
Reichman University

Efi Arazi School of Computer Science

M.Sc. program - Research Track

CompanyName2Vec: Company Entity
Matching Based on Job Ads

by

Ran Ziv

M.Sc. dissertation, submitted in partial fulfillment of the requirements for the M.Sc.

degree, research track, School of Computer Science, Reichman University

November 2021

i

This work was carried out under the supervision of Dr. Michael Fire from the de-

partment of Software and Information Systems Engineering, Faculty of Engineering, Ben

Gurion University, and with guidance from Dr. Ilan Gronau from the Efi Arazi School of

Computer Science, Reichman University

ii

Abstract

Entity Matching is an essential part of all real-world systems that take in structured and

unstructured data coming from different sources. Typically no common key is available for

connecting records. Massive data cleaning and integration processes require completion

before any data analytics or further processing can be performed. Although record linkage

is frequently regarded as a somewhat tedious but necessary step, it reveals valuable insights,

supports data visualization, and guides further analytic approaches to the data. Here, we

focus on organization entity matching. We introduce CompanyName2Vec, a novel algo-

rithm to solve company entity matching (CEM) using a neural network model to learn

company name semantics from a job ad corpus, without relying on any information on the

matched company besides its name. Based on a real-world ground truth dataset, we show

that CompanyName2Vec outperforms other evaluated methods with average accuracy at 1

of 0.894.

iii

TABLE OF CONTENTS

List of Tables . vi

List of Figures . vii

Chapter 1: Introduction . 1

Chapter 2: Related Work . 6

2.1 Entity Matching . 6

2.1.1 Supervised Approaches . 6

2.1.2 Unsupervised Approaches . 7

2.2 Distance Metrics . 7

2.2.1 Character-Based Similarity Metrics 8

2.2.2 Token-Based Similarity Metrics 9

2.2.3 Phonetic Similarity Metrics . 9

2.3 Document Fingerprinting . 10

2.4 Text Embedding . 10

Chapter 3: Method . 12

3.1 Hiring Company Names Fingerprinting 12

3.2 Company Name Embedding . 13

iv

Chapter 4: Experimental Study . 16

4.1 Dataset . 16

4.2 Evaluation Process and Performance Metrics 17

Chapter 5: Results . 19

Chapter 6: Discussion . 23

Chapter 7: Conclusions and Future Work . 25

References . 27

Appendices . 32

Appendix A: Additional Results . 33

Appendix B: References to project Code and Datasets 35

v

LIST OF TABLES

2.1 Company Names Synonyms Ratio Similarity vs. Partial Ratio Similarity . . 9

3.1 For example, we provide four fingerprint values and the lists of hiring com-
pany names posted with the same job ad’s fingerprint 14

5.1 Algorithms’ Performance Comparison . 20

vi

LIST OF FIGURES

1.1 Flowchart of the implemented methodology. 5

5.1 Fingerprints Distribution by Company Names 20

5.2 Synonym distribution of the following companies as were calculated by
the CompanyName2Vec algorithm and reduced into two dimensions with
t-SNE: ABM Industries, ACCO Brands, HCA Healthcare, Home Depot,
J.B. Hunt Transport Services, Inc., JPMorgan Chase & Co., Lowe’s Inc.,
and PepsiCo . 21

5.3 A plot of PepsiCo synonyms’ vectors after were reduced into two dimensions 21

5.4 A plot of HCA Healthcare synonyms’ vectors after were reduced into two
dimensions . 22

5.5 Distribution of company names exist in job ad corpus 22

A.1 A plot of Lowe’s Inc. synonyms’ vectors after were reduced into two di-
mensions . 33

A.2 A plot of Home Depot synonyms’ vectors after were reduced into two di-
mensions . 34

vii

CHAPTER 1

INTRODUCTION

Enterprise Business intelligence systems have emerged as a disruptive technology and in-

novative solution to the global economy [1]. Business intelligence became an emerging

and fast-growing field in the past years [2]. Big data and its emerging technologies, includ-

ing business intelligence and big data analytics systems, have become a mainstream mar-

ket adopted broadly across industries, organizations, and geographic regions to facilitate

data-driven decision making and significantly affect the way that decision-makers, such as

CEOs, operate and run their business [2, 3]. One of the fundamental functionalities a busi-

ness intelligence system must have is the ability to integrate many data sources [2, 4]. The

integration of multiple sources usually requires linking between the significant entities that

exist across data sources and systems. Usually, those entities function as a “primary key”

in each system [4]. The technique used for performing such linkage is commonly referred

to as “Record Linkage”, “Data Deduplication”, “Object Matching”, or “Entity Matching”

[4, 5].

Entity Matching (EM) is a fundamental task in data integration scenarios. EM is the

task to identify semantically equivalent entities referring to the same real-world object (e.g.,

persons, products, companies) within one data source or between different sources. EM is

also a core technique for data cleaning [5, 6] and data integration [7, 8]. Accurate and fast

entity matching has huge practical implications in a wide variety of commercial, scientific

and security domains [9]. EM solutions can be divided into three separate groups: su-

pervised, unsupervised, and semi-supervised approaches [10, 11]. Supervised approaches

require labeled training sets or predefined thresholds on which to base their decisions. Un-

fortunately, in most real-world cases, the variety of patterns that can be observed are not

feasible to be captured in a training set. Therefore, these solutions are quite limited. Unsu-

1

pervised approaches help find previously unknown patterns in a dataset without pre-existing

labels and are based on clustering algorithms that group together items with high similarity

[12]. Semi-supervised approaches fall between the unsupervised approach (with no labeled

training data) and a supervised approach (with only labeled training data). Semi-supervised

approaches are based on a small set of labeled data and a large set of unlabeled data.

Many enterprise business intelligence applications require the integration of multiple

data sources. In such applications, a company name is one of the most crucial entity at-

tributes to be linked [4]. A company usually exists in many of the enterprise systems. For

example, a company can represent a potential customer, a sales lead in the sales system,

an existing customer in the customer relationship management system, a supplier in the

logistics system, etc. Although a company name can be noisy, in most cases, this is one of

the most potent properties for company entity matching (CEM) due to the lack of unique

shared identifiers across datasets [4].

Determine whether a new company name is in a database, and if so, which existing

record it refers to is a typical problem business intelligence applications need to solve given

records indexed by company names and a new company name. This problem is an instance

of entity matching problem. It is a challenging problem because people do not consistently

use the official name, but use abbreviations, synonyms, different order of terms, different

spelling of terms, short form of terms, and the name can contain typos or spacing issues.

Many of the existing methods use more company properties other than the company

name, such as location, primary phone number, industry, website URL, and more to im-

prove CEM results. Such company information is usually costly to acquire on a large

scale. The largest public source for such company information is DBpedia [13]. DBpe-

dia contains about 65,000 company entities worldwide, derived from the English version

of Wikipedia [4]. There are several companies worldwide that hold a much larger dataset

of company information, such as Dun and Bradstreet and Infogroup [14]. These compa-

nies do not provide the complete dataset but provide a limited paid service for company

2

information enrichment, mainly for sales and marketing purposes.

In this study, we developed CompanyName2Vec (see Chapter 3), a novel algorithm

to solve CEM using a neural network model to learn company name semantics from a

job ad corpus. Once trained, such a model can suggest synonymous company names.

As the name implies, CompanyName2Vec represents each different company name as a

vector. The vectors are chosen carefully such that a simple mathematical function, like

cosine similarity between vectors, indicates the level of semantic similarity between the

company names represented by those vectors. We used CompanyName2Vec for CEM. For

this purpose, we created a real-world dataset that consists of the largest companies in the

US and their synonyms. We used this dataset to evaluate the CompanyName2Vec algorithm

and compared it with other known entity matching methods.

To develop the CompanyName2Vec algorithm, we needed to have a relatively large

corpus of company names. Job ads consist of company names and are available publicly

on a large scale but are very noisy (see Section 3.1) due to how job ad distribution works.

Companies distribute their jobs to multiple job boards and sometimes to recruitment and

staffing agencies to reach as many job seekers as possible. In many cases, the process for

posting a job ad on job boards requires the employer to manually type the job information,

including company name, location, title, description, and more, which causes some incon-

sistency and duplication of job ads. For example, Tesla’s job ad can be posted with several

employer names like tesla; Tesla, Inc.; Tesla Motors; Tesla Motors, Inc.; and Ursus, which

is a staffing and recruitment agency. CompanyName2Vec leverages the availability of job

ads publicly (see Section 4.1) and their inconsistency to learn company name semantics

(see Section 3.2).

The method developed consists the following steps (see Figure 1.1): First, we collected

a large dataset of job ads (see Section 4.1). Second, we used a fingerprinting technique and

created a list of company names that posted the same job (see Section 3.1). Additionally,

we cleaned the data to filter out non-valid job ads and company names to create a ground

3

truth dataset. Next, we pre-processed this cleaned dataset and created train and test sets

(see Section 3.2). Afterward, we trained a neural network model to learn company names

semantics and transform company names into a vector representation and used cosine dis-

tance for measuring the similarity between different vectors, where two company names

that represent the same company will have similar vectors (see Section 3.2). For example,

employers write their company name in many ways, sometimes ignoring common suffixes,

like Inc., and LLC, which are used to define the company legal entity type but are less

important when posting a job ad or tagging the company name in a social media post.

Lastly, we created a real-world dataset of the largest 1,000 companies in the US and

their synonyms (see Section 4.1. We used this dataset to evaluate our method’s performance

by measuring the success rate at k of matching company synonyms with their mapped

canonical company name (see Section 4.2).

Our main contributions are twofold:

• CompanyName2Vec, a novel algorithm to create a mathematical representation for a

company name that holds the naming semantics, which enables it to measure simi-

larity between any given company names without relying on any information on the

matched company besides its name (see Chapter 3).

• An end-to-end, highly scalable, enterprise-grade system that uses CompanyName2Vec

algorithm to suggest company name synonyms to solve company entity matching

(see Chapter 4).

The remainder of the paper is organized as follows: In Chapter 2, we provide an

overview of related studies. Next, in Chapter 3, we present the methods used to create

the CompanyName2Vec embedding model. Afterwards, in Chapter 4, we describe the ex-

perimental study we conducted to construct the model and evaluate it. Subsequently, in

Chapter 5, we present the obtained results. Then, in Chapter 6, we discuss the obtained

results. Lastly, in Chapter 7, we present our conclusions from this study and offer future

4

research directions.

Figure 1.1: Flowchart of the implemented methodology.

5

CHAPTER 2

RELATED WORK

Entity Matching (EM) is an important task, which many researchers in the past have ad-

dressed [5, 15, 16, 17]. In this study, we addressed a particular case of EM, namely, the

matching of company names across multiple datasets and systems. In section 2.1, we

present the current approaches concerning EM. In section 2.2 we describe several distance

metrics methods and techniques. In section 2.3 we describe methods for document finger-

printing. Lastly, in section 2.4, we explain embedding with an emphasis on text embedding.

2.1 Entity Matching

EM addresses matching entities between different data sources or deduplication of entities

within a single source. EM uses algorithms to both detect duplicates in data and resolve

them. As described above, EM solutions can be divided into three separate groups: su-

pervised, unsupervised, and semi-supervised approaches. In the following subsections, we

describe the different methods for EM.

2.1.1 Supervised Approaches

The supervised approaches are based on training data in the form of record pairs, pre-

labeled as match or not match. In 1969, Ivan Fellegi and Alan Sunter [18] denote two

classes: A class M, which represents matches, and a class U, which represents non-matches.

There are three main approaches: Rule-based, learning-based, and distance-based.

Rule-Based. One way of performing entity matching is by setting a set of rules that

identify the conditions that would make two records be considered as matched. For in-

stance, matching a customer entity which includes its name and full address, it could be of

the form: (name, edit,=, 1) ∧ (address, edit, >, 0.7), which indicates that two customer

6

records would match if their names are fully matched and their address and city attributes

are more than 70% similar.

Learning-Based. Learning-based approaches [5] use training sets that consist of pairs

labeled as Match or Non-match. Each pair includes a comparison vector that represents

the comparable attributes of the two items in the pair. Assuming the density function for

the classes M and U are different, the EM problem can be treated as a Bayesian inference

problem.

Distance-Based. Distance-based approaches [5] theoretically do not need labeled data.

In these approaches, a distance metric is defined between data items. A decision is made

based on whether or not this pair is a match or not based on the distance between two

items and a threshold. This threshold can be set by making a reliable estimation. A good

threshold can improve the results. Therefore using a training set for setting this threshold

might be desirable.

2.1.2 Unsupervised Approaches

The idea behind unsupervised approaches is that similar comparison vectors correspond to

the same class [5]. Unsupervised learning for EM has its roots in the probabilistic model

proposed in 1969 by Ivan Fellegi, and Alan Sunter [18]. When there is no training data

to compute the probability estimates, it is possible to use variations of the Expectation-

Maximization algorithm [19] to better identify appropriate clusters in the data.

2.2 Distance Metrics

A common source for mismatches in database entries is the typographical variation of string

data. One of the methods to deal with typographical variations is to measure the similarity

between two different strings. In this section, we describe string matching techniques that

have been applied in EM.

7

2.2.1 Character-Based Similarity Metrics

The character-based similarity metrics method is designed to manage typographical errors

efficiently. A popular character-based method is the Levenshtein distance (also referred

to as Edit Distance) [20]. This method measures similarity between two strings by count-

ing the minimum number of operations required to transform one string into the other,

including insertion, deletion or substitutions. Damerau-Levenshtein distance [20, 21] is a

variation of the Levenshtein distance where a transposition of two characters is also consid-

ered to be an elementary edit operation in addition to insertion, deletion, and substitution.

Jaro distance [22] is based on the number of common characters and the number of trans-

positions in two strings. Winkler distance [22] is a variation of the Jaro distance and gives

higher scores to strings that share the same prefix.

In terms of company names, Levenshtein Distance seems to work well for a single

word or a much longer text, but not for just for a few words [23], as in our use case. For

example, “New York Yankees” and “Yankees” are clearly referring to the same company

name, but “New York Mets” and “New York Yankees” are clearly referring to different

ones. Yet, the score of the “wrong” match is higher than the “right” one. For such cases,

there is an heuristic called “best partial” [24], which uses partial matching logic. This logic

is implemented in the Fuzzy-Wuzzy package [24], which is based on Levenshtein Distance

[20] to calculate the differences between two different strings. Given two strings X and

Y , let the shorter string X be of length m. It finds the ratio similarity measure between

the shorter string X and every substring of length m in the longer string Y , and returns

the maximum of those similarity measures. So in the case of “Yankees” and “New York

Yankees” the score will be higher than the score of “New York Mets” and “New York

Yankees” (see Table 2.1), since the substring “Yankees” is wholly contained in the string

“New York Yankees”.

8

Table 2.1: Company Names Synonyms Ratio Similarity vs. Partial Ratio Similarity

String X String Y Ratio Partial Ratio
Similarity Similarity

YANKEES NEW YORK 61% 100%
YANKEES

NEW YORK NEW YORK 76% 69%
METS YANKEES

NEW YORK NEW YORK 96% 92%
METS MEATS

2.2.2 Token-Based Similarity Metrics

The method of Character-based similarity metrics measures similarity depending only on

the appearance and sequence of characters, while token-based similarity metrics first tok-

enize two strings into sets of tokens (words) and only then compute the similarity between

the two sets. Token-based similarity metrics are robust in measuring the similarity of full

names, for example, where the order of the first name and last name may change from

one string to another. A standard method for Token-based similarity metrics is TF-IDF

(Term Frequency / Inverted Document Frequency) [25], a numerical statistic method that

intends to reflect how important a word is to a document in a collection of documents. Co-

sine similarity [25] measures the similarity of strings by transforming words into vectors,

where the frequency of a word is a dimension in the vector. Cosine similarity measures the

similarity between two strings by measuring the angle between the vectors. Token-based

similarity metrics methods do not take misspellings into account. Therefore those methods

are usually used together with character-based methods to determine whether two tokens

are similar enough [25].

2.2.3 Phonetic Similarity Metrics

Strings may be phonetically similar even if they are not similar at the character or token

level. Different from character-based and token-based similarity metrics, phonetic similar-

ity metrics are limited to a string-based representation. An example of this is the name

9

Claire. It has two alternatives, Clare and Clair, which are both pronounced the same.

Soundex [26, 27], for example, is one of the best known phonetic encoding algorithms

for indexing names by sound as pronounced in English. Soundex keeps the first letter and

converts the rest of the string into numbers according to a phonetic encoding table. Ad-

ditional string comparison methods can be found in a thorough survey written by Peter

Christen [28].

2.3 Document Fingerprinting

Among digital data, documents are the easiest to copy and remove any signatures or finger-

prints embedded, which make the pirating the hardest to detect [29]. Anyone canretype a

document or copy a part of it. Document fingerprinting is concerned with accurately iden-

tifying and copying, including small partial copies, within large sets of documents [29].

Our study uses fingerprinting to find hiring company synonyms in the job ads dataset by

calculating a job ad fingerprint and looking for hiring company names with the same fin-

gerprint. A Checksum, for example, is a small digest of the entire document. This method

is simple and sufficient for detecting exact copies. Still in some cases, as well as for our

study, there is a requirement in a method that is more local and detects partial copies like

the Winnowing algorithm [30], which selects the q-gram whose hash value is the mini-

mum within a sliding window of q-grams. Winnowing is used for text clustering [31],

and detecting plagiarism, like the comparison Agung Toto Wibowo published in 2013 [32]

which detects plagiarism fraud on Bahasa Indonesia documents, or Moss by Alex Aiken

[33] which is a system for measuring software similarity, used by Stanford university for

detecting plagiarism in programming classes.

2.4 Text Embedding

In this study, we used embedding to create a mathematical representation for a company

name that holds the naming semantics. When some object x is said to be embedded in

10

another object y, the embedding is given by some injective and structure-preserving map

f : X → Y . We used text embedding, similarly to what Yoshua Bengio proposed in 2001

by [34], in the form of a feed-forward neural network language model. Modern methods

use a simpler and more efficient neural architecture to learn word vectors, like word2vec

[35, 36], and GloVe [37], based on objective functions that are explicitly designed to pro-

duce high-quality vectors. Neural embedding learned by these methods have been applied

in a myriad of NLP applications, including initializing neural network models for objective

visual recognition [38], or machine translation [39, 40], as well as directly modeling word-

to-word relationships [35, 41, 42, 43], Paragraph vectors, or doc2vec, were proposed in

2014 by Quoc Le and Tomas Mikolov [44] as a simple extension to word2vec to extend the

learning of embedding from words to word sequences. Doc2vec1 is agnostic to the gran-

ularity of the word sequence, and it can equally be a word n-gram, sentence, paragraph,

or document. One of the benefits of using dense and low-dimensional vectors is computa-

tional. The main benefit of this dense representation is generalization power. If we believe

some features may provide similar clues, it is worthwhile to give a representation that can

capture these similarities. We used text embedding to learn company names semantics and

to measure similarity.

1The term doc2vec was popularized by Gensim, a widely-used implementation of paragraph vectors:
https://radimrehurek.com/gensim/

11

CHAPTER 3

METHOD

The method described below deals with CEM by creating a generic open solution that

matches company names. Unlike many other existing solutions that utilize expensive com-

mercial datasets, the presented method’s novelty uses job-ads data, and it requires no com-

pany’s information for matching besides its name.

Our method consists of two main parts: first, the creation of pairs, in which a pair con-

sists of synonyms for the same company based on an analysis of large-scale job ads data

(see Section 3.1); second, the algorithm CompanyName2Vec for constructing an embed-

ding model that utilizes these pairs of synonyms. The embedding model takes as input a

company name and returns as output meaningful vector representation, where two com-

pany names that represent the same company will be relatively close vectors in terms of the

Cosine distance (see Section 3.2).

3.1 Hiring Company Names Fingerprinting

Given a job ads corpus, we first create and enrich each job ad with a unique job ad identifier

(aka job ad fingerprint) using a fingerprinting technique. Second, we use the job ad finger-

print to identify company name synonyms. We group the job ad data by job ad fingerprint

and create a list of company names posted with the same fingerprint, or in other words,

company names that were published within the same job ad. Then, we remove duplicated

synonyms and create a list of pairs, where each pair includes company names that were

posted within one or more job ads.

A particular case we need to handle is staffing and recruitment agencies, which often

publish their customers’ job ads anonymously and use the staffing or recruitment agency

name instead. Ideally, each pair includes company names that refer to the same company.

12

Therefore, to reduce such noise, we filter out staffing and recruitment agencies’ names

using naive text matching. Our analysis found that much of the noise can be reduced by

filtering company names which include the following strings: “staff”, “recruit”, “jobs”, or

“unknown”.

Given a dataset of job ads, our method’s first step is to create a unique identifier (aka

fingerprint) for each job ad. This component calculates a job ad fingerprint based on the

job description. We used a local approach to calculate fingerprints [30]. First we calculated

a Winnowing list of fingerprints. We used the following parameters: kgram len = 4,

window len = 5, base = 10 and modulo = 1000. Then, we utilized the MD5 hashing

algorithm [45] to convert the list of fingerprints into a single short 128-bit job identifier to

improve computation and debugging efficiency.

3.2 Company Name Embedding

The purpose of collecting company synonyms from job ads is to create a dataset for the

method’s embedding model. An outcome of it is the creation of a large database of com-

pany synonyms. We utilize the fingerprints to group company names with the same job

ad’s fingerprint to construct training and testing sets. After grouping the company names

by fingerprint, it transforms the group of names into a set of pairs (iname, jname) where

iname’s and jname’s Job Ads have at least one Job Ad’s fingerprint in common.

It is important to note that a company may have several fingerprints, at least as many as

the number of open positions it tries to fill.

In addition, we removed duplicated pairs from this extensive list of names pairs, which

created when two company names have more than just a single job ad fingerprint in com-

mon.

In the algorithm’s second step, we utilize an embedding algorithm (see Section 2.4)

to capture the semantics of company names by placing semantically similar company

names close together in the embedding space. We call this embedding solution Compa-

13

Table 3.1: For example, we provide four fingerprint values and the lists of hiring company
names posted with the same job ad’s fingerprint

Fingerprint Company Names
9abc97a34a 7c5630b0673083fb9c61c1 99 Cents Only Stores; 99 Cent Only; 99 Cents

Only; 99 Cents Only Stores LLC A.O. Smith;
AO Smith; AO Smith Corporation; A. O. Smith;
A. O. Smith Corporation; A. O. smith; Smith
(A.O.) Corporation

c9245756a0edca343c96a1a3b8762fc0 ADP; ADP Automatic Data Processing; ADP
Technology Services, Inc.; ADP.com; Auto-
matic Data Processing, Inc.; ADP, Inc.

251dc200b096aaa160b744b7b907b9cc BD; Becton Dickinson; BD (Becton, Dickin-
son and Company); Becton Dickinson & Com-
pany; Becton Dickinson and Company; Bec-
ton, Dickinson & Co.; Becton, Dickinson & Co.
(BD); Becton, Dickinson & Company; Becton,
Dickinson and Company; Becton, Dickinson;
Beckon Dickinson; Beckton Dickinson

9cc691a26109a7474efbe7c0a6f8f066 Coca-Cola; Coca-Cola Bottling; Reyes Coca
Cola Bottling; Reyes Coca-Cola Bottling;
Reyes Coca-Cola Bottling Group; Coca-Cola
Bottling Co. Consolidated; Coca-Cola Bottling
Co. Consolidated (CCBCC); Coca-Cola Bot-
tling Company; Coca-Cola Bottling Company
Consolidated; Coke consolidated

nyName2Vec. Since company names usually use minimal text, a few words, or a few

dozens of characters on average, we first split the company name into characters. We used

this representation for a company name instead of a word granularity level. Then used

n-gram tokenizer, where n between 1 and 3, and embedded its result using a hash func-

tion. Next, we build a sequence embedding sub-model based on a long short-term memory

(LSTM) encoder [46] with Rectified Linear Unit (ReLU) activation function [47]. To in-

crease the context available to the algorithm, we used a bidirectional LSTM (Bi-LSTM), a

sequence processing model that consists of two LSTMs: one takes the input in a forward

direction, and the other in a backward direction. We set character embedding dimensions

to 400 and sequence encoder dimensions to 400 as well. We split the company synonyms

into two mutually exclusive sets, train and test sets, with a ratio of 9:1, where the train set

14

consists of about 90% of the synonyms, and the test set 10%. To avoid biasing of the exper-

imental study results (see Chapter 5), we filtered out about 500 names from both the train

and the test sets names, which also exist in the dataset we used for measuring the method

performance - fortune 1,000 companies dataset (see Section 4.1).

Lastly, we calculated the embedding representation for all company names and syn-

onyms, so it will be possible to calculate using distance metrics (see Section 2.2) the most

similar names for each company name.

15

CHAPTER 4

EXPERIMENTAL STUDY

There are tens of millions of open job ads in the United States published in many job boards

and job search engines, like Indeed, ZipRecruiter, Glassdoor, Bing Jobs, and Google Jobs.

In this study, we used a job-ads corpus from one of the biggest job boards in the United

States, with more than ten million job ads. Although the dataset was acquired from a single

source, there was considerable inconsistency in some jobs’ properties, such as city names.

For example, Los Angeles in California, USA, can be found in many variations, mainly

due to letter capitalization, punctuation, and abbreviation, such as “Los-Angeles, CA”; “la,

ca”; “los angeles california”, and more. Company names are also being regulated and

need to comply with the state naming rules in the states where they will be doing business.

Otherwise, a state might not accept the documents filed to form or qualify the company.

Naming conventions include suffixes like “LLC”, “Inc.”, “Ltd.”, etc.

4.1 Dataset

According to the U.S. Bureau of Labor Statistics (BLS), there are several million job open-

ings in the United States, which increased to a new level of almost ten million job openings

after the COVID-19 pandemic hit the markets recently in 2020 [48]. However, looking

at job boards and job search engines, like Indeed,1 ZipRecruiter,2 Glassdoor,3 Bing Jobs,4

and Google Jobs,5 show there are tens of millions of open job ads in the United States pub-

lished, an order of magnitude larger than what the BLS states. We collected from one of the

largest job boards in the United States a large job ads dataset that contains active job ads

1www.indeed.com
2www.ziprecruiter.com
3www.glassdoor.com
4www.bing.com
5www.google.com

16

that existed during June 2020. This dataset includes about ten million job ads. We captured

for each job ad the following information: Title, Description, Hiring Company Name, and

Location (Country, State, City, and Zip Code).

To evaluate the performance of the described solution, we manually created a ground-

truth dataset based on the Fortune 1,000 companies in the United States, where each com-

pany has a canonical company name and a list of synonyms. The mean number of syn-

onyms for a canonical company name is 3.8, with a standard deviation of 2.1. This list

consists of the most prominent American companies ranked by revenues, compiled and

published by Fortune magazine [49]. It only includes companies that are incorporated or

authorized to do business in the United States and for which revenues are publicly available

regardless of whether they are public companies listed on a stock market.

4.2 Evaluation Process and Performance Metrics

The performance of the recommendations generated by our method was measured by the

average of Success@k (Success at rank k) rate, which stands for the mean probability that

a relevant company name occurs within the top k of the ranking [50]. Similar to how the

relevance of the search engines is measured, in most cases, people are only interested in

the first page of the results and do not bother to move on to subsequent pages [51]. In

extreme cases, only the top result matters. For example, only a single value can be used

when performing a join operation between two tables in a database.

We compared the solution’s performance with edit-distance matching, fuzzy distance

matching, and random matching, common best algorithms, as described in Chapter 2. We

treated the ground-truth dataset (see Section 4.1) as a mapped list of synonyms to tags,

where a tag is the most common company name (canonical name).

We used the ground-truth dataset with the created model described in Chapter 3 and

generated a vector representation for both canonical names and synonyms. For each syn-

onym’s vector, we calculated its cosine distance with all the canonical name’s vectors. As a

17

result, we generated a N×M matrix R, where N is the total number of canonical names in

the ground-truth dataset, and M is the size of the complete set of synonyms. Rij represents

the cosine distance between the vector representation of a canonical name i and the vector

representation of a synonym j. For each given synonym, we sorted the canonical names

based on their cosine distance Rij . Lastly, the closest k canonical names were presented as

the recommended canonical names for each given synonym. We used the k closest vectors

provided in the matrix R, and calculated the metric of Success@k, for k = 1, 2, 3. We

defined success as equal to 1 in case the canonical company name returned in the closest k

company names, or to be equal to 0 otherwise. Namely, we define Success@k as follows:

Success@k(synonym) :=|{Tagged Canonical Name}∩

{k Closest Canonical Names}|

Where tagged canonical company name is mapped to the company synonym in the

ground-truth dataset.

AvgSuccess@k :=

∑
s∈Synonyms success@k(s)

|Synonyms|

18

CHAPTER 5

RESULTS

To analyze the performance of the implemented method (see Chapter 3), we used the job

ads dataset (see Section 4.1) to train the embedding CompanyName2Vec model (see Sec-

tion 3.2), and evaluated the method’s performance using the ground-truth dataset (see Sec-

tion 4.1). Since the ground-truth dataset is biased to company names which oprate in the

United States, we first checked the geographical distribution of job corpus dataset. We

found that the majority of the job ads, about 88.5%, are posted within the United States.

The job ads fingerprinting result (see Section 3.1) shows that there are 4.25 million

of unique job ad fingerprints out of 10 million job ads. From the distribution of job ads

fingerprints (see Figure 5.1), only 1.2 million of the unique job ad fingerprints, which were

posted with at least two different company names, could be used for training the embedding

CompanyName2Vec model. We found that applying the agencies staffing companies filters

(see Section 3.1) removed 9.5% of the job ads, 8.25% of the fingerprints, and just 2.5% of

the company names.

We generated the embedding CompanyName2Vec model based on the job ads dataset

(see Section 4.1). We used the generated model for resolving CEM and matched the For-

tune 1,000 canonical company names with their synonyms. Figure 5.2 presents the distribu-

tion of the associated names of the following companies based on the CompanyName2Vec

vector representation after being reduced into two dimensions using t-SNE [52]: ABM In-

dustries, ACCO Brands, HCA Healthcare, Home Depot, J.B. Hunt Transport Services, Inc.,

JPMorgan Chase & Co., Lowe’s Inc., and PepsiCo. As can be seen, there are eight clusters,

one per every company includes the company synonyms grouped together, which indicates

that CompanyName2Vec successfully suggested relevant synonyms for those companies.

Finally, we calculated AvgSuccess@k (see Figure 4.2) for the CompanyName2Vec

19

solution and compared it with the following several solutions: random matching, edit-

distance matching [20], and fuzzy matching [11]. The CompanyName2Vec performs better

than all the above solutions, with any given tested k (see Table 5.1). We evaluated this list

of algorithms using a 10-fold cross-validation approach. The difference found statistically

significant using t-tests with p-value less than 0.001.

Table 5.1: Algorithms’ Performance Comparison

Figure 5.1: Fingerprints Distribution by Company Names

20

Figure 5.2: Synonym distribution of the following companies as were calculated by the
CompanyName2Vec algorithm and reduced into two dimensions with t-SNE: ABM Indus-
tries, ACCO Brands, HCA Healthcare, Home Depot, J.B. Hunt Transport Services, Inc.,
JPMorgan Chase & Co., Lowe’s Inc., and PepsiCo

(a) Zoom out view on PepsiCo synonyms and other company synonyms near by

(b) Examples for PepsiCo synonyms

Figure 5.3: A plot of PepsiCo synonyms’ vectors after were reduced into two dimensions

21

(a) Zoom out view on HCA Healthcare synonyms and other company synonyms near by

(b) Examples for HCA Healthcare synonyms

Figure 5.4: A plot of HCA Healthcare synonyms’ vectors after were reduced into two
dimensions

(a) Distribution of Company Names by Name’s
Length

(b) Distribution of company names by amount
of words

Figure 5.5: Distribution of company names exist in job ad corpus

22

CHAPTER 6

DISCUSSION

Upon analyzing the results presented in the previous chapter, we can conclude the follow-

ing: First, the novel approach we call CompanyName2Vec, which defines a vector repre-

sentation of company names based on job ads, had promising results compared to other

algorithms (see Table 5.1) and is helpful for the task of CEM (see Section 4.2). Com-

panyName2Vec algorithm captures the company names semantics and manages common

prefixes, suffixes, and punctuation for company synonyms, like PepsiCo’s suffixes - Inc,

Corp., Co., Company, Etc. (see Figure 5.3). CompanyName2Vec manages less popular

suffixes as well, which may include a location or a point of interest. For example, HCA

Capital Richmond is a synonym of HCA Healthcare. HCA Capital Richmond is a synonym

due to the presence of HCA capital offices, which are located in Richmond, VA (see Fig-

ure 5.4). Another example is Pepsi - New York, which is a synonym of PepsiCo’s office in

New York City (see Figure 5.3). A company’s business line can be attached to a company

name as a synonym, such as Home Depot Tools Rental (see Figure A.2), or Lowe’s Home

Improvement (see Figure A.1). Home Depot Tools Rental is a synonym for Home Depot,

and Lowe’s Home Improvement is the company slogan.

Second, we observed that “best partial” heuristic (see Section 2.2.1) works well in the

case of matching company names because of its short length. The median length of a

company name is 21 characters (see Figure 5.5b), and it consists in the median case of just

three words (see Figure 5.5b).

Third, based on the method’s performance comparison (see Table 5.1), we found the

CompanyName2Vec outperforms the other algorithms tested, while the second-best algo-

rithm measured is the Fuzzy distance matching.

fourth, as for company abbreviations, due to lack of semantics in company name abbre-

23

viations, the CompanyName2Vec solution performs just as well as Fuzzy distance match-

ing.

Lastly, we found the CompanyName2Vec method works better than the Fuzzy method

mainly because the CompanyName2Vec uses the language semantic. For example, trying

to match “Pepsi - New York” with “PepsiCo Inc.” and “New York Life” using Fuzzy

distance matching returns “New York Life” because New York is a significant part of both

names. The CompanyName2Vec method returns “PepsiCo Inc.” based on an LSTM model,

which extracts the company naming semantics from the training set.

24

CHAPTER 7

CONCLUSIONS AND FUTURE WORK

In this study, we introduced CompanyName2Vec, a novel, generic open-source algorithm

which uses job ads and deep learning to address some of the challenges associated with

company name synonyms. We provided a comprehensive description of our algorithm’s

steps, starting with a collection of job ads and finding company name synonyms using the

job ads fingerprinting technique and generated company name synonyms datasets. We used

text matching heuristics to reduce wrong synonyms and used the dataset to generate an Bi-

LSTM model. This model generates a vector representation given any company name.

We collected a set of synonyms for the Fortune 1,000 companies in the United States and

used them to test and compare the CompanyName2Vec algorithm with several different

matching algorithms. We matched all the Fortune 1,000 companies’ synonyms with their

canonical names and analyzed the results.

We make the following observations and conclusions:

1. The CompanyName2Vec algorithm was beneficial for confronting the problem of

recommending synonyms for a given company name with higher Success@k than

other evaluated methods.

2. The CompanyName2Vec algorithm helps solve the CEM problem using job-ads data

and requires no company’s information for matching besides its name.

A possible future research direction is to examine additional configurations that may

improve similar name suggestions:

• Using more comprehensive job ads’ fingerprinting technique using additional infor-

mation than just the job description, such as work location, contact information, com-

pany logo, Etc.

25

• Exploring other models than Bi-LSTM for name embedding, like bag of words, con-

volutional neural network (CNN), and bidirectional encoder representations from

transformer (BERT).

Another avenue to pursue is learning company relations from the job ads corpus, for

example, a parent company, a subsidiary, a holding company, Etc.

26

REFERENCES

[1] Z. Sun, K. Strang, and S. Firmin, “Business analytics-based enterprise information
systems,” Journal of Computer Information Systems, vol. 57, no. 2, pp. 169–178,
2017.

[2] J. Liebowitz, “Business analytics and decision-making: The years ahead,” The World
Financial Review, vol. 28, 2014.

[3] Z. Sun, L. Sun, and K. Strang, “Big data analytics services for enhancing business
intelligence,” Journal of Computer Information Systems, vol. 58, no. 2, pp. 162–169,
2018.

[4] T. Gschwind, C. Miksovic, J. Minder, K. Mirylenka, and P. Scotton, “Fast record
linkage for company entities,” in 2019 IEEE International Conference on Big Data
(Big Data), IEEE, 2019, pp. 623–630.

[5] A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios, “Duplicate record detection:
A survey,” IEEE Transactions on knowledge and data engineering, vol. 19, no. 1,
pp. 1–16, 2006.

[6] E. Rahm and H. H. Do, “Data cleaning: Problems and current approaches,” IEEE
Data Eng. Bull., vol. 23, no. 4, pp. 3–13, 2000.

[7] D. Vesset, B. McDonough, D. Schubmehl, and M. Wardley, “Worldwide business
analytics software 2013–2017 forecast and 2012 vendor shares (doc# 241689),” Re-
trieved, vol. 6, no. 28, p. 2014, 2013.

[8] M. Paganelli, P. Sottovia, F. Guerra, and Y. Velegrakis, “Tuner: Fine tuning of rule-
based entity matchers,” in Proceedings of the 28th ACM International Conference
on Information and Knowledge Management, 2019, pp. 2945–2948.

[9] L. Getoor and A. Machanavajjhala, “Entity resolution: Theory, practice & open chal-
lenges,” Proceedings of the VLDB Endowment, vol. 5, no. 12, pp. 2018–2019, 2012.

[10] I. Veldman, “Matching profiles from social network sites,” 2009.

[11] S. Chaudhuri, V. Ganti, and R. Motwani, “Robust identification of fuzzy dupli-
cates,” in 21st International Conference on Data Engineering (ICDE’05), IEEE,
2005, pp. 865–876.

[12] O. Bousquet, U. von Luxburg, and G. Rätsch, Advanced Lectures on Machine Learn-
ing: ML Summer Schools 2003, Canberra, Australia, February 2-14, 2003, Tübingen,
Germany, August 4-16, 2003, Revised Lectures. Springer, 2011, vol. 3176.

27

[13] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, and Z. Ives, “Dbpedia: A
nucleus for a web of open data,” in The semantic web, Springer, 2007, pp. 722–735.

[14] K. K. Jones, S. N. Zenk, E. Tarlov, L. M. Powell, S. A. Matthews, and I. Horoi, “A
step-by-step approach to improve data quality when using commercial business lists
to characterize retail food environments,” BMC research notes, vol. 10, no. 1, p. 35,
2017.

[15] L. Getoor and C. P. Diehl, “Link mining: A survey,” Acm Sigkdd Explorations Newslet-
ter, vol. 7, no. 2, pp. 3–12, 2005.

[16] O. Benjelloun, H. Garcia-Molina, D. Menestrina, Q. Su, S. E. Whang, and J. Widom,
“Swoosh: A generic approach to entity resolution,” The VLDB Journal, vol. 18, no. 1,
pp. 255–276, 2009.

[17] D. G. Brizan and A. U. Tansel, “A. survey of entity resolution and record linkage
methodologies,” Communications of the IIMA, vol. 6, no. 3, p. 5, 2006.

[18] I. P. Fellegi and A. B. Sunter, “A theory for record linkage,” Journal of the American
Statistical Association, vol. 64, no. 328, pp. 1183–1210, 1969.

[19] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood from incom-
plete data via the em algorithm,” Journal of the Royal Statistical Society: Series B
(Methodological), vol. 39, no. 1, pp. 1–22, 1977.

[20] G. Navarro, “A guided tour to approximate string matching,” ACM computing sur-
veys (CSUR), vol. 33, no. 1, pp. 31–88, 2001.

[21] F. J. Damerau, “A technique for computer detection and correction of spelling er-
rors,” Communications of the ACM, vol. 7, no. 3, pp. 171–176, 1964.

[22] W. E. Yancey, “Evaluating string comparator performance for record linkage,” Statis-
tics, vol. 5, p. 38, 2005.

[23] S. Zhang, Y. Hu, and G. Bian, “Research on string similarity algorithm based on lev-
enshtein distance,” in 2017 IEEE 2nd Advanced Information Technology, Electronic
and Automation Control Conference (IAEAC), IEEE, 2017, pp. 2247–2251.

[24] SeatGeek, Fuzzy-wuzzy python package, (accessed July 16, 2021).

[25] W. W. Cohen, “Integration of heterogeneous databases without common domains
using queries based on textual similarity,” in Proceedings of the 1998 ACM SIGMOD
international conference on Management of data, 1998, pp. 201–212.

28

[26] D. Holmes and M. C. McCabe, “Improving precision and recall for soundex re-
trieval,” in Proceedings. International Conference on Information Technology: Cod-
ing and Computing, IEEE, 2002, pp. 22–26.

[27] A. J. Lait and B. Randell, “An assessment of name matching algorithms,” Technical
Report Series-University of Newcastle Upon Tyne Computing Science, 1996.

[28] P. Christen, “A comparison of personal name matching: Techniques and practi-
cal issues,” in Sixth IEEE International Conference on Data Mining-Workshops
(ICDMW’06), IEEE, 2006, pp. 290–294.

[29] N. Elbegbayan et al., “Winnowing, a document fingerprinting algorithm,” TDDC03
Projects, Spring, 2005.

[30] S. Schleimer, D. S. Wilkerson, and A. Aiken, “Winnowing: Local algorithms for
document fingerprinting,” in Proceedings of the 2003 ACM SIGMOD international
conference on Management of data, 2003, pp. 76–85.

[31] J. Parapar and Á. Barreiro, “Winnowing-based text clustering,” in Proceedings of the
17th ACM conference on Information and knowledge management, 2008, pp. 1353–
1354.

[32] A. T. Wibowo, K. W. Sudarmadi, and A. M. Barmawi, “Comparison between fin-
gerprint and winnowing algorithm to detect plagiarism fraud on bahasa indonesia
documents,” in 2013 International Conference of Information and Communication
Technology (ICoICT), IEEE, 2013, pp. 128–133.

[33] A. Aiken, “Moss: A system for detecting software similarity,” vol. 29, p. 2017, 1994,
(accessed July 12, 2021).

[34] Y. Bengio, R. Ducharme, and P. Vincent, “A neural probabilistic language model,”
in Advances in Neural Information Processing Systems, 2001, pp. 932–938.

[35] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of word repre-
sentations in vector space,” arXiv preprint arXiv:1301.3781, 2013.

[36] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, “Distributed repre-
sentations of words and phrases and their compositionality,” in Advances in neural
information processing systems, 2013, pp. 3111–3119.

[37] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors for word rep-
resentation,” in Proceedings of the 2014 conference on empirical methods in natural
language processing (EMNLP), 2014, pp. 1532–1543.

29

[38] A. Frome, G. Corrado, J. Shlens, S. Bengio, J. Dean, M. Ranzato, and T. Mikolov,
“Devise: A deep visual-semantic embedding model,” 2013.

[39] P. Li, Y. Liu, M. Sun, T. Izuha, and D. Zhang, “A neural reordering model for phrase-
based translation,” in Proceedings of COLING 2014, the 25th International Confer-
ence on Computational Linguistics: Technical Papers, 2014, pp. 1897–1907.

[40] J. Zhang, S. Liu, M. Li, M. Zhou, and C. Zong, “Bilingually-constrained phrase
embeddings for machine translation,” in Proceedings of the 52nd Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), 2014,
pp. 111–121.

[41] J. Zhao, M. Lan, Z.-Y. Niu, and Y. Lu, “Integrating word embeddings and tradi-
tional nlp features to measure textual entailment and semantic relatedness of sen-
tence pairs,” in 2015 International Joint Conference on Neural Networks (IJCNN),
IEEE, 2015, pp. 1–7.

[42] B. Salehi, P. Cook, and T. Baldwin, “A word embedding approach to predicting the
compositionality of multiword expressions,” in Proceedings of the 2015 Conference
of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, 2015, pp. 977–983.

[43] E. Vylomova, L. Rimell, T. Cohn, and T. Baldwin, “Take and took, gaggle and goose,
book and read: Evaluating the utility of vector differences for lexical relation learn-
ing,” arXiv preprint arXiv:1509.01692, 2015.

[44] Q. Le and T. Mikolov, “Distributed representations of sentences and documents,” in
International conference on machine learning, PMLR, 2014, pp. 1188–1196.

[45] R. Rivest and S. Dusse, The md5 message-digest algorithm, 1992.

[46] K. Greff, R. K. Srivastava, J. Koutnk, B. R. Steunebrink, and J. Schmidhuber, “Lstm:
A search space odyssey,” IEEE transactions on neural networks and learning sys-
tems, vol. 28, no. 10, pp. 2222–2232, 2016.

[47] A. F. Agarap, “Deep learning using rectified linear units (relu),” arXiv preprint
arXiv:1803.08375, 2018.

[48] U. B. of Labor Statistics, Job openings and labor turnover summary, (accessed June
21, 2021).

[49] Fortune magazine, (accessed November 14, 2021).

30

[50] F. Garcin, B. Faltings, O. Donatsch, A. Alazzawi, C. Bruttin, and A. Huber, “Offline
and online evaluation of news recommender systems at swissinfo. ch,” in Proceed-
ings of the 8th ACM Conference on Recommender systems, 2014, pp. 169–176.

[51] S. Brin and L. Page, “The anatomy of a large-scale hypertextual web search engine,”
Computer networks and ISDN systems, vol. 30, no. 1-7, pp. 107–117, 1998.

[52] L. Van der Maaten and G. Hinton, “Visualizing data using t-sne.,” Journal of ma-
chine learning research, vol. 9, no. 11, 2008.

31

Appendices

APPENDIX A

ADDITIONAL RESULTS

(a) Zoom out view on Lowe’s Inc. synonyms and other company synonyms near by

(b) Examples for Lowe’s Inc. synonyms

Figure A.1: A plot of Lowe’s Inc. synonyms’ vectors after were reduced into two dimen-
sions

33

(a) Zoom out view on Home Depot synonyms and other company synonyms near by

(b) Examples for Home Depot synonyms

Figure A.2: A plot of Home Depot synonyms’ vectors after were reduced into two dimen-
sions

34

APPENDIX B

REFERENCES TO PROJECT CODE AND DATASETS

Code and datasets can be found at the following link:

https://tinyurl.com/he4tzk

35

Reichman University

Efi Arazi School of Computer Science

M.Sc. program - Research Track

CompanyName2Vec: Company Entity
Matching Based on Job Ads

by

Ran Ziv

M.Sc. dissertation, submitted in partial fulfillment of the requirements for the M.Sc.

degree, research track, School of Computer Science, Reichman University

September 2021

i

This work was carried out under the supervision of Dr. Michael Fire from the de-

partment of Software and Information Systems Engineering, Faculty of Engineering, Ben

Gurion University, and with guidance from Dr. Ilan Gronau from the Efi Arazi School of

Computer Science, Reichman University

ii

Abstract

Entity Matching is an essential part of all real-world systems that take in structured and

unstructured data coming from different sources. Typically no common key is available for

connecting records. Massive data cleaning and integration processes require completion

before any data analytics or further processing can be performed. Although record linkage

is frequently regarded as a somewhat tedious but necessary step, it reveals valuable insights,

supports data visualization, and guides further analytic approaches to the data. Here, we

focus on organization entity matching. We introduce CompanyName2Vec, a novel algo-

rithm to solve company entity matching (CEM) using a neural network model to learn

company name semantics from a job ad corpus, without relying on any information on the

matched company besides its name. Based on a real-world ground truth dataset, we show

that CompanyName2Vec outperforms other evaluated methods and solves CEM challenge

with average success rate of 89.3%

iii

TABLE OF CONTENTS

List of Tables . vi

List of Figures . vii

Chapter 1: Introduction . 1

Chapter 2: Related Work . 5

2.1 Entity Matching . 5

2.1.1 Supervised Approaches . 5

2.1.2 Unsupervised Approaches . 6

2.2 Distance Metrics . 6

2.2.1 Character-Based Similarity Metrics 7

2.2.2 Token-Based Similarity Metrics 8

2.2.3 Phonetic Similarity Metrics . 8

2.3 Document Fingerprinting . 9

2.4 Text Embedding . 9

Chapter 3: Method . 11

3.1 Hiring Company Names and Synonyms 12

3.2 Job Ad Fingerprinting . 12

iv

3.3 Company Synonyms . 13

3.4 Company Name Embedding . 13

Chapter 4: Experimental Study . 16

4.1 Dataset . 16

4.2 Evaluation Process and Performance Metrics 17

Chapter 5: Results . 19

Chapter 6: Discussion . 26

Chapter 7: Conclusions and Future Work . 28

References . 30

Appendices . 34

Appendix A: References to project Code and Datasets 35

v

LIST OF TABLES

2.1 Company Names Synonyms Ratio Similarity vs. Partial Ratio Similarity . . 8

3.1 For example, we provide four fingerprint values and the lists of hiring com-
pany names posted with the same job ad’s fingerprint 14

5.1 Algorithms’ Performance Comparison . 20

vi

LIST OF FIGURES

3.1 Flowchart of the implemented methodology. 11

5.1 Fingerprints Distribution by Company Names 20

5.2 Synonym distribution of the following companies as were calculated by
the CompanyName2Vec algorithm and reduced into two dimensions with
t-SNE: ABM Industries, ACCO Brands, HCA Healthcare, Home Depot,
J.B. Hunt Transport Services, Inc., JPMorgan Chase & Co., Lowe’s Inc.,
and PepsiCo . 21

5.3 A plot of PepsiCo synonyms’ vectors after were reduced into two dimensions 21

5.4 A plot of HCA Healthcare synonyms’ vectors after were reduced into two
dimensions . 22

5.5 A plot of Lowe’s Inc. synonyms’ vectors after were reduced into two di-
mensions . 23

5.6 A plot of Home Depot synonyms’ vectors after were reduced into two di-
mensions . 24

5.7 Distribution of company names exist in job ad corpus 25

vii

CHAPTER 1

INTRODUCTION

Enterprise Business intelligence systems have emerged as a disruptive technology, and in-

novative solution to the global economy [1]. Business intelligence became an emerging

and fast-growing field in the past years [2]. Big data and its emerging technologies, includ-

ing business intelligence and big data analytics systems, have become a mainstream market

adopted broadly across industries, organizations, and geographic regions to facilitate data-

driven decision making and significantly affecting the way that decision-makers, such as

CEOs, operate and run their business [2, 3]. One of the fundamental functionalities a busi-

ness intelligence system must have is the ability to integrate many data sources [2, 4]. The

integration of multiple sources usually requires linking between the significant entities that

exist across data sources and systems. Usually, those entities function as a “primary key”

in each system [4]. The technique used for performing such linkage is commonly referred

to as “Record Linkage,” “Data Deduplication,” “Object Matching,” or “Entity Matching”

[4, 5].

Entity Matching (EM) is a fundamental task in data integration scenarios. EM is the

task to identify semantically equivalent entities referring to the same real-world object (e.g.,

persons, products, companies) within one data source or between different sources. EM is

also a core technique for data cleaning [5, 6] and data integration [7, 8]. Accurate and fast

entity matching has huge practical implications in a wide variety of commercial, scientific

and security domains [9]. EM solutions can be divided into three separate groups: su-

pervised, unsupervised, and semi-supervised approaches [10, 11]. Supervised approaches

require labeled training sets or predefined thresholds on which to base their decisions. Un-

fortunately, in most real-world cases, the variety of patterns that can be observed are not

feasible to be captured in a training set, and therefore, these solutions are quite limited.

1

Unsupervised approaches help find previously unknown patterns in a dataset without pre-

existing labels and are based on clustering algorithms that group together items with high

similarity [12]. Semi-supervised approaches fall between the unsupervised approach (with

no labeled training data) and a supervised approach (with only labeled training data). Semi-

supervised approaches are based on a small set of labeled data and a large set of unlabeled

data.

Enterprise business intelligence applications require the integration of many data sources.

In such applications, one of the most crucial entity attributes to be linked is the company

name [4]. A company usually exists in many of the enterprise systems. For example, a

company can represent a potential customer or a sales lead in the sales system, an existing

customer in the customer relationship management system, a supplier in the logistics sys-

tem, etc. Although a company name can be noisy, in most cases, this is one of the most

potent properties for company entity matching (CEM) due to the lack of unique shared

identifiers across datasets [4]. To improve CEM results, many of the existing methods use

more company properties other than the company name, such as location, primary phone

number, industry, website URL, and more. Such company information is usually costly to

acquire on a large scale. The largest public source for such company information is DB-

pedia [13]. DBpedia contains about 65,000 company entities worldwide, derived from the

English version of Wikipedia [4]. There are several companies worldwide that hold a much

larger dataset of company information, such as Dun and Bradstreet and Infogroup [14].

These companies do not provide the complete dataset but provide a limited paid service for

company information enrichment, mainly for sales and marketing purposes.

In this study, we developed CompanyName2Vec (see Chapter 3), a novel algorithm

to solve CEM using a neural network model to learn company name semantics from a

job ad corpus. Once trained, such a model can suggest synonymous company names.

As the name implies, CompanyName2Vec represents each different company name as a

vector. The vectors are chosen carefully such that a simple mathematical function, like

2

cosine similarity between vectors, indicates the level of semantic similarity between the

company names represented by those vectors. We used CompanyName2Vec for CEM. For

this purpose, we created a real-world dataset that consists of the largest companies in the

US and their synonyms. We used this dataset to evaluate the CompanyName2Vec algorithm

and compared it with other known entity matching methods.

To develop the CompanyName2Vec algorithm, we needed to have a relatively large

corpus of company names. Job ads consist company names, and are available publicly on

a large scale but are very noisy (see Section 3.3) due to how job ad distribution works.

Companies distribute their jobs to multiple job boards and sometimes to recruitment and

staffing agencies to reach as many job seekers as possible. In many cases, the process for

posting a job ad on job boards requires the employer to manually type the job information,

including company name, location, title, description, and more, which causes some incon-

sistency and duplication of job ads. For example, Tesla’s job ad can be posted with several

employer names like tesla; Tesla, Inc.; Tesla Motors; Tesla Motors, Inc.; and Ursus, which

is a staffing and recruitment agency. CompanyName2Vec leverages the availability of job

ads publicly (see Section 4.1) and their inconsistency to learn company name semantics

(see Section 3.4).

Our method includes the following steps: First, we collected a large dataset of job ads

(see Section 4.1). Second, we used a fingerprinting technique and created a list of company

names that posted the same job (see Sections 3.2 and 3.1). A data cleansing step was also

required to filter out non-valid job ads and company names to create a ground truth dataset.

Next, we pre-processed this cleaned dataset and created train and test sets (see Section 3.3).

Afterward, we evaluated a neural network architecture to create a vector representation for

a company name (see Section 3.4). We developed a method to learn what parts in the com-

pany name are more important than others and created a vector representation that reflects

it accordingly. For example, common suffixes like Inc. and LLC, usually define the com-

pany legal entity type, and employers sometimes do not include them when posting a job

3

ad because of their low importance. Subsequently, we used cosine distance for measuring

the similarity between different vectors (see Section 3.4). Lastly, we created a real-world

dataset to evaluate the complete CEM solution (see Chapter 4).

An example for an application of this method is optimizing a company’s sales opera-

tions, where there is a need to filter irrelevant sale leads related to existing customers. In

order to do so, it is required to join two tables, table A exists in the marketing system and

includes sales leads, and the other table B lives in the billing system and includes the com-

pany’s existing customers. Due to the lack of a cross-systems unique identifier, the only

way to join those tables is by matching the company names. The described algorithm re-

solves such a join by using the embedding model to create a vector representation for every

company name in tables A and B and finding each company name in table A the similar

company name in table B by utilizing the vectors distance (see Section 3.4).

Our main contributions are twofold:

• CompanyName2Vec, a novel algorithm to create a mathematical representation for a

company name that holds the naming semantics, which enables it to measure simi-

larity between any given company names without relying on any information on the

matched company besides its name - available in Chapter 3.

• An end-to-end, highly scalable, enterprise-grade system that uses CompanyName2Vec

algorithm to suggest company name synonyms to solve company entity matching -

available in Chapter 4.

The remainder of the paper is organized as follows: In Chapter 2, we present an

overview of related studies. In Chapter 3, we present the methods used to create the Com-

panyName2Vec embedding model. In Chapter 4, we describe the experimental study we

conducted to construct the model and evaluate it. Chapter 5, we present the obtained re-

sults. In Chapter 6, we discuss the obtained results. Lastly, in Chapter 7, we present our

conclusions from this study and offer future research directions.

4

CHAPTER 2

RELATED WORK

Entity Matching (EM) is an important task, which many researchers in the past have ad-

dressed [5, 15, 16, 17]. In this study, we addressed a particular case of EM, namely, the

matching of company names across multiple datasets and systems. This chapter describes

various related research results and discusses their connection to the solution we developed.

2.1 Entity Matching

EM addresses matching entities between different data sources or deduplication of entities

within a single source. EM uses algorithms to both detect duplicates in data and resolve

them. As described above, EM solutions can be divided into three separate groups: su-

pervised, unsupervised, and semi-supervised approaches. In the following subsections, we

describe the different methods for EM.

2.1.1 Supervised Approaches

The supervised approaches are based on training data in the form of record pairs, pre-

labeled as match or not match. In 1969, Ivan Fellegi and Alan Sunter [18] denote two

classes: A class M, which represents matches, and a class U, which represents non-matches.

There are three main approaches: Rule-based, learning-based, and distance-based.

Rule-Based. One way of performing entity matching is by setting a set of rules that

identify the conditions that would make two records be considered as matched. For in-

stance, matching a customer entity which includes its name and full address, it could be of

the form: (name, edit,=, 1) ∧ (address, edit, >, 0.7), which indicates that two customer

records would match if their names are fully matched and their address and city attributes

are more than 70% similar.

5

Learning-Based. Learning-based approaches [5] use training sets that consist of pairs

labeled as Match or Non-match. Each pair includes a comparison vector that represents

the comparable attributes of the two items in the pair. Assuming the density function for

the classes M and U are different, the EM problem can be treated as a Bayesian inference

problem.

Distance-Based. Distance-based approaches [5] theoretically do not need labeled data.

In these approaches, a distance metric is defined between data items. A decision is made

based on whether or not this pair is a match or not based on the distance between two items

and threshold. This threshold can be set by making a reliable estimation. A good threshold

can improve the results, therefore using a training set for setting this threshold might be

desirable.

2.1.2 Unsupervised Approaches

The idea behind unsupervised approaches is that similar comparison vectors correspond to

the same class [5]. Unsupervised learning for EM has its roots in the probabilistic model

proposed in 1969 by Ivan Fellegi and Alan Sunter [18]. When there is no training data

to compute the probability estimates, it is possible to use variations of the Expectation-

Maximization algorithm [19] to better identify appropriate clusters in the data.

2.2 Distance Metrics

A common source for mismatches in database entries is the typographical variation of string

data. One of the methods to deal with typographical variations is to measure the similarity

between two different strings. In this section, we describe string matching techniques that

have been applied in EM.

6

2.2.1 Character-Based Similarity Metrics

The character-based similarity metrics method is designed to efficiently manage typograph-

ical errors. A popular character-based method is the Levenshtein distance (also referred as

Edit Distance) [20]. This method measures similarity between two strings by counting the

minimum number of operations, including insertion, deletion or substitutions, required to

transform one string into the other. Damerau-Levenshtein distance [20, 21] is a variation of

the Levenshtein distance where a transposition of two characters is also considered to be an

elementary edit operation in addition to insertion, deletion, and substitution. Jaro distance

[22] is based on the number of common characters and the number of transpositions in two

strings. Winkler distance [22] is a variation of the Jaro distance and gives higher scores to

strings that share the same prefix.

In terms of company names, Levenshtein Distance seems to work well for a single

word or a much longer text, but not for just for a few words [23], as in our use case. For

example, “New York Yankees” and “Yankees” are clearly referring to the same company

name, but “New York Mets” and “New York Yankees” are clearly referring to different

ones. Yet, the score of the “wrong” match is higher than the “right” one. For such cases

there is an heuristic called “best partial” [24], which uses partial matching logic. This logic

is implemented in Fuzzy-Wuzzy package [24], which based on Levenshtein Distance [20]

to calculate the differences between two different strings. Given two strings X and Y , let

the shorter string X be of length m. It finds the ratio similarity measure between the shorter

string X and every substring of length m in the longer string Y , and returns the maximum

of those similarity measures. So in the case of ”Yankees” and ”New York Yankees” the

score will be higher than the score of “New York Mets” and “New York Yankees” (see

Table 2.1), since the substring “Yankees” is completely contained in the string “New York

Yankees”.

7

Table 2.1: Company Names Synonyms Ratio Similarity vs. Partial Ratio Similarity

String X String Y Ratio Partial Ratio
Similarity Similarity

YANKEES NEW YORK 61% 100%
YANKEES

NEW YORK NEW YORK 76% 69%
METS YANKEES

NEW YORK NEW YORK 96% 92%
METS MEATS

2.2.2 Token-Based Similarity Metrics

The method of Character-based similarity metrics measures similarity depending only on

the appearance and sequence of characters, while token-based similarity metrics first tok-

enize two strings into sets of tokens (words) and only then compute the similarity between

the two sets. Token-based similarity metrics are robust in measuring the similarity of full

names, for example, where the order of the first name and last name may change from

one string to another. A standard method for Token-based similarity metrics is TF-IDF

(Term Frequency / Inverted Document Frequency) [25], a numerical statistic method that

intends to reflect how important a word is to a document in a collection of documents. Co-

sine similarity [25] measures the similarity of strings by transforming words into vectors,

where the frequency of a word is a dimension in the vector. Cosine similarity measures the

similarity between two strings by measuring the angle between the vectors. Token-based

similarity metrics methods do not take misspellings into account. Therefore those methods

are usually used together with character-based methods to determine whether two tokens

are similar enough [25].

2.2.3 Phonetic Similarity Metrics

Strings may be phonetically similar even if they are not similar at the character or token

level. Different from character-based and token-based similarity metrics, phonetic similar-

ity metrics are limited to a string-based representation. An example of this is, the name

8

Claire. It has two alternatives, Clare and Clair, which are both pronounced the same.

Soundex [26, 27], for example, is one of the best known phonetic encoding algorithms

for indexing names by sound as pronounced in English. Soundex keeps the first letter and

converts the rest of the string into numbers according to a phonetic encoding table. Ad-

ditional string comparison methods can be found in a thorough survey written by Peter

Christen [28].

2.3 Document Fingerprinting

Among digital data, documents are the easiest to copy and remove any signatures or finger-

prints embedded, which make the pirating the hardest to detect [29]. Anyone can just retype

a document or copy a part of it. Document fingerprinting is concerned with accurately iden-

tifying and copying, including small partial copies, within large sets of documents [29]. In

our study, we use fingerprinting for finding hiring company synonyms in the job ads dataset

by calculating a job ad fingerprint and looking for hiring company names with the same

fingerprint. Checksum for example is a small digest of the full document. This method

is simple and sufficient for detecting exact copies, but in some cases, as well as for our

study, there is a requirement in a method which is more local and detects partial copies

like the Winnowing algorithm [30], which selects the q-gram whose hash value is the min-

imum within a sliding window of q-grams. Winnowing is used for text clustering [31],

and detecting plagiarism, like the comparison Agung Toto Wibowo published in 2013 [32]

which detects plagiarism fraud on Bahasa Indonesia documents, or Moss by Alex Aiken

[33] which is a system for measuring software similarity, used by Stanford university for

detecting plagiarism in programming classes.

2.4 Text Embedding

In this study, we used embedding to create a mathematical representation for a company

name that holds the naming semantics. When some object x is said to be embedded in

9

another object y, the embedding is given by some injective and structure-preserving map

f : X → Y . We used text embedding, similarly to what Yoshua Bengio proposed in 2001

by [34], in the form of a feed-forward neural network language model. Modern methods

use a simpler and more efficient neural architecture to learn word vectors, like word2vec

[35, 36], and GloVe [37], based on objective functions that are explicitly designed to pro-

duce high-quality vectors. Neural embedding learned by these methods have been applied

in a myriad of NLP applications, including initializing neural network models for objective

visual recognition [38], or machine translation [39, 40], as well as directly modeling word-

to-word relationships [35, 41, 42, 43], Paragraph vectors, or doc2vec, were proposed in

2014 by Quoc Le and Tomas Mikolov [44] as a simple extension to word2vec to extend the

learning of embedding from words to word sequences. Doc2vec1 is agnostic to the gran-

ularity of the word sequence, and it can equally be a word n-gram, sentence, paragraph,

or document. One of the benefits of using dense and low-dimensional vectors is computa-

tional. The main benefit of this dense representation is generalization power. If we believe

some features may provide similar clues, it is worthwhile to provide a representation that

can capture these similarities. We used text embedding to learn company names semantics

and to measure similarity.

1The term doc2vec was popularized by Gensim, a widely-used implementation of paragraph vectors:
https://radimrehurek.com/gensim/

10

CHAPTER 3

METHOD

The method described below deals with CEM by creating a generic open solution that

matches company names. Unlike many other existing solutions that utilize expensive com-

mercial datasets, the presented method’s novelty uses job-ads data, and it requires no com-

pany’s information for matching besides its name.

Figure 3.1: Flowchart of the implemented methodology.

Our method consists of two main parts: first, the creation of pairs, in which a pair con-

sists of synonyms for the same company based on an analysis of large-scale job ads data

(see Section 3.1); second, the algorithm CompanyName2Vec for constructing an embed-

ding model that utilizes these pairs of synonyms. The embedding model takes as input a

company name and returns as output meaningful vector representation, where two company

11

names that represent the same company will have similar vectors (see Section 3.4).

3.1 Hiring Company Names and Synonyms

Given a job ads corpus, we first create and enrich each job ad with a unique job ad identifier

(aka job ad fingerprint) using a fingerprinting technique (see Section 3.2). Second, we use

the job ad fingerprint to identify company name synonyms. We group the job ad data by

job ad fingerprint and create a list of company names posted with the same fingerprint, or

in other words, company names that were published within the same job ad. Then, we

remove duplicated synonyms and create a list of pairs, where each pair includes company

names that were posted within one or more job ads (see Section 3.3).

A particular case we need to handle is staffing and recruitment agencies, which often

publish their customers’ job ads anonymously and use the staffing or recruitment agency

name instead. Ideally, each pair includes company names that refer to the same company.

Therefore, to reduce such noise, we filter out staffing and recruitment agencies’ names.

(see Section 3.3).

3.2 Job Ad Fingerprinting

Given a dataset of job ads, our method’s first step is to create a unique identifier (aka fin-

gerprint) for each job ad. This component calculates a job ad fingerprint (see Section 2.3)

based on the job description. We used a local approach to calculate fingerprints [30].

First we calculated a Winnowing list of fingerprints. We used the following parameters:

kgram len = 4, window len = 5, base = 10 and modulo = 1000. Then, we utilized the

MD5 hashing algorithm [45] to convert the list of fingerprints into a single short 128-bit

job identifier to improve computation and debugging efficiency.

12

3.3 Company Synonyms

The purpose of collecting company synonyms from job ads is to create a dataset for the

method’s embedding model (see Section 3.4). An outcome of it is the creation of a large

database of company synonyms. We utilize the fingerprints to group company names

with the same job ad’s fingerprint to construct training and testing sets. After grouping

the company names by fingerprint, it transforms the group of names into a set of pairs

(iname, jname) where iname’s and jname’s Job Ads have at least one Job Ad’s fingerprint in

common. Namely, let A be a set of job ads, and let F be a set of fingerprints. The function

Fingerprint : A 7→ F maps a job adds to a fingerprint. Then, for each fingerprint value a,

we define the following set:

∀i, j ∈ A, (i.name, j.name) ∈ Fa ⇐⇒ Fingerprint(i) = Fingerprint(j)

It is important to note that a company may have several fingerprints, at least as many as

the number of open positions it tries to fill. In addition, we applied a filter to remove staffing

and recruitment agencies using naive text matching. From our analysis, we found that much

of the noise can be reduced by filtering company names which include the following strings:

“staff,” “recruit,” “jobs,” or “unknown.”

Lastly, we removed duplicated pairs from this large list of names pairs, which created

when two company names have more than just a single job ad fingerprint in common.

3.4 Company Name Embedding

In the algorithm’s second step, we utilize an embedding algorithm (see Section 2.4) to cap-

ture the semantics of company names by placing semantically similar company names close

together in the embedding space. We call this embedding solution CompanyName2Vec.

Since company names usually use minimal text, a few words, or a few dozens of characters

13

Table 3.1: For example, we provide four fingerprint values and the lists of hiring company
names posted with the same job ad’s fingerprint

Fingerprint Company Names
9abc97a34a 7c5630b0673083fb9c61c1 99 Cents Only Stores; 99 Cent Only; 99 Cents

Only; 99 Cents Only Stores LLC A.O. Smith;
AO Smith; AO Smith Corporation; A. O. Smith;
A. O. Smith Corporation; A. O. smith; Smith
(A.O.) Corporation; Next Generation Recruit-
ment and Staffing Agency

c9245756a0edca343c96a1a3b8762fc0 ADP; ADP Automatic Data Processing; ADP
Technology Services, Inc.; ADP.com; Auto-
matic Data Processing, Inc.; ADP, Inc.

251dc200b096aaa160b744b7b907b9cc BD; Becton Dickinson; BD (Becton, Dickin-
son and Company); Becton Dickinson & Com-
pany; Becton Dickinson and Company; Bec-
ton, Dickinson & Co.; Becton, Dickinson & Co.
(BD); Becton, Dickinson & Company; Becton,
Dickinson and Company; Becton, Dickinson;
Beckon Dickinson; Beckton Dickinson

9cc691a26109a7474efbe7c0a6f8f066 Coca-Cola; Coca-Cola Bottling; Reyes Coca
Cola Bottling; Reyes Coca-Cola Bottling;
Reyes Coca-Cola Bottling Group; Coca-Cola
Bottling Co. Consolidated; Coca-Cola Bottling
Co. Consolidated (CCBCC); Coca-Cola Bot-
tling Company; Coca-Cola Bottling Company
Consolidated; Coke consolidated; Leap Staffing
Agency

on average, we first split the company name into characters and used this representation for

a company name instead of a word granularity level. Then used n-gram tokenizer, where n

between 1 and 3, and embedded its result using a hash function. Next, we build a sequence

embedding sub-model based on a long short-term memory (LSTM) encoder [46] with Rec-

tified Linear Unit (ReLU) activation function [47]. In order to increase the context available

to the algorithm, we used a bidirectional LSTM (Bi-LSTM), a sequence processing model

that consists of two LSTMs: one takes the input in a forward direction, and the other in a

backward direction. We set character embedding dimensions to 400 and sequence encoder

dimensions to 400 as well. We split the company synonyms into two mutually exclusive

14

sets, train and test sets, with a ratio of 9:1, where the train set consists of about 90% of the

synonyms, and the test set 10%. In order to avoid biasing of the experimental study results

(see 5), we filtered out about 500 names from both the train and the test sets names, which

also exist in the dataset we used for measuring the method performance - fortune 1,000

companies dataset (see 4.1).

Lastly, we calculated the embedding representation for all company names and syn-

onyms, so it will be possible to calculate using distance metrics (see Section 2.2) the most

similar names for each company name.

15

CHAPTER 4

EXPERIMENTAL STUDY

There are tens of millions of open job ads in the United States published in many job boards

and job search engines, like Indeed, ZipRecruiter, Glassdoor, Bing Jobs, and Google Jobs.

In this study, we used a job-ads corpus from one of the biggest job boards in the United

States, with more than ten million job ads. Although the dataset was acquired from a single

source, there was considerable inconsistency in some job’s properties, such as city names.

For example, the city Los Angeles in California, USA can be found in many variations,

mainly due to letter capitalization, punctuation and abbreviation, such as “Los-Angeles,

CA”; “la, ca”; “los angeles california,” and more. Company names are also being regulated

and need to comply with the state naming rules in the states where they will be doing

business. Otherwise, a state might not accept the documents filed to form or qualify the

company. Naming conventions include suffixes like “LLC,” “Inc.,” “Ltd.”, etc.

4.1 Dataset

According to the U.S. Bureau of Labor Statistics (BLS) there are several million job open-

ings in the United States, which increased to a new level of almost ten million job openings

after the COVID-19 pandemic hit the markets recently in 2020 [48]. However, looking

at job boards and job search engines, like Indeed,1 ZipRecruiter,2 Glassdoor,3 Bing Jobs,4

and Google Jobs,5 show there are tens of millions of open job ads in the United States pub-

lished, an order of magnitude larger than what the BLS states. We collected from one of the

largest job boards in the United States a large job ads dataset that contains active job ads

1www.indeed.com
2www.ziprecruiter.com
3www.glassdoor.com
4www.bing.com
5www.google.com

16

that were existed during June 2020. This dataset includes about ten million job ads. We

captured for each job ad the following information: Title, Description, Hiring Company

Name, and Location (Country, State, City, and Zip Code).

To evaluate the performance of the described solution, we manually created a ground-

truth dataset for company canonical names and their synonyms based on the Fortune 1,000

companies in the United States. This list consists the largest American companies ranked

by revenues, as compiled and published by the American business magazine Fortune. It

only includes companies that are incorporated or authorized to do business in the United

States and for which revenues are publicly available regardless of whether they are public

companies listed on a stock market.

4.2 Evaluation Process and Performance Metrics

The performance of the recommendations generated by our method was measured by the

average of Success@k (Success at rank k) rate, which stands for the mean probability that a

relevant company name occurs within the top k of the ranking. Similar to how the relevance

of the search engines is measured, in most cases, people are only interested in the first page

of the results and do not bother to move on to subsequent pages [49]. In extreme cases,

only the top result matters. For example, only a single value can be used when performing

a join operation between two tables in a database.

We compared the solution’s performance with edit-distance matching, fuzzy distance

matching, and random matching, common best algorithms, as described in Chapter 2. We

treated the ground-truth dataset (see Section 4.1) as a mapped list of synonyms to tags,

where a tag is the most common company name (canonical name).

We used the ground-truth dataset with the created model described in Chapter 3 and

generated a vector representation for both canonical names and synonyms. For each syn-

onym’s vector, we calculated its cosine distance with all the canonical name’s vectors. As a

result, we generated a NxM matrix R, where N is the total number of canonical names in

17

the ground-truth dataset, and M is the size of the complete set of synonyms. Rij represents

the cosine distance between the vector representation of a canonical name i and the vector

representation of a synonym j. For each given synonym, we sorted the canonical names

based on their cosine distance Rij . Lastly, the closest k canonical names were presented as

the recommended canonical names for each given synonym. We used the k closest vectors

provided in the matrix R, and calculated the metric of Success@k, for k = 1, 2, 3. We

defined success as equal to 1 in case the canonical company name returned in the closest k

company names, or to be equal to 0 otherwise. Namely, we define Success@k as follows:

Success@k(synonym) :=|{Tagged Canonical Name}∩

{k Closest Canonical Names}|

Where tagged canonical company name is mapped to the company synonym in the

ground-truth dataset.

AvgSuccess@k :=

∑
s∈Synonyms success@k(s)

|Synonyms|

18

CHAPTER 5

RESULTS

To analyze the performance of the implemented method (see Chapter 3), we used the job

ads dataset (see Section 4.1) to train the embedding CompanyName2Vec model (see Sec-

tion 3.4). First, we analyzed the job ads dataset. We found that the majority of the job ads,

about 88.5%, are posted within the United States, similarly to the ground-truth dataset (see

Section 4.1), which was used in the solution’s evaluation process.

The job ads fingerprinting result (see Section 3.2) shows that there are 4.25 million

of unique job ad fingerprints out of 10 million job ads. From the distribution of job ads

fingerprints (see Figure 5.1), only 1.2 million of the unique job ad fingerprints, which were

posted with at least two different company names, could be used for training the embedding

CompanyName2Vec model. We found that applying the agencies staffing companies filters

(see Section 3.3) removed 9.5% of the job ads, 8.25% of the fingerprints, and just 2.5% of

the company names.

We generated the embedding CompanyName2Vec model based on the job ads dataset

(see Section 4.1). We used the generated model for resolving CEM and matched the For-

tune 1,000 canonical company names with their synonyms. Figure 5.2 presents the distribu-

tion of the associated names of the following companies based on the CompanyName2Vec

vector representation after being reduced into two dimensions using t-SNE: ABM Indus-

tries, ACCO Brands, HCA Healthcare, Home Depot, J.B. Hunt Transport Services, Inc.,

JPMorgan Chase & Co., Lowe’s Inc., and PepsiCo. As can be seen, there are eight clusters,

one per every company includes the company synonyms grouped together, which indicates

that CompanyName2Vec successfully suggested relevant synonyms for those companies.

Finally, we calculated AvgSuccess@k (see Figure 4.2) for the CompanyName2Vec

solution and compared it with the following several solutions: random matching, edit-

19

distance matching [20], and fuzzy matching [11]. The CompanyName2Vec performs better

than all the above solutions, with any given tested k (see Table 5.1). The difference found

statistically significant using t-tests with p-value less than 0.001.

Table 5.1: Algorithms’ Performance Comparison

Figure 5.1: Fingerprints Distribution by Company Names

20

Figure 5.2: Synonym distribution of the following companies as were calculated by the
CompanyName2Vec algorithm and reduced into two dimensions with t-SNE: ABM Indus-
tries, ACCO Brands, HCA Healthcare, Home Depot, J.B. Hunt Transport Services, Inc.,
JPMorgan Chase & Co., Lowe’s Inc., and PepsiCo

(a) Zoom out view on PepsiCo synonyms and other company synonyms near by

(b) Examples for PepsiCo synonyms

Figure 5.3: A plot of PepsiCo synonyms’ vectors after were reduced into two dimensions

21

(a) Zoom out view on HCA Healthcare synonyms and other company synonyms near by

(b) Examples for HCA Healthcare synonyms

Figure 5.4: A plot of HCA Healthcare synonyms’ vectors after were reduced into two
dimensions

22

(a) Zoom out view on Lowe’s Inc. synonyms and other company synonyms near by

(b) Examples for Lowe’s Inc. synonyms

Figure 5.5: A plot of Lowe’s Inc. synonyms’ vectors after were reduced into two dimen-
sions

23

(a) Zoom out view on Home Depot synonyms and other company synonyms near by

(b) Examples for Home Depot synonyms

Figure 5.6: A plot of Home Depot synonyms’ vectors after were reduced into two dimen-
sions

24

(a) Distribution of Company Names by Name’s Length

(b) Distribution of company names by amount of words

Figure 5.7: Distribution of company names exist in job ad corpus

25

CHAPTER 6

DISCUSSION

Upon analyzing the results presented in the previous chapter, we can conclude the follow-

ing: First, the novel approach we call CompanyName2Vec, which defines a vector repre-

sentation of company names based on job ads, had promising results compared to other

algorithms (see Table 5.1) and is helpful for the task of CEM (see Section 4.2). Com-

panyName2Vec algorithm captures the company names semantics and manages common

prefixes, suffixes, and punctuation for company synonyms, like PepsiCo’s suffixes - Inc,

Corp., Co., Company, Etc. (see Figure 5.3). CompanyName2Vec manages less popular

suffixes as well, which may include a location or a point of interest. For example, HCA

Capital Richmond is a synonym of HCA Healthcare. HCA Capital Richmond is a synonym

due to the presence of HCA capital offices, which are located in Richmond, VA (see Fig-

ure 5.4). Another example is Pepsi - New York, which is a synonym of PepsiCo’s office in

New York City (see Figure 5.3). A company’s business line can be attached to a company

name as a synonym, such as Home Depot Tools Rental (see Figure 5.6), or Lowe’s Home

Improvement (see Figure 5.5). Home Depot Tools Rental is a synonym for Home Depot,

and Lowe’s Home Improvement is the company slogan.

Based on the method’s performance comparison (see Table 5.1), we found the Com-

panyName2Vec outperforms the other algorithms tested, while the second-best algorithm

measured is the Fuzzy distance matching.

We found that “best partial” heuristic (see Subsection 2.2.1) works well in the case of

matching company names because of its short length. The median length of a company

name is 21 characters (see Figure 5.7b), and it consists in the median case of just three

words (see Figure 5.7b).

We found the CompanyName2Vec method works better than the Fuzzy method mainly

26

because the CompanyName2Vec uses the language semantic. For example, trying to match

“Pepsi - New York” with “PepsiCo Inc.” and “New York Life” using Fuzzy distance match-

ing returns “New York Life” because New York is a significant part of both names. The

CompanyName2Vec method returns “PepsiCo Inc.” based on an LSTM model, which ex-

tracts the company naming semantics from the training set.

27

CHAPTER 7

CONCLUSIONS AND FUTURE WORK

In this study, we introduced CompanyName2Vec, a novel, generic open-source algorithm

which uses job ads and deep learning to address some of the challenges associated with

company name synonyms. We provided a comprehensive description of our algorithm’s

steps, starting with a collection of job ads and finding company name synonyms using the

job ads fingerprinting technique and generated company name synonyms datasets. We used

text matching heuristics to reduce wrong synonyms and used the dataset to generate an Bi-

LSTM model. This model generates a vector representation given any company name.

We collected a set of synonyms for the Fortune 1,000 companies in the United States and

used them to test and compare the CompanyName2Vec algorithm with several different

matching algorithms. We matched all the Fortune 1,000 companies’ synonyms with their

canonical names and analyzed the results.

We make the following observations and conclusions:

1. The CompanyName2Vec algorithm was beneficial for confronting the problem of

recommending synonyms for a given company name with higher Success@k than

other evaluated methods.

2. The CompanyName2Vec algorithm helps solve the CEM problem using job-ads data

and requires no company’s information for matching besides its name.

A possible future research direction is to examine additional configurations that may

improve similar name suggestions:

• Using more comprehensive job ads’ fingerprinting technique using additional infor-

mation than just the job description, such as work location, contact information, com-

pany logo, Etc.

28

• Taking into account company abbreviations - due to lack of semantics in company

name abbreviations, the CompanyName2Vec solution performs just as well as Fuzzy

distance matching.

• Combining how the name sounds when spoken.

• Exploring other models than Bi-LSTM for name embedding, like bag of words, con-

volutional neural network (CNN), and bidirectional encoder representations from

transformer (BERT).

Another avenue to pursue is learning company relations from the job ads corpus, for

example, a parent company, a subsidiary, a holding company, Etc.

29

REFERENCES

[1] Z. Sun, K. Strang, and S. Firmin, “Business analytics-based enterprise information
systems,” Journal of Computer Information Systems, vol. 57, no. 2, pp. 169–178,
2017.

[2] J. Liebowitz, “Business analytics and decision-making: The years ahead,” The World
Financial Review, vol. 28, 2014.

[3] Z. Sun, L. Sun, and K. Strang, “Big data analytics services for enhancing business
intelligence,” Journal of Computer Information Systems, vol. 58, no. 2, pp. 162–169,
2018.

[4] T. Gschwind, C. Miksovic, J. Minder, K. Mirylenka, and P. Scotton, “Fast record
linkage for company entities,” in 2019 IEEE International Conference on Big Data
(Big Data), IEEE, 2019, pp. 623–630.

[5] A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios, “Duplicate record detection:
A survey,” IEEE Transactions on knowledge and data engineering, vol. 19, no. 1,
pp. 1–16, 2006.

[6] E. Rahm and H. H. Do, “Data cleaning: Problems and current approaches,” IEEE
Data Eng. Bull., vol. 23, no. 4, pp. 3–13, 2000.

[7] D. Vesset, B. McDonough, D. Schubmehl, and M. Wardley, “Worldwide business
analytics software 2013–2017 forecast and 2012 vendor shares (doc# 241689),” Re-
trieved, vol. 6, no. 28, p. 2014, 2013.

[8] M. Paganelli, P. Sottovia, F. Guerra, and Y. Velegrakis, “Tuner: Fine tuning of rule-
based entity matchers,” in Proceedings of the 28th ACM International Conference
on Information and Knowledge Management, 2019, pp. 2945–2948.

[9] L. Getoor and A. Machanavajjhala, “Entity resolution: Theory, practice & open chal-
lenges,” Proceedings of the VLDB Endowment, vol. 5, no. 12, pp. 2018–2019, 2012.

[10] I. Veldman, “Matching profiles from social network sites,” 2009.

[11] S. Chaudhuri, V. Ganti, and R. Motwani, “Robust identification of fuzzy dupli-
cates,” in 21st International Conference on Data Engineering (ICDE’05), IEEE,
2005, pp. 865–876.

[12] O. Bousquet, U. von Luxburg, and G. Rätsch, Advanced Lectures on Machine Learn-
ing: ML Summer Schools 2003, Canberra, Australia, February 2-14, 2003, Tübingen,
Germany, August 4-16, 2003, Revised Lectures. Springer, 2011, vol. 3176.

30

[13] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, and Z. Ives, “Dbpedia: A
nucleus for a web of open data,” in The semantic web, Springer, 2007, pp. 722–735.

[14] K. K. Jones, S. N. Zenk, E. Tarlov, L. M. Powell, S. A. Matthews, and I. Horoi, “A
step-by-step approach to improve data quality when using commercial business lists
to characterize retail food environments,” BMC research notes, vol. 10, no. 1, p. 35,
2017.

[15] L. Getoor and C. P. Diehl, “Link mining: A survey,” Acm Sigkdd Explorations Newslet-
ter, vol. 7, no. 2, pp. 3–12, 2005.

[16] O. Benjelloun, H. Garcia-Molina, D. Menestrina, Q. Su, S. E. Whang, and J. Widom,
“Swoosh: A generic approach to entity resolution,” The VLDB Journal, vol. 18, no. 1,
pp. 255–276, 2009.

[17] D. G. Brizan and A. U. Tansel, “A. survey of entity resolution and record linkage
methodologies,” Communications of the IIMA, vol. 6, no. 3, p. 5, 2006.

[18] I. P. Fellegi and A. B. Sunter, “A theory for record linkage,” Journal of the American
Statistical Association, vol. 64, no. 328, pp. 1183–1210, 1969.

[19] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood from incom-
plete data via the em algorithm,” Journal of the Royal Statistical Society: Series B
(Methodological), vol. 39, no. 1, pp. 1–22, 1977.

[20] G. Navarro, “A guided tour to approximate string matching,” ACM computing sur-
veys (CSUR), vol. 33, no. 1, pp. 31–88, 2001.

[21] F. J. Damerau, “A technique for computer detection and correction of spelling er-
rors,” Communications of the ACM, vol. 7, no. 3, pp. 171–176, 1964.

[22] W. E. Yancey, “Evaluating string comparator performance for record linkage,” Statis-
tics, vol. 5, p. 38, 2005.

[23] S. Zhang, Y. Hu, and G. Bian, “Research on string similarity algorithm based on lev-
enshtein distance,” in 2017 IEEE 2nd Advanced Information Technology, Electronic
and Automation Control Conference (IAEAC), IEEE, 2017, pp. 2247–2251.

[24] SeatGeek, Fuzzy-wuzzy python package, (accessed July 16, 2021).

[25] W. W. Cohen, “Integration of heterogeneous databases without common domains
using queries based on textual similarity,” in Proceedings of the 1998 ACM SIGMOD
international conference on Management of data, 1998, pp. 201–212.

31

[26] D. Holmes and M. C. McCabe, “Improving precision and recall for soundex re-
trieval,” in Proceedings. International Conference on Information Technology: Cod-
ing and Computing, IEEE, 2002, pp. 22–26.

[27] A. J. Lait and B. Randell, “An assessment of name matching algorithms,” Technical
Report Series-University of Newcastle Upon Tyne Computing Science, 1996.

[28] P. Christen, “A comparison of personal name matching: Techniques and practi-
cal issues,” in Sixth IEEE International Conference on Data Mining-Workshops
(ICDMW’06), IEEE, 2006, pp. 290–294.

[29] N. Elbegbayan et al., “Winnowing, a document fingerprinting algorithm,” TDDC03
Projects, Spring, 2005.

[30] S. Schleimer, D. S. Wilkerson, and A. Aiken, “Winnowing: Local algorithms for
document fingerprinting,” in Proceedings of the 2003 ACM SIGMOD international
conference on Management of data, 2003, pp. 76–85.

[31] J. Parapar and Á. Barreiro, “Winnowing-based text clustering,” in Proceedings of the
17th ACM conference on Information and knowledge management, 2008, pp. 1353–
1354.

[32] A. T. Wibowo, K. W. Sudarmadi, and A. M. Barmawi, “Comparison between fin-
gerprint and winnowing algorithm to detect plagiarism fraud on bahasa indonesia
documents,” in 2013 International Conference of Information and Communication
Technology (ICoICT), IEEE, 2013, pp. 128–133.

[33] A. Aiken, “Moss: A system for detecting software similarity,” vol. 29, p. 2017, 1994,
(accessed July 12, 2021).

[34] Y. Bengio, R. Ducharme, and P. Vincent, “A neural probabilistic language model,”
in Advances in Neural Information Processing Systems, 2001, pp. 932–938.

[35] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of word repre-
sentations in vector space,” arXiv preprint arXiv:1301.3781, 2013.

[36] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, “Distributed repre-
sentations of words and phrases and their compositionality,” in Advances in neural
information processing systems, 2013, pp. 3111–3119.

[37] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors for word rep-
resentation,” in Proceedings of the 2014 conference on empirical methods in natural
language processing (EMNLP), 2014, pp. 1532–1543.

[38] A. Frome et al., “Devise: A deep visual-semantic embedding model,” 2013.

32

[39] P. Li, Y. Liu, M. Sun, T. Izuha, and D. Zhang, “A neural reordering model for phrase-
based translation,” in Proceedings of COLING 2014, the 25th International Confer-
ence on Computational Linguistics: Technical Papers, 2014, pp. 1897–1907.

[40] J. Zhang, S. Liu, M. Li, M. Zhou, and C. Zong, “Bilingually-constrained phrase
embeddings for machine translation,” in Proceedings of the 52nd Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), 2014,
pp. 111–121.

[41] J. Zhao, M. Lan, Z.-Y. Niu, and Y. Lu, “Integrating word embeddings and tradi-
tional nlp features to measure textual entailment and semantic relatedness of sen-
tence pairs,” in 2015 International Joint Conference on Neural Networks (IJCNN),
IEEE, 2015, pp. 1–7.

[42] B. Salehi, P. Cook, and T. Baldwin, “A word embedding approach to predicting the
compositionality of multiword expressions,” in Proceedings of the 2015 Conference
of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, 2015, pp. 977–983.

[43] E. Vylomova, L. Rimell, T. Cohn, and T. Baldwin, “Take and took, gaggle and goose,
book and read: Evaluating the utility of vector differences for lexical relation learn-
ing,” arXiv preprint arXiv:1509.01692, 2015.

[44] Q. Le and T. Mikolov, “Distributed representations of sentences and documents,” in
International conference on machine learning, PMLR, 2014, pp. 1188–1196.

[45] R. Rivest and S. Dusse, The md5 message-digest algorithm, 1992.

[46] K. Greff, R. K. Srivastava, J. Koutnk, B. R. Steunebrink, and J. Schmidhuber, “Lstm:
A search space odyssey,” IEEE transactions on neural networks and learning sys-
tems, vol. 28, no. 10, pp. 2222–2232, 2016.

[47] A. F. Agarap, “Deep learning using rectified linear units (relu),” arXiv preprint
arXiv:1803.08375, 2018.

[48] U. B. of Labor Statistics, Job openings and labor turnover summary, (accessed June
21, 2021).

[49] S. Brin and L. Page, “The anatomy of a large-scale hypertextual web search engine,”
Computer networks and ISDN systems, vol. 30, no. 1-7, pp. 107–117, 1998.

33

Appendices

APPENDIX A

REFERENCES TO PROJECT CODE AND DATASETS

Code and datasets can be found at the following link:

https://tinyurl.com/he4tzk

35

ריצקת

 םינותנ תולבקמה יתימאה םלועב תוכרעמה לכב ינויח קלח איה)Entity Matching(תויושי תמאתה
 ןיא ללכ ךרדב .םינוש תורוקממ םיעיגמה)Un-Structure Data(םינבומ אלו)Structure Data(םינבומ
 ךרוצל םישרדנ םינותנה לש םייביסאמ היצרגטניאו יוקינ יכילהת .תומושר רוביחל ןימז ףתושמ חתפמ
 לש הדמצההש תורמל .ףסונ דוביע וא םינותנ חותינ עצבל ןתינש ינפל עדימה תרשעהו םיעדיימ תמלשה
 תכמות ,ךרע תורקי תונבות תפשוח איה ,יחרכה ךא עגיימ תצק דעצכ תובורק םיתעל תבשחנ תומושר
 םינותנ חותינב תופסונ תויטילנא תושיגל סיסב הווהמו םינותנה לש םדקתמ חותינו הימדה תלוכיב
)Data Analytics(. תא םיגיצמ ונא .תוינוגרא תויושי תמאתהב םידקמתמ ונא ,וז הדובעב

CompanyName2Vec, ןורתפל שדח םתירוגלא CEM – Company Entity Matching, תועצמאב
 לע ךמתסהל ילבמ ,םישורד תועדומ תועצמאב הרבח םש לש הקיטנמס דומלל ידכ תיבצע תשר לדומ
 םלועהמ תורבח תומש לע גיותמ עדימ לע ססבתהב .המש דבלמ המיאתמה הרבחה לע והשלכ עדימ
 לש עצוממ קויד םע תורחא תוכרעומ תוטיש לע הלוע CompanyName2Vec יכ םיארמ ונא ,יתימאה

 .הדיחי האצותל 0.894

 הטלוקפה ,עדימו הנכות תוכרעמ תסדנהל הקלחמהמ רייפ לאכימ 'רד לש ותייחנהב העצוב וז הדובע
 ,בשחמה יעדמל יזרא יפא רפסה תיבמ ואנורג ןליא 'רד יווילבו ,ןוירוג ןב תטיסרבינוא ,הסדנהה יעדמל
 .ןמכייר תטיסרבינוא

 ןמכייר תטיסרבינוא

בשחמה יעדמל יזרא יפא רפס-תיב
 ירקחמ לולסמ -).M.Sc(ינש ראותל תינכתה

CompanyName2Vec: Company
EntityMatching Based on Job Ads

תאמ
ויז ןר

 .M.Sc ךמסומ ראות תלבק םשל תושירדהמ קלחכ תשגומה הזת תדובע
 ןמכייר תטיסרבינוא ,בשחמה יעדמל יזרא יפא רפס תיבב ירקחמה לולסמב

2021 רבמטפס

	Table of Contents
	List of Tables
	List of Figures
	1 | Introduction
	2 | Related Work
	Entity Matching
	Distance Metrics
	Document Fingerprinting
	Text Embedding

	3 | Method
	Hiring Company Names Fingerprinting
	Company Name Embedding

	4 | Experimental Study
	Dataset
	Evaluation Process and Performance Metrics

	5 | Results
	6 | Discussion
	7 | Conclusions and Future Work
	References
	Appendices
	A | Additional Results
	B | References to project Code and Datasets

	50ac01e4-c719-4204-8931-5c441f9b85a9.pdf
	Table of Contents
	List of Tables
	List of Figures
	1 | Introduction
	2 | Related Work
	Entity Matching
	Distance Metrics
	Document Fingerprinting
	Text Embedding

	3 | Method
	Hiring Company Names and Synonyms
	Job Ad Fingerprinting
	Company Synonyms
	Company Name Embedding

	4 | Experimental Study
	Dataset
	Evaluation Process and Performance Metrics

	5 | Results
	6 | Discussion
	7 | Conclusions and Future Work
	References
	Appendices
	A | References to project Code and Datasets

