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Abstract

Cryptocurrencies can be used merely to transfer value between identities, but many of the more
interesting uses of cryptocurrencies require contracts, e.g, “a transfer of X coins from party S to
party R should occur only if conditions A and B hold”. Bitcoin (and related cryptocurrencies)
place strict limits on the language in which these conditions can be phrased. In particular, they
have limited length and don’t allow loops.

In this work, we show how to augment the Bitcoin scripting language with a single “innocu-
ous” operation to that allows us to create “meta conditions” with much more expressive power
(e.g., as defined by arbitrarily-sized circuits).

We construct a protocol to compile such meta-conditions into a set of (augmented) Bitcoin
transactions. We then show how to use this compiler to realize a full “meta-ledger” functionality,
which we show is secure in the universal composability framework.
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1 Introduction

Introduced by Satoshi Nakamoto in 2008 [8], Bitcoin is the first decentralized cryptocurrency,
and still the most popular in terms of market cap and transaction volume (as measured in
USD).

Bitcoin’s design is based on a transaction ledger. Loosely, a transaction ledger accepts trans-
actions as input from honest parties and outputs an ordered list of transactions (which all
honest parties agree on).

Bitcoin Transactions and the UTXO Ledger

The transaction is the primary abstraction in Bitcoin; there are no separate notions of “ac-
counts” or “balances”. Instead, each Bitcoin transaction has inputs and outputs. Every trans-
action output (TXO) specifies an amount (in Bitcoins) and a spending condition, and every
input references a single TXO and has some additional “proof data”.

A transaction output can be thought of as a “coin” whose value is the amount specified by
the output. “Spending” the coin is done by publishing a new transaction whose input references
the corresponding TXO. The spending condition specifies who is allowed to spend the coin.

In order to verify the validity of a transaction, nodes need to store only the set of unspent
transaction outputs—the UTXO database, for which this type of ledger is named.

Scripts and Smart Contracts

The most common type of spending condition is verification of a signature with respect to a
specific public key: an input can spend such a TXO if its proof data contains a valid signature
(under the corresponding public key) of the spending transaction’s ID (a collision-resistant hash
of the spending transaction).

While signature verification is sufficient for simple transfer of funds, one of the innovations
introduced by Bitcoin is a scripting language for specifying output conditions. This allows
a novel use of cryptocurrencies: the creation of smart contracts—cryptographic “boxes” that
contain value and “automatically” unlock it if certain conditions are met.

Bitcoin scripting conditions can define more complex “ownership structures” (e.g., funds can
be spent if any k out of n public keys sign the spending transaction), can postpone spending
until some point in the future (“time-locked transactions”) or even require some cryptographic
puzzle to be solved before an output can be spent.

Limited Expressiveness

The Bitcoin scripting language is kept purposefully simple. A major motivation for this decision
is that the cost of evaluating the spending conditions is borne by every Bitcoin node—every
node must verify all transactions in the ledger to ensure that they are in consensus on the state
of the UTXO database. This cost is offset by a transaction fee. However, because the fee is
deducted from the spent TXOs, there is no way to charge fees for invalid transactions (which are
not “allowed” to spend the TXO at all). If an expensive computation is required to determine
transaction validity, this would open the door to cheap denial-of-service (DoS) attacks.

Thus, Bitcoin script is designed to ensure that the execution cost is always known and
bounded. In particular, Bitcoin scripts are not Turing complete; in fact, the language does

1



1 Introduction

not allow loops of any kind, and scripts have bounded length. Moreover, the set of basic
arithmetic operations is also quite limited.

While the existing functionality already allows for interesting use-cases, there are many for
which Bitcoin’s scripting language is insufficiently expressive. (One interesting example, and
a motivation for this work, is the notion of secure computation “with penalties”, in which
parties run a secure multiparty computation protocol without an honest majority, but with the
guarantee that if the adversary aborts the computation the honest parties will be compensated
financially.)

1.1 Our Contributions

This work aims to increase the expressiveness of the Bitcoin scripting language, without sacri-
ficing the simplicity and efficiency of the UTXO ledger.

Cheap Support for Arbitrary Circuit Conditions

Our main concrete contribution is a protocol that allows a TXO to be bound to an arbitrary
boolean circuit—i.e., the output can be spent only by publishing a satisfying assignment for the
circuit.

The protocol relies on adding a single new opcode to the Bitcoin scripting language, one that
allows a spending condition to test whether a given TXO is in the UTXO database. We refer
to this opcode as is-txo-unspent, and to the Bitcoin scripting language augmented by the
opcode as Bitcoin+.

Because executing this opcode only requires access to the existing UTXO database, in exactly
the same way as testing for a double-spend, adding it to existing Bitcoin code is very simple,
and it has minimal execution overhead (we verified this by modifying the Bitcoin core code to
include the new opcode; this required changes to less than 40 lines of code, including additional
comment lines).

Universally Composable Overlay Ledgers

Existing protocols that require complex spending conditions are often written assuming an
ideal ledger functionality. To allow modular use of our compiler in existing such protocols we

formally define a generalized ideal UTXO Ledger functionality, FLspendledger , which is parameterized
by the language in which spending conditions may be specified.

The ideal functionality preserves “in spirit” the guarantees of the simple UTXO ledger (i.e.,
the guarantees relied on by most high-level ledger protocols), but at the same time allows a
single transaction in the meta-ledger to be represented by multiple transactions in the base-
ledger. Defining such a functionality turns out to be quite tricky, since some of the properties
of a simple UTXO cannot be guaranteed in this setting. (In chapter 3, we provide an overview
of the challenges we faced in defining the generalized ledger functionality and the intuitions
behind the relaxations we made to the simple UTXO ledger.)

Our model is in the same spirit as that of Badertscher, Maurer, Tschudi and Zikas [1].
However, we focus specifically on a UTXO ledger, and the required relaxations to support meta
(overlay) ledgers as instances of the same functionality.

To simplify the protocol descriptions and proofs, we model the ledger as a sequence of trans-
actions, completely ignoring their grouping into blocks—this grouping is irrelevant for most
higher-level protocols but adds complexity to the model.

We construct a protocol in the FLledger-hybrid model (i.e., with access to an ideal UTXO ledger

whose spending conditions may be specified in the language L) that realizes the FL∪LCircuit
ledger

ledger functionality, where LCircuit is the language of boolean circuits. Our protocol works for
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1 Introduction

every “base” language L that is sufficiently expressive (the Bitcoin scripting language, aug-
mented with is-txo-unspent, is an example).

Our proof of security is in the Externalized UC model [2], where we model the clock as an
external shared functionality. This allows any protocol that is secure when using the ideal ledger
functionality FL∪LCircuit

ledger to be transparently “compiled” into a protocol that is secure using only
the base-ledger, and composed with other protocols sharing the same global clock.

In addition to being useful in itself, and as a template for constructing other “meta-ledgers”,
our protocol demonstrates the usefulness of our generalized ledger definition.

1.2 Related Work

Account-based Ledgers

The limitations of the Bitcoin scripting language have been clear from the start. One solution,
exemplified by the Ethereum protocol, is to replace the UTXO model with an account-based
system. At a very high level, the first-class object in such a system is an account. Each account
has an associated value, corresponding to the funds held by the account, and a contract. The
contract is essentially a program that accepts inputs and funds, and can send funds and inputs
to other accounts as part of its execution. A transaction in this model is a set of inputs to a
specific account’s contract.1

Ethereum’s account-based model is extremely expressive—it allows contracts to be written
in a Turing-complete language. However, the cost is paid in higher complexity. Since all miners
in the system must execute every transaction to maintain consensus, they must all run more
complex code (increasing the probability of bugs and security vulnerabilities) and expend more
CPU/memory resources (leading to higher costs and more complex incentive schemes).

Both UTXO and account-based schemes are deployed today, and it does not appear that either
one will supplant the other. Thus, it makes sense to study how to increase the expressiveness
of UTXO-based ledgers without making the leap to a fully account-based scheme, with its
corresponding tradeoffs.

Bitcoin Covenants

Möser, Eyal and Gün Sirer proposed extending Bitcoin script to include “covenants” [7]. This
extension allows an output condition to specify constraints on the spending transaction—for
example, to enforce that the spending transaction’s outputs have a specific format. They show
some specific use-cases allowed by covenants (such as mitigating the results of private-key theft
using “vaults”). Several following works explored ways to implement covenants in different
ways, and the use of covenants for additional tasks [9, 11, 12].

In contrast, we focus on allowing general computation rather than ad-hoc use-cases. More-
over, we formally prove the security of our protocols (the existing works on covenants do not
include formal security proofs at all), and introduce a new, generic framework for formally ana-
lyzing overlay ledgers. (Analyzing a covenant-based overlay in this framework is an interesting
open question.)

Extending UTXO

Chakravarty, Chapman, MacKenzie, Melkonian, Peyton and Wadler formalize an “Extended
UTXO Model” [3], whose purpose appears very similar to that of this work: to support more
expressive computation while retaining the advantages of the UTXO model. However, while
the high-level goals are the same, the strategies are very different.

1This is a gross oversimplification of how Ethereum’s account model is constructed, of course, but suffices for
the purposes of comparing to the UTXO model.
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1 Introduction

Our protocol focuses on building a more expressive ledger using a simpler ledger as a substrate—
and in particular making a minimal change to the current Bitcoin scripting language (both in
code and in runtime complexity) that would allow complex conditions to be supported. In con-
trast, Chakravarty et al. define a more powerful model (e.g., transaction outputs can have extra
state, and output conditions can take into account the contents of the transaction that spends
them), but at the cost of losing compatibility with existing UTXO-based ledgers—effectively,
implementing their modifications would require a completely new ledger.

Ledger Formalizations

There are several works trying to formalize UTXO ledgers and to reconcile UTXO and account-
based ledgers.

Garay, Kiayias and Leonardos gave the first formal security definitions for a blockchain ledger
[4], in the context of analyzing the security of the Bitcoin protocol. Pass, Seeman and Shelat
extended the analysis to a more realistic setting (with communication delays) and proposed
slightly different security definitions [10]. Both of these works defined security as a set of
properties.

Kiayias, Zhou and Zikas defined the ledger functionality for the first time as an ideal function-
ality in the UC framework [6], with the goal of making it usable in other higher-level protocols.
However, their functionality was not realizable using existing blockchain protocols (e.g., it did
not allow for a “rushing” adversary that can prevent an honest transaction from entering the
state by inserting a conflicting transaction before it). Badertscher, Maurer, Tschudi and Zikas
defined a slightly weaker ideal functionality [1] that addresses these problems and is still strong
enough to be useful in high-level protocols.

Our ideal functionality has the same flavor as [1], but tailored to UTXO ledger overlays. The
novelty in our definition is encapsulated in the equivalent of the “validation rules” from [1]: we
carefully construct these rules to achieve a ledger that is both powerful enough to be useful, but
“weak” enough to allow it to be realized as an overlay. (In particular, our ledger functionalities
can be “stacked”, to construct meta-meta-ledgers, etc.)

Combining UTXO and account-based ledgers

Zahnentferner defines “Chimeric Ledgers” [14]. He formalizes the two types of ledgers and
translations between them—e.g., for a given transaction in a UTXO-based ledger, what is the
set of transactions in an account-based ledger that have an equivalent effect. However, this paper
deals only with “accounting”, explicitly ignoring “cryptographic authorization” (i.e., scripts).
A follow-up paper by the same author provides definitions for UTXO ledgers with scripts [13].

Both of these papers deal with formalization rather than protocols (there are algorithms
for “transforming” from one type of ledger to another, but these are external to the ledgers
themselves). Their definitions are in the formal-logic style, which is useful for interfacing with
automated theorem-proving tools. In contrast, our formal definitions are ideal functionalities,
which are easier to use in protocol constructions, and allow us to prove the security of our
protocols in the UC model.
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2 Compiling Arbitrary Circuits

We refer to output conditions that are not supported by the underlying ledger as a “meta-
conditions”. We refer to conditions supported by the underlying ledger as “base-conditions”.
In this section we construct a compiler from an arbitrary boolean circuit meta-condition to a
sequence of Bitcoin+ transactions (the underlying ledger) with base output conditions. The
compilation guarantees that if the output of a special keystone transaction is spent, it is always
possible to extract a satisfying assignment to the circuit.

More concretely, let C be an arbitrary circuit, and let txmC be a transaction with a meta-output
txomC whose condition is C (a meta-condition). In section 2.1 we construct a compiler that takes
as input a transaction such as txmC and outputs a tuple (fragmentsC , txC−keystone), where
fragmentsC is a set of fragment transactions and txC−keystone is the special final transaction
whose output will be spendable only by publishing a satisfying assignment for C. All of the
fragmentsC transactions and txC−keystone are valid ledger transactions.

Section 2.3 proves the main soundness guarantee achieved by our circuit compiler — if
fragmentsC and txC−keystone are compiled and published using the methods described in sec-
tion 2.1, and the output of txC−keystone is successfully spent in the base-ledger, it is always
possible to extract a satisfying assignment for C.

We refer to input data that are not supported by the underlying ledger as a “meta-data”. We
refer to data supported by the underlying ledger as “base-data”. In section 2.2, we show the
completeness of our compiler. That is, given an assignment A of boolean values that satisfies
the circuit C, and a transaction txmA with a meta-input tximA that “meta-spends” txomC , we can
compile txmA into a sequence of base transactions (fragmentsA, txA−keystone). If published in
order, txA−keystone will successfully spend the output of txC−keystone.

We refer to txmC and txmA as meta-transactions. For simplicity, we restrict the discussion to
meta-transactions with either a single meta-input and a single base-output, or a single base-input
and single meta-output (our techniques extend to more complex transactions in a straightfor-
ward way). We also assume, w.l.o.g., that the circuits are composed solely of NAND gates.

We note that the compiler described in this chapter does not, by itself, realize a composable
ideal ledger functionality. In chapters 4 and 5 we show how it can be used to construct such a
ledger (whose ideal functionality is explained in chapter 3), as a component in a generic ledger
protocol.

2.1 Compiling a Circuit Spending Condition

Consider a transaction whose single meta output’s condition is a circuit. txmcircuit shown at the
top of fig. 2.1.1 is one such transaction. It has a single output txomcircuit, whose condition is
“¬(a ∧ b) = true”.

Compilation of a circuit C yields four types of base transactions — “input-bit transactions”
and “gate transactions” corresponding to the circuit’s input-bits and the circuit’s logical gates,
a single “keystone transaction” whose output represents the circuit and “splitter transactions”
that are used to fund the former three types.

To reduce verbiage, we will say x is a component if x is an input-bit, a gate or the keystone.

5



2 Compiling Arbitrary Circuits

2.1.1 Component Transactions

Input-bit Transactions

Each of C’s input-bits has a corresponding input-bit transaction. In fig. 2.1.1 input-bits a
and b’s corresponding transactions are txa and txb. An input-bit transaction, like any other
transaction, should have at least one transaction input, and contain a transaction fee, made
up of the difference between incoming and outgoing coins. Each input-bit transaction has two
outputs, one for each boolean value (txoa+, txoa−, txob+ and txob− in fig. 2.1.1).

Gate Transactions

For each internal boolean gate a gate transaction is created. In fig. 2.1.1 gate ¬(a ∧ b)’s corre-
sponding transaction is tx¬(a∧b). Generally, like the input-bit transaction, each gate transaction
has at least one input and two outputs, one for each boolean value.

Circuit-keystone Transaction

An exception to the “two-outputs-per-transaction” rule is the transaction created for the “circuit-
keystone”, the output gate of the circuit. This transaction only has one output and it holds the
reward from txomcircuit. In fig. 2.1.1 tx¬(a∧b) is also the circuit-keystone transaction.

2.1.2 Wiring the Gates

Labels

As described above, txx, the transaction corresponding to component x, has a positive output
txox+ and a negative output txox−. We label each transaction with a value in {true, false,unset}.
The label of txx is denoted label(txx), or simply as label(x). label(txx) = true if only txox+
is spent, label(txx) = false if only txox− is spent, and otherwise label(txx) = unset. Note
that the label of a component is a function of the transaction ledger state (it can change as new
transactions are appended to the ledger).

Gate Functions

Each gate is dependent upon its (two) inputs, and its value is a Boolean (binary) function of
their labels. Let txg be gate g’s transaction and fx(·, ·) its Boolean function. Also, let a, b be
g’s two inputs, and txa and txb their corresponding transactions. The conditions at the outputs
of txg should enforce the following:

• txog+ can be spent iff fx(label(a), label(b)) = true,

• txog− can be spent iff fx(label(a), label(b)) = false.

For example, for the ¬(a∧b) gate, the positive output’s condition will be ¬(label(a) = true∧
label(b) = true).

2.1.3 Computing Labels in Bitcoin+

In order to implement the gate conditions as described in section 2.1.2, the function label
must be expressible in the base-ledger’s spending condition language.

Bitcoin’s current scripting language is not sufficient for this purpose. We propose to address
this by augmenting the Bitcoin scripting language with a single new opcode, OP IS TXO UNSPENT

(creating the extended language Bitcoin+). OP IS TXO UNSPENT accepts the ID of an output
and returns true iff the TXO is present in the UTXO database, i.e unspent. More concretely,
it pops the ID of the transaction and then the index of the output from the stack and pushes

6



2 Compiling Arbitrary Circuits

the result back. We will use a shorter syntax in this work, denoting is-txo-unspent(txo) the
result of the computation above with respect to TXO txo.

Querying whether a transaction output is spent may seem more natural. We chose OP -

IS TXO UNSPENT because it is straightforward to implement given the UTXO database that is
already maintained by Bitcoin nodes. Note that in itself, OP IS TXO UNSPENT doesn’t answer
whether an output is spent. The absence of an output from UTXO does not necessarily imply
that it was spent; it could also mean that the transaction was never published.

To bridge this gap we use the fact that transaction outputs enter the Bitcoin ledger atomically
(i.e., either all transaction outputs of a single transaction are inserted into UTXO or none are).
Consider a component transaction txx that has two outputs txox+ and txox− (the same argument
applies for input-bits as well). We compute label(x) in the following manner:

1. If both txox+ and txox− are in UTXO, txx wasn’t labeled yet, and so label(x) is unset.

2. If neither txox+ nor txox− is in UTXO, we can’t know if txx was accepted by the ledger,
and so label(x) is unset.

3. But, if txox+ is in UTXO, and txox− isn’t, then txox− must have been spent, and therefore
label(x) = false.

4. Similarly, if txox− is in UTXO, and txox+ isn’t, then txox+ must have been spent, and
therefore label(x) = true.

Thus, the condition of txo¬(a∧b)+ in fig. 2.1.1 that is supposed to implement ¬(label(a) ∧
label(b)) can be implemented in Bitcoin+ by applying the following replacements:

label(a) = true ⇐⇒ ¬is-txo-unspent(txoa+) ∧ is-txo-unspent(txoa−)

label(b) = true ⇐⇒ ¬is-txo-unspent(txob+) ∧ is-txo-unspent(txob−)

Figure 2.1.1: txmcircuit Compilation
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2 Compiling Arbitrary Circuits

2.1.4 Splitter Transactions

We also create a transaction to claim the output referenced by the txmcircuit and distribute the
coins between the component transactions (txsplitter in fig. 2.1.1). We refer to it as the splitter
transaction. An output should be created for each funded transaction (e.g., txa, txb, tx¬(a∧b) in
fig. 2.1.1), and funding should cover transaction fees and the reward.

To simplify the description below, we assume a single splitter transaction suffices; however,
the compiler can easily be extended to the case where the number of components is larger than
the maximum number of outputs the ledger allows per transaction. If this occurs, the compiler
uses a tree of transactions to get to the required output count. In this case, the root of the
tree is the splitter transaction. It has one output reserved for the circuit keystone, and the rest
for the transactions that comprise the internal nodes of the tree. All internal nodes have one
input (spending one of their parent’s outputs) and the maximal number of outputs allowed by
the underlying ledger. The leaf nodes’ outputs are spent by the other component transactions.

2.1.5 Loss of Atomicity and Publishing Considerations

Since we use several transactions to implement txmcircuit, and their insertion into the ledger is
not atomic, an attacker may try to “hijack” the insertion while it is happening. For example,
the attacker might claim an output of a splitter transaction that is intended to fund one of
the gate transactions, rendering the sender unable to complete the insertion. To prevent this
attack, the spending condition for internal TXOs verifies a signature with respect to a freshly
generated signature key.

Component transactions spend splitter transaction outputs, and so the splitter transaction
must be published first in order for subsequent transactions to be included in the ledger.

2.1.6 Efficiency and Optimizations

Since the compilation creates a transaction for each component, as the circuit grows larger, the
total fee required to publish the transactions grows. Our compiler emphasizes simplicity and
clarity over efficiency—it is not optimized to use the smallest number of transactions. However,
we briefly mention some strategies to lower the transaction count.

For example, it is possible to group the outputs of the input-bit transactions to fewer trans-
actions. Grouping outputs of gate transactions is also possible, but more tricky—a condition
of one such output may need to query about the label of an output that is part of the same
transaction, and it is not trivial to expect the ledger to provide this ability (this is impossible
in Bitcoin, for example). It is possible, however, to merge transactions for gates of the same
circuit depth, as they do not reference one another.

The described construction creates one transaction per gate. Another possible optimization
is to build transactions for sub-circuits, or allow gates of fan-in larger than two (making each
transaction reference more than two inputs).

2.2 Compiler Completeness: Compiling a Circuit Assignment

Consider a transaction whose single meta input specifies as the targeted output an output of a
circuit transaction and provides an assignment of boolean values to the input-bits of the circuit.

txmassignment, appearing at the top of fig. 2.2.1, is one such transaction. Its meta input
tximassignment specifies txomcircuit (shown in fig. 2.1.1) as the targeted output and provides the
assignment “a← true, b← true” to the input-bits of txomcircuit’s circuit.
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2.2.1 Component-Labeling Transactions

Our compiler produces three types of base transactions — “input-bit-labeling transactions” and
“gate-labeling transactions” corresponding to the circuit’s input-bits and the circuit’s logical
gates, and a special assignment-keystone transaction, that will spend the circuit output.

Input-bit-labeling Transactions

Input-bit-labeling transactions implement the assignment (txa←true, and txb←false in fig. 2.2.1).
One transaction is created per input-bit, and therefore per input-bit transaction. Input-bit
transactions (txa, txb in fig. 2.1.1), have two outputs each, one positive and one negative. An
input-bit-labeling transaction spends one of the outputs, according to the assignment (txa←true’s
input spends txoa+ and txb←false’s input spends txob+).

Gate-labeling Transactions

Gate-labeling transactions “evaluate” the circuit given the assignment (txa←true,b←false in fig. 2.2.1).
One is created per gate, and therefore per gate transaction. Gate transactions (tx¬(a∧b) in
fig. 2.1.1), compiled from a circuit output, have two outputs each, one positive and one negative
(an exception is the circuit-keystone transaction, that only has one output). A non-keystone
gate-labeling transaction spends one of the outputs of the corresponding gate transaction, ac-
cording to the gate values that are computed from the assignment (txa←true,b←false’s input
spends txo¬(a∧b)+).

Assignment-keystone Transaction

One transaction is created that spends the circuit-keystone transaction’s output; this transaction
is called the assignment-keystone transaction. Its output will be identical to txmassignment’s
output. Transaction fees of labeling transactions should come from the outputs they claim.

Figure 2.2.1: txmassignment Compilation
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2.3 Compiler Soundness: Extracting a Satsifying Assignment

The soundness requirement from our circuit compiler is that the output of the circuit keystone
cannot be spent unless a satisfying assignment is published to the ledger. Formally, we re-
quire the existence of an extraction algorithm that, given a ledger in which the txC−keystone is
spent, can output a satisfying assignment for C. This extraction algorithm is described in algo-
rithm 2.1, and theorem 2.3.1 guarantees that it works (for the formal statement of the theorem,
we need to define some additional notation, which we do in section 2.3.1).

Essentially, the extractor finds the input-bit transactions by traversing the DAG rooted at
the circuit-keystone transaction, and by observing state of the ledger can recover the labels of
the input-bits. The proof of theorem 2.3.1 is by induction on the depth of the circuit.

2.3.1 Soundness Proof Details

Notation

Let x be an arbitrary component. We define the following terms:

• labelt(x) — the value of label(x) at time t.

• t∗x — the time label(x) first transitions from unset, or ⊥ if it never does

• label∗(x) — labelt
∗
x(x) if t∗x 6= ⊥, or unset otherwise.

• inp(x) — the set of input bits corresponding to x (i.e., if x is an input-bit then inp(x) = x,
otherwise if x is the gate x = ¬(y ∧ z) then inp(x) = inp(y) ∪ inp(z).

• assign∗(x) — {(z, label∗(z))|z ∈ inp(x)} (the assignment to x’s inputs.)

We can now state our soundness theorem:

Theorem 2.3.1. Let C be an arbitrary circuit, and let txmC be a single-base-input, single-meta-
circuit-output transaction, where C is the condition in the output. Assume txmC was compiled
and the resulting transactions were published successfully.

For every component x, if label∗(x) 6= unset then label∗(x) = Cx(assign∗(x)) where Cx
is the sub-circuit rooted at x.

In order to prove the theorem, we will require some helpful claims:

Claim 2.3.2. For every component x and α ∈ {true, false}: if label∗(x) = α, then for every
t 6= t∗x it holds that labelt(x) ∈ {α,unset}.

Proof. For t < t∗x, labelt(x) = unset by definition. For t > t∗x, suppose, in contradiction,
that labelt(x) = ¬α. By definition, this means that at time t, txoxα is unspent. However,
label∗(txx) = α means that at time t∗x, txoxα is spent. This contradicts the ledger’s guarantee
that a transaction output cannot re-enter the UTXO.

Corollary 2.3.3. For every gate g with inputs a and b and α ∈ {true, false}, if label∗(g) = α
then ¬(label∗(a) ∧ label∗(b)) = α.

Proof. Since label∗(g) = α, txogα was spent at t∗g, and therefore at that time its condition

¬(label(a)∧label(b)) = α was satisfied. Since α 6= unset, it must be that both labelt
∗
g(a) 6=

unset and labelt
∗
g(b) 6= unset. Thus, by claim 2.3.2, it holds that: ¬(label∗(a)∧label∗(b)) =

¬(labelt
∗
g(a) ∧ labelt

∗
g(b)) = α

The proof of theorem 2.3.1 follows:
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Algorithm 2.1: extract-assignment

1: procedure extract-assignment(txkeystone)
2: return extract-assignment-internal(txkeystone)
3: end procedure

4: procedure extract-assignment-internal(tx)
5: if tx corresponds to input-bit i then
6: label∗(i)← compute-label∗(tx)
7: return {(i, label∗(i))}
8: else // tx corresponds to gate g
9: txa, txb ← the transactions referenced by g’s output conditions using is-txo-unspent

10: assign∗(a)← extract-assignment-internal(txa)
11: assign∗(b)← extract-assignment-internal(txb)
12: return assign∗(a) ∪ assign∗(b)
13: end if
14: end procedure

15: procedure compute-label∗(txi)
16: txoi+ , txoi− ← tx outputs
17: if neither txoi+ nor txoi− is spent then
18: return unset
19: else if both txoi+ and txoi− are spent then
20: txoiα ← Scan the ledger to learn which was spent first
21: return α
22: else // only txoiα is spent
23: return α
24: end if
25: end procedure

Proof. The proof is by induction on d the depth of component x. When x is a gate, denote its
inputs as a and b.

1. For d = 0, x is an input-bit. Then by definition label∗(x) = Cg(assign
∗(x)).

2. Assume the induction hypothesis holds for all d ≤ n.

3. For d = n+ 1, sub-circuit Cx is made up of gate x of depth n+ 1 whose two inputs a and
b are the roots of two sub-circuits Ca, Cb of depth at most n.

Since label∗(x) 6= unset, by corollary 2.3.3, ¬(label∗(a) ∧ label∗(b)) 6= unset. Thus,
both label∗(a) 6= unset and label∗(b) 6= unset, so by the induction hypothesis,
label∗(a) = Ca(assign

∗(a)), label∗(b) = Cb(assign
∗(b)) and thus

label∗(x) = ¬(label∗(a) ∧ label∗(b))

= ¬(Ca(assign
∗(a)) ∧ Cb(assign∗(b)))

Since assign∗(x) = assign∗(a) ∪ assign∗(b)

= ¬(Ca(assign
∗(x)) ∧ Cb(assign∗(x)))

= Cg(assign
∗(x))
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3 An Ideal Ledger Functionality

One of the contributions of this paper is a new, formal definition for an ideal ledger functionality.
Our motivation for the new definition is twofold. On the one hand, it should be useful, con-
forming to the intuitive notions of security we expect from a UTXO ledger, and simple enough
to use in higher-level protocols. At the same time, it should be flexible enough to capture the
functionality and security of a “meta-ledger” that is realized as a protocol overlaying a “base”
ledger.

A note about UC (in)formalism

To make our pseudocode shorter and more readable, we define all ideal functionalities using
functional interfaces rather than message passing. In the fully formal UC specification, an ideal
functionality is an ITM that receives messages from external parties, and responds by sending
messages. We replace sending a message of the form (Msg-Name, x1, x2, . . . ) to functionality
F with calling the function F .MsgName(x1, x2, . . . ). We also omit the session ID parameters
(those are implied in all calls to a functionality).

Finally, we model the clock as an external functionality (as defined in [2]). There are multiple
subtleties in modeling global clocks in the UC setting (e.g., see [5]). However, we make use of
the clock only for defining liveness (rather than round synchronization). Thus, while our con-
struction is compatible with the fully formal definition, in this paper we simplify by having the
ideal functionality itself provide a tick function, which can only be called by the environment
to announce that the clock has advanced.

3.1 Basic Ledger Security

Most definitions for ledger security include the following properties, which we consider base
requirements:

1. Consensus: the ledger outputs the same list of transactions, in the same order, to all
honest parties.

2. Validity : all published transactions satisfy the ledger’s validity conditions.

3. Liveness: if an honest party sends a transaction to the ledger, it will be published by the
ledger within some bounded time (which we call the liveness delay), unless it becomes
invalid within that time. The liveness delay is a function of the transaction contents
and the state of the ledger, and liveness might not be guaranteed at all for some valid
transactions (e.g., if the transaction fee is too low).

We phrase our consensus guarantee as being about the ledger’s output to honest parties.
This is a stronger guarantee than is generally given for blockchain formalizations; for example,
it doesn’t allow disagreement on a suffix of the ledger or probabilistic agreement. We justify this
by noting that most high-level protocols implicitly assume that the ledger actually does behave
in this way, and when implemented over a real blockchain will wait until a transaction becomes
“finalized” in order to use it (e.g., in Bitcoin a transaction could be considered “finalized” if it’s
at least six blocks in the past).
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For similar reasons, we do not consider properties such as chain quality that are important
for analysis of the ledger protocol itself, but, as far as most higher-level protocols are concerned,
are captured in one of the base guarantees (e.g., liveness in the case of chain quality).

UTXO Validity

In the case of a UTXO ledger, the validity conditions for every transaction include the following:

• Valid sources: For every transaction input, the transaction output it points to exists on
the ledger and was not spent by a previous transaction.

• Output condition is satisfied: For every transaction input, the spending condition of
the transaction output pointed to by that input is satisfied by the proof data.

• Non-inflationary: The sum of the output amounts is no more than the sum of the input
amounts.1

Adversarial Capabilities

As is usual in cryptography, we prefer our model to be conservative with regards to the adversary.
In our modeling, we consider an adversary that has the following capabilities:

• The adversary can arbitrarily reorder transactions, as long as the liveness guarantee isn’t
violated. This is justified by the fact that the adversary may have partial control over
the network, and because an adversarial miner can determine the selection and order of
transactions in a published block.

• The adversary can arbitrarily use the transaction fees from published transactions. This
is justified by the fact that in most existing blockchains, the transaction fees are awarded
to the block miner, who may be adversarial. Although we do strengthen the adversary by
allowing it to use the fee immediately, we don’t believe this reduces the usefulness of the
ledger when its output is fully immutable (as it is in our modeling).

Note that while the liveness delay is an upper bound on the time between the submission of
a transaction and the time at which the transaction is published by the ledger, the adversary
can choose to publish transactions earlier. This includes publishing transactions for which the
liveness delay is infinite (i.e., they are not guaranteed to appear at all), such as transactions
that have zero transaction fees.

3.2 Formalizing Bitcoin’s UTXO Ledger

Before describing our full functionality, we describe a simpler functionality that models Bitcoin’s
UTXO ledger more closely. This serves as base for ours, and explaining its limitations will
motivate the modifications we made to arrive at our generalized functionality.

The full pseudocode for the Bitcoin-UTXO functionality appears in functionality 3.1 (the
“external” APIs appear in functionality 3.1 (part 1) while the internal functions appear in
functionality 3.1 (part 2)).

For the honest parties, the functionality consists of a single API call: send-tx(tx). Calling
this function does not result in immediate publication; it merely inserts the transaction into a
mempool.2

1To simplify the discussion, we’re ignoring “coinbase” transactions, which are special transactions that do not
have any inputs.

2The mempool corresponds to the “buffer” in [1], but we use the mempool nomenclature as it is more familiar
to non-theorists in the blockchain space.
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The adversary may call process-tx(tx) at any time. This will result in the tx being published
if it’s valid, or being removed from the mempool if it’s not. This interface corresponds to the
ability of the adversary to select which transactions will be included in a block.

Finally, the clock tick is used to guarantee liveness: when the tick method is called, the
ledger will automatically process any transactions that have been in the mempool for longer
than their liveness delay. This ensures liveness because the call to tick is not under adversarial
control—it is called directly by the environment. (This is motivated by the fact that, w.h.p.,
after sufficient time any valid transaction that hasn’t previously been included in a block will
be included by an honest miner.)

Internally, the Bitcoin ledger functionality uses the validate-and-apply-tx function to
verify transaction validity. In this case, the validity functions exactly correspond to Bitcoin’s
validity. The important point to note is that we abstract the scripting language to a generic
“condition” that is specified for every transaction output, which must be satisfied by input
data. The condition function receives not only the input data, but also the ID of the spending
transaction and the UTXO database as inputs. The ID is required because Bitcoin’s signature
verification opcode checks for a signature on the spending transaction’s ID. We added the UTXO
as input to allow use of our new is-txo-unspent opcode as well.

3.3 Important Properties of the Ledger

The Bitcoin ledger follows Bitcoin’s actual implementation. Thus, while Bitcoin actually realizes
this (or something similar in spirit), not all of the properties of the ideal ledger are actually
important for building higher-level protocols. In this section, we note some of the properties
that are important to preserve when defining a generalized ledger. In sections 3.4 and 3.5, on
the other hand, we discuss the properties we are willing to (or must) sacrifice.

Simple Signatures

As defined, the Bitcoin ledger functionality itself is not aware of signatures, except as part of
the spending condition script. This means there are no restrictions on the properties of the
signature scheme (or even a requirement that signatures be verified in spending conditions).
An additional important property is that creation of signatures is performed externally to the
functionality, rather than using the functionality itself.

Client-Agnostic

The ledger functionality is client agnostic—the behavior of the ledger in response to honest
parties depends only on the contents of the messages it receives, not their source.

This is also an important property in terms of implementing such a ledger: the gossip networks
underlying most existing ledgers don’t record the source of a message.

Together with the fact that signatures are external to the functionality, this allows use-cases
such as receiving an unsigned transaction, signing it, and sending the signed transaction through
other, “off-chain” communication channels—once the transaction is signed, it doesn’t matter
which party forwards it to the ideal ledger.

3.4 Challenges for a Meta-Ledger

Our goal is to realize a meta-ledger functionality with a richer condition language by compiling
meta-transactions to multiple transactions on a base-ledger.

Ideally, we would like to simply realize the Bitcoin functionality described in functionality 3.1.
Unfortunately, this is not always possible.

15



3 An Ideal Ledger Functionality

3.4.1 Spending Is Not Atomic

The main reason is that in the Bitcoin ledger functionality, once a transaction output enters the
UTXO database, it can only be in one of two states: either it is (1) unspent (in the UTXO), in
which case a transaction whose input points to that output and satisfies its condition is valid,
or (2) it is spent—in which case the ledger contains a subsequent transaction that spends the
output (and hence contains data that satisfies its spending condition).

However, if we compile a meta-transaction to multiple base-transactions using the is-txo-unspent
opcode, in order to satisfy the spending condition of the “meta-output” a user might have to
publish multiple “fragment” transactions. If it’s possible for this process to be interrupted by
the adversary (e.g., by publishing a transaction that spends one of the fragment outputs), then
the publishing of the meta-transaction might fail (e.g., the subsequent fragments are no longer
valid).

Thus, a meta-output could end up in an “intermediate” state in which spending is not possible
(even if the meta-output condition could be satisfied), but no satisfying assignment can be
extracted from the ledger.

In our compiler (from chapter 2), this can occur, for example, if an adversary spends the
outputs of the input-bit-labeling transactions —in this case an honest user might not be able
to compile an assignment meta-transaction, even if she knows a satisfying assignment.

3.4.2 Outputs and Inputs Are Not Atomic

In Bitcoin’s ledger, the inputs and outputs of a transaction affect the ledger atomically—if a
transaction spends a set I of TXOs and generates a new set of TXOS O, either all TXOs in I
were spent and all TXOs in O are in the UTXO, or neither happens.

However, requiring input/output atomicity would greatly restrict the class of realizeable meta-
ledgers—it would require every meta-transaction to correspond to a specific base-transaction
that has exactly the same inputs and outputs.

If this is not ensured, a transaction that spends TXOs I and creates TXOs O may correspond
to a set of base transactions in which one transaction, txI , spends the TXOs in I while another,
txO,creates the outputs O. Since the adversary is allowed to delay and reorder transactions,
there may be a point in time at which txI was published in the base-ledger while txO was not.

This situation does, in fact, occur in our compiler, when compiling a meta-transaction that
has an output with a circuit condition as described in chapter 2. The meta-transactions inputs
are spent by the splitter transaction (c.f. section 2.1.4) while the outputs are generated by the
circuit-keystone transaction (c.f. section 2.1.1).

Thus, we must relax the input/output atomicity requirement if we wish to support meta-
ledger constructions such as ours.

3.4.3 Signatures Are Hard To Forge

Bitcoin’s spending-condition language supports signature verification—an output condition can
require the input data to contain a valid signature of the spending transaction’s ID.

When we compile a meta-transaction into base transactions, we also have to translate the
input data (including signatures) into input data that is valid in the base-ledger. Since the meta-
transaction is (necessarily) different from any base transaction, the security of the signature
scheme would prevent any attempt to näıvely transfer a signature from a meta-transaction to
a signature on a base transaction.

3.4.4 Fragments Must Appear in Meta-Ledger Too

The compiler takes a single meta-transaction and creates multiple base transactions. However,
these base transactions cannot be completely hidden from the meta-ledger. First, the spending
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condition language can query the contents of the UTXO using is-txo-unspent (otherwise the
ledger functionality would not be powerful enough to support our own compiler). This means
that, at the very least, unspent outputs in the base-ledger must be reflected in the meta-ledger.

Second, fragment outputs may have monetary value. If they are hidden from the meta-ledger,
an adversarial transaction that spends them in the base-ledger may also have to be hidden (since
this input would not exist in the meta-ledger, such a transaction could violate the non-inflation
rule); over time, this could cause a significant fraction of the base-ledger to be hidden.

The problem this creates is that the fragments in the meta-ledger must have a source of
funding, but since they are the result of compilation (and do not appear in the input), their
funding must somehow be “siphoned off” from the input of meta-transaction. Conceptually, this
is fine—we treat the creation of fragments as part of the fee for the meta-transaction. However,
the ledger guarantees that the input transactions appear in the output unmodified—and we
cannot require the input transaction to have a specific format, such as an extra “fragment-
funding” output (since the input to the ledger is set by the adversarial environment).

3.4.5 Fragments Must Be Recognizable

Finally, a technical point: if the meta-ledger can contain base transactions as well as meta
transactions, honest parties must be able to differentiate between a base transaction that is a
the result of a compiled meta-transaction and a regular base transaction. Otherwise, an honest
party could receive as input the output of a valid compilation, in which case the ledger output
would differ from its input (it would contain a meta transaction instead).

3.5 Our Generalized Ledger

The full pseudocode for our ledger functionality appears in functionality 3.2. In this section,
we describe the differences between our generalized ledger and the simpler Bitcoin ledger, with
intuitive justifications for the modifications.

3.5.1 Addition of a locked Output State and a Locking Condition

In order to handle non-atomic spends (cf. section 3.4.1), we introduce a locked state for
outputs. A locked output is still considered unspent (e.g., by the is-txo-unspent opcode),
but any transaction that spends this output is not guaranteed liveness (this is equivalent to
saying that honest users cannot spend locked outputs, but the adversary can).

Of course, allowing the adversary to lock outputs at will means that no transaction is guaran-
teed liveness. To restrict this, we add the concept of a locking condition (the locking condition
language becomes an additional parameter of the ledger functionality).

Every output has both a locking condition (specified in the locking-condition language) and a
spending condition (specified in the spending-condition language). In order to spend an output,
both the locking condition and the spending condition must be satisfied by the input. In order
to lock an output, it’s sufficient to satisfy the locking condition (note that locking can only
be done by the adversary, and does not allow the adversary to transfer value from the locked
output).

The addition of a locking condition is a generalization (rather than weakening) of the Bitcoin
ledger. To see this, consider the case of identical locking and spending condition languages.
Then honest users can simply specify the same condition for both locking and spending, in
which case any adversary who could lock an output could also spend it (so locking does not
confer extra capabilities).

In our protocol, we will use different spending and locking languages, allowing us to capture
the “intermediate” state that occurs when fragments are spent in an adversarial way: the
spending language will consist of circuits, and the locking language will be the locking language
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of the base-ledger. Thus, an honest user can use the base-ledger language to prevent the
adversary from locking outputs (e.g., by requiring a specific signature to satisfy the locking
condition).

3.5.2 Addition of pending and pending-locked Output States

Our relaxation of input/output atomicity (c.f., section 3.4.2) is to allow the ledger to express
an intermediate state where the inputs of a transaction have been applied to the state, but the
outputs are not yet available for spending. Thus, we separate the publication of a transaction
from the “release of its outputs”.

In the intermediate period, the outputs are in a new state: pending. The ledger does not
allow spending of outputs in state pending. To preserve liveness guarantees, pending outputs
automatically transition into state unspent after the maximum liveness delay has elapsed.
(The adversary may choose to release the outputs of a transaction before that time.)

If, before a meta output is released, one of its corresponding fragment outputs was spent or
locked, we require the meta output to transition into state locked, rather than state unspent.
To mark it as such we introduce an additional state: pending-locked.

3.5.3 Allowing the Adversary to Choose Transaction IDs

We sidestep the problem of signature translation (cf. section 3.4.3) by allowing IDs to be
“translated” instead—i.e., letting IDs from the base-ledger be “copied” to transactions in the
meta-ledger (and vice versa), so that the signatures can be used unmodified.

We implement this in our ledger functionality by making two changes:

1. Whenever the ledger functionality encounters a new transaction, it asks the adversary for
its ID (rather than using a fixed hash function). The ledger verifies that the IDs returned
by the adversary are unique (otherwise it picks a unique ID itself).

2. We separate the ID of the transaction from the IDs of its outputs (instead of treating the
TXO ID as a simple index relative to the transaction ID).

While these changes are a weakening of the ledger functionality (we give the adversary addi-
tional capabilities), they do preserve collision-resistance of IDs, which is the critical property
used by most higher-level protocols.

Transactions may have multiple IDs

The changes above are not quite sufficient for our purposes, however. The reason lies in the way
we use this capability in our security proof. In the proof, the simulator (ideal-world adversary)
uses the ID-generation capability to copy an ID from a fragment output by the compiler to
the meta-transaction. Once the meta-transaction is signed (this is done by the environment in
our proof), the signature can then be used, unmodified as a signature of the fragment in the
base-ledger.

However, the compiler is randomized—for example, our compiler generates a fresh signature
key for every compilation, which is used in creating the fragment spending conditions. Thus,
each call of the compilier on the same meta-transaction can produce different fragment trans-
actions, with different IDs. To reflect this, our ledger allows a transaction to have multiple
IDs—every request for a transaction ID will be answered by a fresh ID, even if it is for the same
transaction.
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IDs with Auxiliary Data

Allowing multiple IDs per transaction leads to a new problem, however: in order to allow
the ledger to be client-agnostic (i.e., it doesn’t matter who sent a transaction, only what the
transaction contains), the simulator needs additional information that would allow it to “invert”
the transaction ID into the appropriate fragments.

We handle this by having the ledger return not just IDs but also some opaque “auxiliary
data”, which must be sent together with the transaction. This auxiliary data is used internally
by the ledger, but does not appear in the ledger output. (In our case, the auxiliary data is
simply the entire result of the compilation)

To make things a little clearer, the following describes the interactions of an honest party,
Alice, with the ledger in order to send a transaction:

1. Alice creates the transaction “core”, t̂x. This contains the inputs and output conditions,
but without IDs or any signature data (Alice needs the IDs in order to generate signatures).

2. Alice sends t̂x to the ledger and requests its IDs.

3. The ledger forwards t̂x to the adversary, Eve, to request IDs, and waits for her response.
Eve responds with the transaction ID and the IDs of the transaction outputs. She also
sends the auxiliary data (The ledger ensures that all the IDs sent by Eve are fresh).

4. The ledger sends the IDs to Alice, together with the auxiliary data.

5. Alice computes the full transaction tx, which includes both the IDs and signatures.

6. Alice sends tx together with the auxiliary data to the ledger to be published. (The ledger
verifies that the IDs match the transaction and auxiliary data.)

7. The ledger output will contain tx (including the IDs and signatures), but not the auxiliary
data.

The ledger doesn’t verify that Alice is the one who requested the transaction IDs; Alice could
send tx and the auxiliary data to Bob, who could later send it to the ledger. This is an important
property, since there are ledger protocols that rely on off-chain transmission of transactions.

Note that our protocol uses an ideal base-ledger, and the IDs output in the meta-ledger are a
fixed function of the base-ledger IDs (which, if the base-ledger is Bitcoin, are set according to the
Bitcoin rules). However, the protocol is still secure if based on the weaker ledger functionality
we define.

3.5.4 Allowing (Adversarial) Partial Spending of a TXO

We address the problem of funding fragments in the meta-ledger (cf. section 3.4.4) by allowing
the adversary to spend transaction fees arbitrarily. This is implemented in our generalized
ledger by:

1. Letting the adversary decide, for every published transaction, an input amount for each
of its inputs. The input amount specifies how much of the corresponding output’s value
is used by that input. The sum of the input amounts must still be greater or equal to the
sum of the output amounts.

2. Recording in the UTXO how much of an output amount remains. If an output is spent
(i.e., its state in the UTXO is spent), but the remaining amount is greater than zero, we
consider that output partially-spent.
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3. A partially-spent output counts as spent for the purpose of is-txo-unspent, and trans-
actions that attempt to spend it are not guaranteed liveness (i.e., honest parties cannot
spend it). However,

4. Any input that spends a partially-spent output is valid, as long as the input value is not
more than the remaining output amount. Thus, the adversary can use any remaining
value without having to generate new signatures, for example.

Essentially, partially-spent outputs represent transaction fees. In our protocol, we use the
meta-transaction fees to fund the fragment transactions in the meta-ledger by having both the
meta-transaction and a fragment partially-spend the same source TXO.

3.5.5 “Fragment” and “Keystone” Marks on TXs

We require base transactions to be marked in some identifiable way that isn’t likely to occur in
“natural” transactions. For simplicity, we assume that there are two types of marks: “Fragment”
marks and “Keystone” marks.

The ledger functionality recognizes fragment and keystone transactions, and does not guar-
antee liveness for these transactions (this solves the problem from section 3.4.5).

We assume these marks are ledger-specific (i.e., a transaction that the meta-ledger recognizes
as a fragment would be considered a standard transaction by the base-ledger)

In practice, these marks can be implemented using a special “unlikely” spending condition
(e.g., fixing a publicly-known value x, and checking that x appears in the input data).

3.5.6 Notation Notes

Syntactic Sugar

To make our proofs simpler, we added a remove-tx(tx) call to the functionality, which can be
called by the adversary to remove the transaction tx from the mempool—as long as tx is invalid
or liveness is not guaranteed when remove-tx(tx) is called. This is merely syntactic sugar, as
the adversary would get the same result by calling process-tx(tx) if tx is invalid, or by letting
tx remain in the mempool and never processing it if its liveness is not guaranteed (since, in this
case, the ledger functionality will never call process-tx(tx) itself).

Ledger States and Ledger Output

In our ledger, a state contains an extension of a UTXO—for each output it includes its state,
and also its output conditions and remaining amount.

The ledger state contains only the transaction outputs, not the transactions themselves.
However, it is a deterministic function of the ledger output—which consists of the ordered list
of published transactions and transaction output release events. (For ease of notation, when we
use a ledger output out in place of a ledger state, this is simply shorthand for “the unique state
s computed from out”.)
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Functionality 3.1 (part 1): Bitcoin UTXO Ledger: APIs

The functionality maintains:

• mempool: a set of transactions pending processing

• UTXO: set of unspent TXOs

Honest API
1: procedure send-tx(tx)
2: Add tx to mempool
3: Send (Tx-Received, tx) to A
4: end procedure

Adversarial API
5: procedure process-tx(tx)
6: if tx is in mempool then
7: Remove tx from mempool
8: end if
9:

10: UTXO′
fresh copy←−−−−−−− UTXO

11: is success← validate-and-apply-tx(tx)
12: if is success then
13: Send (Tx-Published, tx) to all parties
14: else
15: UTXO← UTXO′ // Restore “backup”
16: end if
17: end procedure

External (Environment) API
18: procedure tick() // Can only be called by E
19: Output (Tick) only to A
20: for all tx ∈ mempool do
21: if
22: tx was added to mempool more than δbitcoin ticks ago and
23: is-livebitcoin(tx)
24: then
25: process-tx(tx)
26: end if
27: end for
28: end procedure

...Continued in functionality 3.1 (part 2)...
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Functionality 3.1 (part 2): Bitcoin UTXO Ledger: Internals

...Continued from functionality 3.1 (part 1)...
29: procedure validate-and-apply-tx(tx)

30: (inputstx , outputstx)
parse←−−− tx

31: incoming coins← the sum of the amounts associated with inputstx
32: outgoing coins← the sum of the amounts associated with outputstx
33: if outgoing coins > incoming coins and tx is not a coin-minting transaction then
34: return false
35: end if
36:

37: for all txi ∈ inputstx do:

38: (idtxo , dataspendtxi )
parse←−−− txi

39: if idtxo /∈ UTXO then // idtxo is unrecognized
40: return false
41: end if
42:

43: (amounttxo , ϕ
spend
txo )← txo

44: if ϕspendtxo (dataspendtxi , idtx ,UTXO) = false then

45: return false // ϕspendtxo isn’t satisfied
46: end if
47: Remove txo from UTXO
48: end for
49: Add outputstx to UTXO
50: return true
51: end procedure
52:

53: function is-livebitcoin(tx)
54: if tx’s fee is larger than or equal to min fee then
55: return true
56: else
57: return false
58: end if
59: end function
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Functionality 3.2 (part 1): FLspend,Llock,δ,is-liveledger

(Honest API)

The functionality maintains:

• mempool: a set of transactions pending processing

• UTXO: maps output IDs to a tuple (state, amount, ϕlock, ϕspend)

• TxIds: maps transactions to their IDs

1: procedure get-tx-ids(t̂x) // Called upon receiving (Get-Tx-IDs-Request, t̂x)
2: t̂xstripped ← strip t̂x of locking inputs and input amounts
3: Send (Create-Tx-IDs-Request, t̂xstripped) to A
4: Await (Create-Tx-IDs-Response, tx, aux) response // tx is of the form (IDs, t̂xstripped)
5:

6: if tx’s IDs are missing or already used then
7: Replace them with fresh random IDs
8: end if
9: Add (tx, aux) to the set TxIds

[
t̂xstripped

]
10: return (tx, aux)
11: end procedure

12: procedure send-tx(tx, aux) // Called upon receiving (Send-Tx, tx, aux)
13: txstripped ← strip tx of locking inputs and input amounts
14: t̂xstripped ← strip txstripped of transaction and output IDs
15: if (txstripped, aux) ∈ TxIds

[
t̂xstripped

]
then

16: Add txstripped to mempool
17: Send (Tx-Received, txstripped, aux) to A
18: end if
19: end procedure

...Continued in functionality 3.2 (part 2)...
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Functionality 3.2 (part 2): FLspend,Llock,δ,is-liveledger

(Adversarial API)

...Continued from functionality 3.2 (part 1)...
20: procedure process-tx(tx)
21: txstripped ← strip tx of locking inputs and input amounts
22: t̂xstripped ← strip txstripped of transaction and output IDs
23: if @aux such that (txstripped, aux) ∈ TxIds

[
t̂xstripped

]
then

24: return
25: end if
26:

27: UTXO′
fresh copy←−−−−−−− UTXO

28: is success← validate-and-apply-tx(tx)
29: if is success then
30: Remove txstripped from mempool
31: Send (Tx-Published, tx) to all parties
32: else
33: UTXO← UTXO′ // Restore “backup”
34: end if
35: end procedure

36: procedure release-txos(tx)
37: if tx’s outputs are in state pending then
38: Set the states of tx’s output to unspent in UTXO
39: Send (Txos-Released, tx) to all parties
40: else if tx’s outputs are in state pending-locked then
41: Set the states of tx’s output to locked in UTXO
42: Send (Txos-Released, tx) to all parties
43: end if
44: end procedure

45: procedure remove-tx(tx) // Syntactic Sugar
46: t̂xstripped ← strip tx of locking inputs and input amounts
47: if t̂xstripped ∈ mempool and ¬is-strongly-valid(t̂xstripped) then
48: Remove t̂xstripped from mempool
49: end if
50: end procedure

...Continued in functionality 3.2 (part 3)...
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Functionality 3.2 (part 3): FLspend,Llock,δ,is-liveledger

(Adversarial API)

...Continued from functionality 3.2 (part 2)...
51: procedure tick() // Can only be called by E
52: for all tx ∈ mempool do
53: if
54: tx was added to mempool δ ticks ago and
55: is-live(tx)
56: then
57: process-tx(tx)
58: end if
59: end for
60: for all tx ∈ {transactions published} do
61: if
62: tx was added to mempool δ ticks ago and
63: tx’s outputs are pending or pending-locked in UTXO
64: then
65: release-txos(tx)
66: end if
67: end for
68: Send (Tick) to all parties
69: end procedure

...Continued in functionality 3.2 (part 4)...
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Functionality 3.2 (part 4): FLspend,Llock,δ,is-liveledger

(Internals)

...Continued from functionality 3.2 (part 3)...
70: procedure validate-and-apply-tx(tx)

71: ((idtx , txo idstx), (inputstx , outputstx))
parse←−−− tx

72: // incoming coins ≥ outgoing coins:
73: if

∑
txo∈outputstx amounttxo >

∑
txi∈inputstx amounttxi then

74: return false
75: end if
76: // valid inputs:
77: if ¬validate-and-apply-inputs(inputstx , idtx) then
78: return false
79: end if
80: apply-outputs(outputstx , txo idstx)
81: return true
82: end procedure

83: procedure validate-and-apply-inputs(inputstx , idtx)
84: for all k ∈ [1 . . . size(inputstx)] do:
85: txi ← inputstx [k]

86: (id, amount, datalock, dataspend)
parse←−−− txi

87: if ϕspend = ⊥ then
88: if ¬validate-and-apply-locking-input(txi, idtx) then
89: return false
90: end if
91: else
92: if ¬validate-and-apply-spending-input(txi, idtx) then
93: return false
94: end if
95: end if
96: end for
97: return true
98: end procedure

...Continued in functionality 3.2 (part 5)...
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Functionality 3.2 (part 5): FLspend,Llock,δ,is-liveledger

(Internals (cont.))

...Continued from functionality 3.2 (part 4)...
99: procedure validate-and-apply-spending-input(txi, idtx)

100: (idtxo , amounttxi , datalocktxi , dataspendtxi )
parse←−−− txi

101: // referenced output is in a spendable state:
102: if state(UTXO, idtxo) ∈ {⊥,pending,pending-locked} then
103: return false
104: end if
105: (statetxo , amounttxo , ϕ

lock
txo , ϕ

spend
txo )← UTXO [idtxo ]

106: // referenced output has sufficient remaining coins:
107: if amounttxi > amounttxo then
108: return false
109: end if
110: // referenced output is already spent:
111: if statetxo = spent then
112: spend-output(idtxo , amounttxo-amounttxi )
113: return true
114: end if
115: // locking condition is satisfied:
116: if ϕlocktxo (datalocktxi , idtx ,UTXO) = false then
117: return false
118: end if
119: // spending condition is satisfied:

120: if ϕspendtxo (dataspendtxi , idtx ,UTXO) = false then
121: return false
122: end if
123: spend-output(idtxo , amounttxo-amounttxi )
124: return true
125: end procedure

126: procedure spend-output(idtxo , amountr)

127: (statetxo , amounttxo , ϕ
lock
txo , ϕ

spend
txo )← UTXO [idtxo ]

128: UTXO [idtxo ]← (spent, amountr, ϕ
lock
txo , ϕ

spend
txo )

129: end procedure
...Continued in functionality 3.2 (part 6)...
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Functionality 3.2 (part 6): FLspend,Llock,δ,is-liveledger

(Internals (cont.))

...Continued from functionality 3.2 (part 5)...
130: procedure validate-and-apply-locking-input(txi, idtx)

131: (idtxo , amounttxi , datalocktxi , dataspendtxi )
parse←−−− txi // dataspendtxi = ⊥

132: // referenced output is in a lockable state:
133: if state(UTXO, idtxo) = ⊥ then
134: return false
135: end if
136: (statetxo , amounttxo , ϕ

lock
txo , ϕ

spend
txo )← UTXO [idtxo ]

137: // locking is done with amount 0:
138: if amounttxi 6= 0 then
139: return false
140: end if
141: // referenced output is already locked:
142: if statetxo ∈ {pending-locked, locked} then
143: return true
144: end if
145: // locking condition is satisfied:
146: if ϕlocktxo (datalocktxi , idtx ,UTXO) = false then
147: return false
148: end if
149: if txo’s state in UTXO is pending then
150: Set txo’s state to pending-locked in UTXO
151: else if txo’s state in UTXO is unspent then
152: Set txo’s state to locked in UTXO
153: end if
154: return true
155: end procedure

...Continued in functionality 3.2 (part 7)...

28



3 An Ideal Ledger Functionality

Functionality 3.2 (part 7): FLspend,Llock,δ,is-liveledger

(Internals (cont.))

...Continued from functionality 3.2 (part 6)...
156: procedure apply-outputs(outputs, txo ids)
157: for all k ∈ [1 . . . size(outputs)] do
158: txo ← outputs [k]
159: id ← txo ids [k]
160: Add txo to UTXO with ID id and in state pending
161: end for
162: end procedure

163: procedure is-strongly-valid(tx)

164: UTXO′
fresh copy←−−−−−−− UTXO

165: applied successfully ← validate-and-apply-tx(tx)
166: UTXO← UTXO′ // discard side-effects
167: if
168: applied successfully and
169: is-live(tx) and
170: tx doesn’t spend any outputs in state pending-locked/locked/spent
171: then
172: return true
173: end if
174: return false
175: end procedure
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4 Generically Realizing a Meta-Ledger

4.1 Overview of the Protocol

Our protocol (formally appearing as protocol 4.1) realizes the meta-ledger, so a party running
it should first and foremost be able to send meta-transactions. The protocol realizes the meta-
ledger over a base-ledger that does not recognize meta-transactions. Hence its logic can be
divided into two main complementary categories:

• Compilation of meta-transactions to base-transactions and sending thereof to the base-
ledger and

• Identifying these base-transactions as they are published by the base-ledger and the de-
compilation back to meta-transactions.

The output of an honest party running the protocol will differ from the output of the base-
ledger, as some transactions published by the base-ledger will be modified before being output
— the most-notable modification is the replacing of base-transactions with meta-transactions.

Compilation and sending are discussed in section 4.1.2, and monitoring the base-ledger and
decompilation are discussed in section 4.1.3. However, we first address in section 4.1.1 a few
decompilation complexities that affected the compilation as well.

Abstracting the Compilation/Decompilation of Meta-Transactions

The protocol is parameterized by a compiler/decompiler pair, (comp,decomp). Given a meta-
transaction txm, the current meta-ledger output and the base-ledger output, comp will compile
txm into a sequence of base-transaction sets (the fragments), whose order indicates the order in
which they should be sent (a formal description appears in definition 4.2.1). Given a base trans-
action, the meta-ledger output and the base-ledger output, decomp will attempt to reconstruct
a meta-transaction (a formal description appears in definition 4.2.2).

The protocol works for any (comp,decomp) pair satisfying some basic requirements (see
section 4.2.4). When instantiated with the compiler/decompiler from chapter 5, compCircuit

(protocol 5.1) and decompCircuit (protocol 5.2), it realizes the meta-ledger with circuit-spending
conditions.

In fig. 4.1.1 we give an example of compiling and decompiling two complementary meta-
transactions that can be given as input to an honest party running protocol instantiated with
the compCircuit and decompCircuit from chapter 5. The figure is structured as follows:

• Column “Circuit” is dedicated to txmcircuit, whose output txomcircuit contains circuit condition
“¬(a ∧ b) = true”.

• Column “Source” is dedicated to txsrc whose output txosrc is spent by txmcircuit.

• Column “Assignment” is dedicated to txmassign, whose input tximassign contains assignment
data “a→ true, b→ false”.

• Row “Honest Input” shows the transaction as it is given by E to the honest party to send.

• Row “comp output to Base-Ledger” shows the fragments that are the output of comp
and that are sent in the real-world.
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• Row “decomp output to Meta-Ledger” shows the output of the honest party and decomp.

Figure 4.1.1: Compilation and Decompilation

Special Fragments

We identify two special fragments from the output comp creates for a meta-transaction txm.
We require of comp/decomp that exactly one of the fragments will share txm’s output IDs.
We refer to that fragment as the keystone (c.f. definition 4.2.9). We also require that exactly
one of the fragments will reference the same outputs as txm. We refer to that fragment as the
splitter (c.f. definition 4.2.10).

We say a keystone is simple if it is also the splitter, that is, if it also spends the same outputs
as txm. Such is txk,assign (fig. 4.1.1, Base-Ledger, Assignment) with respect to txmassign (Input,
Assignment).

We say a keystone is non-simple if the keystone and the splitter are two different fragments.
txk,circuit (fig. 4.1.1, Base-Ledger, Circuit) is a non-simple keystone with respect to txmcircuit
(fig. 4.1.1, Input, Circuit).

Note that both the keystone and the splitter of a decompiled base-transaction are the trans-
action itself.

High-level Protocol Description

First, the decompiler “queues” all transactions it receives from the base-ledger for a period of
time before output. This allows it to modify transactions “retroactively” (up to the liveness
delay of the meta-ledger).

For each new base-transaction that is received, the protocol determines which of the following
three cases it falls into (this can be done efficiently in the case of circuit meta-transactions
by using the keystone and fragment marks, together with pattern-matching on the output
conditions):

31



4 Generically Realizing a Meta-Ledger

Case 1: The transaction, together with a subset of the preceding transactions, could have been
an output of comp. In this case, it can also extract the input to comp, and use that
to compute a meta-transaction. (For fig. 4.1.1, this is always the case.)

Case 2: The transaction could not have been part of a comp output, but an output it spends
corresponds to a meta-output in the current meta-ledger.

Case 3: The transaction satisfies neither of the two conditions above.

In the third case, the decompiler can simply ouput the transaction unmodified. In the first two
cases, it will output a meta-transaction. There are two main ideas that allow the decompiler to
ensure the meta transaction that it outputs is valid in the meta-ledger:

1. If the keystone is simple (as is the case in the assignment transaction of fig. 4.1.1), it re-
places the keystone with the meta-transaction, keeping the transaction ID and the output
IDs unchanged. Thus, it can transfer signatures on the keystone unmodified to use as
signatures on corresponding meta-transaction. In this case, the meta-transaction appears
in the meta-ledger at exactly the same place at which the keystone appeared, so a valid
keystone “automatically” implies that any base-outputs that the meta-transaction spends
are also valid (for meta-outputs, validity is guaranteed from the compiler soundness).

2. If the keystone is not simple, the handling is a little more complicated. In this case, it
can’t simply replace the keystone with the meta-transaction—because the splitter is the
transaction that actually spends the source inputs (e.g., consider txs in the Circuit column
of fig. 4.1.1). Thus, it needs to transfer signatures from the splitter to the meta-transaction
for it to be valid. The solution is to copy the splitter’s ID to the meta-transaction. How-
ever, we can’t just replace the splitter with the meta-transaction—the splitter’s outputs
are spent by fragment transactions, which should still appear in the meta-ledger. In-
stead, the protocol gives the splitter a new ID, but inserts the meta-transaction before
the splitter in the ledger output (this is one of the retroactive modifications it performs
on the queue). The meta-transaction is modified to spend only part of the source inputs,
so that the splitter can spend the rest. Because the ledger functionality allows partially
spent transactions to be spent by the adversary without satisfying the spending conditions
again, the modified splitter is valid in the meta-ledger.

In order to maintain the invariant that the UTXO state of the meta-ledger remains equiv-
alent to the UTXO state of the base-ledger, the outputs of the meta-transaction aren’t
released immediately (they enter in a “pending state”), but wait until the corresponding
keystone outputs are released in the base-ledger (this corresponds to the dashed line in
fig. 4.1.1 ).

Finally, there is one more “trick” used by the decompiler: whenever a transaction spends a
fragment of a previously-decompiled transaction that has a meta-output, the decompiler adds
a locking input to that transaction that locks the corresponding meta-output. This possible
because the compiler is required to ensure that all fragment outputs have the same locking
condition as the meta-output. The reason the decompiler must do this is because, otherwise
an adversary could “wedge” a meta-output by spending some of its fragments (e.g., think of
a circuit for which the adversary sets some of the input bits), in which case an honest party
that compiles a valid meta-transaction isn’t guaranteed to be able to insert the corresponding
fragments into the ledger (e.g., if the circuit-input used by the honest party is different from
the wedged bits). By locking the meta-output, the meta-ledger prevents this situation from
happening.

32



4 Generically Realizing a Meta-Ledger

4.1.1 Decompiling Meta-Transactions

Valid Decompiled Transaction Inputs

For a transaction to be valid, its inputs need to be valid, which among other things, requires
that they provide data satisfying the conditions of the outputs they reference.

In fig. 4.1.1, the input data of decompiled txmcircuit∗ (Meta-Ledger, Circuit) should satisfy
txosrc’s (Meta-Ledger, Source) and the input data of decompiled txmassign∗ (Meta-Ledger, As-
signment) should satisfy txomcircuit’s (Meta-Ledger, Assignment) conditions.

Output conditions often check whether the signature provided in the input data is valid.
Recall that signatures are validated with respect to the ID of the spending transaction.

It is necessary to support meta-transactions that are required to provide signatures. A de-
compiled, honestly-sent transaction should be funded by the same outputs it originally spent
(those that are spent in the base-ledger by the splitter). Additionally, due to the state-transition
order preservation requirement, a decompiled transaction should be output by the honest party
when its splitter is published in the base-ledger.

The way the protocol settles this is by “giving” the IDs of the splitters to the meta-transactions.
In fig. 4.1.1, txmcircuit∗’s ID will be that of txs (Meta-Ledger, Circuit), and txmassign∗’s ID will be
that of txk,assign’s input (Meta-Ledger, Assignment).

Valid Decompiled Inputs of Transactions With Non-Simple Keystones

Ideally, every decompiled meta-transaction would have a simple keystone. If that was the case,
the honest party would have been able to simply replace the keystone (which is also the splitter)
with the decompiled meta-transaction. However, it is sometimes useful to separate the inputs
and the outputs of a meta-transaction to two different fragments, as is done by compCircuit (see
txs and txk,circuit in fig. 4.1.1, Base-Ledger, Circuit, the splitter and the keystone of txmcircuit∗
respectively). Hence, not all keystones are simple.

The decompilation of such a meta-transaction is possible only after the keystone transaction
is published by the base-ledger. Hence the protocol delays publishing of all transactions if any
of those it needs to publish is a potential fragment. Delaying output means that the honest
party can output the decompiled meta-transaction before it published the splitter. Delay is
implemented using MsgQueue— a queue of messages the honest party maintains.

However, if the decompiled meta-transaction simply copies the inputs from the splitter, then
between the two, they spend from the referenced outputs twice the amount the original meta-
transaction had. Suffice to say for now that the honest party adjusts the input amounts of the
two transactions so that added-up they spend the same amount the original meta-transaction
had. This is also made possible thanks to the delay the honest party introduces.

In the scenario in fig. 4.1.1, the honest party would not output the splitter txs immediately
as it is published by the base-ledger. It would would wait, in case the keystone is published. If
and when the keystone txk,circuit is published, decompCircuit can be used to decompile txmcircuit∗.
The honest party would output decompiled meta-transaction txmcircuit∗ before txs after having
adjusted the input amounts of the two transactions.

The Use of Partial Spending

The transfer of IDs causes a different issue though, which is only relevant for meta-transactions
with non-simple keystones (txs in fig. 4.1.1, Meta-Ledger, Circuit) — on the one hand, we still
want the splitter to appear in the meta-ledger and therefore in the output of the honest party.
On the other hand, its ID cannot be the same as it was in the base-ledger since the ID is already
taken by the meta-transaction, and IDs are unique.

This is where partial spending comes into play (see section 3.5.4) — the honest party first
outputs the decompiled meta-transaction. Since the splitter’s inputs are valid in the base-ledger
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with respect to the splitter’s ID, the inputs of the decompiled meta-transaction will be valid.
Only then does it output the splitter — since its inputs spend already-spent outputs, they are
valid.

4.1.2 Compiling and Sending of Transactions

The honest party’s API appears in protocol 4.1 (part 1) and includes get-tx-ids (line 1) and
send-tx (line 10).

Both the ledger’s send-tx and the honest party’s send-tx accept an already-signed transac-
tion. E requires a transaction’s ID in order to provide a signed transaction to the send-tx proce-
dures, since signing a transaction essentially means signing its unique ID. Hence the get-tx-ids
procedures — both the ledger and the protocol implement it.

When asked for the IDs of transaction tx, the protocol’s get-tx-ids invokes comp with tx.
comp internally uses the ledger’s get-tx-ids procedure, and all the fragments, apart from
the splitter, are returned signed. tx’s IDs a returned alongside aux auxiliary data required for
sending — the entire output of comp.

The IDs returned by the protocol’s get-tx-ids are selected in a very specific way, to allow the
output of the honest party to be indistinguishable from a meta-ledger as per the considerations
discussed in section 4.1.1:

• The transaction ID is always chosen to be that of the splitter. Recall that “later”, during
decompilation, the ID of the splitter is “moved” to the decompiled meta-transaction.

• The output IDs are chosen to be those of the keystone (in the case of a simple keystone,
and therefore also in the case of a base transaction, these are also the output IDs of the
splitter).

When asked to send transaction tx with auxiliary data aux (that is, in fact, the fragments),
the honest party sends the fragments instead of tx. It “signs” the splitter by planting tx’s
signature in the splitter’s inputs. The honest party also verifies aux is a valid and admissible
comp output for tx.

The fragments are sent one step at a time — the ith step is sent when all the outputs of step
(i− 1)th have been released. This logic is implemented in txos-released-by-Fledger (line 52),
since the function is invoked whenever the ledger releases outputs. send-next-step (line 77)
contains the logic for sending the next step, and it invoked from two places — from send-tx
for sending the first step, and from txos-released-by-Fledger to send all other steps.

This mechanism helps guarantee that if the first step, that contains the splitter, is published
by the honest party, then the adversary cannot interrupt the publication of all other steps and
fragments (see condition 3 of definition 4.2.18). Consider txmcircuit (fig. 4.1.1, Input, Circuit)
— since txa and txb spend txs’s outputs (fig. 4.1.1, Input, Base), they must be sent after txs’s
outputs have been released. Otherwise they are invalid until such time as txs’s outputs are
released, and if the ledger attempts to process them, they will be discarded.

The honest party also verifies when asked to send a transaction that it is live — this is required
for proving that the output of the honest party is indistinguishable from the meta-ledger.

4.1.3 Processing Base-ledger Output and Decompilation

An honest party is subscribed to messages output by the base-ledger — when (Tx-Published, tx)
is output, tx-published-by-Fledger(tx) is run (line 23 of protocol 4.1 (part 2)).

As the honest party sees transactions being published by the ledger it considers each to see
whether they should be replaced with meta-transactions. This is in line 25 done by calling
decomp with the published transaction tx, and based on the base and meta states. The call
returns txm. If the decompilation succeeds, then txm is a meta-transaction and it is returned
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alongside its fragments; if tx is not a keystone transaction, or if the decompilation fails, then
txm is identical to tx, and tx is also the only fragment.

The transaction that the honest party outputs is not necessarily identical to txm as it was
output by decomp. It is also not output immediately — instead, it is added somewhere in the
Deciding what to output is based (mostly) on whether the keystone is simple.

A Simple Keystone Was Published

simple-keystone-published (line 115) is called if the decompiled transaction has a simple
keystone, with the keystone txk and the meta-transaction txm. The honest party pushes a
Tx-Published message at the end of MsgQueue with a transaction made up from txm’s inputs
using txm’s ID and from txk’s outputs using txk’s output IDs, discarding txm’s outputs.

This applies to fig. 4.1.1’s txmassign∗ (Meta-Ledger, Assignment) — it is made up of the inputs
of the decompiled meta-transaction and the outputs of txk,assign, using the ID of the decompiled
meta-transaction and the output IDs of the keystone.
simple-keystone-published can also be called if the decompiled transaction has a non-

simple keystone, but its splitter has already been output so it is impossible to reduce its amounts.
In which case, the honest party treats the keystone as a standard base-transaction, pushing a
Tx-Published message at the end of MsgQueue with the keystone.

A Non-Simple Keystone Was Published

non-simple-keystone-published (line 120) is called if the decompiled transaction has a
non-simple keystone, with the keystone txk, the splitter txs and the meta-transaction txm. The
honest party creates three transactions:

1. txm∗ , from txs’s inputs using txs’s ID and txm’s outputs using txm’s output IDs (txm’s
inputs are discarded),

2. txs-, a fresh copy of the splitter, but using a new unique ID,

3. txdummy, from txk’s input using txk’s ID (it is ensured by condition 7 of definition 4.2.13
that there only exists one) and with no outputs.

Denoting amountk the sum of the output amount of txk, the honest party reduces amountk
from txdummy’s input and from the txs-’s output it spends. It then fixes the input amounts of txs-
and of txm∗ by greedily reducing a total of amountk from txs-’s inputs and setting txm∗ ’s amounts
to whatever was reduced from txs- inputs. Note that now txm∗ ’s inputs specify the same total
amount as its outputs (amountk).

Finally three modifications are made to MsgQueue:

1. a (Tx-Published, txm∗ ) is added before (Tx-Published, txs),

2. (Tx-Published, txs) is replaced with (Tx-Published, txs-) and

3. (Tx-Published, txdummy) is pushed to the end.

This applies to fig. 4.1.1’s txmcircuit∗ (Meta-Ledger, Circuit) — it is made up of the inputs of
txs- and the outputs of the decompiled meta-transaction, using the ID of txs and the output
IDs of the decompiled meta-transaction.
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Adding Locking Inputs

Every time tx-published-by-Fledger is called, add-locking-inputs (line 100) is called in-
ternally. add-locking-inputs goes over all Tx-Published messages in MsgQueue and add
locking inputs when required. Adding a locking input to tx is required if tx spends a locking
fragment output that was published by the base-ledger before tx. A locking input locks the
meta-output corresponding to the fragment output.

4.2 Definitions for Transaction Compiler/Decompiler

4.2.1 Input and Output Behavior

We first give formal definitions for comp and decomp,

Definition 4.2.1 (comp). On input,

• a base-ledger output outb,

• a meta-ledger output outm and

• a meta-transaction txm,

comp outputs [T
txm

1 , ..., T
txm

n ], where T
txm

i for i ∈ [n] is a set of tuples of the form: (tx, aux),
where tx is transaction with IDs and aux is auxiliary data required for sending tx.

To keep notation simple, we use (fragments, txk)← comp(outb, outm, tx
m) when we only care

about distinguishing between the keystone and the rest of the fragments, and treat fragments
as a set of transactions when we don’t care about the internal order.

Definition 4.2.2 (decomp). On input,

• a base-ledger output outb,

• a meta-ledger output outm and

• a base-transaction txb,

decomp outputs a tuple (txm, fragments) where txm is a meta-ledger transaction and fragments
is a set of base-transactions.

4.2.2 Relations between Base and Meta-Ledger States

In order to use a comp/decomp pair, they must satisfy completeness and validity requirements.
We first define some terms that will allow us to specify the requirements,.

Definition 4.2.3 (State Order). We define the following complete ordering on transaction
output states:

⊥ < pending < pending-locked < unspent < locked < spent .

This ordering satisfies the property that an output’s state in the ledger is weakly monotone—it
cannot change from a higher to a lower order state.

Definition 4.2.4 (Ledger State Extension). We say a ledger state sext is an extension of a
ledger state s if it satisfies for every txo:

• state(txo, s) ≤ state(txo, sext)
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• If state(txo, s) = pending-locked then state(txo, sext) 6= unspent.

Note that a ledger state sext is an extension of a state s iff there exist ledger outputs outext

and out such that sext is the state computed from outext, s is the state computed from out and
outext is an extension of out.

Definition 4.2.5 (
state
!
txo

Weak Equivalence). Let sa and sb be two ledger states. We say that sa

and sb are weakly-equivalent and denote sa
state
!
txo

sb if for every transaction output ID id:

• state(sa, id) ∈ {⊥,pending,pending-locked} ⇐⇒
state(sb, id) ∈ {⊥,pending,pending-locked}.

• state(sa, id) ∈ {unspent, locked} ⇐⇒ state(sb, id) ∈ {unspent, locked}.

• state(sa, id) = spent ⇐⇒ state(sb, id) = spent.

The weak equivalence definition captures equivalence with respect to spending and locking
conditions—we require that weakly-equivalent states must be “indistinguishable” to conditions
that take state into account.

Definition 4.2.6 (
state
 
txo

Consistency). Let sb and sm be two ledger states. We say that sm

is consistent with sb and denote sm
state
 
txo

sb if sm
state
!
txo

sb and for every transaction output

txom ∈ sm:

1. state(sb, idtxom) ≤ state(sm, idtxom)

2. remaining(sm, idtxom) = remaining(sb, idtxom)

3. ϕlocksm,idtxom
= ϕlocksb,idtxom

This definition captures the property that the adversary has at least as much “control” over
outputs in the meta-ledger as it does in the base-ledger (i.e., if a transaction is live in the meta-
ledger—that is, if the ledger could “force” the adversary to process, it must also be live in the
base-ledger).

Definition 4.2.7 (Explainable TXO). Let outb and outm be ledger outputs and txom a trans-
action output of txm ∈ outm. We say txom is explainable with respect to outb and outm if there
exists a transaction txb ∈ outb with output txob such that idtxob = idtxom , and{

txom = txob if ϕspendtxom is in Lbase
∃fragments : (txm, fragments) = decomp(outpreb , outprem , txb) otherwise

(where outpreb is the prefix of outb up to, excluding txb and outprem is the prefix of outm up to,
excluding txm).

When txom is explainable w.r.t outb and outm, we call the set of fragments returned by
decomp the explanatory fragments for txom (this set is empty if txom is a base output).

Definition 4.2.8 ( 
tx

Consistency). Let outb and outm be ledger outputs, and sb and sm their

corresponding ledger states. We say that outm is consistent with outb and denote outm  
tx
outb

if outm = outb or if sm
state
 
txo

sb and for every transaction output txom ∈ sm, txom is explainable

with respect to outb and outm.
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This definition captures the property that all outputs of the meta-ledger state “can be ex-
plained” as either a valid decompilation of the base-ledger, or an exact copy of a base-ledger
output.

We note that outm  
tx
outb implies that a transaction output ID appears in sm iff it appears

in sb (if it exists in sb, then item 1 implies it exists in sm, while explainability implies the other
direction).

4.2.3 Special Transactions

In order to concisely define the required behavior of comp and decomp, we give names to base
transactions with specific properties with relation to meta-transactions.
Let (txm, fragments)← decomp(outb, outm, tx) be the output of decomp.

Definition 4.2.9 (Keystone). If there exists a single base transaction txk ∈ fragments such
that txk and txm have the same output IDs, we call txk the keystone transaction for (txm, fragments).

Definition 4.2.10 (Splitter). If there exists a single base transaction txs ∈ fragments such that
txs and txm reference the same output IDs, we call txs the splitter transaction for (txm, fragments).

Definition 4.2.11 (Simple Keystone). We say a keystone transaction txk is a simple keystone
if it is also the splitter transaction.

A keystone that is not a simple keystone is a non-simple keystone.
For compCircuit and decompCircuit (protocols 5.1 and 5.2) that are discussed in sections 5.1

and 5.2 and use the construction explained in chapter 2, the compilation of a meta circuit-
condition output yields a non-simple keystone (txk,circuit in fig. 4.1.1, Base-Ledger, Circuit),
and the compilation of meta assignment input yields a simple keystone (txk,assign in fig. 4.1.1,
Base-Ledger, Assignment).

4.2.4 Admissible comp/decomp

Our generic ledger protocol realizes the ledger functionality as long as comp/decomp satisfy
a set of requirements. We call such a pair admissible. Below, we specify the requirements for
admissibility.

(Note that to simplify the formal description of the protocol we also require that when comp
is given a base-transaction that is valid as-is in the base-ledger and does not require compilation,
it returns a single set containing that transaction. Similarly, we require that when decomp is
given a transaction and it doesn’t decompile, it outputs the transaction as-is.)

Definition 4.2.12 (comp/decomp Completeness). We say the pair (comp,decomp) is com-
plete if they satisfy the following condition:

For every base-ledger output outb, meta-ledger output outm such that outm  
tx
outb, every

meta transaction txm that is valid in outm and every execution (fragments, txk)← comp(outb, outm, tx
m),

if outextb is an extension of outb that contains all the transactions in fragments, then (txm∗ , fragments)←
decomp(outextb , outextm , txk), where txm∗ is identical to txm up to input amount changes.

In addition to completeness, we require both comp and decomp to satisfy a set of validity
requirements separately:

Definition 4.2.13 (decomp Validity). We say the decompiler decomp is valid if, for every
base-ledger output outb, every meta-ledger output outm such that outm  

tx
outb and every

transaction tx such that tx is valid in outb, (txm, fragments)← decomp(outb, outm, tx) satisfies
all of the following conditions:
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Condition 1: fragments ⊆ outb
Condition 2: tx is a keystone transaction and there exists a splitter transaction txs ∈ outb||tx

(it is possible that txs = tx).

Condition 3: For every transaction output txo of txm, the output amount of txo (in the meta-
ledger) is equal to the amount of the corresponding output of the keystone tx (in
the base-ledger).

Condition 4: If txm has meta outputs, then there exists a condition ϕlock ∈ Llock such that ϕlock

is the locking condition for the meta outputs and for all fragment outputs that
are not spent by other fragments.

Condition 5: For every base transaction output txob of txm, the spending and locking conditions
of txob (in the meta-ledger) are identical to those of the corresponding output of
the keystone tx (in the base-ledger).

Condition 6: If tx spends a meta-output in outm, then txm has a simple keystone.

Condition 7: If txm has a simple keystone, then txm is valid in outm. (Note that if txm has a
non-simple keystone, there are no requirements about its validity.)

Condition 8: If tx is not simple, it only spends a single output of the splitter txs.

The validity conditions for comp ensure that compilation generates valid base transactions,
and that we can always compute meta-transaction IDs deterministically from base-transaction
IDs. The conditions also ensure that a computationally-bounded adversary cannot “block” the
transactions generated by comp from being inserted into the ledger. To this end, we will require
some additional definitions.

Definition 4.2.14 (Live Transaction Sequence). Let outb be a ledger output and T = (tx1, . . . , txn)
a sequence of transactions. We say T is live in outb if for all i ∈ {1, . . . , n} it holds that txi is
live in outb||tx1|| · · · ||txi−1.

That is, a sequence is live if an honest party is guaranteed to be able to publish the transactions
in the sequence, in order, as long as no other transactions are published in between.

Definition 4.2.15 (Valid Transaction Sequence). Let outb be a ledger output and T = (tx1, . . . , txn)
a sequence of transactions. We say T is valid in outb if for all i ∈ {1, . . . , n} it holds that txi is
valid in outb||tx1|| · · · ||txi−1.

A valid sequence can be appended to the ledger by the adversary, but isn’t guaranteed to be
live. However, every live sequence is necessarily valid.

Definition 4.2.16 (Blocking Transaction Sequence). Let outb be a ledger output and T =
(tx1, . . . , txn) a sequence of transactions. We say a transaction sequence X blocks T in outb if
the sequence T ′ = T \ X (consisting of all transactions in T that are not in X) is not live in
outb||X. (We consider the empty sequence to be live.)

We can now define what it means for a sequence to be “unblockable”. Intuitively, we want
to capture the property that the transaction fragments output by comp can either be blocked
“early” (in our case this will be before some prefix is published) or not at all. Formally,

Definition 4.2.17 (Unblockable Sequence Distribution). Let outb be a ledger output and T1, T2
distributions over transaction sequences. We say T2 is an unblockable sequence distribution
following T1 in outb if for every computationally-bounded adversary A,

Pr
[
(T1, T2)← (T1, T2), X ← A(1λ, outb, T1, T2), T1 ⊆ X,X is valid and blocks T2

]
< ε(λ)
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where ε is a negligible function of the security parameter λ, and the probability is over the
distribution T and the coins of the adversary.

To understand the definition, think of T1, T2 as a single long sequence output by comp; the
first part might be blockable, but if it’s not (T1 ⊆ X), the second part cannot be blocked.

Definition 4.2.18 (comp Validity). comp is valid iff it satisfies the following conditions for
every base-ledger output outb, every meta-ledger output outm such that outm  

tx
outb, every

meta transaction txm that is live in outm and (fragments, txk)← comp(outb, outm, tx
m):

Condition 1: (Splitter exists) (fragments, txk) contains a splitter for txm. (The splitter can
be txk itself.)

Condition 2: (Fragments prior to splitter are blockable only by locking relevant out-
puts) Let S be the set of txos spent by txm. We define the set of relevant outputs
for S to be:

• Transaction-outputs in S.

• Transaction outputs of explanatory fragments for txos in S (c.f. defini-
tion 4.2.7).

For every extension outextb of outb that does not contain the splitter transaction, if
(fragments, txk)\outextb is not live in outextb , then either there exists a transaction
in outextb that locks a relevant output, or for every extension outextm of outm such
that outextm  

tx
outextb , it holds that txm is not live in outextm .

Condition 3: (Fragments following splitter are unblockable) Loosely speaking, this con-
dition ensures that if the splitter has been published, no computationally-bounded
adversary can prevent the remaining fragments from being published.

Define the distribution T (outb,outm,tx
m) = fragments to consist of the fragments

output by comp(outb, outm, tx
m), T1 to be the fragments in T (outb,outm,tx

m) up
to (including) the the splitter fragment txs (ensured by condition 1) and T2 the
remaining fragments.

Then T2 is an unblockable sequence distribution following T1 in outb (c.f., defini-
tion 4.2.17).

Definition 4.2.19 (Admissibility). A pair of algorithms (comp,decomp) is admissible if de-
comp satisfies definition 4.2.13, comp satisfies definition 4.2.18 and the pair satisfies comp/decomp
completeness.

The formal description of our generic ledger protocol appears in protocol 4.1 (external APIs
are in protocol 4.1 (part 1), handling of ledger events (i.e. methods triggered by output of the
base-ledger) is in protocols 4.1 (part 2) and 4.1 (part 3) and internal methods are in protocols 4.1
(part 5) and 4.1 (part 6)).

4.3 Security Analysis of the Generic Meta-Ledger Protocol

We prove the security of the protocol in the UC model. More formally, our main security claim
appear in theorem 4.3.1.

Theorem 4.3.1 (Protocol 4.1 realizes Fmetaledger). For all Lbase, Llock such that Lbase satis-

fies ...., and every l-valid compLmeta→Lbase/decompLbase→Lmeta pair and all δbase > 0, pro-

tocol 4.1 realizes FLmeta∪Lbase,Llock,δmeta,is-live
meta

ledger in the FLbase,Lbase,δbase,is-live
base

ledger -hybrid model,
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for δmeta = f(δbase) and

is-livemeta(tx) = tx is base ∧ is-livebase(tx) ∧ tx is not marked as fragment or keystone

∨ tx is meta ∧ l(tx)

4.3.1 Proof Overview

Our proof uses a standard hybrid argument. We build four hybrids, H1-H4, where H1 is the
real-world and H4 is the ideal-world with the full simulator (algorithm 4.1).
H2 and its indistinguishability from H1 are discussed in section 4.3.2. The main difference

between H2 and H1 is that in H2 the ideal-world S simulates a single honest party (denote it as
SPh) which handles all honest inputs and generates outputs for all honest users, whereas in H1

there are multiple independent honest parties. (In addition, there is a ‘syntactic’ difference in
that in H2 the real base-ledger Fbaseledger, is replaced with a simulated ledger (denote it as SFbaseledger

);

the ideal functionality in H2 forwards to S any message it receives and is told by S what to
output (the SPh ’s output).
S is able to simulates all honest parties by using a single instance of an honest party since
Fledger is agnostic of the identity of the party that sent it a transaction, and the honest party does
not maintain its identity or any other identity-bound property (e.g., signing key or randomness).

Since the clock is shared between all parties, and Πledger is deterministic (comp can be
random, but it does not accept the identity of the caller) the outputs of all honest parties
“monitoring” the base-ledger are identical.
H3 and its indistinguishability from H2 are discussed in section 4.3.3. H3 adds honest party

input extraction — honest party inputs are now sent to an instance of Fmetaledger and S learns

what input was given to the honest parties from messages it receives from the Fmetaledger instance.
Proving indistinguishability is relatively easy, since Fledger notifies A when it had received
messages, specifying the arguments.
H4 and its indistinguishability from H3 are discussed in section 4.3.4. SPh ’s output is no

longer output by the ideal-functionality. Instead the output of the Fmetaledger instance is used as

honest party output, and S translates SPh output to calls to the adversarial API of Fmetaledger.

Due to the H3 leap and since S forwards messages E sends Fbaseledger to SFbaseledger
, the inputs to

SFbaseledger
are indistinguishable from those of Fbaseledger in real-world (H1). Hence the messages SPh

sees from SFbaseledger
are indistinguishable from those the honest parties see from Fmetaledger in the

real-world.
Since SPh is an instance of Πledger, it acts like the real-world honest parties. When SPh outputs

(Tx-Published, tx), S calls Fmetaledger’s process-tx with tx and when SPh outputs (Txos-Released, tx),

S calls Fmetaledger’s release-txos with tx. In corollary 4.3.26 we show these calls always succeed,

and that otherwise the state of Fmetaledger doesn’t change.

To prove corollary 4.3.26 we show that sm+q
state
 
txo

sb, i.e., that the application of SPh ’s

MsgQueue to Fmetaledger (sm+q ) is always consistent with SFbaseledger
’s state (sb):

• Consistency is defined in definition 4.2.6 and captures the difference between the states
of the meta-ledger and the underlying base-ledger (e.g., meta-outputs replace their cor-
responding base keystone outputs, meta-inputs replace their corresponding base splitter
inputs).

• Recall that the honest party maintains a queue MsgQueue that causes a delay and a “gap”
between SPh and Fmetaledger (messages received from the ledger are not output immediately).

Applying a MsgQueue to a ledger state is defined in definition 4.3.17, and essentially
means calling different methods with respect to the ledger state, thereby changing it —
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process-tx for Tx-Published messages, release-txos for Txos-Released messages
and remove-tx for Tx-Removed messages.

Hence we prove in lemma 4.3.25 that the combined state of Fmetaledger and SPh is “always” consistent

with that of SFbaseledger
— to do this we map out all possible modifications to the states of Fmetaledger,

SFbaseledger
and SPh , and group them into eight event types (event types 1 to 8). Each event is

associated with a list of code segments that change one or more states (Fmetaledger/SFbaseledger
/SPh).

Event type 1’s code segments, for example, cover the successful processing of a transaction in
SFbaseledger

and the application of the transaction to SPh ’s MsgQueue. Event type 4’s code segments,

cover the popping of a Tx-Published message from SPh ’s MsgQueue and the processing of the
transaction in Fmetaledger.

In claim 4.3.23 we show that all changes to the three states occur in one of the events, in
claim 4.3.22 we show that the code segments of each event run consecutively during simulation
and are disjoint from code segments of other events, and in lemma 4.3.24 we show that (most
of) the events preserve consistency — that if the three states were consistent, and the event
occurred (i.e., all code segments were run), then the resulting states were still consistent. Hence

we can prove lemma 4.3.25 (sm+q
state
 
txo

sb is always preserved) by induction on events.

To help us prove the each event maintains consistency separately, we show in lemmas 4.3.20
and 4.3.21 that the consistency is preserved “even though” the base-ledger keystone is decom-
piled into a meta-transaction, and in lemma 4.3.19 we prove the addition of locking inputs to
transactions in the meta-ledger (that do not exist in the base-ledger) also preserves consistency.

We prove lemmas 4.3.19 to 4.3.21 by using a number of supporting claims that mainly show
consistency is maintained in different settings. In lemma 4.3.16 we show that the application of
an identical transaction to two consistent states will yield consistent states. Claim 4.3.15 shows
the same holds for an identical output and claim 4.3.14 for an identical list of inputs.

To show that the application of an identical list of inputs preserves consistency (claim 4.3.14),
we prove similar arguments for a single identical locking-input (lemma 4.3.13), spending-input
(Lemma 4.3.12), and for the spending of an amount from the same output claim 4.3.11.

To prove lemma 4.3.25, it is also required to show that all changes in Fmetaledger correspond

are changes in SPh and SFbaseledger
— that the Fmetaledger state is not changed due to internal Fmetaledger

processes. Particularly, that no event of event types 7 and 8 ever occurs. To prove this, we
use claim 4.3.10, that if a (Send-Tx, tx) is given to any honest party in the ideal-world, then
within 2 · s · δbase, S has called either Fmetaledger’s process-tx and release-txos with tx′ (which

is almost identical to tx) or Fmetaledger’s remove-tx with tx.
In order to prove claim 4.3.10, we showed there exist upper bounds on the time it takes an

honest party to send a transaction (s · δbase, see claim 4.3.9) and on the time an honest can
delay a message after it had been published by the ledger (a further s · δbase, see claim 4.3.8).

4.3.2 H2 — Single Honest Party

Following are the differences between H2 and H1:

1. In H2 the real base-ledger Fbaseledger is replaced with a simulated ledger (denote it as SFbaseledger
)

per definition 4.3.2.

2. In H2 the ideal-world S simulates all honest parties by using a single instance (denote it
as SPh) per definition 4.3.3, whereas in H1 there are multiple independent honest parties.

3. In H2 the ideal functionality forwards to S any message it receives and is told by S what
to output (the SPh ’s output) — S is notified when E sends a message to an honest party;
messages output from SPh are passed to E (simulating the real-world honest parties).
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4. When the ideal functionality receives a (Tick)message, S invokes SFbaseledger
’s tick.

Definition 4.3.2 (S simulation of Fbaseledger). S simulates Fbaseledger— the simulated instance is
referred to as SFbaseledger

.

• All messages sent from E to Fbaseledger are sent to SFbaseledger
.

• All messages output from SFbaseledger
are passed to E .

Definition 4.3.3 (S simulation of honest parties). S simulates an honest party running Πledger

— the simulated instance is referred to as SPh .

• When SPh sends a message to Fbaseledger, S pauses the SPh simulation, storing its execu-
tion state, runs the SFbaseledger

code that handles the message, and finally restores the SPh
execution state and continues simulating it.

• When SPh outputs a message , S pauses the SPh simulation, storing its execution state,
runs the S code that handles the message, and finally restores the SPh execution state
and continues simulating it.

• When SFbaseledger
outputs a message addressed to honest parties, S pauses the SFbaseledger

simu-

lation, storing its execution state, runs the SPh code that handles the message, and finally
restores the SFbaseledger

execution state and continues simulating it.

Lemma 4.3.4. H1 ∼ H2.

Proof. S is able to simulates all honest parties by using a single instance of an honest party
since Fledger is agnostic of the identity of the party that sent it a transaction, and the honest
party does not maintain it’s identity or any other identity-bound property (e.g., signing key or
randomness).

The send-tx receives an already-signed transaction (as the transaction or aux). Hence it is
E ’s responsibility to sign transactions.

Since the clock is shared between all parties, and Πledger is deterministic (comp can be
random, but it does not accept the identity of the caller) the outputs of all honest parties
“monitoring” the base-ledger are identical.

Finally, since for every Fmetaledger tick, S calls SFbaseledger
’s tick the outputs of H1 and H2 are

indistinguishable.

4.3.3 H3 — Honest Party Input Extraction

In H3, S extracts E honest party inputs from Fmetaledger messages it receives, whereas in H2, S
receives honest party inputs from the ideal functionality.

The extraction is done as follows (see process-Fmetaledger-message in line 1 of algorithm 4.1):

• A Fmetaledger (Tx-Received, tx) message was triggered by a (Send-Tx, tx) input and

• A Fmetaledger (Create-Tx-IDs-Request, tx) message was triggered by a (Get-Tx-IDs-Request, tx)
input.

Lemma 4.3.5. H2 ∼ H3.

Proof. By observation of Fledger:

• Fledger outputs (Create-Tx-IDs-Request, t̂x) on each invocation of get-tx-ids(t̂x) (line 3

of functionality 3.2 (part 1)), and hence on each (Get-Tx-IDs-Request, t̂x) honest party
input, and
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• Fledger outputs (Tx-Received, tx) on each invocation of send-tx(tx) (line 17 of function-
ality 3.2 (part 1)), and hence on each (Send-Tx, tx) honest party input.

The outputs are identical since:

• for each (Create-Tx-IDs-Request, t̂x) from Fmetaledger, the S simulates E sending (Get-Tx-IDs-Request, t̂x)
input to SPh (line 4) and returns a Create-Tx-IDs-Response with SPh ’s output, and

• for each (Tx-Received, tx) from Fmetaledger, the S simulates E sending (Send-Tx, tx) input to
SPh (line 8).

4.3.4 H4 — Complete Ideal-World Simulation

In H4 the output of the honest parties is that of the ideal honest parties, i.e., the output of
Fmetaledger, whereas in H3 the output of the honest parties is that of SPh .

S “connects” SPh and Fmetaledger in process-SPh-message (line 14 of algorithm 4.1):

• when SPh outputs a (Tx-Published, tx) message, S calls Fmetaledger’s process-tx with tx,
and

• when SPh outputs a (Txos-Released, tx) message, S calls Fmetaledger’s release-txos with
tx.

Honest sending of a meta transactions in the idela-world is atomic, however it is not in the
real-world where it can be interrupted. To guarantee that a transaction that was sent to Fmetaledger

and was interrupted is not published, S removes the transaction from Fmetaledger when it notices
that was interrupted.

The identification part is done in check-SFbaseledger
-fragment-validity (line 26). The pro-

cedure is called after each change to the state of SFbaseledger
(a transaction was published or the

outputs of a transaction were released), and after SPh has finished applying the change to its
internal state. Upon identification, S pushes a Tx-Removed message to SPh ’s MsgQueue.

The actual removal is done when SPh pops the message from MsgQueue. S “sees” the popping
and calls Fmetaledger’s remove-tx with the transaction.

Lemma 4.3.6. H3 ∼ H4.

Proof. Note that only process-tx, release-txos calls translate to Fmetaledger output visible to

honest parties. By corollary 4.3.26, all S calls to Fmetaledger’s process-tx and release-txos
succeed and these procedures are only called by S.

By observation of S’s process-SPh-message (line 14), S calls these procedures whenever
they happen in SPh with the exact same arguments.

Claim 4.3.7 (Fledger — Transaction processing delay). For every transaction tx, if Fledger
(functionality 3.2) is given input (Send-Tx, tx) and tx is live (is-live(tx) = true), then within
δ ticks process-tx is called with tx and then release-txos is called with tx.

Proof. By observation of Fledger’s tick (line 51, functionality 3.2).

Claim 4.3.8 (Πledger — MsgQueue publishing delay). For every message m, if m is added to
MsgQueue in time t (ticks), then m is popped from MsgQueue by time t+ s · δ.

Proof. By observation of Πledger’s flush-msg-queue (line 84), popping from MsgQueue is
halted only if the message at the head of the queue is a (Tx-Published, tx) message and the
following conditions hold:
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Algorithm 4.1 (part 1): SLmeta,comp,decompledger

• S simulates Fbaseledger per definition 4.3.2 — the simulated instance is referred to as
SFbaseledger

.

• S simulates all honest parties by using a single instance per definition 4.3.3 — denote
it as SPh . In fact, is uses a slightly-modified version of Πledger — MsgQueue may now
also contain Tx-Removed messages.

• When SPh pops a Tx-Removed message from MsgQueue in line 94 of
flush-msg-queue, and S’s SPh-tx-removed-popped is called, the message is re-
garded as an output of SPh in the sense that it pauses the SPh simulation.

1: procedure process-Fmetaledger-message(m)

2: // Called when Fmetaledger sends a message m

3: if m = (Create-Tx-IDs-Request, t̂x) then
4: Simulate E sending (Get-Tx-IDs-Request, t̂x) input to SPh
5: Await (Get-Tx-IDs-Response, tx, aux) response
6: Send (Create-Tx-IDs-Response, tx, aux) to Fmetaledger

7: else if m = (Tx-Received, tx, aux) then
8: Simulate E sending (Send-Tx, tx, aux) input to SPh
9: else if m = (Tick) then

10: SFbaseledger
.tick()

11: end if
12: // Tx-Published and Txos-Released messages are discarded
13: end procedure

...Continued in algorithm 4.1 (part 2)...

1. tx is marked as fragment and

2. tx’s outputs are not in FragmentTxos and

3. tx has been published by Fledger less than s · δ ticks ago.

Suppose that messages in MsgQueue are sorted by the time they were inserted. In which case
the claim holds. Suppose in contradiction the popping is halted due to message mhalt, and that
MsgQueue contains a message mdelayed that was added to the queue more than s · δ ticks ago.
Since MsgQueue is sorted mhalt too was added to the queue more than s · δ ticks ago and thus
should have been popped.

In fact, messages in MsgQueue are “almost sorted” — we show that any message that is not
added at MsgQueue’s end or that is modified in-place, won’t cause the popping to halt. We do
this by an analysis of all the places where MsgQueue is modified:

• In lines 55, 118 and 149 a Tx-Published message is pushed at the end of MsgQueue.

• In line 148 a message is modified. The modification changes input/output amounts of
the transaction in the Tx-Published message, and thus does not affect the popping from
MsgQueue.

• In line 147 a (Tx-Published, txm) is inserted in the middle of MsgQueue. txm is the result
of a successful decomp call and therefore cannot be a fragment and will be output when
first considered and will not halt the popping from MsgQueue.
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Claim 4.3.9 (Simulation — Send-Tx to Tx-Published/Tx-Removed delay). For every trans-
action tx, if input (Send-Tx, tx) is given to SPh, then within s · δbase ticks either:

• (Tx-Published, tx′) and then (Txos-Released, tx′) are added to MsgQueue, where tx′ is
identical to tx up to input amount changes and addition of locking inputs or

• (Tx-Removed, tx) is added to MsgQueue.

Proof. By observation of Πledger:

• tx’s first step is sent immediately in line 20 of send-tx (line 10).

• tx’s (l + 1)th step is sent when all of the outputs in steps ≤ l were released in lines 59
to 61 of txos-released-by-Fledger (line 52).

• tx is removed from TxStepQueues if the last step sent was sent more than δbase ticks ago
in line 73 of tick-by-Fledger (line 68).

Hence, if the outputs of each step’s transactions are released within δbase (see claim 4.3.7),
then by definition 4.2.12, decomp returns a transaction txm that is identical to tx up to input
amount changes, and within s · δbase ticks (Tx-Published, txm) and (Txos-Released, txm) are
added to MsgQueue.

If within s · δbase such a message was not added to MsgQueue then at least one step’s outputs
were not published, which implies that it was removed from mempool, which in turn implies
that it was, at some point not-strongly-valid.

By observation of S’s (algorithm 4.1) check-SFbaseledger
-fragment-validity (line 26), if a

fragment of tx became not strongly-valid, S would push a (Tx-Removed, tx) to SPh ’s MsgQueue.

Claim 4.3.10 (Simulation — Send-Tx to Fmetaledger calls delay). For every transaction tx, if input
(Send-Tx, tx) is given to any honest party in the idela-world at time t (ticks), then by time
t+ 2 · s · δbase S has called either:

• Fmetaledger’s process-tx and then release-txos with tx′, where tx′ is identical to tx up to
input amount changes and addition of locking inputs or

• Fmetaledger’s remove-tx with tx.

Proof. When Fmetaledger’s send-tx is called with transaction tx, a (Tx-Received, tx) message is
sent to A (see functionality 3.2 (part 1), line 17). When S sees the message, it simulates sending
a (Send-Tx, tx) input to SPh (see line 8 of algorithm 4.1).

Suppose in contradiction that by t+2 ·s ·δbase neither happened, that is, neither process-tx
nor remove-tx were called.

By claim 4.3.8 by time t+s·δbase, neither (Txos-Released, tx′) for any such tx′ nor (Tx-Removed, tx)
were present in SPh ’s MsgQueue.

By claim 4.3.9 by time t, SPh was not given input (Send-Tx, tx), contradicting the assumption
that it did.

Claim 4.3.11 (sm
state
 
txo

sb is preserved by Fledger’s spend-output). Let sm and sb be two

Fledger states, and suppose sm
state
 
txo

sb, and let idtxo be an output ID and amountr be an amount.

Define:

• s
′
b as the state resulting from running spend-output(idtxo , amountr) (line 126, function-

ality 3.2) with respect to sb and
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• s
′
m as the state resulting from running spend-output(idtxo , amountr) with respect to sm.

If state(sm, idtxo) 6= ⊥, then s
′
m
state
 
txo

s
′
b.

Proof. Since sm
state
 
txo

sb, state(sb, idtxo) 6= ⊥. Both base and meta states are changed to spent

and both amounts to amountr. All other
state
 
txo

conditions follow from sm
state
 
txo

sb.

Lemma 4.3.12 (sm
state
 
txo

sb is preserved by Fledger’s validate-and-apply-spending-input).

Let sm and sb be two Fledger states, and suppose sm
state
 
txo

sb, and let txib and txim be two identical

transaction inputs and idtx be a transaction ID and define:

• s
′
b as the state resulting from running validate-and-apply-spending-input(txib, idtx)

(line 99, functionality 3.2) with respect to sb and

• s
′
m as the state resulting from running validate-and-apply-spending-input(txim, idtx)

with respect to sm.

If ϕspendsm,idtxo
6= ⊥ and ϕspendsm,idtxo

∈ Lbase where idtxo is the referenced transaction output ID, then
either:

• both calls return true and s
′
m
state
 
txo

s
′
b or

• both calls return false.

Proof. Denote the amount spent as amounttxi , and the spend and lock data as dataspend and
datalock respectively.

The proof is by exhaustive case analysis of all lines in which validate-and-apply-spending-input
can return. For line l we show that either both calls return or both don’t and that when they
do, they return the same boolean value and consistency is preserved.

1. Line 103 (false is returned if the referenced output is not in a spendable state): Due to
weak equivalence, state(sa, id) = {⊥,pending,pending-locked} ⇐⇒ state(sb, id) ∈
{⊥,pending,pending-locked}.
Hence, either both calls will return false in line 103, or neither will and we can as-
sume in the following lines that state(sm, idtxo) /∈ {⊥,pending,pending-locked} and
state(sb, idtxo) /∈ {⊥,pending,pending-locked}.

2. Line 108 (false is returned if the referenced output has insufficient remaining coins): Since

sm
state
 
txo

sb, remaining(sm, idtxo) = remaining(sb, idtxo).

Hence, if amounttxi > remaining(sb, idtxo) = remaining(sm, idtxo), both calls will return
false in line 108.

Otherwise, both calls will not return in line 108, and we can assume in the following lines
that amounttxi ≤ remaining(sb, idtxo) = remaining(sm, idtxo).

3. Line 113 (true is returned if the referenced output is spent): Since sb and sm are weakly-
equivalent, state(sb, idtxo) = spent ⇐⇒ state(sm, idtxo) = spent.

Hence, if state(sb, idtxo) = state(sm, idtxo) = spent, both calls will return true in
line 113. Also, claim 4.3.11 applies to the spend-output call in line 112 so consistency
is preserved.

Otherwise, both calls will not return in line 113, and we can assume in the following lines
that state(sm, idtxo) 6= spent and state(sb, idtxo) 6= spent.
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4. Line 117 (false is returned if the locking condition is not satisfied): Since sm
state
 
txo

sb,

ϕlocksm,idtxo
= ϕlocksb,idtxo

. Since sm and sb are weakly equivalent, and because ϕlock is agnostic to

⊥/pending/pending-locked and unspent/locked deviations, ϕlocksb,idtxo
(datalock, idtx ,UTXOsb

) =

ϕlocksm,idtxo
(datalock, idtx ,UTXOsm

).

Hence, if ϕlocksb,idtxo
(datalock, idtx ,UTXOsb

) = ϕlocksm,idtxo
(datalock, idtx ,UTXOsm

) = false, both

calls will return false in line 117.

Otherwise, both calls will not return in line 117, and we can assume in the following lines
that ϕlocksb,idtxo

(datalock, idtx ,UTXOsb
) = ϕlocksm,idtxo

(datalock, idtx ,UTXOsm
) = true.

5. Line 121 (false is returned if the spending condition is not satisfied): Since sm
state
 
txo

sb and ϕspendsm,idtxo
∈ Lbase, ϕspendsm,idtxo

= ϕspendsb,idtxo
. Since sm and sb are weakly equivalent,

and because ϕspend is agnostic to ⊥/pending/pending-locked and unspent/locked

deviations, ϕspendsb,idtxo
(dataspend, idtx ,UTXOsb

) = ϕspendsm,idtxo
(dataspend, idtx ,UTXOsm

).

Hence, if ϕspendsb,idtxo
(datalock, idtx ,UTXOsb

) = ϕspendsm,idtxo
(datalock, idtx ,UTXOsm

) = false, both

calls will return false in line 121.

Otherwise, both calls will not return in line 121, and we can assume in the following lines
that ϕspendsb,idtxo

(datalock, idtx ,UTXOsb
) = ϕspendsm,idtxo

(datalock, idtx ,UTXOsm
) = true.

6. Line 124: both calls will return true in line 124. Also, claim 4.3.11 applies to the
spend-output call in line 123 so consistency is preserved.

Lemma 4.3.13 (sm
state
 
txo

sb is preserved by Fledger’s validate-and-apply-locking-input).

Let sm and sb be two Fledger states, and suppose sm
state
 
txo

sb, and let txib and txim be two identical

transaction inputs and idtx be a transaction ID and define:

• s
′
b as the state resulting from running validate-and-apply-locking-input(txib, idtx)

(line 130, functionality 3.2) with respect to sb and

• s
′
m as the state resulting from running validate-and-apply-locking-input(txim, idtx)

with respect to sm.

If ϕspendsm,idtxo
= ⊥ and ϕspendsm,idtxo

∈ Lbase where idtxo is the referenced transaction output ID, then
either:

• both calls return true and s
′
m
state
 
txo

s
′
b or

• both calls return false.

Proof. Denote the amount spent as amounttxi and the lock data as datalock.
The proof is by exhaustive case analysis of all lines in which validate-and-apply-locking-input

can return. For line l we show that either both calls return or both don’t and that when they
do, they return the same boolean value and consistency is preserved.

1. Line 134 (false is returned if the referenced output is not in a lockable state): Since

sm
state
 
txo

sb, state(sm, id) 6= ⊥ ⇐⇒ state(sb, id) 6= ⊥.

Hence, either both calls will return false in line 134, or neither will and we can assume
in the following lines that state(sm, idtxo) 6= ⊥ and state(sb, idtxo) 6= ⊥.
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2. Line 139 (false is returned if locking is done with amount 0): txib and txim are identical
and both spend amounttxi .

Hence, if amounttxi 6= 0, both calls will return false in line 139. Otherwise, both calls will
not return in line 139, and we can assume in the following lines that amounttxi = 0.

3. Line 143 (true is returned if the referenced output is pending-locked/locked): Since
sb and sm are weakly-equivalent and state(sm, idtxo) 6= ⊥ and state(sb, idtxo) 6= ⊥,
state(sm, id) ∈ {pending,pending-locked} ⇐⇒ state(sb, id) ∈ {pending,pending-locked}.
Hence, if state(sm, id) ∈ {pending,pending-locked} or state(sb, id) ∈ {pending,pending-locked},
both calls will return true in line 143. Also, the states remain unchanged so consistency
is preserved.

Otherwise, both calls will not return in line 143, and we can assume in the following lines
that state(sm, id) /∈ {pending,pending-locked} and state(sb, id) /∈ {pending,pending-locked}.

4. Line 147 (false is returned if the locking condition is not satisfied): Since sm
state
 
txo

sb,

ϕlocksm,idtxo
= ϕlocksb,idtxo

. Since sm and sb are weakly equivalent, and because ϕlock is agnostic to

⊥/pending/pending-locked and unspent/locked deviations, ϕlocksb,idtxo
(datalock, idtx ,UTXOsb

) =

ϕlocksm,idtxo
(datalock, idtx ,UTXOsm

).

Hence, if ϕlocksb,idtxo
(datalock, idtx ,UTXOsb

) = ϕlocksm,idtxo
(datalock, idtx ,UTXOsm

) = false, both

calls will return false in line 147.

Otherwise, both calls will not return in line 147, and we can assume in the following lines
that ϕlocksb,idtxo

(datalock, idtx ,UTXOsb
) = ϕlocksm,idtxo

(datalock, idtx ,UTXOsm
) = true.

5. Line 154: both calls will return true in line 154.

By observation of lines 149 to 153, only the state of the referenced output is modified,
and only pending→ pending-locked and unspent→ locked transitions are possible.

Since sm
state
 
txo

sb and because state(sm, idtxo) 6= ⊥ and state(sb, idtxo) 6= ⊥, the only

base-state/meta-state combinations possible are:

• such that the two states are the same state(sm, idtxo) = state(sb, idtxo),

• state(sb, idtxo) = pending and state(sm, idtxo) = pending-locked,

• state(sb, idtxo) = unspent and state(sm, idtxo) = locked.

In the first case, both states will be changed to the same state, in the second case
state(sb, idtxo) will be changed to pending-locked, and in the third case state(sb, idtxo)

will be changed to locked. Hence, s
′
m
state
 
txo

s
′
b.

Claim 4.3.14 (sm
state
 
txo

sb is preserved by Fledger’s validate-and-apply-inputs). Let sm and

sb be two Fledger states, and suppose sm
state
 
txo

sb, and let inputsb and inputsm be two identical

lists of respectively identical transaction inputs and idtx be a transaction ID and define:

• s
′
b as the state resulting from running validate-and-apply-inputs(inputsb, idtx) (line 83,

functionality 3.2) with respect to sb and

• s
′
m as the state resulting from running validate-and-apply-inputs(inputsm, idtx) with

respect to sm.
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If for every txi ∈ inputsm, ϕspendsm,idtxo
∈ Lbase where idtxo is the transaction output ID referenced

by txi, then either:

• both calls return true and s
′
m
state
 
txo

s
′
b or

• both calls return false.

Proof. The proof is by induction on the index of the input. Suppose that the induction hypoth-
esis holds for (up to and including) the ith input.

If ϕspend = ⊥, then by lemma 4.3.13 either both validate-and-apply-locking-input calls
will return true and the consistency is preserved, or both return false, in which case both
validate-and-apply-inputs calls will return false in line 89.

Otherwise, then by lemma 4.3.12 either both validate-and-apply-spending-input calls
will return true and the consistency is preserved, or both return false, in which case both
validate-and-apply-inputs calls will return false in line 93.

Claim 4.3.15 (sm
state
 
txo

sb is preserved by Fledger’s apply-outputs). Let sm and sb be two

Fledger states, and suppose sm
state
 
txo

sb, and let outputsb and outputsm be two identical lists of

respectively identical transaction outputs and txo ids be a list of IDs of the same length. Define:

• s
′
b as the state resulting from running apply-outputs(idtxo , txo ids) (line 126, function-

ality 3.2) with respect to sb and

• s
′
m as the state resulting from running apply-outputs(idtxo , txo ids) with respect to sm.

Then it holds that s
′
m
state
 
txo

s
′
b.

Proof. The same IDs are mapped to respectively identical outputs in state pending.

Lemma 4.3.16 (sm
state
 
txo

sb is preserved by Fledger’s validate-and-apply-tx). Let sm and sb

be two Fledger states, and suppose sm
state
 
txo

sb, and let txb and txm be two identical transactions

and define:

• s
′
b as the state resulting from running validate-and-apply-tx(txb) (line 70, functional-

ity 3.2) with respect to sb and

• s
′
m as the state resulting from running validate-and-apply-tx(txm) with respect to sm.

If ϕspendsm,idtxo
∈ Lbase for each output txo spent by txm, then either:

• both calls return true and s
′
m
state
 
txo

s
′
b or

• both calls return false.

Proof. The proof is by exhaustive case analysis of all lines in which validate-and-apply-tx
can return. For line l we show that either both calls return or both don’t and that when they
do, they return the same boolean value and it holds that the resulting states are consistent.

1. Line 74 (false is returned if incoming coins < outgoing coins): Since txb and txm are
identical:

• outb =
∑

txo∈outputstxb
amounttxo =

∑
txo∈outputstxm

amounttxo = outm

• inb =
∑

txi∈inputsb amounttxi =
∑

txi∈inputsm amounttxi = inm
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Thus, outb > inb ⇐⇒ outm > inm.

Hence, if outb > inb = outm > inm = true, both calls will return false in line 74.

Otherwise, both calls will not return in line 74, and we can assume in the following lines
that outb ≤ inb = outm ≤ inm = true.

2. Line 78 (false is returned if any of the inputs is invalid): txb and txm are identical, so their
inputs inputsb and inputsm are also respectively identical. Hence claim 4.3.14 applies, and
therefore either the applications of both inputsb and inputsm will fail, or both will succeed
and the consistency will be preserved.

3. Line 81: both calls will return true in line 81. By claim 4.3.15, s
′
m
state
 
txo

s
′
b so consistency

is preserved.

Definition 4.3.17 (Applying MsgQueue to Fledger state). Given an honest party (protocol 4.1)
MsgQueue q, and a state of Fledger (functionality 3.2) s, apply-queue(q, s) is defined in algo-
rithm 4.2.

Denote q[:mx] the prefix of q that ends with message mx and q
′

[:my ]
the prefix of q

′
that ends

with message my. Let smx = apply-queue(q[:mx], sm).

Claim 4.3.18 (sm = sb is preserved by apply-queue). Let sm and sb be two identical Fledger
states and q a MsgQueue. Define:

• s
′
b as the state resulting from running apply-queue(q, sb) (definition 4.3.17 and

• s
′
m as the state resulting from running apply-queue(q, sm).

Then s
′
m = s

′
b.

Proof. Holds since apply-queue is deterministic.

Lemma 4.3.19 (sm+q
state
 
txo

sb is preserved by Πledger’s add-locking-inputs). Let sm and sb

be two Fledger states, and q be a state of SPh’s MsgQueue. Define:

• as q
′

as q after running add-locking-inputs (protocol 4.1, line 100) with respect to q,

• sm+q = apply-queue(q, sm),

• s
m+q′

= apply-queue(q
′
, sm).

If sm+q 6= ⊥ and sm+q
state
 
txo

sb, then s
m+q′

6= ⊥ and s
m+q′

state
 
txo

sb.

Proof. The proof is by induction on the index of the added locking input. Suppose that the
induction hypothesis holds for (up to and including) the ith input.

Let txi be the (i + 1)th input, and denote its transaction tx and the Tx-Published message
mtx . Also denote as txof the fragment output referenced by txi, and as txom the meta-output
that txof is mapped to in LockingFragmentTxos. Suppose that tx doesn’t already have an input
that locks txom.

If q is of the following form: [m1, . . . ,mk,mtx ,ml, . . . ,mn], then q
′

is of the following form:
[m1, . . . ,mk,mtxlock ,ml, . . . ,mn], where mtxlock = (Tx-Published, txlock) and txlock is identical
to tx with the addition of the locking input txilock.

We show that eachm ∈ q′ is applied successfully in turn when evaluating apply-queue(q
′
, sm):
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1. [m1, . . . ,mk] — by claim 4.3.18, smk = s
′
mk

, and since smk 6= ⊥, then s
′
mk
6= ⊥.

2. mtxlock — since smk = s
′
mk

, the two states are consistent. Recall that txlock differs from tx
only in the addition of txilock. We show that the application of txlock is successful.

First note that by construction, txilock spends amount 0, hence the “incoming coins ≥
outgoing coins” condition (line 74) still holds for txlock.

Since tx’s existing inputs were not modified, the states after the application of these inputs
smk+ and s

′
mk+

, are still identical.

We prove that the call validate-and-apply-locking-input(txilock) with respect to
s
′
mk+

will return true in line 154 or in line 143 and that consistency is preserved by
showing that it cannot return false in any other line:

a) Line 134 (false is returned if the referenced output is not in a lockable state): Since
LockingFragmentTxos maps txof to txom, txom can’t be in state ⊥. So the call will
not return in line 134.

b) Line 139 (false is returned if locking is done with amount 0): By construction, txilock
spends amount 0, so the call will not return in line 139.

c) Line 147 (false is returned if the locking condition is not satisfied): Since:

• by condition 4 of definition 4.2.13, txof and txom share the locking condition,

• by construction, txilock’s locking data is identical to that of txi,

• smk+ and s
′
mk+

are identical,

• txi and txilock are inputs of the same transaction tx.

Then: ϕlocktxom(datalocktxilock
, idtx , s

′
mk+

) = ϕlocktxof
(datalocktxi , idtx , smk+) = true. So the call

will not return in line 147.

Since tx’s outputs were not modified, s
′
mtxlock

and smtx
differ only in txom’s state:

• state(smtx
, txom) = pending⇒ state(s

′
mtxlock

, txom) = pending-locked

• state(smtx
, txom) = unspent⇒ state(s

′
mtxlock

, txom) = locked

• state(smtx
, txom) /∈ {pending,unspent} ⇒ state(s

′
mtxlock

, txom) = state(smtx
, txom)

Hence all
state
 
txo

conditions still hold.

3. [ml, . . . ,mn] — Suppose s
′
mj−1

and smj−1
differ only in txom’s state as specified above —

we prove the same applies for s
′
mj and smj , after applying mj .

a) If mj = (Tx-Published, txj) and txj ’s input txij references txom, then it is implied
that txom has been released in both states, and either:

• the two states are equal, in which case the application of txj will have the same
effect, or

• state(smj−1
, txom) = unspent and state(s

′
mj−1

, txom) = locked. Locking
would not affect the states, and spending is agnostic to whether the output that
is being spent is in state unspent or in state locked— the state would transition
to spent either way.

b) Otherwise if mj = (Txos-Released, txj) and txj = txm then state(smj−1
, txom) ∈

{pending,pending-locked} and state(s
′
mj−1

, txom) = pending-locked:

• If state(smj−1
, txom) = pending, then state(smj , txom) = unspent, state(s

′
mj , txom) =

locked.
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• Otherwise state(smj−1
, txom) = pending-locked, then state(smj , txom) =

locked, state(s
′
mj , txom) = locked.

c) Otherwise mj = (Tx-Removed, txj), then txj wasn’t strongly-valid with respect to
smj−1

(see line 163 of functionality 3.2) and one of the following must hold:

• validate-and-apply-tx(txj) returned false with respect to smj−1
. Since the

conditions hold at (s
′
mj−1

, smj−1
), the only relevant difference between the two

states is the state of txom, which was locked. Hence it is impossible that
validate-and-apply-tx(txj) = true with respect to s

′
mj−1

.

• is-live(txj) returned false. Since is-live is a function of the transaction (not
of the ledger state), is-live will still return false in s

′
mj .

• txj spent an output in state locked/spent with respect to smj−1
.

– state(smj−1
, txom) = locked⇒ state(s

′
mj−1

, txom) = locked

– state(smj−1
, txom) = spent⇒ state(s

′
mj−1

, txom) = spent

By the induction hypothesis, state(smj , txo) = state(s
′
mj , txo), so the corre-

sponding output is in the same state in state(s
′
mj , txo).

Hence s
′
mn and smn are identical up to locking of txom (pending → pending-locked /

unspent→ locked), so s
m+q′

state
 
txo

sb.

Lemma 4.3.20 (sm+q
state
 
txo

sb is preserved by Πledger’s simple-keystone-published). Denote

the states of SFbaseledger
and Fmetaledger as sb and sm respectively and SPh’s MsgQueue as q. Define

sm+q = apply-queue(q, sm) and suppose sm+q 6= ⊥ and sm+q
state
 
txo

sb.

Let tx be a transaction and suppose tx is successfully-applied to sb, and denote the resulting
state as s

′
b. If as a result, SPh calls simple-keystone-published (protocol 4.1, line 115) with

respect to q, then s
m+q′

6= ⊥ and s
m+q′

state
 
txo

s
′
b, where q

′
is q after the simple-keystone-published

call and s
m+q′

= apply-queue(q
′
, sm).

Proof. If q is of the following form: [m1, . . . ,mn], then q
′
is of the following form: [m1, . . . ,mn,mtxm ],

wheremtxm = (Tx-Published, txm) and txm is the transaction output by decomp. By claim 4.3.18,

s
′
mn = smn = sm+q , and since sm+q 6= ⊥, then s

′
mn 6= ⊥.

By observation of tx-published-by-Fledger (line 23 of protocol 4.1) and of simple-keystone-published:

• txm’s ID and outputs are taken from the keystone tx.

• txm’s inputs are taken from:

– the keystone tx if it is non-simple and the splitter is not present in MsgQueue or

– the transaction output by the decomp call in line 25 otherwise.

Due to the lemma condition, sm+q
state
 
txo

sb. If txm’s inputs are taken from the keystone tx, txm

is identical to tx, and we can apply lemma 4.3.16 to conclude that txm can be successfully-applied
to sm+q , and that the consistency is preserved.

Otherwise, txm’s inputs are taken from the the transaction output by the decomp call, and
we can apply condition 7 in definition 4.2.13 to conclude that txm can be successfully-applied
to sm+q and that the consistency is preserved.
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Lemma 4.3.21 (sm+q
state
 
txo

sb is preserved by Πledger’s non-simple-keystone-published).

Denote the states of SFbaseledger
and Fmetaledger as sb and sm respectively and SPh’s MsgQueue as q.

Define sm+q = apply-queue(q, sm) and suppose sm+q 6= ⊥ and sm+q
state
 
txo

sb.

Let tx be a transaction and suppose tx is successfully-applied to sb, and denote the result-
ing state as s

′
b. If as a result, SPh calls non-simple-keystone-published (protocol 4.1,

line 120) with respect to q, then s
m+q′

6= ⊥ and s
m+q′

state
 
txo

s
′
b, where q

′
is q after the

non-simple-keystone-published call and s
m+q

′ = apply-queue(q
′
, sm).

Proof. If q is of the following form: [m1, . . . ,mk,mtxs ,ml, . . . ,mn], then q
′

is of the following
form: [m1, . . . ,mk,mtxm ,mtxs-,ml, . . . ,mn,mtxdummy ], where:

• mtxs = (Tx-Published, txs) and txs is the MsgQueue-version of splitter,

• mtxm = (Tx-Published, txm) and txm is initialized in line 126 with txs’s inputs and the
outputs of the meta-transaction returned from the call to decomp in line 25,

• mtxs- = (Tx-Published, txs-) and txs- initialized to txs in line 128,

• mtxdummy = (Tx-Published, txdummy) and txdummy is initialized in line 129 with txk’s single
input and no outputs.

Note that smn = sm+q and s
′
my = apply-queue(q′[:my ], sm).

We show that eachm ∈ q′ is applied successfully in turn when evaluating apply-queue(q
′
, sm):

1. [m1, . . . ,mk] — by claim 4.3.18, s
′
mk

= smk = sm+q , and since sm+q 6= ⊥, then s
′
mk
6= ⊥.

2. mtxm ,mtxs- — Following is an exhaustive list of lines in which validate-and-apply-tx
can return false— for each we show simultaneously for txm and for txs- that the calls
don’t return there.

a) Line 74 (false is returned if incoming coins < outgoing coins):

By condition 3 in definition 4.2.13, txm’s output amounts are identical to those of
txk; the same total amount (amountk) is set to txm inputs in line 142 of protocol 4.1.

The same amount reduced from txs-’s inputs (amountk) in line 135 is reduced from
its outputs in line 141. Since txs is valid in this regard, then so is txs-.

Hence the two calls will not return (false) in line 74.

b) Line 78 (false is returned if any of the inputs is invalid):

txm’s inputs are initialized as a fresh copy of txs inputs, txs- is initialized as a fresh
copy of txs. txm also receives txs’s ID.

Following is an exhaustive list of lines in which validate-and-apply-spending-input
can return false— for each we show simultaneously for corresponding spending in-
puts of txm and txs- that the calls don’t return there.

• Line 103 (false is returned if the referenced output is not in a spendable state):
Since the referenced outputs are shared by txm and txs, then because s

′
mk

= smk
and txs’s inputs are valid in this regard, then so are txm’s inputs.

Since the referenced outputs are shared by txs- and txm, then because the outputs
have already been spent by txm, txs-’s inputs are valid in this regard.

Hence the two calls will not return (false) in line 103.
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• Line 108 (false is returned if the referenced output has insufficient remaining
coins): The (vector) addition txm’s input amounts and txs-’s input amounts sums
up to txs’s input amounts (see lines 141 and 142). Then because s

′
mk

= smk and
txs’s inputs are valid in this regard, then so are txm’s and txs-’s inputs.

Hence the two calls will not return (false) in line 108.

• Line 113 (true is returned if the referenced output is spent): Since the refer-
enced outputs are shared by txm and txs, then because s

′
mk

= smk a validate-and-apply-spending-input
call for an txm input will return true in line 113 iff the call for the corresponding
txs input will.

Hence the txm call will return true in line 113 if the call for the corresponding
txs input did.

Since the referenced outputs are shared by txs- and txm, then because the outputs
have already been spent by txm, all validate-and-apply-spending-input calls
for txs-’s inputs will return true in line 113.

• Line 117 (false is returned if the locking condition is not satisfied): Since txm’s
inputs are copied from txs and only the amounts are modified, then because
s
′
mk

= smk and txs’s inputs are valid in this regard, then so are txm’s inputs.

Hence the call will not return (false) in line 117.

• Line 121 (false is returned if the spending condition is not satisfied): Since txm’s
inputs are copied from txs and only the amounts are modified, then because
s
′
mk

= smk a validate-and-apply-spending-input call for an txm input will
return in line 121 iff the call for the corresponding txs input will.

Hence the call will not return (false) in line 121.

Following is an exhaustive list of lines in which validate-and-apply-locking-input
can return false— for each we show simultaneously for corresponding locking inputs
of txm and txs- that the calls don’t return there.

i. Line 134 (false is returned if the referenced output is not in a lockable state):
Since the referenced outputs are shared by txm, txs- and txs, then because s

′
mk

=
smk and txs’s inputs are valid in this regard, then so are txm’s inputs.

Hence the two calls will not return (false) in line 134.

ii. Line 139 (false is returned if locking is done with amount 0): Since the txm and
txs- are instantiated with txs’s inputs, then because txs’s inputs are valid in this
regard, then so are txm’s and txs-’s inputs.

Hence the two calls will not return (false) in line 139.

iii. Line 143 (true is returned if the referenced output is pending-locked/locked):
Since the referenced outputs are shared by txm and txs, then because s

′
mk

= smk
a validate-and-apply-locking-input call for an txm input will return true
in line 143 iff the call for the corresponding txs input will.

Hence the txm call will return true in line 143 if the call for the corresponding
txs input did.

Since the referenced outputs are shared by txs- and txm, then because the outputs
have already been locked by txm, all validate-and-apply-locking-input calls
for txs-’s inputs will return true in line 143.

iv. Line 147 (false is returned if the locking condition is not satisfied): Since txm’s
inputs are copied from txs and only the amounts are modified, then because
s
′
mk

= smk and txs’s inputs are valid in this regard, then so are txm’s inputs.
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Hence the call will not return (false) in line 147.

Note that the outputs spent by txs were spent in the same manner by txm and txs-. Also
note that txs- shares txs’s outputs and output IDs with one difference — the output spent
by the txk and by txdummy — in s

′
mtxs-

its amount is amountk coins short. Hence the

following conditions hold for s
′

= s
′
mtxs-

and s = smtxs
:

a) s
′ 6= ⊥

b) For all output ID id ∈ s:

• state(s
′
, id) = state(s, id) and

• ϕlock
s′ ,id

= ϕlocks,id and

• ϕspend
s′ ,id

= ϕspends,id and

• If id is the ID of the output of the splitter txs that is spent by the keystone txk,

remaining(s
′
, id) = remaining(s, id)− amountk

where amountk is the total output amount of the keystone. Otherwise,

remaining(s
′
, id) = remaining(s, id)

c) For all output ID id ∈ s′ \ s, s
′
[id] is the state of an output of txm.

3. [ml, . . . ,mn]. We prove by induction that the above conditions hold for all (s
′
, s) ∈

[(s
′
mtxs-

, smtxs
), (s

′
ml
, sml), . . . , (s

′
mn , smn)]. For the base of the induction, we’ve already

shown the conditions hold for (s
′
, s) = (s

′
mtxs-

, smtxs
).

For the induction step, note that s 6= ⊥ for all s ∈ [smtxs
, sml , . . . , smn ].

Since the keystone txk has not yet been applied in smn (nor has its output been released),
the transactions published in [ml, . . . ,mn] do not reference its outputs. This implies that
txm’s outputs are not referenced by the transactions published in [ml, . . . ,mn]. Hence they
remain in pending for all s

′ ∈ [s
′
ml
, . . . , s

′
mn ]. pending outputs are effectively treated as

missing by conditions, hence the existence of txm’s output in s
′
ml
, . . . , s

′
mn does not affect

the evaluation of any condition.

Suppose the conditions hold at (s
′
mj−1

, smj−1
) — we prove they hold for (s

′
mj , smj ), after

applying mj .

If mj = (Tx-Published, txj), the only way for validate-and-apply-tx to fail with
respect to s

′
mj−1

is if an input of txj attempts to spend from the reduced-remaining-amount
output more than it has left. However, in this case the remaining amount in smj (after
txj was applied) must be less than the input amount of the keystone txk, hence txk could
not have been applied successfully (contradicting our assumption that the application of
txk to sb is successful).

Otherwise suppose mj = (Txos-Released, txj). txj 6= txm since txk has not yet been
published in smj−1

, hence the txj ’s outputs are in the same states in s
′
mj−1

and in smj−1
.

Otherwise if mj = (Tx-Removed, txj), then txj wasn’t strongly-valid with respect to smj−1

(see line 163 of functionality 3.2) and one of the following must hold:

• validate-and-apply-tx(txj) returned false with respect to smj−1
. Since the condi-

tions hold at (s
′
mj−1

, smj−1
), the only relevant difference between the two states is the

lower amount of the splitter output. Hence it is impossible that validate-and-apply-tx(txj) =
true with respect to s

′
mj−1

.
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• is-live(txj) returned false. Since is-live is a function of the transaction (not of the
ledger state), is-live will still return false in s

′
mj .

• txj spent an output in state locked/spent with respect to smj−1
. By the induction

hypothesis, state(smj , txo) = state(s
′
mj , txo), so the corresponding output is in the

same state in state(s
′
mj , txo).

Hence the conditions holds for (s
′
mn , smn), so s

′
mn identical smn but for the amountk-

reduced amount of the output spent by txk, and the “extra” IDs added by txm.

4. mtxdummy — txdummy is constructed in line 129. To show that validate-and-apply-tx(txs-)

(line 70) with respect to s
′
mn returns true in line 81, we show that it doesn’t return (false)

in lines 74 and 78.

a) Line 74 (false is returned if incoming coins < outgoing coins):

txdummy has no outputs, so the “incoming coins < outgoing coins” condition doesn’t
hold, hence txdummy is valid in this regard.

b) Line 78 (false is returned if any of the inputs is invalid):

Recall that smn = sm+q and therefore smn
state
 
txo

sb. Hence s
′
mn

state
 
txo

sb but for the

amountk-reduced amount of txos the output spent by txk, and the “extra” IDs added
by txm. Also recall that txk is valid with respect to sb.

txdummy is initialized with txk’s only input and no outputs.

The amount of txos-, the output spent by txdummy, is later reduced and is lower in
s
′
mn than that of txos, the output spent by txk, in smn . However, the amount of

txdummy’s input is also reduced by amountk.

txos- and txos share the same conditions since they’re base, so they are satisfied with
txdummy and txk data respectively.

Hence, s
m+q′

6= ⊥. Since txm and txk share output IDs and amounts s
m+q′

state
!
txo

s
′
b.

Finally, since txm was output by decomp, s
m+q

′
state
 
txo

s
′
b.

Define the following simulation events. Each event is specified by a line number in S/SFbaseledger
/SPh/Fmetaledger.

The event triggers after the line was executed. For each event we specify an ordered list of code
segments that we later prove is run sequentially prior to the event:

1. Line 44 of SPh ’s tx-published-by-Fledger .
Code segments:

• SFbaseledger
’s process-tx (line 20): up to line 31 — tx was applied to the state of SFbaseledger

,

• SPh ’s tx-published-by-Fledger (line 23): up to line 44 — tx was applied to SPh ’s
MsgQueue.

2. Line 55 of SPh ’s txos-released-by-Fledger .
Code segments:

• SFbaseledger
’s release-txos (line 36): up to line 39 or line 42 — tx’s outputs were

released in SFbaseledger
,

• SPh ’s txos-released-by-Fledger (line 52): up to line 55 — a Txos-Released for tx
message was added to SPh ’s MsgQueue.
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3. Line 34 of S’s check-SFbaseledger
-fragment-validity.

Code segments:

• S’s check-SFbaseledger
-fragment-validity (line 26): line 34 — S has added a Tx-Removed

message for tx to SPh ’s MsgQueue.

4. Line 17 of S’s process-SPh-message.

Code segments:

• SPh ’s flush-msg-queue (line 84): line 96 — (Tx-Published, tx) was popped from
SPh ’s MsgQueue,

• S’s process-SPh-message (line 14): up to line 17 — S called Fmetaledger’s process-tx
with tx,

• Fmetaledger’s process-tx (line 20).

5. Line 19 of S’s process-SPh-message.

Code segments:

• SPh ’s flush-msg-queue (line 84): line 96 — (Txos-Released, tx) was popped from
SPh ’s MsgQueue,

• S’s process-SPh-message (line 14): up to line 19 — S called Fmetaledger’s release-txos
with tx,

• Fmetaledger’s release-txos (line 36).

6. Line 24 of S’s SPh-tx-removed-popped.

Code segments:

• SPh ’s flush-msg-queue (line 84): line 96 — (Tx-Removed, tx) was popped from
SPh ’s MsgQueue,

• S’s SPh-tx-removed-popped (line 22): up to line 24 — S called Fmetaledger’s remove-tx
with tx,

• Fmetaledger’s remove-tx (line 45).

7. Line 44 of Fmetaledger’s tx-published-by-Fledger .
Code segments:

• Fmetaledger’s tick (line 57) — process-tx was called with tx,

• Fmetaledger’s process-tx (line 20): up to line 31 — tx was applied to the state of Fmetaledger.

8. Line 55 of Fmetaledger’s txos-released-by-Fledger .
Code segments:

• Fmetaledger’s tick (line 65) — release-txos was called with tx,

• Fmetaledger’s release-txos (line 36): up to line 39 or line 42 — tx’s outputs were released

in Fmetaledger.

Claim 4.3.22 (Consecutive Execution of Event Code Segments). For each event of event types 1
to 6 it holds for the code segments of the event that:

• they are run consecutively prior to the event, and

• they are disjoint from code segments of other events.
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Proof. By observation of the code of functionality 3.2, protocol 4.1, and algorithm 4.1, the
code segment are disjoint, but this is true because each event handles a different process during
simulation:

• Event types 1 and 2 handle state changes in SFbaseledger
and the SPh changes they cause,

processing transactions and releasing of outputs, respectively.

• Event type 3 deals with the addition of Tx-Removed messages to SPh ’s MsgQueue when
a fragment has become not-strongly-valid.

• Event types 4 to 6 handle with popping of different messages from SPh ’s MsgQueue
(Tx-Published,Txos-Released,Tx-Removed), and their effect on the state of Fmetaledger.

• Event types 7 and 8 deal with processes internally-triggered in Fmetaledger, processing of
transactions and releasing of outputs respectively.

We prove by analysis of each event type that the code segments happen consecutively:

• Event types 1 and 2:

When SFbaseledger
outputs a message addressed to honest parties, S pauses the SFbaseledger

simu-

lation and immediately runs the SPh code that handles the message:

– When a Tx-Published message is output from SFbaseledger
(line 31), SPh ’s tx-published-by-Fledger

(line 23) is called (where SPh applies tx to MsgQueue),

– When a Txos-Released message is output from SFbaseledger
(line 39 or line 42), SPh ’s

txos-released-by-Fledger (line 52) is called (where SPh adds a Txos-Released

message for tx to MsgQueue).

Hence the respective second code segments of event types 1 and 2 immediately follow
the respective first code segments during simulation.

By observation of protocol 4.1:

– Tx-Published messages are only added to MsgQueue in tx-published-by-Fledger .
Specifically, in simple-keystone-published (line 115) and non-simple-keystone-published
(line 120).

– Txos-Released messages are only added to MsgQueue in txos-released-by-Fledger .
Hence the respective second code segments of event types 1 and 2 only follow the respec-
tive first code segments during simulation.

• Event type 3: check-SFbaseledger
-fragment-validity is called after SPh runs either:

– line 44 of tx-published-by-Fledger or

– line 55 of txos-released-by-Fledger ,
that is, immediately after event types 1 and 2.

• Event types 4 to 6:

When SPh outputs a message or pops a (Tx-Removed, tx) message from MsgQueue in
line 94 of flush-msg-queue, S pauses the SPh simulation and immediately runs the S
code that handles the message:

– when SPh outputs a Tx-Published message (line 96), Fmetaledger’s process-tx is called
(line 17),

– when SPh outputs a Txos-Released message (line 96), Fmetaledger’s release-txos is
called (line 19),
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– when SPh outputs a Tx-Removed message (line 94), Fmetaledger’s remove-tx is called
(line 24).

Hence the respective second code segments of event types 4 to 6 immediately follow the
respective first code segments during simulation.

By observation of algorithm 4.1:

– Line 17 is the only place S calls Fmetaledger’s process-tx.

– Line 19 is the only place S calls Fmetaledger’s release-txos.

– Line 24 is the only place S calls Fmetaledger’s remove-tx.

Hence the respective last two code segments of event types 1 to 8 only follow the respective
first code segments during simulation.

• Event types 7 and 8: The code segments are internal to Fmetaledger, hence they happen
consecutively.

We say a state change is attributed to an event e if it happens due to the execution of e’s
code segments.

Claim 4.3.23 (State Change Attribution Coverage). All changes to the states of SFbaseledger
, SPh

and Fmetaledger during simulation can be attributed to an event of event types 1 to 6.

Proof. By observation of functionality 3.2, the state of Fledger can only be modified when pro-
cessing a transaction in process-tx (line 20) and when releasing the outputs of a transaction in
release-txos (line 36). The two procedures can be called adversarially, or otherwise internally
from tick (line 51). The four combinations are covered in event types 1, 2, 7 and 8.

By observation of protocol 4.1, Πledger’s MsgQueue contains Tx-Published and Txos-Released

messages — their additions to MsgQueue are covered in event types 1 to 8 respectively and the
poppings in event types 4 and 5 respectively.

By observation of algorithm 4.1, S also adds Tx-Removed messages to SPh ’s MsgQueue. Their
additions are covered in event type 3 and the poppings in event type 6.

Lemma 4.3.24 (sm+q
state
 
txo

sb is preserved by event types 1 to 6). Denote the states of

SFbaseledger
and Fmetaledger as sb and sm respectively and SPh’s MsgQueue as q. Define sm+q =

apply-queue(q, sm) and suppose sm+q 6= ⊥ and sm+q
state
 
txo

sb.

Let e be an event of event types 1 to 6, and denote sb, sm and q after e as s
′
b, s

′
m and q

′
, and

define s
m′+q′

= apply-queue(q
′
, s
′
m). Then s

m′+q′
6= ⊥ and s

m′+q′
state
 
txo

s
′
b.

Proof. We do a case analysis by the type of the event.

• Event type 1: (Tx-Published, tx) was published by SFbaseledger
, hence tx was applied to sb.

SPh ’s tx-published-by-Fledger (line 23 of protocol 4.1) is called with tx.

If simple-keystone-published is called in line 39, then lemma 4.3.20 applies. Other-
wise, non-simple-keystone-published is called in line 42, then lemma 4.3.21 applies.

Regardless, s
m′+q′

6= ⊥ and s
m′+q′

state
 
txo

s
′
b.

• Event type 2: First note that SPh pushes (Txos-Released, txm) to MsgQueue, where
txm is the meta version of txm— the one that shares it’s outputs.
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4 Generically Realizing a Meta-Ledger

Since SFbaseledger
releases tx’s outputs they must be pending or pending-locked in sb. Due

to consistency, if the outputs are pending-locked in sb, they must be pending-locked
in sm too, hence releasing will succeed sm and will have the same effect as in sb. If the
outputs are pending in sb, they can be either pending or pending-locked in sm, so
releasing will succeed in sm. The outputs will be unspent in s

′
b and either unspent or

locked in s
′
m so consistency is maintained.

• Event type 3: S pushes (Tx-Removed, tx) when SPh reaches line 73 of tick-by-Fledger
(line 68).

This implies a transaction txf in comp(tx) was sent to SFbaseledger
but was not published

within δbase tick. By condition 3 of definition 4.2.18 txf cannot appear after the splitter
(since this would mean the environment found a blocking sequence for comp(tx) that
includes the splitter). Thus, by condition 2 tx is removable in sm.

• Event types 4 to 6 (Fmetaledger calls): By the lemma hypothesis, sm+q 6= ⊥, hence:

⊥ 6= sm+q = apply-queue(q, sm) //msg ← q.pop()

= apply-queue(q
′
,apply-message(msg, sm))

= apply-queue(q
′
, s
′
m)

= s
m′+q′

The apply-message call succeeds because sm+q 6= ⊥. So s
m′+q′

6= ⊥. Also, since this is

a Pop event, nothing was changed in the base-ledger, hence:

s
m′+q′

= sm+q
state
 
txo

sb = s
′
b

Lemma 4.3.25 (
state
 
txo

is always preserved). Denote sb and sm the states of SFbaseledger
and Fmetaledger

respectively and q SPh’s MsgQueue. Then it holds that:

• no event of event types 7 and 8 ever occurs, and

• after every event of event types 1 to 6 it holds that sm+q 6= ⊥ and sm+q
state
 
txo

sb, where

sm+q = apply-queue(q, sm).

Proof. The proof is by induction on the index of the event (event types 1 to 6). Suppose the
induction hypothesis holds for (up to and including) the ith event.

By claim 4.3.22 the code segments leading to an event are executed consecutively and are not
interrupted.

By claim 4.3.23 the code segments cover all changes to the state, hence no state changes can
be made after one event and before the first segment of the following event.

To show that no event of event types 7 and 8 ever occurs, suppose in contradiction that the
event is of one of these event types. Hence the transaction tx that was processed or whose
outputs were released, was live (is-livemeta(tx) = true) and has been in Fmetaledger’s mempool
more than δmeta ticks. Thus it was added to SFbaseledger

’s mempool more than δmeta ticks ago. By

claim 4.3.10 within (2 · s · δbase) ≤ δmeta S has called either:

• Fmetaledger’s process-tx and then release-txos with tx′, where tx′ is identical to tx up to
input amount changes or

• Fmetaledger’s remove-tx with tx.
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4 Generically Realizing a Meta-Ledger

If the first case holds, due to the induction hypothesis, tx′ was successfully applied to Fmetaledger’s
state and its outputs were released. Since Fledger’s process-tx strips input amounts and locking
inputs, tx is successfully removed from its mempool.

If the second case holds, remove-tx(tx) was called and by the induction hypothesis was
successful, thereby removing tx from mempool.

If the event is of event type 8 then the transaction tx whose outputs were released has been
in

If the event is of event types 1 to 6 then by lemma 4.3.24 sm+q 6= ⊥ and sm+q
state
 
txo

sb after

the (i+ 1)th event.

Corollary 4.3.26 (S calls to Fmetaledger’s adversarial APIs always succeed). Every S call to

Fmetaledger’s process-tx (line 20 of functionality 3.2 (part 2)) and release-txos (line 36) suc-
ceeds and the two procedures are never called internally from tick (line 51).

Proof. Every process-tx call is in the code segments of event type 4 and every release-txos
call is in the code segments of event type 5. By lemma 4.3.25 these events always succeed and
no event of event types 7 and 8 ever occurs.
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4 Generically Realizing a Meta-Ledger

Protocol 4.1 (part 1): ΠLmeta,Lbase,comp,decomp,is-liveledger

(API)

The party maintains:

• TxStepQueues— maps transactions to their steps

• LockingFragmentTxos— maps locking fragment outputs to explicitly-meta outputs

• FragmentTxos— all fragment outputs

• MsgQueue— a queue of messages to be output

1: procedure get-tx-ids(t̂x)

2: [T
txm

1 , ..., T
txm

n ]← comp(outb, outm, t̂x)

3: txk ← the keystone // (txk, auxk) ∈
n⋃
i=1

T
txm

i , see definition 4.2.9

4: txs ← the splitter // (txs, auxs) ∈
n⋃
i=1

T
txm

i , see definition 4.2.10

5: ((idk, txo idsk), t̂xk)
parse←−−− txk

6: ((ids, txo idss), t̂xs)
parse←−−− txs

7: aux ← entire output of comp // [T
txm

1 , ..., T
txm

n ]
8: return (((ids, txo idsk), t̂x), aux)
9: end procedure

10: procedure send-tx(tx, aux)
11: if
12: is-livemeta(tx) and
13: aux is a valid and admissible comp output for tx
14: then
15: [T

txm

1 , ..., T
txm

n ]
parse←−−− aux // aux is output of comp

16: Copy signatures from tx to the splitter’s inputs
17: pending stepstx ← [T

txm

1 , ..., T
txm

n ]
18: sent stepstx ← empty list
19: TxStepQueues [tx]← (sent stepstx , pending stepstx)
20: send-next-step(tx)
21: end if
22: end procedure

...Continued in protocol 4.1 (part 2)...
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4 Generically Realizing a Meta-Ledger

Protocol 4.1 (part 2): ΠLmeta,Lbase,comp,decomp,is-liveledger

(Ledger Event)

...Continued from protocol 4.1 (part 1)...
23: procedure tx-published-by-Fledger(tx)
24: // Called when Fledger outputs (Tx-Published, tx)
25: (txmdecomp, fragments)← decomp(outb, outm, tx)
26: txk ← the keystone // txk = tx, see definition 4.2.9
27: txs ← the splitter // txs ∈ fragments, see definition 4.2.10
28: // Existence of txk and txs is ensured by condition 2 in definition 4.2.13
29: if
30: txk is a non-simple keystone with respect to txmdecomp and
31: // i.e., txk 6= txs, see definition 4.2.11
32: txs /∈ MsgQueue
33: then
34: txm ← txk
35: else
36: txm ← txmdecomp
37: end if
38: if txk is a simple keystone with respect to txm then
39: simple-keystone-published(txk, tx

m)
40: else
41: tx′s ← txs’s version in MsgQueue
42: non-simple-keystone-published(txk, tx

′
s, tx

m)
43: end if
44: add-locking-inputs() // End of MsgQueue modifications
45:

46: for all meta output txom ∈ txm do
47: Add all fragment outputs in fragments to FragmentTxos
48: Map all locking fragment outputs in fragments to txom in LockingFragmentTxos
49: end for
50: flush-msg-queue()
51: end procedure

...Continued in protocol 4.1 (part 3)...
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4 Generically Realizing a Meta-Ledger

Protocol 4.1 (part 3): ΠLmeta,Lbase,comp,decomp,is-liveledger

(Ledger Event)

...Continued from protocol 4.1 (part 2)...
52: procedure txos-released-by-Fledger(tx)
53: // Called when Fledger outputs (Txos-Released, tx)
54: txm ← the transaction that was already published and shares tx’s outputs
55: MsgQueue.push((Txos-Released, txm)) // End of MsgQueue modifications
56:

57: for all tx ∈ TxStepQueues do
58: (sent stepstx , next stepstx)

parse←−−− TxStepQueues [tx]
59: if all of sent stepstx ’s outputs were released by Fledger then
60: if next stepstx contains more steps then
61: send-next-step(tx)
62: else
63: Remove tx from TxStepQueues
64: end if
65: end if
66: end for
67: end procedure

68: procedure tick-by-Fledger()
69: // Called when Fledger outputs (Tick)
70: for all tx ∈ TxStepQueues do
71: Tlast sent ← last sent step in TxStepQueues [tx]
72: if Tlast sent was sent to Fledger more than δbase ticks ago then
73: Remove tx from TxStepQueues
74: end if
75: end for
76: end procedure

...Continued in protocol 4.1 (part 4)...

65



4 Generically Realizing a Meta-Ledger

Protocol 4.1 (part 4): ΠLmeta,Lbase,comp,decomp,is-liveledger

(Internals)

...Continued from protocol 4.1 (part 3)...
77: procedure send-next-step(tx)

78: ([T tx
1 , ..., T

tx
m−1], [T

tx
m , ..., T

tx
n ])

parse←−−− TxStepQueues [tx]
79: for all (txf , auxf ) ∈ T tx

m do
80: Fledger.send-tx(txf , auxf )
81: end for
82: TxStepQueues [tx]← ([T tx

1 , ..., T
tx
m ], [T tx

m+1, ..., T
tx
n ])

83: end procedure

84: procedure flush-msg-queue()
85: while MsgQueue is not empty do
86: if
87: MsgQueue.peek() is (Tx-Published, tx) and
88: tx is marked as fragment and
89: tx’s outputs are not in FragmentTxos and
90: tx has been published by Fledger less than s · δbase ticks ago
91: then
92: break
93: end if
94: msg ← MsgQueue.pop()
95: if msg is Tx-Published or Txos-Released then
96: Output msg
97: end if
98: end while
99: end procedure

...Continued in protocol 4.1 (part 5)...
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4 Generically Realizing a Meta-Ledger

Protocol 4.1 (part 5): ΠLmeta,Lbase,comp,decomp,is-liveledger

(Decompilation)

...Continued from protocol 4.1 (part 4)...
100: procedure add-locking-inputs()
101: for all m ∈ MsgQueue if m = (Tx-Published, tx) do

102: inputstemp
fresh copy←−−−−−−− tx’s inputs

103: for all txi ∈ inputstemp do
104: if txi references a fragment output txof in LockingFragmentTxos then

105: (idtxof , amount, datalock, dataspend)
parse←−−− txi

106: txom ← LockingFragmentTxos [txof ]
107: txilock ← (idtxom , 0, datalock,⊥)
108: if tx doesn’t already have an input identical to txilock then
109: Append txilock to tx’s inputs in m in MsgQueue
110: end if
111: end if
112: end for
113: end for
114: end procedure

115: procedure simple-keystone-published(txk, txm)

116: ((idk, txo idsk), (inputsk, outputsk))
parse←−−− txk

117: ((idm, txo idsm), (inputsm, outputsm))
parse←−−− txm

118: MsgQueue.push((Tx-Published, ((idm, txo idsk), (inputsm, outputsk))))
119: end procedure

...Continued in protocol 4.1 (part 6)...
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4 Generically Realizing a Meta-Ledger

Protocol 4.1 (part 6): ΠLmeta,Lbase,comp,decomp,is-liveledger

(Decompilation)

...Continued from protocol 4.1 (part 5)...
120: procedure non-simple-keystone-published(txk, txs, txm)

121: ((idk, txo idsk), ([txik], outputsk))
parse←−−− txk

122: ((ids, txo idss), (inputss, outputss))
parse←−−− txs

123: ((idm, txo idsm), (inputsm, outputsm))
parse←−−− txm // txo idsm =txo idsk

124:

125: // Initializations, fresh copies:
126: txm∗ ← ((ids, txo idsm), (inputss, outputsm)) // inputsm are discarded
127: ids- ← new ID in the “meta namespace”
128: txs- ← ((ids-, txo idss), (inputss, outputss))
129: txdummy ← ((idk, [ ]), ([txik], [ ])) // no outputs
130:

131: amountk ← the sum of outputsk’s amounts
132: txos ← txs’s output spent by txik
133: txos- ← txs-’s output that corresponds to txos
134:

135: Subtract amountk from txos-’s output amount
136: Subtract amountk from the amount of txdummy’s input
137: i← 1
138: while i ≤ txs-’s input count do
139: txis-,i ← txs-’s i

th input
140: amountk,i ← min(amounttxis-,i , amountk)
141: Subtract amountk,i from txis-,i’s input amount
142: Set the input amount of txm∗ ’s ith input to amountk,i
143: amountk ← amountk − amountk,i
144: i← i+ 1
145: end while
146:

147: Insert (Tx-Published, txm∗ ) in MsgQueue before (Tx-Published, txs)
148: Replace (Tx-Published, txs) with (Tx-Published, txs-) in MsgQueue
149: MsgQueue.push((Tx-Published, txdummy))
150: end procedure
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4 Generically Realizing a Meta-Ledger

Algorithm 4.1 (part 2): SLmeta,comp,decompledger

...Continued from algorithm 4.1 (part 1)...
14: procedure process-SPh-message(m)
15: // Called when SPh outputs a message m
16: if m = (Tx-Published, tx) then
17: Fmetaledger.process-tx(tx)
18: else if m = (Txos-Released, tx) then
19: Fmetaledger.release-txos(tx)
20: end if
21: end procedure

22: procedure SPh-tx-removed-popped(tx)
23: // Called when SPh pops a (Tx-Removed, tx) message from MsgQueue in line 94 of

flush-msg-queue.
24: Fmetaledger.remove-tx(tx)
25: end procedure

26: procedure check-SFbaseledger
-fragment-validity()

27: // Called after SPh runs either:

• line 44 of tx-published-by-Fledger or

• line 55 of txos-released-by-Fledger ,
28: Pause the SPh simulation, store its execution state
29: for all tx ∈ SFbaseledger

’s mempool do

30: if tx was sent by SPh and ¬is-strongly-valid(tx) then
31: Let txorigin be the transaction that

32: SPh was asked by E to send originally and
33: triggered the sending of tx.

34: SPh .MsgQueue.push((Tx-Removed, txorigin))
35: end if
36: end for
37: Restore the SPh execution state, continue its simulation
38: end procedure
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4 Generically Realizing a Meta-Ledger

Algorithm 4.2: apply-queue

1: procedure apply-queue(q, s)

2: s
′ fresh copy←−−−−−−− s; q

′ fresh copy←−−−−−−− q
3: while q

′
is not empty do

4: msg ← q
′
.pop()

5: if s
′ ← apply-message(msg, s

′
) = ⊥ then

6: return ⊥
7: end if
8: end while
9: return s

′

10: end procedure

11: procedure apply-message(msg, s)

12: s
′ fresh copy←−−−−−−− s

13: if msg is (Tx-Published, tx) then
14: Call Fledger.process-tx(tx) with respect to s

′
(see functionality 3.2, line 20)

15: if the internal call to validate-and-apply-tx returned false then
16: return ⊥
17: end if
18: else if msg is (Txos-Released, tx) then
19: Call Fledger.release-txos(tx) with respect to s

′
(see functionality 3.2, line 36)

20: if tx’s outputs were not released then
21: return ⊥
22: end if
23: else // msg is (Tx-Removed, tx)
24: Call Fledger.remove-tx(tx) with respect to s

′
(see functionality 3.2, line 45)

25: if tx was not removed from s
′
’s mempool in line 48 then

26: return ⊥
27: end if
28: end if
29: return s

′

30: end procedure
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5 A Meta-Ledger With Circuit Support

In this chapter we describe the protocols for comp and decomp—the remaining pieces that, to-
gether with our generic ledger protocol complete the construction of a meta-ledger with support
for boolean circuit spending conditions.

5.1 Circuit Compiler

The compiler for circuit transactions appears in protocol 5.1. This compiler uses the construc-
tion explained in chapter 2. For brevity, we don’t repeat the details of the compilation process
in pseudocode. However, it is helpful to make the following points explicit:

• Our compiler does not use the current base-ledger and meta-ledger states.

• When we say “Construct a transaction” in our pseudocode, this means generating a
transaction tuple that can be sent as input to the base-ledger’s send-tx method. In
particular, it includes querying the base-ledger for the transaction’s ID and auxiliary data
(using the ledger’s get-tx-ids method).

• All the fragments generated by the compiler are also signed by the compiler—except for
the splitter transaction, which is returned unsigned. (The splitter cannot be signed by
the compiler, since these signatures are verified by the outputs it spends, with respect to
the verification keys specified in these outputs—unlike internal fragments, whose outputs
are generated by the compiler, including their signature key pairs). To compute the
splitter signatures, the generic protocol converts the honest party’s signature on the meta-
transaction to a signature on the splitter base transaction.

• Fragment transactions are specially marked in a way that is allowed in the base-ledger
but not in the meta-ledger (c.f. section 3.5.5).

5.1.1 Validating Compilation

The output of the compiler is easily identifiable, using the fragment marks and transaction
graph. Given a potential keystone transaction txk and current base-ledger state, the following
algorithm will verify if it could indeed have been generated by the compiler (and if so, reconstruct
the input to the compiler).

Case 1: If txk satisfies all of the following:

• txk is marked as a keystone

• txk has a single input that spends a fragment-marked transaction txs

• The other outputs of txs are all spent by fragment-marked transactions that match
the format of input-bit transactions or circuit-gate transactions (cf. section 2.1.1)
and all have the same locking condition.

Input-bit and gate transactions can be recognized and told apart by the content
of their output conditions (see section 2.1). Both input-bit and gate transactions
have two outputs each; while an input-bit output condition doesn’t reference other
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5 A Meta-Ledger With Circuit Support

Protocol 5.1: Circuit Compiler

1: procedure compCircuit(outb, outm, tx
m)

2: if txm has a circuit-output C then
3: [T splitter1 , ..., T splitteri ]← Construct splitter transactions as described in section 2.1.4

4: T input−bit1 ← Construct input-bit transactions as described in section 2.1.1

5:

[
T gate1 , {txbC−keystone}

]
← Construct gate transactions as described in section 2.1.1

6: return
[
T splitter1 , . . . , T splitteri , T input−bit1 ∪ T gate1 , {txbC−keystone}

]
7: else if txm has a circuit-input assignment then
8: T input−bit−label1 ← Construct input-bit-labeling transactions as described in sec-

tion 2.2.1
9: [T gate−label1 , ..., T gate−labeli ] ← Construct gate-labeling transactions as described in

section 2.2.1
10: return

[
T input−bit−label1 , T gate−label1 , . . . , T gate−labeli , {txbA−keystone}

]
11: else // txm is a base transaction
12: return [{txm}]
13: end if
14: end procedure

transaction outputs, each gate transaction output condition will reference two
“previous” input-bit and gate transactions using OP IS TXO UNSPENT. Because the
output conditions have a fixed format, with the only difference between them being
the id of the referenced transaction outputs, simple pattern matching can be used
to identify them.

Then txk is the keystone of a circuit-output transaction. The circuit can be recovered by
parsing the OP IS TXO UNSPENT references between the gate and input bit transactions.
The fragments consist of the splitter transaction txs and all the input-bit and gate
transactions that spend outputs of txs.

Case 2: If txk satisfies all of the following:

• txk is marked as a keystone

• txk has a single input that spends a keystone-marked transaction txk′

• txk′ is recognized as the keystone of a circuit-output transaction txm.

• All transactions that spend fragments of txm are themselves fragment-marked.

Then txk is the keystone of a circuit-assigment transaction. The assignment itself
can be recovered using the extract-assignment procedure (cf. section 2.3). (By
observation, the result of this procedure on an honestly-compiled circuit-assignment
will return the same assignment). The corresponding fragments are the transactions
that spend fragments of txm.

Case 3: Otherwise, txk is not a keystone that could have been output by compCircuit.

5.2 Circuit Decompiler

The circuit decompiler, given the outputs of the base and meta-ledgers, and keystone base
transaction (i.e., one that is, potentially, the keystone of a meta-transaction), can distinguish
the following cases:
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Case 1: The keystone is validated as an output of compCircuit on transaction txm, and txm is
valid in outm. In this case, the decompiler returns txm.

Case 2: The keystone is not validated as an output of compCircuit, but spends an output that
is a meta-output in the meta-ledger. In this case, the decompiler uses the extraction
algorithm guaranteed by section 2.3 to create a valid meta-transaction with a meta-
input, whose outputs are identical to the keystone outputs (i.e., they are base outputs
in this case).

Case 3: Otherwise, the decompilation “fails”. In this case, the decompiler returns the keystone
transaction as-is (i.e., treated as a base transaction).

Protocol 5.2: Circuit Decompiler

1: procedure decompCircuit(outb, outm, txk)
2: if (fragments, txk) is a valid output of compCircuit(·, ·, txm) then // Case 1
3: return (fragments, txm)
4: else if txk spends an output that is a meta-output in outm then // Case 2
5: for every meta-output txom spent by txk do
6: Compute the assignment Atxom by calling extract-assignment with outb and

the corresponding input.
7: create the meta-input txim using this assignment
8: end for
9: return a new txm that is identical to txk, except that all inputs that spend meta-

outputs are replaced by the corresponding meta-inputs.
10: else // Case 3
11: return txk
12: end if
13: end procedure

5.3 Security Analysis: Circuit Compiler and Decompiler are
Admissible

We note that the decompilation cannot fail if a meta-transaction was compiled honestly (since
in that situation case 1 will hold; thus, by construction:

Lemma 5.3.1 (compCircuit/decompCircuit are complete). compCircuit and decompCircuit sat-
isfy definition 4.2.12.

On the other hand, if the decompiler does fail, case 2 cannot hold, so all of the keystone’s
inputs are base outputs in outm. This implies that the unmodified keystone transaction is valid

in outm, because it is valid in outb and outm
state
 
txo

outb.

In order to plug our compiler/decompiler pair into the generic ledger protocol, we must prove
they are admissible (c.f. definition 4.2.19). We do this in lemmas 5.3.2 to 5.3.1:

Lemma 5.3.2 (compCircuit is valid). compCircuit (cf. protocol 5.1) satisfies definition 4.2.18.

Proof Sketch. We will consider separately each validity condition:
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Condition 1: The output of compCircuit always contains a splitter—i.e., a base transaction
whose inputs are identical to the meta transaction. This can be seen by observation: if
txm has a meta-input, the splitter is the keystone, otherwise it is explicitly constructed
(c.f. section 2.1.4).

Condition 2: If txm has a meta-output, the splitter is the first fragment output by comp. Let
outextb be an extension of outb that does not contain the splitter. Then if the splitter is
not live in outextb , one of its inputs must not be valid. Since, by definition, the inputs of
the splitter are identical to the inputs of txm, for every ledger output outextm  

tx
outextb it

must hold that txm is not live in outextm .

If txm has a meta-input, the splitter transaction is the keystone. All the inputs of all
other fragments spend explanatory fragments for the meta-output spent by txm. These
are fragments that could have been output by compCircuit, so their locking conditions must
all be identical to each other and to the corresponding meta-output’s locking condition,
while their spending conditions only consider the state of the other explanatory fragments
for the same meta-output.

Thus, in order to block a fragment (or the splitter itslef), one of the explanatory fragments’
outputs must have been locked.

Condition 3: This condition is trivial for the simple keystone case (if txm has a meta-input, or
txm is a base transaction), since in this case the splitter is always the last fragment in
T (outb,outm,tx

m).

When txm has a meta-output, the splitter is always the first fragment of T (outb,outm,tx
m).

The keystone and all fragments after the splitter spend only the splitter’s outputs. The
spending (and locking) conditions for these outputs only require a signature under a
key that is freshly generated by the compiler. Hence, in order to block the fragment
transactions (which are correctly signed), the adversary must be able to lock the splitter
outputs before the fragments are processed. However, given an adversary that can do
this, we can use it as a black box to forge signatures. Thus, no computationally-bounded
adversary can do so (by the security of the signature scheme).

Lemma 5.3.3 (decompCircuit is valid). decompCircuit (cf. protocol 5.2) satisfies definition 4.2.13.

Proof Sketch. We will consider separately each validity condition:

Condition 1: By observation, the fragments returned by decompCircuit always exist in the base-ledger
output.

Condition 2: By observation, decompCircuit always returns the input base transaction as the keystone,
and if it is not the splitter itself, the first fragment returned is the splitter (since this
means we are in case 1, and compCircuit outputs a splitter as the first fragment).

Conditions 3 to 5: If txm has a meta-output, we are in case 1 therefore the keystone was output by compCircuit,
which always preserves the output amount and sets the locking condition of all unspent-
output fragments (i.e., the input bits and gate outputs) to be identical to the locking con-
dition of txm. Otherwise (cases 2 and 3), the meta-outputs generated by decompCircuit

are identical to the keystone outputs (including in amount).

Condition 6: If txm is output due to case 1, this condition holds because compCircuit will only accept
a meta-transaction with a meta-input if it does not also have a meta-output—in which
case it outputs a simple keystone. If we’re in case 3, decompCircuit returns the keystone
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itself as txm, hence it is simple. Otherwise (we’re in case 2), decompCircuit outputs a
meta-transaction that spends the meta-output corresponding to the base output spend by
txk, and has the same outputs as txk—hence, by definition, txk is a simple keystone for
txm.

Condition 7: If we are in case 1, txm is by definition valid. If we are in case 3, txm is simply the keystone,
which does not spend a meta input (otherwise we would be in case 2). Since the keystone

is valid in outb, and the outputs it spends are identical in outm, due to outm
state
 
txo

outb, it

will also be valid in outm. If we are in case 2, the keystone does spend a meta-output,
which by consistency must be explainable as a valid output compCircuit. Thus, we can
use compiler-soundness (theorem 2.3.1) to conclude that the extracted assignment must
be valid in outm.

Condition 8: The only case that could return a non-simple keystone is case 1. However, in case 1 the
decompiler returns txm only if the fragments could have been generated by an honest
execution of compCircuit. Since compCircuit generates a simple keystone when txm has a
meta-input, the condition is satisfied.

Taken together, lemmas 5.3.1 to 5.3.3 immediately imply the following:

Corollary 5.3.4 (Admissibility). compCircuit and decompCircuit are admissible (satisfy defini-
tion 4.2.19).
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6 Discussion and Open Questions

We have shown how to construct a meta-ledger that supports arbtrary circuit conditions using a
slightly enhanced version of Bitcoin. Our ledger functionality is composable and “stackable”—
given a suitable compiler/decompiler pair, our protocol can construct a meta-meta-ledger.

Many interesting open questions remain.

• Can we construct an admissible compiler/decompiler pair for arbitrary script conditions’?
As a first approximation, it may be useful to consider the current Bitcoin scripting lan-
guage, but remove the length limitation (i.e., allow longer scripts by using multiple trans-
actions)

• Our requirements from comp/decomp may appear unduly restrictive. While some re-
quirements appear to be inherent, it is an interesting open question to design meta-ledger
protocols that support a wider variety of spending conditions. In particular, our protocols
do not support spending conditions that can depend on the contents of a spending trans-
action (rather than just its ID), such as the extensions proposed by Bitcoin covenants.
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תקציר

( הוא העברת ערך כספי בין זהויות, אך רביםcryptocurrencyהשימוש הבסיסי במטבע מבוזר )

S מטבעות מישות Xמהשימושים המעניינים יותר דורשים שימוש בחוזים, למשל – "העברה של 

תתבצע רק אם תנאים Rלישות   A-ו  Bיתקיימו". ביטקוין )ומטבעות מבוזרים דומים( מציבים  

גבולות נוקשים על השפה בה מנוסחים אותם תנאים. בפרט, התנאים מוגבלים באורכם ולא יכולים

להכיל לולאות.

( של ביטקוין עםscripting languageבעבודה זו אנו מראים כיצד ניתן להרחיב את שפת התסריט )

( יחידה, שהוספתה לא מזיקה, והיא מאפשרת ליצור "מטא-תנאים" בעלי כוחopcodeפקודה )

הבעתי רב יותר )בצורת מעגליים בוליאניים בגודל שרירותי(.

( להדר  על-מנת  פרוטוקול  בונים  )compileאנחנו  ביטקוין  לסדרה של עסקאות  ( מטא-תנאים 

transactionsבסיסיות שכוללות את הפקודה החדשה. אנחנו מראים כיצד להשתמש במהדר זה )

פונקציונאליות  לממש  של meta-ledgerכדי  במודל  בטוח  שהוא  מוכיחים  ואף   ,Universal

Composability.



עבודה זו בוצעה בהדרכתו של דר' טל מורן מבי"ס אפי ארזי למדעי המחשב, המרכז
הבינתחומי, הרצליה.
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