We distinguish between a modified schedule

that is an arbitrary NE, and a NE that is reached by performing a sequence of beneficial moves.

We denote by L0
max, Lmax, OPT the makespan of the initial schedule s0, the makespan of the final

NE s, and the minimal possible makespan, respectively. Let P =
∑

j pj denote the total initial

length of the jobs. We first show that for an arbitrary NE, the PoA is unbounded. The bound is

valid even if m′ = 0 and the initial schedule is a NE.

Theorem 2.7 When the NE is not necessary achieved by a sequence of beneficial moves, the PoA

is unbounded.

Proof: Given m′,m0, δ and r, we construct an instance for which the PoA is r. Let ε be a

small constant such that r = ε+δ
ε . Assume that in the initial schedule, s0, there is a single job of

length ε on each machine in M0 (see Figure 1(a)). Independent of the number of added machines,

ε ε ε ε

ε+δ ε+δ ε+δ ε+δ

(a) (b)

Figure 1: An instance achieving unbounded PoA. (a) the initial assignment, (b) the worst NE.

m′, a schedule in which each job is assigned to a machine in M0 different from s0(j) and each

machine in M0 is assigned a single job, is a NE (see Figure 1(b)). In this schedule, all jobs have

the same cost of ε + δ. It is easy to verify that this schedule is a NE. The optimal schedule is

identical to s0, where all jobs have the same cost of ε. The PoA is ε+δ
ε = r.

We turn to consider the more realistic scenario in which the NE is reached by performing

beneficial moves, starting from a NE schedule s0. Our analysis depends on the parameters m0

and m′. We provide an upper bound that is tight when m′ mod m0 = 1, and almost tight for any

other case.

Theorem 2.8 The price of anarchy in the selfish rebalancing game with job extension penalty is

at most 2 + m′−1
m0

.

15

Proof: Recall that P =
∑

j pj denotes the total initial length of the jobs. Let j be the

shortest job on the most loaded machine in s0. Since s0 is a NE, it holds that the gap between

the maximal and minimal load is at most pj . Therefore, m0L
0
max ≤ P + (m0 − 1)pj . Implying,

L0
max ≤ P

m0
+ m0−1

m0
pj .

Also, since s is achieved by performing beneficial moves, it must be that Lmax ≤ L0
max. Clearly,

even with no migration penalties, for the minimal possible penalty it holds that OPT ≥ P
m0+m′ .

Also, OPT ≥ pj . We get that the price of anarchy is bounded by

Lmax

OPT
≤

P
m0

+ m0−1
m0

pj

OPT
≤

P
m0

P
m0+m′

+
m0−1
m0

pj

pj
≤ m0 +m′

m0
+

m0 − 1

m0
= 2 +

m′ − 1

m0
.

We show that this bound is tight for several combinations of m0,m
′, and almost tight for any

other combination.

Theorem 2.9 For any number of machines m0, for any integer k > 0, and for any ρ > 0, there

exists an input with m′ = km0 + 1 added machines, for which PoA > 2 + m′−1
m0

− ρ.

Proof: Given ρ,m0, k, let m
′ = km0 +1. Let B be an integer such that ρ ≥ k+2

B+1 . In addition,

let ε = 1
(k+1)m′B and δ = 1− ε.

The set of jobs includes m′ + m0 = (k + 1)m0 + 1 jobs of length B, and 1/ε = (k + 1)m′B

jobs of length ε. In the initial assignment, a single machine is assigned k + 2 jobs of length B

and each of the other m0 − 1 machines is assigned k + 1 jobs of length B, as well as some jobs of

length ε, such that the ε-jobs are assigned in a balanced way and the assignment is a NE. Note

that the load on the first machine is (k+2)B and the load on each of the other m0 − 1 machines

is between (k + 1)B and (k + 1)B + 1.

We demonstrate the construction of the lower bound in Figure 2. In this instance m0 = 3 and

k = 1 (implying m′ = 4). The initial assignment is given in Figure 2(a).

Assume that m′ machines are added and improving steps are performed. A possible NE (see

Figure 2(b)) is a one in which the long jobs remain on M0 and every new machine is assigned

(k + 1)B jobs of length ε. The load on the first machine remains (k + 2)B. The load on each of

the other m0−1 machines of M0 is (k+1)B. The load on every new machine is (k+1)B(δ+ε) =

16

B

B

B B

B

B

B

(a)

B

B

B B

B

B

B

ε+δ
.

.

.

.

.

.

.

.

.

.

.

.

(b)

B B B B+δ B+δ B+δ B+δ

(c)

ε’s ε’s

Figure 2: An instance achieving the maximal possible PoA. (a) the initial assignment, (b) the worst NE,

and (c) the best NE.

(k + 1)B. The maximum load is (k + 2)B - achieved on the first machine. This assignment is

a NE as the shortest job on the most loaded machine has length B - which is exactly the gap

from the load on all other machines. Also, the other machines are perfectly balanced, therefore

no migrations are beneficial.

On the other hand, the following is an optimal assignment (see Figure 2(c)): One job of length

B migrates to each of the new machines. The other m0 jobs of length B as well as all jobs of

length ε remain on the original machines M0. The maximal load on M0 is at most B + 1. The

load on every new machine is B + δ < B + 1.

The ratio between the maximal loads of the two assignments is (k+2)B
B+1 . The value of B was

selected such that this is more than 2 + k − ρ = 2 + m′−1
m0

− ρ.

Let m′ = km0 + α for integers k and α < m0. By Theorem 2.8, we have that the PoA is at

most 2 + m′−1
m0

= 2+ m0k+α−1
m0

= k+2+ α−1
m0

. For α = 1 and any k, by theorem 2.9, the bound is

tight. We turn to consider other values of α and k. Assume first that k = 0, that is, the number

of added machines is smaller than the number of initial machines.

Theorem 2.10 For any 1 < m′ < m0 and ρ > 0, there exists an input such that PoA >

2 + 3m′−m0−2
2m0+1 − ρ.

Proof: Given ρ, 1 < m′ < m0, let B be an integer such that ρ ≥ 6(m0+m′)
(B+1)(2m0+1) . In addition, let

δ = 1− ε and ε = 1
2Xm′ where X = B · m0+m′

2m0+1 .

17

The input consists ofm0+m′ long jobs of sizeX, m0+m′ medium jobs of size Y = X ·m0−m′+1
m0+m′ ,

and 1
ε tiny jobs of size ε. In the initial assignment, one machine, M1, is assigned three jobs of

length X. Additional m′ − 2 machines are assigned two jobs of length X each, and each of the

remaining m0 −m′ + 1 machines is assigned a single job of length X. In additions, each of these

m0−m′+1 machines is assigned m0+m′

m0−m′+1 medium jobs1. Note that Y · m0+m′

m0−m′+1 = X, therefore,

the total load on every machine M2, . . . ,Mm0 is 2X. Finally, the tiny jobs are assigned in a

balanced way on M2, . . . ,Mm0 .

We demonstrate the construction of the lower bound in Figure 3. In this instance m0 = 4 and

m′ = 3. The initial assignment is given in Figure 3(a). It is easy to verify that this assignment

is a NE. The most loaded machine, M1, has load 3X. All other machines are balanced and have

load at least 2X. Since the shortest job on M1 has length X, no job has a beneficial move.

X

X

X X

X

X

(a)

ε+δ
.

.

.

.

.

.

.

.

.

(b)

X X X
X+δ X+δ X+δ

(c)

X

X

X

X X

X

X X

ε’s ε’sε’s

Y

Y

Y

Y/2

Y

Y

Y

Y/2

Y

Y

Y

Y/2

Y

Y

Y

Y/2

Y +δ
Y +δ

X

Y/2 +δ
Y +δ Y +δ Y +δ Y +δY/2

Figure 3: An instance achieving a high PoA for m′ < m0. (a) the initial assignment, (b) the worst NE,

and (c) the best NE.

Assume that m′ machines are added and improving steps are performed. A possible NE is a

one in which the long and the medium-size jobs remain on M0 and every new machine is assigned

1
m′ε = 2X tiny jobs. The load on the first machine is 3X. The load on each of the other m0 − 1

machines of M0 is 2X. The load on every new machine is 2X(δ + ε) = 2X. The maximum load

is 3X - achieved on the first machine. This assignment is a NE as the shortest job on the most

loaded machine has length X - which is exactly the gap from the load on all other machines. Also,

1If m0+m′

m0−m′+1
is not an integer, it is possible to replace at most m0 −m′ +1 medium jobs each by two jobs whose

total size is Y in a way that the load on the machines is balanced (see in Figure 3(a)).

18

the other machines are perfectly balanced, therefore no migrations are beneficial.

On the other hand, a better possible assignment results from the following migrations: The

tiny jobs remain on M0. Every new and original machine is assigned one long job and one medium

job. The total load on every new machine is X + Y + 2δ = B + 2δ < B + 2. The total load on

every original machine is at most X+Y +δ+1 < B+2. The addition of δ is due to the migration

of a medium job, the addition of 1 is due to the tiny jobs2.

The ratio between the maximal loads of the two assignments is 3X
B+2 . The value of B was

selected such that this is more than 2 + 3m′−m0−2
2m0+1 − ρ.

For k ≥ 1 and α > 1, the worst PoA we were able to get is the following:

Theorem 2.11 For m′ > m0 and every ρ > 0, there exists an input such that PoA > k + 2 +

(α−1)(k+3)−m0+1
m0(k+2)+1 − ρ.

Proof: Given ρ,m0,m
′ = km0 + α, k > 0, α < m0, let B be an integer such that ρ ≥

2(k+3)(m0+m′)
(B+2)(m0(k+2)+1) . In addition, let δ = 1− ε and ε = 1

(k+2)Xm′ where X = B · m0+m′

(k+2)m0+1 .

The input consists of m0+m′ long jobs of size X, m0+m′ medium jobs of size Y = X · 1−α
m0+m′ ,

and 1
ε tiny jobs of size ε. In the initial assignment, one machine, M1 is assigned k + 3 jobs of

length X. Additional α − 1 machines are assigned k + 2 jobs of length X each, and each of the

remaining m0−α machines is assigned a single job of length X. In additions, each of these m0−α

machines is assigned m0+m′

m0−α medium jobs3 Note that Y · m0+m′

m0−α = X, therefore, the total load on

every machine M2, . . . ,Mm0 due to long and medium jobs is (k + 2)X. Finally, the tiny jobs are

assigned in a balanced way on M2, . . . ,Mm0 .

We demonstrate the construction of the lower bound in Figure 4. In this instance m0 = 3

and m′ = 5, thus, k = 1 and α = 2. The initial assignment is given in Figure 4(a). It is easy to

verify that this assignment is a NE. The most loaded machine, M1, has load (k + 3)X. All other

machines are balanced and have load at least (k + 2)X. Since the shortest job on M1 has length

X, no job has a beneficial move.

2If some medium jobs were replaced by two jobs, it is possible to ‘unite’ these two parts in the assignment. It

would still hold that a single migrating job is assigned on each initial machine.
3If m0+m′

m0−α
is not an integer, it is possible to replace at most m0 − α medium jobs each by two jobs whose total

size is Y , in a way that the load on the machines is balanced.

19

X

X

X X

(a)

ε+δ

.

.

.

.

.

.

.

.

.

(b)

X X X
X+δ X+δ X+δ

(c)

X

ε’s ε’s

Y Y +δ
Y +δ Y +δ Y +δ Y +δ

k+3

.

.

.

X+δ

Y +δX

X

Y

Y

Y

Y

Y

Y

Y

.

.

.

X

Y +δ

X+δ

Y +δX

X

X X X

Y

X

X

Y

Y

Y

Y

Y

Y

Y

X

Figure 4: An instance achieving a high PoA for k = 1, α21. (a) the initial assignment, (b) the worst NE,

and (c) the best NE.

Assume that m′ machines are added and improving steps are performed. A possible NE is a

one in which the long and the medium-size jobs remain on M0 and every new machine is assigned

1
m′ε = (k+2)X tiny jobs. The load on the first machine is (k+3)X. The load on each of the other

m0 − 1 machines of M0 is 2X. The load on every new machine is (k + 2)X(δ + ε) = (k + 2)X.

The maximum load is (k + 3)X - achieved on the first machine. This assignment is a NE as the

shortest job on the most loaded machine has length X - which is exactly the gap from the load

on all other machines. Also, the other machines are perfectly balanced, therefore no migrations

are beneficial.

On the other hand, a better possible assignment results from the following migrations: The

tiny jobs remain on M0. Every new and original machine is assigned one long job and one medium

job. The total load on every new machine is X + Y + 2δ = B + 2δ < B + 2. The total load on

every original machine is at most X+Y +δ+1 < B+2. The addition of δ is due to the migration

of a medium job, the addition of 1 is due to the tiny jobs4.

The ratio between the maximal loads of the two assignments is (k+3)X
B+2 . The value of B was

selected such that this is more than k + 2 + (α−1)(k+3)−m0+1
m0(k+2)+1 − ρ.

4If some medium jobs were replaced by two jobs, it is possible to ‘unite’ these two parts in the assignment. It

would still hold that a single migrating job is assigned on each initial machine.

20

The lower bounds in Theorems 2.10 and 2.11 do not match the upper bound in Theorem 2.8.

We believe that the upper bound can be reduced when α ̸= 1.

Finally, we analyze the PoA for arbitrary initial assignment.

Theorem 2.12 If the initial assignment is not necessary a NE, and the modified schedule is

reached by performing improvement steps, then the PoA is at most m0 +m′.

Proof: Clearly, in the initial assignment, L0
max ≤

∑
j pj . Since improvement steps are

preformed, we have Lmax ≤ L0
max. Also, the makespan of the modified schedule is at least

OPT ≥
∑

j
pj

m0+m′ . Therefore, PoA ≤ Lmax
OPT ≤ L0

max
OPT ≤

∑
j
pj∑

j
pj/m0+m′ ≤ m0 +m′.

This bound is tight as implied by the following theorem.

Theorem 2.13 For any number of machines m0, m
′ and for any ρ > 0, there exists a non-NE

schedule on m0 machines, such that when m′ machines are added and improvement steps are

preformed, the PoA is at least m0 +m′ − ρ.

Proof: Given ρ,m0,m
′. Let B be an integer such that ρ ≥ m0+m′−1

B+1 . In addition, let

ε = 1
(m0+m′)(m0+m′−1)B and δ = 1− ε.

In the initial assignment, a single machine is assigned m0 + m′ jobs of length B and 1
ε jobs

of length ε. The other machines in M0 are empty. Thus, the load on the first machine is

(m0 +m′)B + 1 and the load on each of the other m0 − 1 machines is 0.

We demonstrate the construction of the lower bound in Figure 5. The initial assignment is

given in Figure 5(a). In this instance m0 = 3 and m′ = 2.

Assume that m′ machines are added and improvement steps are performed. A possible NE

(see Figure 5(b)) is a one in which the long jobs remain on the first machine and every other

machine is assigned (m0 +m′)B jobs of length ε. The load on the first machine is (m0 +m′)B.

The load on each of the other m0 +m′ − 1 machines is also (m0 +m′)B(ε + δ) = (m0 +m′)B.

Since the load on all the machines is balanced, the schedule is a NE.

On the other hand, the following is an optimal assignment (see Figure 5(c)): One job of length

B is migrating to each of the empty m0 +m′ − 1 machines. One job of length B and all jobs of

length ε remain on the original first machine. The load on the first machine M0 is B + 1. The

load on every other machine is B + δ < B + 1.

21

B

B

B

(a)

B

B

B

ε+δ
.

.

.

.

.

.

.

.

.

.

.

.

(b)

B B+δ B+δ B+δ B+δ

(c)

ε’s

Figure 5: An instance achieving the maximal possible PoA. (a) the initial assignment (Not a NE), (b) the

worst NE, and (c) the best NE.

The ratio between the maximal loads of the two assignments is (m0+m′)B+1
B+1 . The value of B

was selected such that this is at least m0 +m′ − ρ.

22

3 Machines’ Removal

In this section we study the scenario in which the systems’ modification involves removal of

machines, and migrations are associated with extension penalty. Recall that M0,M
′ denote the

sets of initial and removed machines, respectively. Let M1 = M0 \M ′ denote the set of remaining

machines. Let m0,m
′,m1 denote the corresponding number of machines, that is m1 = m0 −m′.

Every job originally assigned to a machine from M ′ must be reassigned. As a result, additional

jobs might also be interested in migrating.

Throughout this section, we assume that the initial schedule, s0, is a Nash Equilibrium. The

last result in this section, Theorem 3.9, considers the case where s0 is not a NE.

3.1 Equilibrium Existence and Computation

We prove the existence of a NE and analyze the convergence rate of several policies. We first show

that unlike the ‘adding machines’ scenario (studied in Section 2), when machines are removed, a

single phase of max-length best-response might not end up in a NE.

Consider the initial schedule on m0 = 4 machines given in Figure 6(a). Assume that the two

right machines are removed and that δ = 1.

1.5

4

2
1+ε

M1 M’

1.5 1+ε

M1 M’ M1 M’

2

M1

(b) (c)(a) (d)

2

4+δ

4+δ

1+ε+δ

1.5+δ1.5 +δ

1+ε
2

4+δ

Figure 6: An example of single phase max-length best-response that does not converge to a NE.

The job of length 4 is the first to be activated by max-length best-response. It must move to

a machine in M1 and its best-response is to join the machine with load 1.5 (Figure 6(b)). The

23

job of length 2 is not interested in moving. Next, the job of length 1.5 moves (Figure 6(c)), and

finally, the job of length 1 + ε . Figure 6(d) gives the schedule after one phase of max-length

best-response. This schedule is not NE, as the job of length 1.5 would benefit from returning to

its initial location. Thus, a single phase of max-length best-response is not guaranteed to end up

in a NE assignment.

3.1.1 The better-response policy

In the better-response policy, all jobs are activated in an arbitrary order. When activated, each

job migrates if it is on M ′ or if it can improve its cost. For every job j, if s0(j) ∈ M ′, j must be

activated at least once and move to a machine in M1 and be extended. Other jobs are extended if

they leave their original machine. Jobs might be activated several times. Jobs must not migrate

into machines in M ′.

We first show that better-response policy terminates in a NE assignment.

Theorem 3.1 The better-response police leads to a NE assignment for every instance of the load

rebalancing game with removed machines and uniform extension penalty.

Proof: Let s1 be the schedule at the time after the last job migrated from M ′. Thus, in s1

all the jobs are scheduled on M1. Let (L1, . . . , Lm1) be the sorted load vector corresponding to

s1. That is, Li is the load on the machine that has the i-th highest load. If s1 is not a NE, then

there exists a beneficial move to some job. We show that the sorted load vector obtained after

performing a beneficial move is lexicographically smaller. This implies that a pure NE is reached

after a finite number of beneficial moves.

Assume that job j can benefit by migrating from Ma to Mb. The move decreases the load on

Ma and increases the load on Mb. Before the move Lb+pj + δ < La if Mb ̸= s0(j) or Lb+pj < La

if Mb = s0(j), as otherwise, j would not benefit from the move. In particular La > Lb. Combining

this with the fact that the load on machines other than Ma,Mb is not changed, we get that the

number of machines with load at least La is decreasing. Therefore, the improvement step yields

a sorted load vector that is lexicographically smaller than (L1, . . . , Lm1).

24

3.1.2 The two-phase better-response policy

The two-phase better-response policy consists of two phases. In the first phase all the jobs that

are assigned to machines in M ′ are activated. Each job is activated once and performs its best

move. In the second phase all the jobs (now assigned to M1) are activated in an arbitrary order.

In the first phase each job performs its best move and in the second phase each job performs

an improvement step (not necessary the best). The second phase terminates when there are no

more beneficial moves. In the first phase, activated jobs must migrate to a machine in M1 and be

extended. In the second phase, a job j migrates if a beneficial move exists and is extended only

if the migration is into a machine different from s0(j). Jobs must not migrate into machines in

M ′. A special case of this policy is the two-phase best-response policy, in which in both phases

an activated job performs its best response.

As this is a specific application of the better-response policy described above, the two-phase

better-response policy is guaranteed to terminate in a NE assignment.

3.1.3 The two-phase max-length best-response policy

The two-phase max-length best-response policy is a special application of the two-phase better-

response policy. In the first phase all the jobs assigned to machines in M ′ are activated. In

the second phase all the jobs (now assigned to M1) are activated in a non-increasing order of

processing time pj without taking into account the extension penalty. An activated job performs

its best response and is extended if it migrates to a machine it was not assigned on in s0. Note

that each job is activated exactly once in the second phase. Jobs must not migrate into machines

in M ′.

As demonstrated in Figure 6, a single phase of max-length best-response policy might not end

up in a NE. As we show below, convergence to a NE is guaranteed by the two-phase max-length

best-response policy.

Theorem 3.2 The two-phase max-length best-response policy leads to a pure NE schedule.

Proof: We first show the following claim.

Claim 3.3 The minimal load does not decrease during the second phase.

25

Proof: We show that the minimal load does not decrease as a result of any move of a job j in

the second phase. Assume that j moves from Ma to Mb. Denote by L0
i , L

1
i the loads on machine

Mi before and after the move of job j, respectively. We show that min{L0
a, L

0
b} ≤ min{L1

a, L
1
b}.

Clearly, the load on any machine other than a,b does not change.

If s0(j) ∈ M1 then Ma = s0(j). The move is beneficial for j, thus, L0
b+pj+δ < L0

a. Since Mb is

the best response of j, min{L0
a, L

0
b} = L0

b . In addition, L1
a = L0

a−pj , L
1
b = L0

b +pj + δ < L0
a, thus,

L0
a − pj > L0

b + δ. We get, min{L1
a, L

1
b} = min{L0

a − pj , L
0
b + pj + δ} ≥ min{L0

b + δ, L0
b + pj + δ} ≥

min{L0
a, L

0
b}.

If s0(j) ∈ M ′, then L0
b + pj + δ < L0

a. Therefore, min{L0
a, L

0
b} = L0

b ≤ min{L0
a − pj − δ, L0

b +

pj + δ} = min{L1
a, L

1
b}.

We show that during the second phase, once a job j was activated and perform its best

response, it never has a beneficial move again. Assume by contradiction that the claim is false

and let j be the first job for which a second beneficial move exists. We distinguish between two

cases:

1. s0(j) ∈ M ′. Assume that on its first move in the second phase, j migrated from Ma to Mb.

Job j might leave Mb only if for some machine Mc it holds that Lc ≤ Lb − pj − δ.

By Claim 3.3, If the load on Mb does not increase after the join of job j, there is no machine

Mc for which Lc ≤ Lb − pj − δ.

We show that even if the load on Mb increases after the join of job j, there is no machine

Mc for which Lc ≤ Lb − pj − δ. Assume that the load on Mb increased due to a join of job

k. Denote by t′ the time after the move of job k to Mb. Mb ̸= s0(k) since we assume that

j is the first job that is migrating twice in the second phase. Since jobs are activated in

non-increasing order of their length it holds that pj ≥ pk. Therefore, for any machine Mc,

Lt′
b ≤ Lt′

c + pk + δ ≤ Lt′
c + pj + δ.

Thus, Lt′
b − pj − δ ≤ Lt′

c .

2. s0(j) ∈ M1. The proof for this case is identical to the proof of Theorem 2.3.

26

We conclude that the two-phase max-length best response policy leads to a pure NE schedule

in the case of machine removal. The convergence time is linear - at most 2n migrations are

preformed.

3.2 Equilibrium Inefficiency

In this section we analyze the price of stability and the price of anarchy with various initial states

and convergence algorithms. We show that the results differ from the classical load balancing

game as well as from the machines’ addition scenario.

We note that by Theorem 2.6, the price of stability of the selfish load rebalancing game with

removed machines and any job extension penalty is 1. As shown in Theorem 2.7, for machines’

addition, the PoA is unbounded if the NE is not reached by performing beneficial migrations. The

same example (or a similar one, if we add a request that the removed machines are non-empty)

is valid also when the modification involves machines’ removal. On the other hand, by assuming

the NE is reached by preforming the better-response policy, we can bound the PoA. Let n′ be the

number of jobs assigned to M ′ in s0.

Observation 3.4 Along the application of better-response policy, Lmax ≤
∑

j pj + n′δ.

Proof: The maximal initial load, L0
max, on machines in M1 is at most

∑
j|s0(j)∈M1

pj . A

beneficial move of jobs that are scheduled on M1 in s0 does not increase the maximal load as

otherwise the move is not beneficial. A move of a job j originally assigned to a removed machine

might increase the maximal load by pj + δ. Thus, the maximal increase of the load on a single

machine is
∑

j|s0(j)∈M ′(pj + δ), resulting in maximal load at most
∑

j pj + n′δ.

Theorem 3.5 The price of anarchy of a NE that is reached by preforming the better-response

policy is at most m1.

Proof: Let P =
∑

j pj +n′δ. According to Observation 3.4, P is the maximal load that can be

reached. Since n′ job extensions are inevitable, we have OPT ≥ P
m1

. Therefore, PoA ≤ P
P/m1

=

m1.

We show that the above analysis is tight for every m1 ≤ m′, such that m1|m′.

27

Theorem 3.6 For every m1 ≤ m′, m1|m′, and any ρ > 0. There exists an instance with m′

removed machines and m1 remaining machines for which the PoA of the game, assuming NE is

reached by performing the better-response policy is at least m1 − ρ.

Proof: Given ρ,m1 ≤ m′, m1|m′, let B = m1(m1−1)
m′ρ − m1

m′ . Let ε = 1
Bm′(m1−1) . Also, let

δ = 1− ε and Ma be the first machine in M1.

Consider the schedule s0 in which there are 1
ε jobs of length ε, forming load 1 on Ma, and a

single job of length 1 on every other machine in M1. On every machine in M ′ there is a single

job of length B − δ = B − 1 + ε. Note that s0 is a NE.

We demonstrate the construction of the lower bound in Figure 7. In this instance m0 = 3 and

m′ = 3. The initial assignment is given in Figure 7(a).

B-δB-δB-δ

M1 M’

11

B

M1

B

M1

BBB

11

(a) (b) (c)

ε’s ε’s

B

Figure 7: An instance achieving the maximal possible PoA by performing better-response policy. (a) the

initial assignment, (b) the worst NE, and (c) the best NE.

In a possible sequence of moves, all jobs from M ′ move to Ma. After each move of a job j from

M ′ to Ma, some ε-jobs that were assigned on Ma move to the other machines in M1. The amount

of ε-jobs that migrate to each of the remaining machines in M1 is B − 1. After (B − 1)(m1 − 1)

ε-jobs migrate, each machines’ load increases by B−1 and the machines in M1 are balanced. After

M ′ such iterations, we reach a NE and the makespan is Lmax ≤ ε1ε + (B − δ + δ)m′ = 1 + Bm′.

The final schedule s is shown in Figure 7(b).

28

In an optimal schedule, since m1|m′ the B − δ jobs spread equally on M1. The load on each

machine is OPT = 1+ m′

m1
B = m1+Bm′

m1
(see Figure 7(c)). The ratio between the maximal load in

the two schedules is 1+Bm′
m1+Bm′

m1

= m1 − m1(m1−1)
m1+Bm′ . The value of B was selected such that this is at

least m1 − ρ.

While the PoA for arbitrary better-response is m1, a better bound can be shown if the NE is

reached by the two-phase better-response policy.

Theorem 3.7 The PoA assuming that s0 is a NE and the modified NE is reached by the two-

phase better-response policy is at most 2− 1
m1

.

Proof: Denote by L1
max, L

2
max the maximal load on machines in M1 after the first and the

second phase respectively. Since only beneficial moves are preformed during the second phase,

we have L2
max ≤ L1

max. Thus, Lmax = L2
max ≤ L1

max. We bound L1
max as follows. Let Ma be a

machine with load L1
max after the first phase. We distinguish between two cases.

L1
max is determined by a single job j. 1. If L1

max = pj for some job j, then j is the longest

job and s0(j) ∈ M1. Since OPT ≥ maxk pk = pj , then the PoA in this case is 1.

2. If L1
max = pj + δ, then s0(j) ∈ M ′. Clearly, j must migrate in any assignment, thus

OPT ≥ pj + δ, implying PoA = 1.

L1
max is determined by two or more jobs. 1. If all the jobs on Ma were assigned to Ma

also in s0, then L1
max ≤ L0

max. By the PoA bound on regular scheduling game L0
max ≤

(2 − 1
m1

)OPT 0. Also, OPT 0 ≤ OPT because the processing time of some of the jobs

increased while the number of machines decreased. Therefore, L1
max ≤ (2− 1

m1
)OPT .

2. If some jobs on Ma are extended, let j be the shortest extended job on Ma. Let

P =
∑

j pj + n′δ. Since we consider the maximal load after the first phase, s0(j) ∈ M ′

and OPT ≥ pj + δ.

Since j performed its best move from M ′ in the first phase, then for every machine

i, La ≤ Li + pj + δ at the time of the move of job j. Since the minimal load on

machines in M1 does not decrease during the first phase, j would not have a beneficial

move at the end of the first phase. Thus, L1
maxm1 ≤ P + (m1 − 1)(pj + δ), then

29

L1
max ≤ P

m1
+ m1−1

m1
(pj + δ) ≤ OPT + m1−1

m1
OPT ≤ 2m1−1

m1
OPT . We conclude that the

PoA ≤ 2m1−1
m1

= (2− 1
m1

)OPT .

In both cases, we get Lmax ≤ L1
max ≤ (2− 1

m1
)OPT .

The above analysis is tight even for the two-phase best-response policy.

Theorem 3.8 For any m1 > 1,m′ > 2, ρ > 0, there exists an initial schedule for which the PoA

of a schedule achieved by the two-phase best response policy is at least 2− 1
m1

− ρ.

Proof: Given ρ, let z = ⌊m1−1
m′−1 ⌋. In addition, let ε ≤ ρm1

z(2−ρ) so that zε ≤ 1 and δ = 1− ε.

In the initial assignment, m1 − 1 machines in M1 are assigned a single job of length m1 − 1

and one machine, Ma, in M1, is assigned z jobs of length ε. The first machine in M ′ is assigned

a single job of length m1 − δ and on each of the other machines in M ′ there are z or z+1 jobs of

length ε, such that there are m1−1 jobs of length ε on all M ′ machines. This schedule guarantees

that the jobs of length ε are balanced and do not have a beneficial move. The longer jobs are also

stable since each is assigned to a dedicated machine. Therefore, the initial schedule is a NE.

We demonstrate the construction of the lower bound in Figure 8. In this instance m0 = 3 and

m′ = 2. The initial assignment is given in Figure 8(a).

-1-1-1

M
1

M’

ε’s

δ

ε’s

-1-1-1

M
1

ε+ δ

ε+ δ
-1-1-1

ε’s

M
1

(a) (b) (c)

ε+ δ

ε+ δ

ε’s

Figure 8: An instance achieving the maximal possible PoA by performing the two-phase best-response

policy. (a) the initial assignment, (b) the worst NE, and (c) the best NE.

Assume that m′ machines are removed and two-phase best-response policy is performed. A

possible NE is a one in which, in the first phase, the ε-jobs migrate to Ma and the job of length

m1 − δ migrates to a different machine Mb in M1 (see Figure 8(b)). The load on Ma is (m1 −

30

1)(ε+ 1− ε) + zε = m1 − 1 + zε. The load on Mb is m1 − 1 + (m1 − 1 + ε+ 1− ε) = 2m1 − 1. In

the second phase no job migrates since the load on the other m1 − 2 machines of M1 is m1 − 1.

Therefore, Lmax = 2m1 − 1.

On the other hand, the following is an optimal assignment (see Figure 8(c)): The long job

on M ′ migrates to Ma and each of the ε-jobs migrates to a different machine in M1. The load

on Ma is (m1 − 1 + ε + 1 − ε) + zε = m1 + zε. The load on each other machine in M1 is

m1 − 1+ (ε+1− ε) = m1. The ε-jobs on Ma do not want to migrate because it will not improve

their cost.

The ratio between the maximal loads of the two assignments is 2m1−1
m1+zε = 2− 1

m1+zε −
2zε

m1+zε ≥

2− 1
m1

− 2zε
m1+zε . The value of ε was selected such that the PoA is more than 2 + 1

m1
− ρ.

Finally, we bound the PoA assuming the initial schedule is not be a NE. The upper bound

follows from Theorem 2.12. The lower bound follows from Theorem 3.6.

Theorem 3.9 If we ignore the demand for NE in the initial schedule, the PoA that is reached

after performing improvement steps is at most m1 and this is tight.

31

4 Analysis of Coordinated Deviations

In this section we assume that agents can coordinate their strategies and preform a coordinated

deviation. Recall that a set of players Γ ⊆ N forms a coalition, if there exists a move where each

job j ∈ Γ strictly reduces its cost. A schedule s is a strong equilibrium (SE) if there is no coalition

Γ ⊆ N that has a beneficial move from s.

We show that a SE always exists and we bound the strong price of stability and the strong price

of anarchy in modification scenarios involving an addition or removal of machines with uniform

extension penalty. We also show that for any value of δ > 0 it is NP-hard to determine whether

a given schedule is a SE.

4.1 Equilibrium Existence and Decision Complexity

We first show the existence of a SE in our model.

Theorem 4.1 Every instance of the load rebalancing game with added or removed machines

admits at least one strong equilibrium.

Proof: The proof is identical to the proof for the classic load balancing game [2]. For a given

schedule s, let (c1, . . . , cn) be the sorted cost vector corresponding to s. That is, cj is the cost of

a job that has the j-th highest cost. If s is not a SE, there is a coalition Γ of size k ≤ n that can

deviate such that each member of the coalition strictly decreases its cost. It can be seen that the

sorted cost vector obtained after performing a beneficial move is lexicographically smaller. This

implies that a SE is reached after a finite number of beneficial moves.

Next, we prove that it is NP-hard to determine whether a NE schedule s is a SE. Moreover,

given a set of jobs, it is NP-hard to determine whether this set has a beneficial coordinated

deviation.

Theorem 4.2 Let s be a NE schedule in a system after a modification took place. For any δ ≥ 0,

it is NP-hard to determine whether s is a SE.

Proof: We give a reduction from Partition. Given a set A of n integers a1, ..., an with total

size 2B, the goal is to determine whether A can be partitioned into two sets A1, A2 each having

32

total size B. We assume w.l.o.g. that miniai ≥ max{3, δ}, otherwise, the whole instance can

be scaled. Given A, construct an initial schedule on a single machine with n + 5 jobs. One job

has length 2B − 1, two jobs have length 2B − 2− δ, two jobs have length 2B − 1− δ and n jobs

have lengths a1 − δ, ..., an − δ. Clearly, as m0 = 1, this schedule is a SE. Assume that m′ = 3

machines are added. Figure 9(a) presents a possible modified schedule. It is easy to verify that

this schedule is a NE.

2B-1

M’

(a)

B-1 B-1

B-2 B-2

Jobs

of A

M0
2B-1

M’

(b)

B-1 B-1

B-2

B-2

M0
Figure 9: Partition induces a coalition. (a) a SE schedule if no partition exists (b) the schedule after a

coalitional move - if a partition exist.

Claim 4.3 The schedule in Figure 9(a) is an SE if and only if there is no partition.

Proof: If A has a partition into A1, A2, each having total size B, then there is a coalition

consisting of all the ai-jobs and the two jobs of length B − 2− δ. Figure 9(b) shows the possible

coalitional move. All the partition jobs reduce their cost from 2B to 2B− 1, and the (B− 2)-jobs

reduce their cost from 2B − 3 to 2B − 4.

Next, we show that if there is no partition then the schedule in Figure 9(a) is an SE. The job

of length 2B − 1 does not participate in any coalition because it currently reaches its minimal

cost. Therefore, any possible coalition involves only jobs assigned to machines in M ′. Since all

the jobs that can participate are extended and no job would return to its original machine, the

scenario is identical to the classic load balancing game. Denote by M ′(i) the i-th machine in M ′.

As shown in [10], in any action of a coalition on three machines, jobs must migrate to M ′(3) (the

33

machine with the maximal load) from both M ′(1) and M ′(2). In order to decrease the load from

2B−3, the set of jobs migrating to M ′(3) must be the set of two jobs of load B−2. Also, it must

be that all the partition jobs move away from M ′(3) - otherwise, the total load on M ′(3) will be

at least 2B− 4+3 = 2B− 1, which is not an improvement for the (B− 2)-jobs. This implies that

the jobs of M ′(3) split between M ′(1) and M ′(2). However, since there is no partition, one of the

two subsets is of total load at least B + 1. These jobs will join a job of load B − 1 to get a total

load of at least 2B, which is not an improvement over the 2B load in the schedule in Figure 9(a).

Thus, no coalition exists.

This establishes the proof of the Theorem.

4.2 Equilibrium Inefficiency

In this section we present tight bounds for the strong price of anarchy. We note that by Theorem

2.6, the strong price of stability of the selfish load rebalancing game with any job extension penalty

is 1.

The following observation will be used in the analysis of the strong price of anarchy (SPoA).

Observation 4.4 In any SE, at least one job has cost at most OPT.

Proof: If all jobs have cost more than OPT, then the schedule is not a SE because all jobs

form together a coalition that prefers the optimal schedule.

Theorem 4.5 The SPoA in load rebalancing games with uniform penalty with added or removed

machines is at most 3.

Proof: Denote the initial schedule by s0 and the SE schedule by s. Let Lmax(s0), Lmax(s) be

the makespan of schedule s0 and s respectively. If δ > OPT , we distinguish between two cases.

1. Adding machines: If δ > OPT , then in the optimal solution no job migrates. Thus,

Lmax(s0) = OPT . We show that s = s0, which clearly implies that s is optimal. As-

sume that s ̸= s0. Each of the jobs for which s(j) ̸= s0(j) has cost larger than δ in s. Since

δ > OPT = Lmax(s0), all these jobs form a coalition for which returning to s0 is a beneficial

move, contradicting the assumption that s is SE.

34

2. Removing machines: If no job was assigned on any of the m′ removed machines in s0, then

the analysis of ”adding machines” is valid. Otherwise, at least one job must migrate in the

optimal solution. This job’s cost is at least pj + δ. Contradicting the fact that OPT < δ.

Otherwise, δ ≤ OPT . We distinguish between two cases:

1. Lmax(s) is determined by a single job j. First, is Lmax(s) = pj for some job j, then the

schedule is optimal since OPT ≥ maxk pk = pj . Second, if Lmax(s) = pj + δ then since

OPT ≥ maxk pk = pj , we have Lmax(s) ≤ OPT + δ ≤ 2OPT < 3OPT .

2. Lmax(s) is determined by two or more jobs. Let j be the job with the smallest processing

time on a machine with load Lmax(s). Let Lmin(s) be the machine with the minimal load.

It holds that Lmax(s) ≤ Lmin(s) + pj + δ, since the schedule is a NE. Since pj ≤ OPT ,

δ ≤ OPT and Lmin(s) ≤ OPT by observation 4.4, we have Lmax(s) ≤ Lmin(s) + pj + δ ≤

OPT +OPT +OPT = 3OPT .

Therefore, SPoA ≤ 3.

We show that the above analysis is tight even when the initial schedule is a SE in the cases

of adding and removing machines. The example uses specific values of m0 and m′. It can be

generalized for additional values of m0, m
′ by scaling and/or adding dummy jobs.

Theorem 4.6 For any ρ > 0, there exists an instance with added machines for which SPoA ≥

3− ρ.

Proof: Given ρ, let ε < 1 be a small constant and let B be an integer such that ρ ≥ 4ε
B+ε . Fix

δ = B − ε. The initial schedule, on m0 = 3 machines, is given in Figure 10(a). Note that each

machine accommodates one long job of length B and one tiny job of length ε (the job lengthes’

indices in the figure denote s0(j) - to help us follow the migrations). Since the load is perfectly

balanced, s0 is a strong equilibrium. Assume that m′ = 2 machines are added. Consider the

schedule s given in Figure 10(b). We have Lmax(s) = 2B + δ = 3B − ε.

Claim 4.7 The schedule s is an SE.

35

M’

ε1 ε2 ε3
M0 M0

ε3
M’

(a) (b) (c)

M0
Figure 10: An instance achieving SPOA = 3. (a) the initial assignment, (b) a possible SE, and (c) the

best SE.

Proof: We show that no job can be part of a coalition. Note that the current cost of each

ε-job is ε+ δ = B, therefore, no job will join an ε-job on its current machine. Moreover, an ε-job

will participate in a coalition only if it returns to its original machine alone. Therefore, after any

coalitional move, three different machines are dedicated to the ε-jobs. Since there are three Bi

jobs and two machines without ε-jobs, there is a machine with two Bi jobs on it. At least one

of which is extended. Thus, in any coalitional move, one machine has load 2B + δ which is not

beneficial for the jobs assigned to it. Thus, no coalition exists.

An optimal schedule for the modified instance is given in Figure 10(c). Lmax(OPT) = B + ε.

Therefore, SPoA ≥ 3B−ε
B+ε = 3B+3ε

B+ε − 4ε
B+ε ≥ 3− ρ.

Theorem 4.8 For any ρ > 0, there exists an instance with removed machines such that SPoA ≥

3− ρ.

Proof: Given ρ, let ε < 1 be a small constant and let B be an integer such that ρ ≥ 4
B+ε .

Fix δ = B − ε. The initial schedule, on m1 + m′ = 5 machines, in given in Figure 11(a). Note

that the first three machines accommodate one long job of length B and the other two machines

accommodate one small job of length ε. Since there is a single job on each machine, s0 is a strong

36

equilibrium. Assume that m′ = 1 machines are removed. Consider the schedule s given in Figure

11(b). We have Lmax(s) = 3B − ε.

ε1
(a)

M’

(b)

M1M1 ε2 ε1
(c)

M1
Figure 11: An instance achieving SPOA = 3. (a) the initial assignment, (b) a possible SE, and (c) the

best SE.

Claim 4.9 The schedule s is an SE.

Proof: Clearly, ε2 does not participate in any coalition because it reaches its minimal cost on

s0(ε1). If ε1 participate in a coalition then it would only move back to its original machine, but

it is occupied by ε2, thus ε1 does not participate in any coalition. The remaining three jobs have

the length of B and can be scheduled on two machines since the other machines reach the load

of B. In any schedule there would be at least two jobs of length B on a single machine. No job

except B1 and B2 will participate in such a coalition. Thus, no coalition exists.

An optimal schedule for the modified instance is given in Figure 11(c). Lmax(OPT) = B + ε.

Therefore, SPoA ≥ 3B−ε
B+ε = 3B+3ε

B+ε − 4ε
B+ε ≥ 3− ρ.

It is possible to provide a tighter analysis of the strong price of anarchy, by bounding this

value as a function of the ratio between δ and OPT . The proof of the following theorem is similar

to the proof of Theorem 4.5.

37

Theorem 4.10 The SPoA in load rebalancing games with uniform penalty is at most 2 + δ
OPT .

The examples in the proofs of Theorem 4.6 and 4.8 show that this bound is tight. Moreover,

as we show below, the above SPoA bound is tight even if the initial schedule is a SE, and the

final SE is reached by a sequence of coalitional improvement steps.

Theorem 4.11 For every ρ > 0, there exists an instance with added machines such that SPoA ≥

2 + δ
OPT − ρ.

Proof: We show an instance with m0 = 4 initial machines and m′ = 8 added machines. By

scaling and adding dummy jobs, this example can be generalized to other values of m0,m
′. Given

ρ, let B be an integer such that ρ ≥ 2
B+1 . Select δ, δ′, ε such that δ = δ′ − ε, z = B

δ′ is an even

integer at least 6 and ε = 1
2(z+1) . For example, given ρ = 0.1, it is possible to select B = 20,

δ′ = 2, z = 10 and ε = 1
22 . The initial schedule is given in Figure 12(a). Note that 1/ε jobs of

length ε are assigned on the fourth machine. The first machine has load 3B − 2δ + 1 + 2ε, the

other three machines have load 3B − 2δ + 1.

M0 +1

M’

+ε

- δ

- δ

- δ

- δ

- δ

- δ

- δ

’s

(a) (b)

Figure 12: An instance achieving SPOA = 2 + δ
OPT . (a) the initial assignment, (b) the best SE.

Since Lmax(s0) = Lmin(s0)+2ε and the shortest job on Lmax(s0) is B+ε−δ, s0 is clearly a NE.

Moreover, since all the other machines are balances, it is also a SE. Assume that m′ = 8 machines

are added. Figure 12(b) presents an optimal schedule after the modification. Lmax(OPT) = B+ε.

Figure 14 presents a possible sequence of coalitional improvement moves.

38

First, the ε-jobs migrate to two new machines. After this move, two M ′ machines have z + 1

jobs of length ε + δ each, forming the load of (z + 1)(ε + δ) = (z + 1)δ′ = (Bδ′ + 1)δ′ = B + δ′.

Two jobs migrate from machines M0(2), M0(3), M0(4), each to an empty machine in M ′. The

schedule after the first move is shown in Figure 14(a).

Next, the B1+ ε job performs an improvement step and moves from M0(1) to M0(2), forming

the schedule in Figure 14(b). Then, the B2 job performs an improvement step and moves from

M0(2) to M0(3), forming the schedule in Figure 14(c). The next move is of the coalition consisting

of the two B1 jobs that are currently scheduled on M0(1) and z jobs of length ε that are scheduled

on the machines in M ′ (z2 jobs of each machine in M ′). The z jobs of length ε migrate to M0(1)

and form the load of z(ε + δ) = zδ′ = B. The jobs benefit from the move since they previously

paid B + δ′. The B1 + ε − δ and B1 + 1 − δ jobs, each migrate to the a different machine

in M ′ that the ε-jobs left. Since z
2 is at least 3, the resulting load on these machines is at most

B+δ′−3(ε+δ) = B−2δ′. The B1+ε−δ job benefits from the move since it currently pays at most

B−2δ′+B+ε = 2B+ε−2δ−2ε = 2B−ε−2δ instead of 2B+1+ε−2δ. The B1+1−δ job benefits

from the move since it currently pays at most B−2δ′+B+1 = 2B+1−2δ−2ε = 2B+1−2ε−2δ

instead of 2B + 1 + ε− 2δ. The schedule after the move is shown in Figure 14(d).

The final move is of ε-jobs that remained on M ′. They prefer to return to their original

machine, M0(4), and pay B + z+2
2(z+1) . The final schedule, s′, is shown in Figure 14(e).

Claim 4.12 The schedule s′ is an SE.

Proof: Consider the B4 job that is scheduled on M0(4), it does not want to participate in any

coalition since it reached its minimal cost on M0(4) even with the other ε-jobs. Therefore, the

ε-jobs that are scheduled on M0(1) cannot return to M0(4). If there is a coalition that does not

includes the ε-jobs from M0(1), then there is a load of B on at least two machines. Since there

are 11 jobs of length B that may participate in the coalition and 9 other machines, after the move

there would be at least one machine with two Bi jobs on it. The only jobs willing to participate

in such a coalition are B2 and B3 that are scheduled on M0(3). Thus, no coalition exists.

If there is a coalition that includes the ε-jobs from M0(1), then they occupy two machines

by themselves (without any Bi job). Since there are 11 jobs of length B that may participate in

39

the coalition and 8 remaining machines, after the move there would be at least one machine with

two Bi jobs on it. The only jobs willing to participate in such a coalition are B2 and B3 that are

scheduled on m0(3). Thus, no coalition exists.

An optimal schedule for the modified instance is given in Figure 12(b). Lmax(OPT) = B+1.

Therefore,

SPoA ≥ 2B + δ

OPT
=

2B + 2

OPT
+

δ

OPT
− 2

OPT
=

2B + 2

B + 1
+

δ

OPT
− 2

B + 1
= 2 +

δ

OPT
− ρ.

This example can be generalized for any m0 ≥ 4 and m0|m′.

Next, we show that the bound of 2+ δ
OPT is tight also in the case of machines’ removal where

the initial schedule is a SE.

Theorem 4.13 For any ρ > 0, there exists an instance with removed machines for which SPoA ≥

2 + δ
OPT − ρ.

Proof: Let m0 be an odd integer at least 5. Let m1 = m0+3
2 . Given ρ, let B be an integer

such that ρ ≥ 2
B+1 . Let δ

′|B and δ = δ′ − ε where ε = δ′

B . The initial schedule, on m0 = m1 +m′

machines is given in Figure 13(a). Note that there is a single job on each machine except for the

fourth machine that is assigned 1
ε jobs of length ε. Each of the machines 5, . . . ,m1 is assigned a

single job of length 1. And each machine m1, . . . ,m0, (the m′ rightmost machines) is assigned a

single job of length B − δ. Note that the fourth machine is the only machine with more than a

single job, and it has the minimum load, thus s0 is a SE. Assume that the rightmost m′ machines

are removed. Consider the schedule s′ given in Figure 13(b). In s′, each of the jobs from M ′

migrates to a different machine from 4, . . . ,m1. The ε-jobs are scheduled on the third machines

and B2, B3 migrate to machines 1, 2 respectively. The maximal load in the resulting schedule is

on the first machine. We have Lmax(s
′) = 2B + δ.

Claim 4.14 The schedule s′ is an SE.

Proof: Assume that s′ is not a SE, therefore a coalition exists. Clearly, B′
1 will not participate

in any coalition because it reaches its minimal cost when scheduled alone on the fourth machine.

40

M1 M’

ε’s

(a)

. . .

1

+ δ

+ δ

M1
(b)

1

M1
ε’s

(c)

- -
1

. . .

1

. . .

-

1

. . .

1

Figure 13: An instance achieving SPOA = 2B + δ. (a) the initial assignment, (b) a possible SE, and (c)

the best SE.

This implies that the ε-jobs will not migrate back to machine 4. If the ε-jobs participate in a

coalition, then after the move they split among at least two machines without any B-job. In such

a schedule the remaining m1 − 1 jobs of length at least B must be assigned on m1 − 2 machines.

Therefore, at least one of the machines is assigned two jobs of length at least B. No jobs except

for B1 and B2 is ready to participate in such a coalition. Clearly, B1, B2 alone cannot initiate

such a deviation.

An optimal schedule for the modified instance is given in Figure 13(c). Lmax(OPT) = B + 1.

Therefore,

SPoA ≥ 2B + δ

OPT
=

2B + 2

OPT
+

δ

OPT
− 2

OPT
=

2B + 2

B + 1
+

δ

OPT
− 2

B + 1
= 2 +

δ

OPT
− ρ.

41

5 Summary and Future Work

In this work, we consider a dynamic variant of the classic load balancing game, in which selfish

jobs need to be assigned on a set of identical parallel machines, and each job’s cost is the load

on the machine it is assigned to. Given an initial assignment, the system is modified; specifically,

some machines are added or removed. When machines are added, jobs naturally have an incentive

to migrate to the new unloaded machines. When machines are removed, the jobs assigned to them

must be reassigned. As a result of these migrations, other jobs might also benefit from migrations.

In this model, we consider an extension parameter δ ≥ 0 that is associated with migrating from the

initial schedule. In the modified schedule, if the machine on which a job is scheduled is different

from its initial machine, then the job’s processing time is extended by δ.

To the best of our knowledge, these are the first results considering games with migration costs.

We provided answers to the basic questions arising in this model. Specifically, the existence of

Nash equilibrium and strong equilibrium, the calculation of a Nash equilibrium and the lower and

upper bounds of PoS/PoA/SPoS/SPoA. Many important problems remain open. We list below

some possible directions for future work.

1. The first and most natural generalization of our work would be to consider heterogenous

systems, in particular unrelated machines. For the classic load balancing problem, there

is a significant difference between the games induced by identical and related machines. It

would be interesting to check if similar differences exist also in our model.

2. Consider settings in which the extension penalty is not uniform. That is, for each i, i′, j we

are given an extension parameter δi,i′,j such that job j is extended by δi,i′,j if it migrates

from machine i to machine i′. This work studied the case δi,i′,j = δ for all i, i′, j.

3. Study proportional extension, i.e., a migration of job j extends its processing time from pj

to pj(1 + δ).

4. Our analysis of the PoA is for arbitrary values of δ. Another direction is to analyze instances

in which δ is bounded by the instance parameters, e.g., when δ ≤ pmin.

5. Our assumption is that migrating jobs are extended. Thus, a migration of j affects all

42

the jobs assigned to j’s target machine. Another possible game can be defined by assuming

individual penalties. Specifically, migrations are associated with cost, but this cost is covered

by the job and does not affect other jobs. The cost of a job j assigned to machine i is Li if

i = s0(j) and Li + δ otherwise, where the load is the total processing time of jobs assigned

to machine i.

6. Consider jobs with uniform lengths, for which tighter bounds of the PoA/PoS might be

found. For uniform jobs it might also be possible to analyze the convergence time of best

response dynamics and to calculate the social optimum efficiently.

7. Finally, in this work we considered the social objective function of minimizing the maximal

cost. It would also be interesting to study and analyze the total payments.

43

References

[1] E. Anshelevich, A. Dasgupta, J. M. Kleinberg, É.Tardos, T. Wexler, and T. Roughgarden. The price

of stability for network design with fair cost allocation. In Symposium on the Foundations of Computer

Science (FOCS), pages 295–304, 2004.

[2] N. Andelman, M. Feldman, and Y. Mansour. Strong Price of Anarchy. In Annual ACM-SIAM Sym-

posium on Discrete Algorithms (SODA), 2007.

[3] R. Aumann. Acceptable points in general cooperative n-person games. In Contributions to the Theory

of Games, volume 4, 1959.

[4] Y. Azar, K. Jain, and V.S. Mirrokni. (Almost) optimal coordination mechanisms for unrelated machine

scheduling. In Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 2008.

[5] I. Caragiannis, M. Flammini, C. Kaklamanis, P. Kanellopoulos, L. Moscardelli. Tight Bounds for

Selfish and Greedy Load Balancing. Algorithmica, 61(3): 606–637, 2011.

[6] G. Christodoulou, E. Koutsoupias, and A. Nanavati. Coordination mechanisms. J. Daz, J. Karhumaki,

A. Lepisto, and D. Sannella (Eds.), Automata, Languages and Pro- gramming, LNCS Vol. 3142:

Springer, (2):345–357, 2004.

[7] A. Czumaj. Selfish Routing on the Internet. In Chapter 42 in Handbook of Scheduling: Algorithms,

Models, and Performance Analysis, edited by J. Leung, CRC Press, Boca Raton, FL, 2004

[8] A. Czumaj and B. Vöcking. Tight bounds for worst-case equilibria. In ACM Transactions on Algo-

rithms, vol.3(1), 2007

[9] E. Even-Dar, A. Kesselman, and Y. Mansour. Convergence time to Nash equilibria. In Proceedings of

the 30th International Colloquium on Automata, Languages and Programming (ICALP), pages 502–

513, 2003.

[10] M. Feldman and T. Tamir. Approximate Strong Equilibrium in Job Scheduling Games. Journal of

Artificial Intelligence Research, 2009.

[11] M. Feldman and T. Tamir. Conflicting congestion effects in resource allocation games. Journal of

Operation Research. vol. 60(3), pages 529–540, 2012.

44

[12] A. Fiat, H. Kaplan, M. Levi, and S. Olonetsky. Strong Price of Anarchy for Machine Load Balancing.

In In Proceedings of the 34th International Colloquium on Automata, Languages and Programming

(ICALP), 2007.

[13] G. Finn and E. Horowitz. A linear time approximation algorithm for multiprocessor scheduling.. In

BIT, Vol. 19, No. 3, pages 312–320, 1979.

[14] D. Fotakis, S. Kontogiannis, E. Koutsoupias, M. Mavronicolas, P. Spirakis. The structure and com-

plexity of Nash equilibria for a selfish routing game. In Proceedings of the 29th International Colloquium

on Automata, Languages and Programming (ICALP), pages 123–134, 2002.

[15] M. Gairing, T. Lücking, M. Mavronicolas, and B. Monien. Computing Nash equilibria for scheduling on

restricted parallel links.. In Proceedings of the 36th Annual ACM Symposium on Theory of Computing

(STOC), pages 613–622, 2004.

[16] M. R. Garey, David S. Johnson. Computers and Intractability: A Guide to the Theory of NP-

Completeness.W. H. Freeman& Co. 1979.

[17] R.L. Graham. Bounds for Certain Multiprocessing Anomalies. Bell Systems Technical Journal,

45:1563–1581, 1966.

[18] R.L. Graham. Bounds on Multiprocessing Timing Anomalies. SIAM J. Appl. Math., 17:263–269, 1969.

[19] D.S. Hochbaum and D.B. Shmoys. Using dual approximation algorithms for scheduling problems:

Practical and theoretical results. Journal of the ACM, 34(1):144–162, 1987.

[20] N. Immorlica, L. Li, V. Mirrokni, and A. Schulz. Coordination Mechanisms for Selfish Scheduling,

Theoretical Computer Science, vol. 410(17):1589–1598, 2009.

[21] E. Koutsoupias and C. Papadimitriou. Worst-case Equilibria. Computer Science Review,3(2): 65-69,

1999.

[22] C. Papadimitriou. Algorithms, Games, and the Internet. In Proceedings of 33rd ACM Symposium on

Theory of Computing (STOC), pages 749–753, 2001.

[23] B. Vöcking. In Noam Nisan, Tim Roughgarden, Eva Tardos and Vijay Vazirani, eds., Algorithmic

Game Theory. Chapter 20: Selfish Load Balancing. Cambridge University Press, 2007.

45

+ ε

- δ

+1

ε + δ
+ ε

+ δ- δ

+1

ε + δ

(a)

(b)

+ ε

+ δ

- δ

+1

+ ε

+ δ
+1

+ ε

+ δ
+1

’s

ε + δ

(d)

(e)

(c)

Figure 14: An instance achieving SPOA = 2+ δ
OPT , where the SE is reached by a sequence of coalitional

improvement steps. The jobs forming the coalitions are in grey.

46

 2 −
1

𝑚0−𝑚′
 עבור מעברי שיפור כאשר יש חשיבות לסדר הפעולות במקרה של הורדת מכונות.

בנוסף, ננתח את המשחק גם כאשר בכל שלב מותרת פעילות של קואליציה של שחקנים, כזו שכל חברי

הקואליציה משפרים בה את ההשמה שלהם. נראה שקיימת השמה אופטימלית המהווה שיווי משקל

 .3חזק, ושהמחיר החזק של אנרכיה הוא

 תקציר

משימות nהעבודה עוסקת במשחק המתקבל בבעיית שיבוץ של משימות על מכונות זהות. נתונות

מכונות זהות כאשר mאנוכי. יש לעבד את המשימות על ונים, כל משימה מונעת על ידי שחקןבאורכים ש

מתבצע של עבודות למכונות, 𝑠0 בהנתן שיבוץ בוחר את המכונה עליה תושם המשימה שלו. שחקןכל

שינוי כלשהו במערכת שבעקבותיו יתכן והשחקנים יצטרכו או יעדיפו לבחור השמה שונה עבור המשימה

 שלהם.

כונות חדשות נוספות מ ’m מכונות. m0נתון שיבוץ התחלתי על :שינויים אפשריים במערכתנבחן שני

אליהן משימות שהיו יורדות מהמערכת. כשמתווספות מכונות ניתן להעביר מכונות ’mערכת או למ

המשימות שהיו משובצות עליהן חייבות לעבור כשיורדות מכונות, .משובצות על המכונות המקוריות

 בשני המיקרים יתכנו גם תזוזות פנימיות בקרב המשימות על המכונות המקוריות. למכונות שנותרו.

אורך המשימה גדל 𝑠0במידה וסוכן בוחר עבור המשימה שלו השמה השונה מההשמה המקורית

על המכונה המקורית שבה במידה והוא נשאר 𝑝𝑗הוא jאורך משימה ,. כלומרδ בפרמטר הארכה נתון

𝑝𝑗או 𝑠0הוצב ב + δ שבבעלותו משימה . התשלום של סוכן במידה ועבר ממנהj המושמת על מכונהi ,

 ההארכות שהתווספו בשל מעברים.כאשר אורכים אלו כוללים את iעל מכונה הוא סכום ארכי המשימות

של איזשהו עלות המקסימליתהפונקציית הרווחה החברתית, על פיה נעריך את איכותה של השמה, היא

. פונקציה זו שקולה לפונקציית המטרה של הבאה למינימום את העומס של המכונה עם העומס סוכן

 המקסימלי.

התשלום כל סוכן מעוניין להביא למינימום את בעבודה זו נתייחס למספר בעיות העולות במשחק זה.

מעבר כזה ול להעביר משימה למכונה אחרת אם ידי שיפור מיקומה. סוכן יכ-עלעבור המשימה שלו

 הפחית את התשלום שלהבמצב של שיווי משקל נאש, אין אף משימה שניתן להתשלום שלו. מקטין את

 על ידי מעבר למכונה אחרת.

ת לחישוב שיווי משקל נאש טהור)השמה יציבה(ולבעיה של השגת השמה יציבה נציג תוצאות המתייחסו

נראה שכשקיימים קנסות על המעברים קיימת התכנסות לשיווי משקל נאש וקיים בעלת מחיר מינימאלי.

סידור של השחקנים שאם פועלים על פיו, כלומר, כל שחקן בתורו מבצע את הצעד הטוב ביותר עבורו,

נעשית בזמן לינארי. נראה שקיימת השמה יציבה אופטימלית ונציג חסמים עליונים התכנסות זאת

 (. PoAותחתונים למחיר האנרכיה)

נראה שמחיר מעבר שיפור הוא מעבר שבו הסוכן מוריד את המחיר שהוא משלם ע"י שיפור מקומה.

דנים בערך מחיר האנרכיה אינו מוגבל ותלוי בערך של הקנס על מעבר. לעומת זאת, כאשר אנחנו

 האנרכיה המתקבל מביצוע מעברי שיפור של הסוכנים, נראה שהערכים הם:

 2 +
𝑚′−1

𝑚0
 במקרה של הוספת מכונות. עבור מעברי שיפור

 𝑚0 − 𝑚′ .עבור מעברי שיפור במקרה של הורדת מכונות

 הרצליהב המרכז הבינתחומי

 ספר אפי ארזי למדעי המחשב-בית

 משחקי איזון עומס במערכות דינאמיות

 לקראת מהדרישות חלק כמילוי המוגשת גמר עבודת סיכום
המחשב במדעי מחקרי במסלול מוסמך תואר

סופיה בליקובצקי ייד-על

פרופ' תמי תמירהעבודה בוצעה בהנחיית

 3102 ינואר

