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Abstract

Our homes and workspaces are filled with collections of dozens of artifacts laid out on

surfaces such as shelves, counters, and mantles. The content and layout of these arrange-

ments reflect both context, e.g. kitchen or living room, and style, e.g. neat or messy.

Manually assembling such arrangements in virtual scenes is highly time consuming, es-

pecially when one needs to generate multiple diverse arrangements for numerous support

surfaces and living spaces. We present a data-driven method especially designed for arti-

fact arrangement which automatically populates empty surfaces with diverse believable

arrangements of artifacts in a given style. The input to our method is an annotated

photograph or a 3D model of an exemplar arrangement, that reflects the desired con-

text and style. Our method leverages this exemplar to generate diverse arrangements

reflecting the exemplar style for arbitrary furniture setups and layout dimensions. To

simultaneously achieve scalability, diversity and style preservation, we define a valid so-

lution space of arrangements that reflect the input style. We obtain solutions within

this space using barrier functions and stochastic optimization.
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Chapter 1

Introduction

”God is in the details” is a well known aphorism, often attributed to the architect

Ludwig Mies van der Rohe (1886-1969). As 3D scenes used in movies, games and virtual

environments are becoming larger and more complex, it is the attention to fine details

that provides both realism and interest. Recent automatic procedures for the creation

and arrangement of 3D content have made it possible to synthesize and furnish living

spaces [1–6]. However, real life spaces - such as kitchens, libraries and shops - are full

of smaller scale artifacts such as books on shelves, or cups and plates in cabinets. These

details bring such environments to life (see Figure 1.1), and are essential for creating a

sense of realism in virtual environments. With the sheer amount of such items in living

spaces, assembling these arrangements manually is impractical and automatic assembly

methods for small scale objects are needed.

What makes the layout of fine objects distinct from coarser-level arrangement problems

is the variety of objects used and the diverse composition or arrangement styles. The

choices of which items to place, where to place them and how to arrange them depend

both on the context of the scene (e.g. a home kitchen or living room, a bar counter in a

restaurant, or a display cabinet in a shop) and on the overall look of an arrangement of

the arrangement (e.g. tidy or unorganized, packed or airy). While it is hard to define a

given look, or a style as these can be amorphous properties, in our context we focus on

a set of properties commonly considered in interior design when arranging objects on

1
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Figure 1.1: We propose an automatic method to believably fill shelves and cabinets
with objects reflecting the style of a single user-specified exemplar (left). Such ar-
rangements can bring to life virtual environments that otherwise feel dull and lifeless

(right).

shelves [7, 8]. For simplicity, we treat both the context and the overall look as part of

one property set we refer to as style.

Arrangements generated at random (e.g. Figure 4.2,b) appear chaotic and fail to capture

aesthetic and functional relations between the objects or their relationships with the

environment. On the other hand, “typical” arrangements built from a set of canonical

rules lack personality and cannot capture the variety in styles and content present in

real-life arrangements (See section 5.2 for discussion and examples). Explicitly codifying

each context and style combination, may be possible for furniture arrangements where

variation is lower [3, 5], but is too tedious in our setup due to the number of objects

involved and the style variety.

We introduce an approach for style-preserving artifact arrangements that leverages a

single input exemplar, a photograph or a 3D scene, to learn the target style. We focus

on generating arrangements of objects placed on horizontal support-surfaces, such as

shelves and cabinets, which include the vast majority of arrangements in our everyday

surroundings. By learning style from a single exemplar, we can support a wide range of

styles without explicitly codifying the rules for each one (e.g. Figure 1.2).

1.1 Overview

Using a single exemplar to generate arrangements presents a number of challenges. We

aim to populate surfaces in a believable and scalable manner, creating arrangements that
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Figure 1.2: The same cabinet filled with arrangements reflecting different context and
style based on different exemplars: a bar and two different kitchen cabinets.

can significantly vary in size and dimensions compared to the exemplar. To address

scalability we design a set of size-invariant measures that capture deviations in style

between a given arrangement and an exemplar. We use two types of style measures:

object level terms that capture local arrangement properties, such as the percentage of

instances of a particular object and the relative location of objects (Section 4.1), and

global terms that compare high-level characteristics of the two arrangements, such as

density and symmetry (Section 4.2).

The biggest challenge when using a single exemplar, is to allow for diversity, or vari-

ety, of outputs while capturing style. Such diversity lets artists exercise their personal

preferences in selecting an arrangement to use. More significantly, it allows our method

to effectively generate many arrangements with similar functionality and style without

those appearing as cloned copies.

Given our collection of measures or distance terms, standard optimization methods,

such as those used for furniture arrangement [4, 9] or individual object placement [6],

would seek to find an arrangement that minimizes some weighted combination of these

terms. Unfortunately, since we have a single exemplar which clearly satisfies all the

characteristics learned from it, this approach converges to results that are very similar

to the exemplar, even when starting from a randomly initialized arrangement (Figure

1.3 top). To generate a range of diverse results from a single exemplar we propose to

use a valid space formulation. Instead of seeking the best solution we optimize toward

a valid one, i.e., a solution that is within an acceptable range from the exemplar with

respect to the various style measures we defined. Using this approach the solution is
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Figure 1.3: Minimizing a combination of distance metric with respect to a single style
exemplar (taken from Figure 3.1) using random initialization leads to low variability
(top). Our valid space approach captures the style of the exemplar while producing

diverse results (bottom).

brought close enough to the exemplar to capture its style, but not too close, to retain

diversity (Figure 1.3 bottom) and thus supports the generation of many distinct valid

solutions.

We represent the valid space via a set of inequality constraints defined using barrier

functions. To obtain solutions within the valid space we begin with an empty arrange-

ment and apply a stochastic search strategy aiming to bring the solution into this space

by applying a randomized sequence of simple modification operations such as placement,

swapping and removal of objects.

The differences in the problem setting, such as style and believability criteria, prevent a

direct comparison of our method to related layout techniques (e.g. furniture). Instead

we provide a comparison to methods that mimic the core features of those, but use the

style measurements introduced below. Our method better preserves style and generates

more believable results when compared to methods that do not leverage local exemplar
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properties. At the same time it generates significantly more diverse results than un-

bounded optimization which seeks to minimize the distance to the exemplar across a

sum of similarity measures.

We present a tailored optimization approach based on a set of scale-invariant measures

which support arrangement scalability combined with the use of barrier functions which

define a valid solution-space. This space contains numerous solutions that follow the style

of the exemplar allowing output diversity. We validate our approach by conducting a user

study showing that our arrangements are considered believable, and that they manage

to capture the style of a given input exemplar (Section 5). We further demonstrate our

method’s versatility by generating a variety of arrangements, for different contexts and

with various styles, creating rich and believable results (Section 6).



Chapter 2

Previous Work

2.1 Synthesis and Layout

Automatic synthesis and arrangement of 3D scenes are very active research topics. Re-

cent papers in this area discuss everything from the design of city layouts [10, 11],

through architectural design of individual buildings [2, 12] and interior floor plans [1], to

the layout of furniture [3–5] and context-based placement of objects [6, 9]. Our layout

of fine-scale artifacts in a given style is a natural next step, made even more necessary

by the sheer amount of such artifacts in a typical environment and the diversity in the

style of their arrangement. While some ideas from coarser level methodologies can be

adopted for our task, the problem setup is distinct enough to require not only different

domain knowledge but different overall formulation. In large scale content generation

such as buildings or cities, the main challenge is the generation of new geometric shapes.

Our main focus is on arrangement of pre-existing shapes in a believable manner and

style following the “open world” assumption, where objects need to be chosen and not

only positioned.

Furniture layout methods generally focus on generation of stylish [3] or typical [4–6]

layouts. They typically do not explicitly address scalability, a critical requirement in

our setup (Figures 1.1,5.5), as typical rooms do not dramatically vary in terms of size

6
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or number of furniture pieces. Most methods use design rules or relationship informa-

tion learned from multiple 3D examples, or a combination of both. Neither approach is

suitable for capturing individual style properties. First, the amount of style and context

variation in artifact arrangements is too large to codify via explicit rules (Figure 1.2).

Second, style cannot be learned from a set of heterogeneous examples, as mixing many

examples dilutes any specific style and building a separate large database for each style

and context combination is impractical. Reducing the number of examples in systems

such as [4, 6, 9] to capture a specific style is likely to dramatically limit the output di-

versity as these methods optimize toward results as-similar-as-possible to the exemplar.

In our experiments with artifact arrangements such optimization leads to clone-like so-

lutions (Figure 1.3,top). Our approach is based on the definition of valid-solution space.

This successfully achieves diversity while capturing the style of a single example input

(Figure 1.3, bottom). An explicit comparison of these methods to ours is impossible due

to domain differences, But sections 5 and 6 compare our method to alternatives inspired

by these approaches highlighting the improvement in style preservation and variability.

At the finest level, Ma et al. [13] propose an elegant modeling mechanism to treat piles

of small objects as 3D textures. They assume the input consists of multiple repetitive

elements and apply random organization of element patches to generate the outputs.

In our case this would be equivalent to randomly arranging sub-groups of exemplar

elements. Extending this approach using suitable rules could potentially capture object

level relationships (Figure 6 (b)) but cannot account for high-level style properties, such

as symmetry or functional grouping (Figure 6 (e)).

In [1] Merrel and colleagues presented a method for automatically generating building

layouts based on high level requirements. Their method also utilizes stochastic opti-

mization and design guidelines to synthesise new results. However, having a different

goal from ours, their technique cannot generate many different style-preserving results

all based on a single input exemplar.

In [4] Yu and colleagues presented a method for automatically generating indoor scenes

realistically populated by furniture objects. Similar to our technique, they use design

metrics along with stochastic optimization to generate new results. However, their
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algorithm needs to be given the set of furniture objects to arrange. In our case, since

we aim at synthesizing arrangements of any size, our method also needs to be able to

determine which objects and how many to include.

2.2 Style Preservation

Recently, several papers addressed the problem of capturing style in different contexts.

For instance, Doersch et al. [14] find architectural elements of cities in photographs, and

Xu et al. [15] separate content from style in 3D man-made objects. Such approaches rely

on the existence of a set of examples (photos or objects) conveying the same style, while

we aim to define style using arrangement characteristics drawn from a single example.

A number of recent works use domain-specific design principles to create feasible con-

tent [3, 4, 16, 17]. This trend is summarized nicely in Agrawala et al. [18], who note

that, given a set of design rules and quantitative evaluation criteria, one can use proce-

dural techniques and optimization to build automated design systems. Interior design

literature, e.g. [19], proposes several criteria to evaluate the aesthetics and functionality

of an arrangement. Instead of globally optimizing these criteria, our aim is to obtain

outputs which are similar to the exemplar in terms of these criteria, e.g., if the input is

unorganized, then the output should be unorganized as well. This approach preserves

the style characteristics of an exemplar in the output. To reflect individual arrangement

features we combine these global measures with object-level ones.

In [9] Fisher et al. presented a method for synthesising 3D objects from examples.

Their system relies on a large database of scenes and user-given examples to construct

probabilistic models, which are then sampled in order to generate new scenes. Applying

a similar technique for synthesizing style-preserving arrangements would require several

input exemplars with the same style, which are not easy to come across or generate.

In [23] Kalogerakis et al. presented a method for synthesizing new shapes based on

existing shapes. They use a probabilistic model of shape structure that, after having

being trained, can be used for synthesizing new plausible shapes. For this method to

work, it needs to be given a large number of example shapes. The problem with using
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a similar method for the problem that we are trying to tackle is that 3D examples

arrangements with a similar style are hard to come across. For this reason, we aim at

synthesizing new arrangements based on a single input exemplar.



Chapter 3

Algorithm

3.1 Algorithm Input

The models used to populate our arrangements can come from any 3D database of

household items. We normalized the sizes of all objects to be on the same scale. Each

object is assigned a general type, e.g. a plate, a cup, or a decoration, and an individual

label, e.g. cup1, cup2, plate1, plate2, or microwave. In the following discussions

we use a coordinate system where x is the support surface width, y is the height, and z

is the support surface depth (when viewed head-on).

To generate an exemplar arrangement we typically rely on photos of real arrangements

with a desired style. This choice is motivated by the fact that 3D examples of arrange-

ments in various styles are difficult to create or find, while images of real arrangements

can be easily obtained. To extract the objects and their relationships from a photo,

we use a simple 2D annotation tool (Figure 3.1). The user can load any unobstructed,

front facing image of an arrangement. She marks the individual support surfaces in

the image, then marks a bounding box around each object appearing in the image, and

assigns a type to it. The user also specifies the front-to-back order of objects, if they

appear behind each other. Each type of object appearing in the exemplar is associated

with an actual object from the database belonging to the same type. When the exem-

plar contains different instances belonging to the same type e.g., two cups, we associate

10
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Figure 3.1: A simple 2D annotation tool (top left) converts photos of real arrangement
(left, in each pair) into learning exemplars (right, in each pair).

them with maximally dissimilar instances of the same type in the database, to maximize

interest. Similarity is measured using Chamfer distance [20].

While theoretically this step can be automated using computer vision techniques, we

found manual annotation to be simple and fast enough for our purposes. Note that an

image has to be annotated only once, and can then be used to generate any number of

output arrangements with no manual intervention.

3.2 Arrangement Synthesis

3.2.1 Style Measures

Although it is easy for humans to recognize style in many fields, defining it precisely is

a difficult problem. For the purpose of populating artifact arrangements, we define style

using a combination of object-level and global indicators.

Object-level indicators address placement of individual objects by answering three key

questions: ‘What?’, ‘How?’, and ‘Where?’ ‘What’ determines which types of objects to

include in a synthesized arrangement and their distribution; ‘How’ determines the rela-

tions between these objects such as adjacencies and distribution of stacks, and ‘Where’
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determines the relative placement of objects on the support surfaces. Given an exem-

plar arrangement S∗ and new synthesized arrangement S, we use three scale-invariant

measures fi(S,S∗), discussed in Section 4.1, to capture these properties. To simplify the

evaluation we assume that pairwise-immediate adjacency relationships between objects

are bijective, i.e. that we can have at most one object to the left/right, front/behind,

or above/below another one. While this assumption prevents us from handling cases

such as two cups placed on one plate, it greatly simplifies the computations and does

not significantly affect the realism and visual appeal of the generated results.

In addition to the object-level criteria, we use global scores gj(S) that evaluate an

arrangement as a whole, in terms of design-level characteristics such as organization and

symmetry (Section 4.2). The more similar two arrangements look overall, the closer

their scores will be. Both the object-level and global functions are normalized to be in

the range of [0, 1], with lower values of fi reflecting more similar arrangements and lower

values of gj reflecting arrangements better conforming with high level design criteria.

3.2.2 Valid Space

We aim for target arrangements which are similar in nature to the exemplar but not too

similar. Thus, instead of minimizing some combination of the measures fi and gi above,

we define a set of inequality constraints corresponding to each measure that together

delimit a valid space of possible solutions. We use a single scalar C ∈ [0, 1] to govern

the size of the valid space; the object-level differences between the exemplar and target

arrangement are required to satisfy fi(S,S∗) ≤ C. In all the examples we consider in the

paper we set C = 0.25. In theory, the same formulation can be used to enforce similarity

in terms of global characteristics ‖gj(S) − gj(S∗)‖ ≤ C. In practice, we found that a

simpler parameter-free condition, requiring the target arrangement to conform with the

design criteria at least as well as the exemplar, performs equally well: gj(S) ≤ gj(S
∗).

These constraints could be considered as defining the barriers of the valid space. We

restate these inequalities using barrier functions and use the sum of differences of all
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Figure 3.2: Illustration of our algorithm: starting from an empty cabinet, a stochastic
optimization procedure reaches different valid result inside the valid space (light blue),

distinct from the exemplar.

barrier functions from their respective barrier as the global evaluation function:

eval(S,S∗) =
∑
i

max{(fi(S,S∗)− C), 0}+

∑
j

max{(gj(S)− gj(S∗)), 0}
(3.1)

Using max prevents us from continuing to optimize a function if its barrier is satisfied,

and terminates optimization when all barriers are satisfied.
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3.2.3 Optimization

Given an exemplar arrangement, processed as described in (Section 3.1), and a target

set of surfaces to populate (that hereafter will be called a “cabinet”), we use a ran-

domized synthesis framework to generate output arrangements that minimize Equation

3.1. The synthesis begins with empty shelves and uses the ILS stochastic optimization

framework [21, 22]. We found that ILS outperformed more commonly used approaches

such as simulated annealing, both in terms of convergence speed and result quality.

ILS starts by finding a local minimum of the given evaluation function using iterative

first improvement, a local search technique that loosely resembles gradient descent. It

then iterates over a two-phase procedure: first, a perturbation is applied to escape

from the current local minimum, and next, iterative first improvement is carried out

until another local minimum is reached. If this new local minimum is better than the

previous one, the search continues from the new one. Otherwise, it starts the next

perturbation phase from the previous. The perturbation stage consists of 5 randomly

chosen local modifications selected out of the following set.

• Add an object of a type present in the exemplar to a previously empty position in

the current arrangement, i.e. a position to the left, top, or behind an input object.

• Remove an object from the current arrangement.

• Replace an object in the current arrangement with another object of a type

present in the exemplar.

• Move an object from any position to a new empty position (including stacking it

on top of another object).

• Swap the positions of two individual objects.

• Swap the positions of two columns or stacks of objects (a column is a set of objects

defined by the in-front-of relationship).
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The modifications are applied only if they are feasible in terms of spacing, object sizes,

etc. For instance, whenever an object is placed at a new position we first check if enough

space is available in that location to accommodate it. If not, the operation is aborted.

The stochastic search continues until either all the inequalities are satisfied, i.e. the

optimized functional (Equation 3.1) is zero, or a maximal number of iterations with

no improvement is reached (20 in our setup). The randomized search combined with

the validity termination criterion ensure that any repeated execution of the algorithm

leads to different results (Figure 3.2), enabling the creation of diverse style-conforming

arrangements from a single exemplar.

3.2.4 Fine Tuning Positions

To make the optimization process faster, the adjacency relations considered only follow

the three major directions. As a result this procedure tends to generate structured,

grid-spaced arrangements. To achieve the desired natural looking arrangements, after

the optimization terminates we perturb the positions of individual items, redistributing

them along the width and depth directions. We also perturb the orientation of objects

with near-rotational symmetry, such as cups. While these steps could be performed as

local perturbations within the optimization framework, doing so would in our experience

significantly slow the algorithm.



Chapter 4

Style Measures

4.1 Object Level Style Properties

We use three main questions to help define the style of an arrangement: ‘What objects

are used in the arrangement?’, ‘How are they placed relative to each other?’, and ‘Where

are they placed in the cabinet?’. To define scale-invariant measures that answer these

questions we use the same general functional template, normalizing it to the range [0, 1].

The key observation we make is that given two corresponding property values measured

on the two arrangements, viewers care about the relative rather than absolute difference

between them. For instance, if one arrangement has one microwave and the other has

two, it is perceived as a big difference (a factor of two increase), while if one has seven

cups and the other has eight, the difference is perceived as minor. Thus given any two

values, n0 measured on S∗ and n measured on S, we first measure the relative difference

between them as:

d(n, n0) = max(
n+ ε

n0 + ε
,
n0 + ε

n+ ε
)− 1. (4.1)

Both n and n0 are always non-negative and a small ε is added to both values to avoid

division by zero. Note that 0 ≤ d(n, n0) < ∞. Next, we map this value to a smooth

error measure between zero and one using a Gaussian function:

err(n, n0) = 1− e−
d(n,n0)

2

2σ2 , (4.2)

16
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where σ reflects the local sensitivity of the error measure. The larger σ is, the smaller

the error for differing values of n and n0. In many cases we need to compare multiple

values of n and n0, e.g. measured per shelf or per object type. While in some cases

averaging the values across all instances can provide a fair assessment, we often want

to penalize outlier values, as a single outlier can make the entire arrangement look

unnatural. Consider for instance a kitchen shelf where a microwave is placed on top

of a cup - no matter what the rest of the arrangement looks like, the result will look

artificial. Thus, when summing up the values we weigh them by a function that gives

higher weight to poor local measures:

fi(S,S∗) =
∑

n,n0∈Ωi

w(n, n0) · err(n, n0)

w(n, n0) =

= (1 + err(n, n0))p/
∑

n′,n′
0∈Ωi

(1 + err(n′, n′0, ))
p

(4.3)

where Ωi is the domain of the specific measure (e.g. all shelves, or all objects), defined

differently for each property function fi. The parameter p controls the overall sensitivity

to outliers, necessary since basic averaging over a large set of values can dilute even high

local errors.

4.1.1 Distribution of Objects (‘What?’)

To measure how well the content of an arrangement S reflects that of the exemplar S∗,

we consider all objects, or labels, present in the exemplar. For each label l, n0 is the

number of objects with the label l divided by the total number of objects in S∗, and n

is the number of objects with the corresponding label in S divided by the total number

of objects in S. The sum in Equation 4.3 runs over all labels in the two arrangements.

Both σ and p are set to one in the normalized overall measure.
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4.1.2 Objects Adjacencies (‘How?’)

The immediate adjacencies of objects in real-life arrangements reflect both functionality

and design. For example, placing similar objects together provides a sense of order, while

placing one object on top or behind another reflects both physical constraints and access

frequency. We treat each adjacency direction separately, as they are affected by different

functional and aesthetic considerations. For each pair of objects we count the number of

times the first object shows up to the right, behind, or above the second one and divide

this number by the total number of adjacencies in the corresponding direction. We use

the obtained ratios for every pair in the exemplar and input arrangements as the n and

n0 values in the measurement template, summing those separately for each of the three

directions. We use σ = p = 1 for width and depth directions. For stacks we distinguish

between the case where an adjacency is less frequent in the output than in the exemplar

(n ≤ n0) where we use the standard setting of σ = p = 1 and the complementary case

n > n0 where we use σ = 2 and p = 10 to penalize stacking of objects that are rarely or

not at all stacked in the exemplar.

In addition to immediate adjacencies our ‘how’ term compares stack heights between

the exemplar and the output arrangement, indicating a preference to stack objects if

they are stacked in the exemplar, but not to “over-stack” them. For each object in the

exemplar, we use the mean of stack heights of stacks that include this object as n0 and

compare it to n, which is defined as the height of each stack that contains an object

with the same label in S. We use the standard setting of σ = p = 1 to sum up the

height differences. We use the mean to avoid bias created by rare stacking choices in

the exemplar. E.g. consider a cabinet with rows of unstacked cups and one cup stack.

Using distance to mean will result in largely unstacked outputs, while distance to closest

existing stack may lead to a multitude of stacked cups.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 4.1: The impact of different style function term: both object level (top), and
global (bottom). (a) Exemplar; (b) optimizing using only global properties; (c) adding
distribution term; (d) adding adjacency; (e) adding positioning. (f) Exemplar; (g)
optimizing to a larger cabinet using only object level properties; (h) adding density

term; (i) adding grouping and symmetry properties; (j) adding variability.

4.1.3 Objects Placement (‘Where?’)

Depending on the type of arrangement, objects can have stronger or weaker positional

constraints. Intuitively, the position of each object relates to its accessibility and func-

tionality. For example, more commonly accessed items are placed at the front of shelves,

heavier objects placed lower and so on. To measure difference in location while account-

ing for changes in cabinet sizes, we use relative positioning of objects within a cabinet

instead of absolute positions. For an object o whose coordinates are (x′, y′, z′) in a given

cabinet with bounding box dimensions (bx, by, bz), we define

Pos(o) = (x′/bx, y
′/by, z

′/bz). (4.4)

To compare the relative positions of objects in S∗ and in S we first find for each object
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o in the output arrangement the closest object with the same label in the exemplar.

Then, we simply use the Euclidean distance between their positioning as the error:

err(o, ô) = ||Pos(o)− Pos(ô)||.

We aggregate this error for all objects in the output using p = 0, as this metric is not

sensitive to outliers. The position of an object is measured as the position of its center

of mass.

4.2 Global Properties

The overall style of an arrangement S can be measured using a number of global charac-

teristics. These characteristics can also be used to compare two arrangements. We use

four such characteristics gj(S) in our formulation. We include a measure for the density

of the arrangement, critical for generating arrangements whose content reflects the cab-

inet size. We measure how grouped (or not) similar items are, and how symmetrically

they are arranged. Both of these measures affect the sense of order in an arrangement.

Lastly, we include a measure for variability of the arrangement, as it affects the sense

of richness in an arrangement. Figure 4.1 illustrates the effect of adding each term

sequentially into the global objective function.

4.2.1 Density

We use two functions to capture the ratio of filled to empty space in a cabinet. The first

function examines the overall percent of filled area on shelves, and the second examines

the density of the front-row of objects. Usually, the front row is the one that is most

visible when viewing cabinets; therefore it is the most important. Let area(o) be the

area of the bounding box of an object o ∈ O. We define:

gdensity(S) = 1−
∑

o∈O area(o)

area(S)
(4.5)
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(a) ground-
truth

(b) rand (c) full (d) rand-opt (e) Believability survey re-
sults

Figure 4.2: Example results of the different methods used in our believability survey.
The percent each method was marked as “realistic” by viewers is shown in (e). Our
optimization method creates believable results that cannot be proven to be significantly
different than ground truth, while both rand-opt and rand are (see details in text).

Let width(s) be the width of a shelf s, and width(o) width of an object o respectively,

and front(s) the set of objects at the front of the shelf s. We define:

gwidth(S) = 1− 1

|s|
∑
s

∑
o∈front(s) width(o)

width(s)
(4.6)

where |s| is the number of shelves.

4.2.2 Grouping

This function captures the degree to which identical objects are placed close to each

other. Intuitively it measures how many disjoint clusters of identical objects show up

in the arrangement, where the ideal number would be a single cluster. To determine

ggroup(S), we cluster the identical objects (objects that have the same label) placed

next to each other in S using a basic “region growing” algorithm. Given a label l, let

C(l) be the number of clusters of label l that appear in the cabinet and Ls the set of all

labels. We define:

ggroup(S) = 1− |Ls|
|
∑

l∈Ls C(l)|
(4.7)

To capture the style of S∗ we aim for ggroup(S) to be the same as ggroup(S∗).



22

4.2.3 Symmetry

The symmetry function is formally defined using the notion of mirror objects. Given a

shelf s of width w that is part of a given arrangement S, and an object o on s whose

position’s x-coordinate is xo, we define its mirror object o′ on the same shelf as the object

whose position’s x-coordinate is closest to (xo)
′ = w − xo, the mirror position of o. To

evaluate symmetry we measure two things: how similar these two objects are, and how

far the mirror object, o′, is positioned from the mirror position (the perfect symmetry

location). Hence, for each pair of an object o and its mirror object o′ we have:

d(o, o′) =
1

3
· ((2− sim(o, o′)) · (1 +

‖(xo)′ − xo′‖
w

)− 1)

where the similarity sim(o, o′) is measured using Chamfer distance. By offsetting both

terms, we ensure that they do not cancel each other, and the final multiplication by 1
3

scales the value of the function to the range [0, 1]. We define the symmetry measure of

an arrangement S as

gsymmetry(S) =
1

|s|
∑
s

∑
o∈O d(o, o′)

|O|
. (4.8)

4.2.4 Variability

To estimate the diversity of an arrangement we measure two factors: how many distinct

object labels are used in the arrangements L compared to the overall number of objects

O, and how evenly the objects are distributed among them. To measure the latter,

we look at the number of objects assigned the least used label omin and the number of

objects with the most used one omax. We define:

gvariability(S) = (1− L

O
) · (1− omin

omax
). (4.9)



Chapter 5

Validation

We validate our arrangement approach using both a visual evaluation, discussed in Sec-

tion 6, and a more quantitative one performed via a user study. The goal of the study was

to validate the key properties of our arrangement technique, proving that the arrange-

ment results produced by our method are believable, i.e. similar to the arrangements of

objects one would expect to find in a real house, and confirming that the method can

capture the style of a given input exemplar arrangement. To validate scalability we test

both properties across differently sized and shaped cabinets.

Our study was conducted via Amazon Mechanical Turk and used duplications of ques-

tions in random order to filter out inconsistent answers (different responses to the same

question) and inconsistent responders (those who gave too many different answers to

duplicate questions).

5.1 Believability

User responses as to whether an arrangement is believable depend not only on arrange-

ment content and layout but also on extraneous parameters, such as rendering quality

and the degree of realism of the 3D models used. To maximally control for other factors,

we showed users a random mixture of results generated using four different methods, but

using the same objects and rendering tools (see examples in Figure 4.2). We then asked

23
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Our method with average precision of 84%
O S G U

Original 79.67% 4.95% 5.49% 9.89%
Symmetric 2.39% 91.39% 3.83% 2.39%
Grouped 5.36% 7.14% 84.52% 2.98%
Unorganized 8.78% 4.39% 4.39% 82.44%
Mixed 14.97% 8.38% 4.79% 71.86%

Using global properties - average precision of 39%
O S G U

Original 43.56% 14.85% 31.19% 10.40%
Symmetric 7.59% 71.43% 13.84% 7.14%
Grouped 10.18% 18.14% 34.07% 37.61%
Unorganized 10.48% 21.90% 59.05% 8.57%

Figure 5.1: The confusion matrices of people’s classification of styles using our method
(top) and only global properties (bottom). The rows show the true style of the syn-
thesized results (Mixed are synthesized results that use all style input exemplars), and
the columns denote the style classified by users. When using only global properties,
the average precision drops from 84% to 39%. Similarly, trying to learn from multiple

styles (bottom row in top matrix) produces an unorganized style.

Figure 5.2: Examples from our style study. The top row shows style exemplars (from
left): O - Original exemplar from an image, S - symmetric style, G - grouped style, and
U - unorganized style. The bottom row shows typical results generated by our method

based on these exemplars.
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them to specifically evaluate the realism of each arrangement ignoring other factors. In

addition to results generated by our method (full), we included ground truth results

(ground-truth) generated by converting real images into 3D arrangements using the

annotation process in Section 3.1, and randomized arrangements (rand) created by

placing objects randomly in the cabinet, selecting uniformly at random from the objects

contained in the exemplar. We also included a simplified version of our method (rand-

opt) which starts with generating a randomized arrangement and then optimizes only

the global terms from Section 4.2. The rand-opt approach can be seen as a adaptation

of rule-based layout techniques such as [3] to artifact arrangement, one where the rule

parameters are learned from the exemplar. The goal here was to test if such rule based

approaches are sufficient to achieve believable results in our setup.

First Hypothesis: For all three synthesis methods, the null hypothesis states that

there is no significant difference between the frequency with which people will evaluate

the arrangement results of these methods as ‘real’, and the frequency with which they

will evaluate ground truth arrangements as ‘real’.

Study 1: We created arrangements based on the four methods, using various exemplar

images and different cabinet sizes, and included an equal number of results from each

method, in each questionnaire. We gathered 183 consistent participants in this study

using a 70% consistency threshold. We used the Chi-square test with one degree of

freedom and for both rand-opt and rand we could reject the null hypothesis with a

level of significance < 0.05, while we could not reject the null hypothesis for our full

method. The study results, summarized in Figure 4.2, confirm that our optimization

produces believable results that are almost indistinguishable from ground truth data

and that significantly outperform the results of the randomized method.

5.2 Style

To confirm that our approach captures the input arrangement style, we evaluated peo-

ple’s ability to recognize style by matching the outputs of our algorithm to the exemplars

they were created from. We used two sets of exemplars with two different contexts, a
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kitchen and a living room. For each set we used four cabinets (different from the exem-

plar cabinets) to synthesize new results. To generate distinct styles, we picked a fairly

non-nondescript real image and generated three variations on it - one highly symmet-

ric, one highly grouped, and one highly unorganized (Figure 5.2). We generated results

using both our full method (full) and the rule based method (rand-opt) lacking the

object-level optimization terms. To avoid recognition bias, in the synthesized results we

used objects of the same type but different from the objects found in the exemplar.

Second Hypothesis: We hypothesize that our full method - based on both object-level

and global properties of an arrangement captures well the style of a given arrangement

and performs better than optimizing global properties alone - i.e. approximating rule-

based assembly approaches.

Study 2: We devised a classification test where in each question the four input ex-

emplars (the choices) were shown to the participant along with one synthesized result

(the query arrangement). The participant was asked to decide which of the four choices

looked more similar in terms of its style to the given query arrangement. Because of

multiple choices in this study, we used a 60% consistency threshold, arriving at 65 con-

sistent participants for full and 76 for rand-opt. Figure 5.1 summarizes the confusion

matrix of the various styles. Our method provides 84% precision overall, a fairly im-

pressive number, especially when compared against the 39% of the baseline rand-opt

approach, mimicking existing rule-based layout methods.

5.3 Variability

A major goal of our valid space approach is to enable creation of diverse arrangements

for the same, or similar, cabinets using a single exemplar. To quantify the variability

of our outputs we generated three series of results each from a different exemplar, each

populating the same cabinet as the exemplar. We then measured the pairwise differ-

ences between all pairs of results within each series using the objects placement metric

from Section 4.1 (Eq. 4.4). Using the default parameter C = 0.25 to control the valid

space size, the average pairwise distance between results was 0.19 (see Figure 5.4). To
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5.3: Results of eight different executions of running the optimization with no
valid space (terminating when reaching a stable minimum). Note how results are very

close and very similar to the input exemplar (compare to Figure 5.4).

mimic optimization techniques that converge to a local (global) minima of a distance

to exemplar function, employed e.g. for furniture arrangement [4–6], we also ran our

method until full convergence (using C = 0). In this case, even though the optimization

process remained randomized creating some variation, the difference measured within

a series of results plummeted, with the average distance going down to 0.04, signifying

reduced variability (see Figure 5.3 and compare to Figure 5.4).
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5.4: Results of eight different executions of running the optimization termi-
nating once the solution is inside the valid space (using a threshold of 0.25). Note the
variability of results while still preserving believability and similar style (compare to

Figure 5.3).
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Figure 5.5: Examples of various arrangements capturing exemplar style (left) for
differently sized cabinets. To emphasize arrangement level rather than object variability

we use exactly the same objects for all cabinets.



Chapter 6

Results

Figures 1.1 through 6.1 show the results generated by our method on a variety of inputs.

Optimization times for all results were under 5 seconds per cabinet. Figures 1.2 and 5.2

showcase our ability to generate different style arrangements for the same cabinet. The

exemplars used for Figure 1.2 are shown in Figures 5.5 and 4.1. Figure 5.5 highlights our

method’s ability to generate various scalable arrangements for different contexts: a living

room cabinet, a bar, and a kitchen cabinet. The larger output cabinets demonstrate our

ability to retain believability and style while doubling arrangement size. To emphasize

arrangement level rather than object type variability, we use exactly the same mapping

of objects to labels for each sequence of exemplar and outputs in this figure. In practice,

users can introduce more diversity by varying the label to object choices (e.g. selecting

a different cup to correspond to the CUP1 label in the exemplar), as demonstrated in

Figures 1.1 and 6.1. Figure 6.1 further highlights the range of styles and contexts we

capture. In addition to the visual inspection, we measured output variability as discussed

in Section 5.3. The average value of outputs produced by our method (with C = 0.25) in

these experiments remained around 0.2 across the different inputs, providing quantitative

validation of our approach.
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Input Exemplar

Input Exemplar Input Exemplar

Input Exemplar Input Exemplar

Figure 6.1: Arrangement medley: shown are the input exemplars and sample output
arrangements for different cabinets and sizes (randomizing the objects used for each

input label)

6.1 Limitations

Learning from one exemplar is still a challenging problem and our main limitation is

the inability to learn “general” rules that many times govern an arrangement such as

the settings of a dinner table. Such a new setup can be based on different functional

considerations than those we defined, ones that cannot be learned from the exemplar

alone. However, we believe that with suitable definition of local and global measures

our approach can be extended to other arrangement problems as well. Another current

limitation of our approach is the directional adjacency relations we assumed when as-

sembling our arrangements. This prevents us, for instance, from positioning two glasses

on or behind one plate. The fine-tuning step relaxes this constraint, used when updating

arrangements during the optimization. Enhancing the set of possible perturbations can

resolve this limitation, but would make the updates more complex.



Chapter 7

Conclusions

We presented a method for generating believable arrangements of artifacts laid out on

different support surfaces. Using a single style exemplar our method creates a variety

of style-preserving arrangements, scaling to different output cabinet sizes. We validated

the method, testing it on a variety of inputs and confirming style-preservation and

believability via a user study. The key concept behind our method is the use of valid-

space to find solutions which are both style-preserving and diverse. This approach

enables us to generate numerous arrangements close enough, but not too close, to the

input exemplar. A similar method could potentially be used for other setups where both

variability and style are important - e.g. for synthesizing new shapes or even character

motions.
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 תקציר

הבתים וחללי העבודה שלנו מלאים בחפצים רבים הפזורים על גבי משטחים כמו מדפים ושידות. התוכן 

וצורת הפריסה של סידור החפצים משקף את ההקשר בו הם נמצאים )למשל מטבח, סלון, עיצוב מסודר 

  או לא מסודר(.

וירטואליות מבזבז זמן רב, בייחוד כאשר יש צורך לייצר סידורים שונים ומגוונים  בסצנותסידור ידני 

 עבור מספר רב של משטחים וחללים.

אנו מציגים שיטה מונחית נתונים המיועדת לסידור חפצים ופיזורם באופן אוטומטי על משטחים ריקים 

 באופן משכנע ובסגנון נתון.

מודל תלת מימדי של סידור לדוגמה, המשקף את התוכן והסגנון אמצעי הקלט בשיטה שלנו הוא תמונה או 

המתבקש. השיטה שלנו עושה שימוש בדוגמה הזו על מנת לייצר סידורים מגוונים המשקפים את הסגנון 

 שלה עבור סידור של ריהוט ומימדי פריסה.

ונות אפשריים של על מנת להשיג בו זמנית יכולת הרחבה, גיוון ושימור סגנון, אנו מגדירים מרחב פתר

 סידורים המשקפים את סגנון אמצעי הקלט.

  אנו משיגים פתרונות בתוך המרחב הזה באמצעות שימוש בפונקציות מחסום ואופטימיזציה סטוכסטית.
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