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Abstract

Artificial synthesis of DNA molecules is an essential part of the study of
biological mechanisms. The design of a synthetic DNA molecule usually in-
volves many objectives. One of the important objectives is to eliminate short
sequence patterns that correspond to binding sites of restriction enzymes or
transcription factors. While many design tools address this problem, no ade-
quate formal solution exists for the pattern elimination problem. In this work,
we present a formal description of the elimination problem and suggest effi-
cient algorithms that eliminate unwanted patterns and allow optimization of
other objectives with minimal interference to the desired DNA functionality.
Our approach is flexible, efficient, and straightforward, and therefore can be
easily incorporated in existing DNA design tools, making them considerably
more powerful.

2



Contents

1 Introduction 4

2 Related works 5
2.1 Design tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Theoretical analysis of related problems . . . . . . . . . . . . . 7

3 Definition of objectives and notations 8

4 The connection between eliminating sets and hitting sets 9
4.1 Efficient algorithm for finding a hitting set . . . . . . . . . . . 11
4.2 Proof of Lemma 5 . . . . . . . . . . . . . . . . . . . . . . . . . 13

5 Introducing position-specific restrictions 15
5.1 Position-specific hard restrictions . . . . . . . . . . . . . . . . 16
5.2 Position-specific soft restrictions . . . . . . . . . . . . . . . . . 17

6 Dynamic programming algorithms for a generalized elimina-
tion problem 18
6.1 A naive FSM based on the de Brujin graph . . . . . . . . . . . 22
6.2 A smaller KMP-based FSM . . . . . . . . . . . . . . . . . . . 23

6.2.1 An efficient algorithm for computing KMPP . . . . . . 25

7 Input specification for design 29
7.1 IUPAC support . . . . . . . . . . . . . . . . . . . . . . . . . . 30

8 Summary and conclusion 31

Bibliography 34

Appendices 37

A Eliminating unwanted patterns over binary alphabet 37

3



1 Introduction

Synthetic biology is an emerging domain that uses engineering principles
to study biological mechanisms by examining perturbations of these mecha-
nism. This field has seen rapid growth in research and innovation in recent
years [22]. Many applications of synthetic biology involve artificial synthesis
of DNA molecules based on some specification [18]. An example of such an
application is the pilot project announced by an initiative called the Human
Genome Project-write (HGP-write) to create a virus-resistant cell by remov-
ing DNA sequences from the human genome that viruses use to hijack and
replicate [6]. Another application is to conduct experiments to test theories,
such as the experiment that confirmed that CRISPR (clusters of regularly in-
terspaced short palindromic repeats) is used by bacteria to recognize viruses
and handle future attacks. This finding later led to using CRISPR to alter
the DNA of human cells like an exact and easy-to-use pair of scissors [13].
These examples demonstrate that with the rapid progress in relevant tech-
nologies, it is expected that synthetic biology will be able to help resolve
many key open questions in molecular biology.

In many applications, like the ones presented above, the synthesized
DNA molecule is a molecule that was artificially designed to meet some re-
quirements. The design of protein-coding sequences usually involves meeting
objectives such as optimizing codon usage, restriction site incorporation, and
motif avoidance. Whereas meeting only one objective can be relatively sim-
ple, meeting multiple objectives at once is a much more complicated task, and
therefore, many tools heavily rely on heuristics based on random sampling [9].
One particularly challenging task in DNA sequence design is avoiding certain
short sequence patterns that correspond to potential binding sites of proteins
such as restriction enzymes or transcription factors. Cleaning the synthesized
sequence from potential binding sites is essential when one wishes to control
the function of that sequence in a cellular environment. Compared to other
design objectives that try to optimize some properties, this problem involves
a strict restriction: we must remove all unwanted patterns because even one
occurrence of a binding site can affect the DNA function. This strict restric-
tion, along with positive specification that one wishes to optimize, introduces
a significant computational challenge.

In this work, we examine the problem of eliminating unwanted sequences
from a given target sequence with minimal disturbances. We start by ex-
amining the simple question of cleaning a single unwanted pattern from a
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target DNA sequence. We show that various versions of this problem can be
solved by reduction to the well-known hitting set problem. Later, we present
a dynamic programming scheme that solves a more general version of this
problem that, among other things, cleans multiple unwanted patterns. All
of the algorithms we present in this work are linear in the size of the input.
We also provide related software tools in a public repository:
https://github.com/zehavitc/EliminatingDNAPatterns.git.

2 Related works

2.1 Design tools

Modern DNA design tools aim to meet multiple design preferences and objec-
tives, as reviewed in [9]. Table 1 summarizes the objectives that the different
tools claim to achieve. All tools consider codon usage, meaning that they at-
tempt to choose a codon for each protein amino acid based on usage statistics
in the organism whose cells are used in the experiment. Considering codon
usage is clearly central in experiments that involve synthetic DNA. Compu-
tationally, it is relatively simple to address using the organisms codon usage
distribution. Other than codon usage, tools differ in the set of objectives
they claim to address. Most tools claim to address some version of pattern
elimination, either through a user-defined set of patterns or by eliminating
a pre-defined set of patterns (hidden stop codons, binding sites of certain
restriction enzymes, etc.).

Gould and colleagues in [9] sought out to examine how well different
tools deal with the pattern elimination objective together with other com-
peting objectives. They took a target sequence and specified two restriction
sites to be removed. They also restricted the codons that can be used such
that no valid sequence of codons will eliminate the restriction sites. Thus,
the design requirements cannot be met in this case. The purpose of this
experiment was to see how tools behaved when posed with a pattern elimi-
nation objective that conflicts with another design requirement. Four tools
(Gene Designer 2.0 [24], Jcat [10], Eugene [8], and D-Tailor [11]) were not
tested because they do not have the option to configure this specific design
objective. One tool became unresponsive (Synthetic gene designer [25]), pos-
sibly because there is no feasible solution. Two tools (DNAWorks [12] and
Visual gene developer [14]) left the restriction sites. It is unclear whether the
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Table 1: Design features supported by different design tools. The features are
ordered from left to right, first the codon usage optimization feature that is supported by
all of the tools, then five features related to pattern elimination, then six features ordered
by the number of tools supporting them. This table is adapted from Tables 1 and 2 from
[9]

Gene design
tool

Codon
usage

User-defined
restriction
site
elimination

Pre-defined
sites
elimination

Hidden
stop
codons

Motif
avoidance

Repetitious
base
removal

GC
content

Oligo
generation

mRNA
secondary
structure

Codon
context

Codon
auto-
correlation
adjustement

Hydropathy
index
optiomization

Reference

DNAWorks X X X [12]

Jcat X X [10]

Synhetic gene
designer

X X X X [25]

GeneDesign X X X [21]

Gene Designer 2.0 X X [24]

OPTIMIZER X X X X X [20]

Visual gene
developer

X X X X X X X [14]

Eugene X X X X X X X X [8]

COOL X X X X X X X [5]

D-tailor X X X X X [11]

tools indicated that they could not remove the restriction sites. The remain-
ing three tools (GeneDesign [21], OPTIMIZER [20], COOL [5]) removed the
restriction sites using restricted codons for two amino acid.

It seems that the tools do not expect a set of constraints that cannot be
met. One of the reasons for the difficulty that existing tools have in address-
ing complex, and possibly conflicting, constraints is likely due to the general
technique they all use. As far as we can tell, all programs eliminate unwanted
patterns by scanning the DNA sequence, and each time they encounter an
unwanted pattern, they choose a random substitution (as done in [24, 7]).
This strategy is simple and can be effective in many cases, but it ignores
the possible complexities of the pattern elimination problem. One potential
problem that this approach ignores is that removing one unwanted pattern
can create a new unwanted pattern. Therefore, random sampling cannot
guarantee a feasible and optimal solution and might be ineffective. This be-
comes more problematic the more patterns you wish to eliminate. Another
clear problem with how these tools address the pattern elimination problem
is that they do not clearly specify the algorithm or heuristic protocol they
use. Consider, for example, two of the tools that removed the restriction sites
in the test described above. The article that published OPTIMIZER ([20])
does not mention the algorithm used at all, and the article that published
GeneDesign ([21]) only mentions that it uses a random selection of codons.
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2.2 Theoretical analysis of related problems

The patterns elimination problem first requires finding all pattern matches.
There are two ways to address this problem. One is inspired by the Knuth-
Morris-Pratt (KMP) [16] algorithm, and the other is using a suffix tree. The
KMP algorithm finds all matches of a single pattern in a given sequence using
a protocol it constructs based on the given pattern. The KMP protocol can
be described using a simple finite state machine (FSM) that traces any given
sequence and keeps in every state the longest prefix of the pattern that is
also a suffix of the sequence traced thus far. When the FSM reaches the state
corresponding to the complete pattern, this indicates that a match has been
found. In [1], Aho and Corasick describe an efficient method for creating a
FSM that is inspired by the KMP FSM and matches multiple patterns in
a given sequence. The FSM they describe keeps in every state the longest
prefix of one of the patterns that is also a suffix of the sequence traced thus
far. Finding all pattern occurrences using this FSM is linear in the sequence
length, and it does not depend on the length or the number of patterns.
Building this FSM requires a pre-processing time that is linear in the sum of
lengths of all patterns. Another approach for solving the pattern matching
problem is using a suffix tree [2], which is a data structure whose nodes
correspond to substrings of a given sequence and whose leaves hold indices
in it. Each path in the tree from the root to a leaf corresponds to a suffix
of the sequence: the leaf holds the starting position of the suffix, and the
concatenation of all the nodes’ substrings in the path gives the sequence of
the suffix. After building the suffix tree of the sequence, all pattern matches
can be found in time that is linear in the sum of lengths of all patterns by
simply searching for a pattern starting at the root, as each substring is a
prefix of a suffix of the sequence.

There have been several studies that examine theoretical and algorithmic
aspects of the pattern elimination problem. Some problems have been studied
and were shown to be NP-complete. For example, in [23] Skiena addressed
the problem of minimizing the number of restriction sites while keeping the
set of given genes unchanged (codon substitution is permitted only if the
resulting amino acid is the same). He suggests a dynamic programming
algorithm that is exponential in the length of the longest restriction site and
proves that the problem is NP-complete for non-fixed restriction site lengths.
Another related problem is the Unique Restriction Site Placement Problem
(URSPP) presented in [19]. The objective in this problem is to allow only one
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restriction site for any given restriction enzyme, keep the translated sequence
of amino acids unchanged, and minimize the maximum gap between adjacent
restriction sites. They show that this problem is NP-complete and then
suggest a heuristic algorithm that starts with eliminating all but one binding
site for each restriction enzyme. They do not provide a detailed description of
their algorithm and specifically how they avoid creating new restriction sites.
Both [23] and [19] give higher priority to avoiding changes in the translated
amino acid sequence over the number or placement of restriction sites.

A recent study [3] addressed the problem of eliminating a single un-
wanted pattern in the context of 2D images (and multi-dimensional arrays).
The results of [3] focus on the problem of deciding if a multi-dimensional
array is clean of an unwanted pattern and measuring its distance from being
clean. One of their results suggested a simple and efficient algorithm for
eliminating a single pattern from a sequence over a binary alphabet. Our
work uses the results of [3] in the one-dimensional case as a starting point
for dealing with the pattern elimination problem. In Section 4 we extend a
lemma that was proved by [3] (Lemma 18) to establish the connection be-
tween the pattern elimination problem and the hitting set problem over the
DNA alphabet.

3 Definition of objectives and notations

We consider a long target sequence S of length n over an alphabet Σ. The se-
quence S represents the optimal version of the synthesized sequence without
considering possible existence of unwanted patterns. If we wish to synthesize
multiple sequences, we concatenate them into one long target sequence S, us-
ing a unique character to separate between individual sequences. Our main
objective is to clean the target sequence S from occurrences of short patterns
specified in the set P . Typically, the sequences in P are much shorter than
the target sequence S.

We use a 1-based indexing scheme and denote by Si the i
th character in

S, and by Si...j the substring of S that begins in index i and ends in index j.
Our objective is defined by the following concepts:

Definition 1. Given a sequence S and a short pattern P of length k, a
P -match in S is a substring of S that is identical to P : Si...i+k−1 = P .

Definition 2. Given a collection of short sequence patterns, P ⊆ Σk, a
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sequence S is said to be P-clean iff S does not contain a P -match for every
P ∈ P.
Definition 3. Given a target sequence S and a collection of short sequences
P, an eliminating set for P in S is a set E ⊆ {1..n}×Σ such that substituting
Si with character σ for all pairs (i, σ) ∈ E results in a sequence S ′, which is
P-clean.

In the following sections, we describe a series of algorithms that find an
optimal eliminating set under different scenarios. In Section 4, we start with
the simple scenario where P contains a single pattern P , and we wish to find
the smallest eliminating set. In Section 5, we expand the optimization crite-
rion to consider positional-preferences for substitutions. In both sections, we
consider elimination of a single pattern and thus equate the set P with the
single pattern P it contains. Finally, in section 6 we expand the discussion
to the multi-pattern case and to more general optimization criteria.

4 The connection between eliminating sets

and hitting sets

We start by considering the simple problem of finding the smallest eliminating
set for a given target sequence, S, and a single pattern, P . Clearly, the set of
positions of any elimination set has to cover all P -matches. However, a set
that covers all of the P -matches is not necessarily an eliminating set, because
substituting Si may create new P -matches. Consider the following example
over the binary alphabet:

Figure 1: Eliminating pattern example

There are three P -matches in S starting in positions 4, 12, and 16. If the
bit in position 4 is flipped, then the first P -match is eliminated, but a new
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one is created (starting in position 1). On the other hand, flipping each of
the bits in positions 5−8 eliminates this P -match without creating a new P -
match. The second P -match can be eliminated by flipping each of the bits in
positions 12− 16, but flipping the bit in position 16 also eliminates the third
P -match, so it is clearly preferable. This example demonstrates that some
substitutions may eliminate an existing P -match but may also create a new
one. The example also demonstrates that we should aim to utilize overlaps
between P -matches in order to minimize the number of substitution. Optimal
utilization of overlaps can be achieved by finding a minimal hitting set for
the set of P -matches.

Definition 4. Let I = {[l1, r1], ..., [ln, rn]} be a set of intervals of a sequence
S. Let H be a subset of positions in S. H is a hitting set of I if each interval
[l, r] ∈ I contains at least one position in H.

The minimal hitting set problem is a specific instance of the more general
set cover problem, which is known to be NP-hard. However, when the sets
correspond to contiguous intervals of natural numbers, this problem has a
simple linear-time algorithm, which we describe in Section 4.1. The following
lemma provides a key observation to our analysis, establishing an important
connection between hitting sets and eliminating sets.

Lemma 5. If a position j in S belongs to a P -match, then substituting Sj

with any character can create at most one new P -match.

A version of this lemma restricted to binary sequences was proven in [3]
(Lemma 18). For completeness, we provide a detailed proof of Lemma 5 in
Section 4.2. One important implication of this lemma is that for non-binary
alphabets, the eliminating set problem is reduced to the hitting set problem,
such that any hitting set can be extended to an eliminating set using the
same positions.

Claim 6. If the alphabet Σ has more than two characters, then the elimina-
tion problem of a single pattern reduces to the hitting set problem.

Proof. Let Σ = σ1, ...σt, where t > 2, and let H be a hitting set of all P -
matches in S. Consider an arbitrary position in the hitting set i ∈ H, and
assume, w.l.o.g., that Si = σt. Any substitution of Si to σr for r = 1..t − 1
eliminates all P -matches that contain index i, and Lemma 5 implies that at
most one of these substitutions can create a new P -match. Therefore, there
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are at least t−2 substitutions of the character Si that eliminate all P -matches
that include i and create no new P -matches. Thus, once a set of positions
that cover all matches is identified, an eliminating set can be constructed by
finding for each position i in the hitting set a substitute character that does
not create a new P -match. The argument above implies that there are at
least t− 2 substitute characters that guarantee this for every position in the
hitting set.

Claim 6 implies a simple algorithm for computing a minimal eliminating
set in the non-binary alphabet case. The outline of such an algorithm is:

Algorithm 1 Computing minimal eliminating set

1: Compute the set of intervals I corresponding to all P -matches in S.
2: Compute a minimal hitting set H for I.
3: For every j ∈ H, find a substitution character σ, such that substituting

Sj with σ does not create new P -matches.

Step 1 is implemented either by the KMP algorithm or by a suffix tree,
and is achieved in O(n + k|Σ|) (see brief review in Section 2.2). Step 2
is implemented by a simple greedy algorithm that is described in Section
4.1 below in O(|I|) time. Lastly, Step 3 is implemented by considering an
arbitrary substitute characters for every position j ∈ H and checking the
interval [j − k + 1, j + k − 1] for a new P -match. If no P -match is found,
then this character is chosen, and if a P -match was found, then a different
(arbitrary) substitute character is chosen (Claim 6 guarantees that at most
one character can create a new P -match). Therefore, the time complexity
of step 3 is O(k · |I|). Finally, the total time complexity of Algorithm 1 is
O(n+ k · (|I|+ |Σ|)) = O(k · n).

Note that this algorithm has at least t−2 degrees of freedom for choosing
a substitute character for each position in the hitting set. However, in the
binary case where t = 2 we are not guaranteed that every hitting set can be
used to generate a valid eliminating set. We address this issue in detail in
Appendix A.

4.1 Efficient algorithm for finding a hitting set

The minimal hitting set problem we defined is a special case of the set cover
problem, which is a very well known NP-complete problem ([15]), but in the

11



special case of interval sets it has a simple linear algorithm (see [17]), which
we present here for completeness.

Algorithm 2 Computing minimal hitting set for a set of intervals I

1: Sort the intervals in I in increasing order of the rightmost index they
contain.

2: while I ̸= ∅ do
3: Pick the first ending interval, [l, r] ∈ I, and add position r into H.
4: Remove all intervals that contain position r from I.
5: end while

Assuming the intervals are already sorted, the complexity of the algo-
rithm is O(|I|) time and O(1) extra space. The correctness of the algorithm
is thus established by the following claim:

Claim 7. The set H returned by Algorithm 2 is a minimal hitting set of the
input set of intervals I.

Proof. The algorithm removes an interval from I only if H covers it, implying
that H is a hitting set for I. We are left to argue the minimality of H. We do
this by proving that for an arbitrary hitting set H ′ of I, we have |H| <= |H ′|.
Consider positions in H in ascending order: H = {m1,m2, ...ml}. We will
prove by induction on i that |H ′ ∩ [1..mi]| ≥ i.
Base: i = 1
Position m1 is the rightmost position in the first ending interval in I. Any
hitting set should cover this interval using a position that is prior to m1,
therefore: |H ′ ∩ [1..m1]| ≥ 1.
Step: Assume correctness of the claim for all i′ < i and prove for i. Let [l, r]
denote the interval for which the algorithm decided to add position mi to H
(step 3 of the algorithm). The algorithm decided to add position mi because
the interval was not covered by positions {m1..mi−1} implying that l > mi−1

and r = mi. H ′ is a hitting set of I so it has to cover interval [l, r]. We get
that:

|H ′ ∩ [1..mi]| ≥ |H ′ ∩ [1..mi−1]|+ |H ′ ∩ [l..mi]| ≥ |H ′ ∩ [1..mi−1]|+ 1.

Since the induction hypothesis implies that |H ′ ∩ [1..mi−1]| ≥ i − 1 we get
that |H ′ ∩ [1..mi]| ≥ i− 1 + 1 = i, as required.
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Applying this inductive claim to i = |H|, we get that any arbitrary
hitting set H ′ of I satisfies

|H ′| >= |H ′ ∩ [1..m|H|]| >= |H|.

4.2 Proof of Lemma 5

Recall that Lemma 5 states that if a position j in S belongs to a P -match,
then substituting Sj with any character can create at most one new P -match.
The following proof follows similar lines of arguments as in the proof of lemma
18 in [3].

Proof. Assume, in contradiction, that substituting Sj creates two new P-
matches. This may be either by a single substitution Sj ← σ or by two
different substitutions Sj ← σ1 and Sj ← σ2. Let i denote the starting
position of the original P -match and let i1 and i2 denote the two starting
positions of the two new P -matches. Denote by y1, y2 the offsets (in [0, k−1])
of the substituted position w.r.t the newly created P -matches, i.e, y1 =
j − i1, y2 = j − i2.
The fact that three k-long substrings starting in positions i, i1, and i2 are
nearly identical implies the following basic observation: for every t ∈ {1, 2}
and every offset x ∈ [0, k − 1] \ {yt} we have Si+x = Sit+x = Px+1 and for
yt we have Sj = Sit+yt ̸= Si+yt . This is because of the one exact P -match
starting in position i and the two near exact matches starting in position i1
and i2. We use the series of equations in this basic observation to define the
following undirected graph G = (V,E) :

V = [1, n], E = {(u, v)|x = u− i ∈ [0, k − 1] ∧ v ∈ {i1 + x, i2 + x} ∧ v ̸= j}.

The basic observation we stated above implies that if positions u and v are
connected in G then we have Su = Sv. We will reach a contradiction by
showing there is a path in G from j to either i+ y1 or i+ y2. Denote by ∆1

and ∆2 the distance between the starting positions of the original P -match
and the two newly created P -matches: ∆t = |it − i|. Now, distinguish be-
tween the following two cases:

Case 1: The original P -match is on the same side of the two newly created
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P -matches: i < i1 or i > i2. Assume, w.l.o.g., that i < i1. (If i > i2, then we
can reverse the sequence S and the pattern P and then obtain the desired
configuration with the reversed sequences.)
In this case, (u, v) ∈ E iff u − i ∈ [0, k − 1] ∧ v − u ∈ {∆1,∆2} ∧ v ̸= j.
We will reach a contradiction by showing a path of length 3 in G connect-
ing positions j and i + y2 = j − ∆2. Consider the following series of po-
sitions: j → j + ∆1 → j + ∆1 − ∆2 → j − ∆2. Notice that the first,
third and fourth positions in this walk belong to the range [i, i + k − 1]:
i ≤ j−∆2 < j+∆1−∆2 < j < i+ k. The second and the third inequalities
follow from the assumption that ∆2 > ∆1 and that both are positive. The
first and forth inequalities follow from i2 ≤ j < i + k (position j belongs to
the k-long substrings starting in positions i, i2). This implies that the three
steps in this walk correspond to edges in G:

� (j, j+∆1) ∈ E because j− i ∈ [0, k−1] (established above), (j+∆1)−
j = ∆1 and j +∆1 > j

� (j + ∆1, j + ∆1 − ∆2) ∈ E because (j + ∆1 − ∆2) − i ∈ [0, k − 1]
(established above), (j +∆1)− (j +∆1 −∆2) = ∆2 and j +∆1 > j

� (j+∆1−∆2, j−∆2) ∈ E because (j−∆2)− i ∈ [0, k− 1] (established
above), and (j +∆1 −∆2)− (j −∆2) = ∆1, and j +∆1 −∆2 < j

Case 2: The original P -match is between the two newly created matches:
i1 < i < i2. We will reach a contradiction by showing that there is a path
in the graph connecting positions j and i + y1 = j + ∆1, but the length
of this path will depend on the specific values of ∆1 and ∆2. In this case,
(u, v) ∈ E iff u− i ∈ [0, k− 1]∧ v− u ∈ {−∆1,∆2} ∧ v ̸= j. Consider a walk
through positions that starts in position v0 = j and proceeds according to
the following protocol:

vt =

{
vt−1 −∆1, If vt−1 −∆1 > j −∆2

vt−1 +∆2, Otherwise

Informally, the series takes backward-∆1 steps as long as the position is
greater than j − ∆2, and when it cannot, it takes a forward-∆2 step. We
will show that this walk reaches position i + y1 = j + ∆1, and each step in
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this walk from j to j + ∆1 corresponds to an undirected edge in G. First,
note that the walk is confined to the range [j −∆2 + 1, j + ∆1]. The lower
bound directly follows from the definition of the backward step, and the upper
bound follows from the fact that forward steps are taken from positions no
larger than j−∆2 +∆1 (otherwise a backward step is taken). Now, because
the size of this range is exactly ∆1 + ∆2, no position in the range can be
approached from more than one position. Because the walk range is finite,
this implies that the walk will eventually close a cycle and return to position
j with a backward-∆1 step from position j +∆1.
We are left to show that all steps in this walk from j to j + ∆1 correspond
to edges in G. By design, for every t > 0, vt − vt−1 ∈ {−∆1,∆2} and
vt ̸= v0 = j. Then, the steps in the path correspond to edges in G if
the range of the walk, [j − ∆2 + 1, j + ∆1], is in [i, i + k − 1]. Position j
belongs to the near exact P -match starting in position i2, therefore it holds
that j − ∆2 ≥ i2 − ∆2 = i2 − (i2 − i) = i. Similarly, position j belongs
to the near exact P -match starting in position i1, therefore it holds that
j +∆1 < i1 + k +∆1 = i1 + k + (i− i1) = i+ k.

5 Introducing position-specific restrictions

When specifying a sequence for synthesis, we will often be restricted to change
the sequence only in a given set of positions. For example, if the sequence
contains a coding sequence for a given gene, then we would typically wish to
avoid substitutions that change the resulting sequence of amino acids. Non-
coding positions may also be restricted if they fall in regulatory sequences
(promoters, enhancers, etc.). There are two different ways to specify such
restrictions:

� Position-specific hard restrictions: the user provides a set of indices
that are not allowed to be changed. The objective will be to clean S
using a minimal number of changes in the set of allowed positions.

� Position-specific soft restrictions: the user specifies a penalty for a let-
ter change in each position along the sequence. The objective here is to
clean S at a minimum-cost. Note that hard restrictions can be imple-
mented in this framework by associating positions that are not allowed
to be changed with a very high cost (practically∞). In this section we
consider cost schemes where the cost of substituting a given position
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does not depend on the base we substitute it with. Later, in Section 6
we consider a more general cost scheme where the cost associated with
a substitution in a given position may depend on the base we substitute
it with.

5.1 Position-specific hard restrictions

Given a set of positions that are not allowed to be modified, R, we find a
minimal elimination set by modifying step 2 of Algorithm 1 to compute a
minimal hitting set H among hitting sets that do not intersect R. This is
achieved by modifying step 3 in Algorithm 2 to select the right-most position
in [l, r] \ R to add to the hitting set. Note that this modification does not
influence the complexity of the algorithm, so a minimal elimination set is
still computed in O(kn) even under hard restrictions. We now prove that
this modification yields the required outcome.

Claim 8. The set H returned by the modified version of Algorithm 2 is a
minimal hitting set of the input set of intervals I, among hitting sets that do
not intersect the set of restricted positions R.

Proof. The proof is similar in spirit to the proof of Claim 7. H is a hitting
set of I, because the algorithm makes sure to cover all intervals. Moreover,
H does not intersect R, because the positions added to H in the modified
step 3 are never in R. We are left to argue that every other hitting set H ′

that does not intersect R is not smaller than H. Consider positions in H in
ascending order: H = {m1,m2, ...ml}. We will prove by induction on i that
|H ′ ∩ [1..mi]| ≥ i.
Base: i = 1
Position m1 is the rightmost position that is allowed to be changed in the
first ending interval in I. Any valid hitting set should cover this interval
using a position that is prior to m1, therefore: |H ′ ∩ [1..m1]| ≥ 1.
Step: Assume correctness of the claim for all i′ < i and prove for i. Let [l, r]
denote the interval for which the algorithm decided to add position mi to H
(step 3 of the modified version above). The algorithm decided to add position
mi because the interval was not covered by positions {m1..mi−1} implying
that l > mi−1. H ′ has to cover interval [l, r] using at least one position
from [l,mi] because mi is the rightmost position in [l, r] that is allowed to be
changed. We get that:

|H ′ ∩ [1..mi]| ≥ |H ′ ∩ [1..mi−1]|+ |H ′ ∩ [l..mi]| ≥ |H ′ ∩ [1..mi−1]|+ 1.
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Since the induction hypothesis implies that |H ′ ∩ [1..mi−1]| ≥ i − 1 we get
that |H ′ ∩ [1..mi]| ≥ i− 1 + 1 = i, as required.

Applying this inductive claim to i = |H|, we get that any arbitrary
hitting set H ′ of I that does not intersect R satisfies

|H ′| >= |H ′ ∩ [1..m|H|]| >= |H|.

5.2 Position-specific soft restrictions

We implement position-specific soft restrictions by introducing a cost func-
tion on sequence positions. The cost function, cost(i) specifies the cost in-
curred by substituting position i such that all possible substitutions of i have
the same cost. Our objective is to find a minimum-cost eliminating set of a
pattern P . As in the case of hard restrictions, we do this by modifying step
2 of Algorithm 1 to compute a minimum-cost hitting set. This is done by
applying a relatively straightforward dynamic programming algorithm that
computes two 1D tables, H and A. Entry H[i] holds a minimum-cost hitting
set for the set of all intervals in I that are contained in the prefix [1..i] and
entry A[i] holds its cost, i.e., A[i] = cost(H[i]) =

∑
j∈H[i]

cost(j). The tables H

and A are calculated using the following algorithm:

Algorithm 3 Computing a minimum-cost hitting set

1: Initialization: H[0] = ∅, A[0] = 0.
2: Update step for index i:

If there is an interval ending in position i, then compute
j = argmin

l∈[i−k+1,i]

{A[l − k] + cost(l)} and set:

H[i] = H[j − k] ∪ j
A[i] = A[j − k] + cost(j)

Otherwise, set:
H[i] = H[i− 1]
A[i] = A[i− 1]

The time complexity of Algorithm 3 below is O(n+k ·I) because for each
examined position (i) that ends an interval we scan the preceding k indices.
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The extra space complexity is dominated by the dynamic programming table
H, since its entries hold sets. In order to reduce the extra space used we can
save only a pointer to the last position in H[i] and use these pointers to
reconstruct H[i] by back tracing. Notice that this modification increases the
time complexity of step 2 in Algorithm 1, but the total time complexity of
Algorithm 1 remains the same (O(k · (n+ |Σ|))).

The correctness of the algorithm is established by the following claim:

Claim 9. H[i] holds a minimum-cost hitting set of the set of all intervals in
I that are contained in the prefix [1..i] and A[i] holds its cost.

Proof. By induction on i.
Base: i = 0:
The empty prefix has an empty hitting set with cost 0.
Step: Assume correctness of the claim for all i′ < i and prove for i. H[i] is
a hitting set for the given set of intervals because the algorithm makes sure
to cover all intervals in the range [1..i]. We are left to argue the minimality
of H[i] and we establish it by proving that for an arbitrary hitting set H ′ for
the same set of intervals we have cost(H[i]) ≤ cost(H ′).
If there is no interval ending in position i, then H[i] = H[i − 1] and the
induction hypothesis implies that cost(H[i−1]) ≤ cost(H ′). Otherwise, there
is an interval ending in position i. Let j and l be the rightmost indices of H[i]
and H ′ that cover that interval correspondingly. The induction hypothesis
implies that cost(H ′ ∩ [1, l − k]) ≥ A[l − k]. According to how index j is set
by the algorithm, A[l − k] + cost(l) ≥ A[j − k] + cost(j). By combining the
inequalities above with the definition of H ′ and H[i] we get:

cost(H ′) ≥ cost(H ′∩[1, l−k])+cost(l) ≥ A[l−k]+cost(l) ≥ A[j−k]+cost(j) = cost(H[i]).

6 Dynamic programming algorithms for a gen-

eralized elimination problem

In this section, we generalize the elimination problem in two directions. First,
we allow the specification of multiple unwanted patterns, since usually there
is more than one pattern to eliminate (e.g., multiple binding sites of different
transcription factors and/or restriction enzymes). Second, we allow a more
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general cost scheme than the one considered in Section 5.2, where the cost of
substituting a given position may depend on the target base. Assuming an
additive cost function, this scheme implies a cost on any sequence S that has
the same length (n) as the target sequence: cost(S) =

∑n
i=1 cost(i, Si). This

generalized cost scheme allows the user to define a preference toward certain
type of substitutions (e.g. transitions versus transversions), and to allow a
wider range of synonymous substitutions (that do not change the encoded
amino acids in a gene). Using this scheme we redefine our objective as
finding a minimum-cost sequence of length n that does not contain
any unwanted pattern. Note that in this redefined objective the target
sequence (S) is not explicitly specified, but it can be thought of as being
the minimum-cost sequence of length n (with possible instances of unwanted
patterns).

This objective cannot be solved by slight modifications to the previous
algorithms because we can no longer separate the two decisions that we are
making: the set of positions to substitute and the target bases we substitute
to. For example, consider the following scenario, where we wish to eliminate
pattern P = ACT from the target sequence S = ACACT using the following
cost function:

position (i) 1 2 3 4 5
S[i] A C A C T

cost(i, A) 0 2 0 3 3
cost(i, T ) 2 2 1 3 0
cost(i, C) 2 0 4 0 3
cost(i, G) 2 1 4 3 ∞

There is a P -match starting in position 3 that should be eliminated. The
minimum-cost sequence without a P -match is AGTCT of cost 2. Note that
in this case it is beneficial to substitute two positions (2, 3), one of them
creates a new P -match and the other eliminate the newly created P -match.
The previous approach which restricts itself to substitutions that do not cre-
ate new P -matches would substitute only one position (for example position
4) and would result in a higher cost of 3. Thus, a solution to this gener-
alized elimination problem requires an algorithm that jointly considers the
substituted positions and the bases we choose to substitute to.

To solve this problem, we suggest a simple dynamic programming algo-
rithm based on a finite state machine (FSM) that generates all (and only)
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sequences without unwanted patterns. Given such an FSM, Algorithm 4
below finds the minimum-cost sequence of a given length that the FSM gen-
erates. This implies that the elimination problem reduces to finding such an
FSM, which is what we do in Sections 6.1 and 6.2.

Definition 10. An FSM that generates sequences is defined by the tuple
(Σ, V, f) where

� Σ is the alphabet of the generated sequences.

� V is the state space which includes a single initial state vinit ∈ V .

� f : V × Σ→ V is a partial transition function (i.e, not defined for all
(v, σ) ∈ V × Σ).

A sequence S of length n is said to be generated by a given FSM if
there is a path through states of the FSM vinit = v0, v1..., vn such that
f(vi−1, si) = vi ∀i ∈ [1..n]. Note that because the transition function f is
partial, then not all sequences have a generating path. Furthermore, because
the FSM is deterministic and has a single initial state, then the generating
path is unique, and we denote by FSM(S) the final state (vn) in that path.

We can find the minimum-cost sequence of a given length generated by
the FSM by a rather straightforward calculation of a dynamic programming
table A s.t A[i, v] holds the minimum cost of a sequence S of length i that
is generated by the FSM and FSM(S) = v ∈ V . Note that this algorithm
does not involve an initial step of finding all pattern matches in the target
sequence. This is because it considers all clean sequences in parallel and does
not start from a specific target sequence, as the algorithms in sections 4 and
5 did.
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Algorithm 4 A dynamic programming algorithm for finding the minimum-
cost sequence of length n generated by a given FSM = (Σ, V, f)

Initialization:

A[0, v] =

{
0, if v = vinit

∞, otherwise

Update:
For all i = 1..n, v ∈ V :
A[i, v] = min

u,σ:f(u,σ)=v
{A[i− 1, u] + cost(i, σ)}

A∗[i, v] = argmin
u,σ:f(u,σ)=v

{A[i− 1, u] + cost(i, σ)}

Constructing S:
i = n, vn = argmin

u∈V
A[n, u]

For all i = n..1: (vi−1, Si) = A∗[i, vi]

Claim 11. A[i, v] holds the minimum cost of a sequence S of length i that
is generated by the FSM s.t FSM(S) = v

Proof. By induction on i:
Base: i = 0:
The only sequence of length 0 is ε and it holds that FSM(ε) = v iff v = vinit.
Step:
Assume correctness of the claim for all i′ < i and all v ∈ V , and prove for i
and an arbitrary v ∈ V .
We first prove that A[i, v] ≤ cost(S) for any sequence S of length i that is
generated by the FSM s.t FSM(S) = v. Let S be such a sequence and let
σ = Si, then S = S ′σ, and let u be the state such that FSM(S ′) = u. Thus,
f(u, σ) = v and the induction hypothesis implies that A[i− 1, u] ≤ cost(S ′).
Thus, using the update step definition we get that

A[i, v] ≤ A[i− 1, u] + cost(i, σ) ≤ cost(S ′) + cost(i, σ) = cost(S).

We are left to show that there is a sequence S of length i that is generated
by the FSM s.t FSM(S) = v and cost(S) = A[i, v]. Let (u, σ) be the pair
that minimizes the update step, meaning that f(u, σ) = v and A[i, v] =
A[i − 1, u] + cost(i, σ). The induction hypothesis implies that there is a
sequence S ′ of length i− 1 that is generated by the FSM s.t FSM(S ′) = u
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and A[i− 1, u] = cost(S ′). Then, S = S ′σ is of length i, is generated by the
FSM , and FSM(S) = f(u, σ) = v. This gives us

cost(S) = cost(S ′) + cost(i, σ) = A[i− 1, u] + cost(i, σ) = A[i, v].

Complexity: The space complexity of storing the dynamic program-
ming tables A and A∗ is O(n |V |). Adding the space complexity required for
holding the transition function for the FSM (|f |), we get that the total extra
space complexity is O(|f |+ n |V |). Note that |V | · |Σ| is an upper bound for
|f |. The time complexity of the update of cell A[i, v] is linear in the size of
the source set for state v: {(u, σ) | f(u, σ) = v}. Assuming that the source
sets of all states are specified in the input given to the algorithm, the total
time complexity for updating all cells in the ith row of the table (A[i, ]) is the
sum of the sizes of all source sets. The source sets of the states in V forms
a disjoint partition of the Cartesian product V × Σ, and therefore the total
time complexity for updating every row of the matrix is at most |V | · |Σ|
(which is also an upper bound of the size of the FSM). In conclusion, the
total time complexity is O(n |V | |Σ|).

In the following two subsections, we show a couple of FSMs that gen-
erate all (and only) sequences without unwanted patterns and show how to
compute the source sets for each one of them.

6.1 A naive FSM based on the de Brujin graph

The first FSM we suggest for this purpose is based on the de Brujin graph
[4]. Let P be a collection of unwanted patterns and let k be an upper bound
on their length. The de Bruijn-inspired FSM for generating clean sequences
is denoted by DBP and defined as follows: V corresponds to the set of all
k-long P-clean sequences, and the transition function f(v, σ) is defined by
computing the k-long suffix of vσ (adding σ to v and removing its first char-
acter). Importantly, f(v, σ) is defined only if this k-long suffix corresponds
to a state in V . Furthermore, in this FSM, we deviate from the requirement
of having a single initial state by allowing every state to be an initial state,
and letting the first state define the first k characters of the generated se-
quence. Note that despite having more than one initial state, a sequence S
that is generated by DBP has only one path through the states: vk, ...vn such
that vi = Si−k+1..i and f(vi−1, si) = vi for every i ∈ [(k + 1)..n]. Therefore,
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DBP(S), the final state generating a given sequence, S, in this FSM, DBP ,
is well defined.

Claim 12. DBP generates all and only sequences (of length at least k) with-
out unwanted patterns from P.

Proof. By induction on i, the length of the sequence:
Base: i = k:
Following the definition of DBP , all (and only) k-long P-clean sequences are
initial states of DBP .
Step:
Assume correctness of the claim for all i′ < i and prove for i. Let S be a
sequence of length i that is P-clean, then S = S ′σ such that S ′ is a P-clean
sequence of length i− 1. Using the induction hypothesis, S ′ is generated by
DBP . Let DBP(S

′) = u. The k-long suffix of uσ is also P-clean, therefore
f(u, σ) is defined, meaning that S is generated by DBP and it holds that
DBP(S) = f(u, σ).
We are left to show that DBP generates only sequences without unwanted
patterns. Let S be a sequence of length i generated by DBP and let σ = Si

then S = S ′σ. Using the induction hypothesis, S ′ is of length i − 1 and
is generated by DBP and therefore does not contain an unwanted pattern.
Adding σ at the end of S ′ does not introduce a P-match because the k-long
suffix of S corresponds to a state in V .

The size of the state space of this FSM is very large (Ω(Σk \ P)), and
it dominates the complexity of using this FSM in the context of Algorithm
4. We therefore turn to look for a significantly smaller FSM that serves the
same purpose.

6.2 A smaller KMP-based FSM

To produce a smaller FSM for this problem, we utilize the KMP-inspired au-
tomaton suggested by Aho and Corasick [1] (see brief review in Section 2.2).
Recall that this automaton finds all matches of a set of patterns by keeping
track of the longest suffix of the traced sequence that is also a prefix of a given
pattern. We extend this FSM to avoid complete matches. This approach will
let us generate all and only sequences without unwanted patterns.

We denote the KMP-inspired FSM for a given collection P of unwanted
patterns by KMPP and define it as follows: we first define pref(P) as the
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set: {w | ∃P ∈ P s.t. w is a prefix of P}. Then V = pref(P) \ {w |∃P ∈
P s.t. P is a suffix of w}. In other words, there is a state for every prefix of
a pattern in P that does not end with an unwanted pattern. We designate
the state corresponding to the empty string, ε, as the initial state vinit. The
transition function f(v, σ) is defined as follows: if there is a suffix of vσ that
is an unwanted pattern, then f(v, σ) is not defined. Otherwise, f(v, σ) is the
longest suffix of vσ that is in pref(P).

Claim 13. KMPP generates all and only sequences without unwanted pat-
terns from P.

Proof. We first prove that any P-clean sequence S can be generated by the
FSM by induction on the length of S. For length 0, the only P-clean sequence
is ε, which is generated by KMPP and KMPP(ε) = vinit. For longer S, there
is a sequence S ′ such that S = S ′σ. The induction hypothesis implies that
S ′ is generated by KMPP . Let KMPP(S

′) = u, then the sequence uσ is
P-clean because it is a suffix of S, implying that f(u, σ) is defined and is
equal to v. Thus, S is generated using the path that generates S ′ appended
by state v = f(u, σ).

For the opposite direction we need to strengthen the induction hypothe-
sis and show that every generated sequence, S, is P-clean and that the state
KMPP(S) corresponds to the longest prefix in pref(P) that is also a suffix
of S. For length 0, the only generated sequence is ε, which is P-clean and
KMPP(ε) = vinit, which is the longest prefix in pref(P) that is also a suffix
of ε. For longer S, there is a sequence S ′ such that S = S ′σ. The induction
hypothesis implies that S ′ is P-clean and KMPP(S

′) = u corresponds to
the longest prefix in pref(P) that is also a suffix of S ′. The definition of
the transition function f implies that v = f(u, σ) is the longest prefix in
pref(P) that is a suffix of uσ. Because uσ is a suffix of S, then so is v. We
are left to prove that any longer suffix of S, w, is not a prefix in pref(P).
If w is shorter than uσ, then it is not in pref(P), because of the way the
transition function is defined. If, on the other hand, w is longer than uσ,
then w = xσ, and x is a suffix of S ′. The induction hypothesis implies that
u is the longest suffix of S ′ that is in pref(P), and x is longer than u, so
it cannot be in pref(P). In conclusion, v is the longest prefix in pref(P)
that is a suffix of S, and since v ∈ V , then S does not have a suffix that is a
P-match. Since its prefix S ′ is P-clean, then S itself is also P-clean.

The size of the state space of this FSM is O(|pref(P)|) which is signif-
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icantly smaller than the size of the state space of the naive FSM described
in Section 6.1 (Ω(Σk \ P)). Thus, by using KMPP , Algorithm 4 finds a
minimum-cost P-clean sequence of length n in time O(n · |Σ| · |pref(P)|),
which is linear in the size of the input. However, this requires an additional
preprocessing step for computing KMPP . We describe the calculation of
KMPP in the Section 6.2.1 below and show that the preprocessing time and
space complexity is O(|pref(P)| · |Σ|).

6.2.1 An efficient algorithm for computing KMPP

In this section, we describe an efficient procedure for calculating the KMPP
FSM (Aho and Corasick [1] describe an efficient procedure for calculating a
similar FSM to KMPP which does not forbid pattern matches). Throughout
the discussion below, we assume that the empty word ϵ is not an unwanted
pattern in P . If ϵ ∈ P , then KMPP is empty by definition and there is no
sequence that does not contain unwanted patterns. To compute this FSM,
we need to:

� Compute its state space V = {w ∈ pref(P)|w does not have a suffix in P}.

� Compute the (partial) transition function f for every (v, σ) ∈ V ×
Σ. Recall that if vσ has a suffix in P , then f(v, σ) is not defined.
Otherwise, f(v, σ) is the longest suffix of vσ that is in V .

Computing V and f requires scanning words in pref(P)×Σ for suffixes in
pref(P). Thus, a naive implementation would take at least quadratic time.
In order to achieve this in linear time, we employ a technique originally
suggested in [16] for the construction of the KMP automaton for matching
a single pattern. Our algorithm extends this technique to multiple patterns
and uses it also to identify invalid transitions (which was not needed in the
original pattern matching problem). The technique suggested in [16] makes
use of the auxiliary function (g) defined below:

Definition 14. Given a collection of unwanted patterns P and a word w ∈
Σ∗, we define g(w) as the longest proper suffix of w that is in pref(P). A
proper suffix in this context is any suffix that is not equal to the entire word
w.

The relationship between the auxiliary function g and the transition
function f is established by the following claim:

25



Claim 15. Consider (v, σ) ∈ V ×Σ s.t. vσ does not have a suffix in P. The
following two relationships hold:

1. If vσ /∈ pref(P), then f(v, σ) = g(vσ).

2. g(vσ) = f(g(v), σ).

Proof. First, note that under the conditions of the claim, the transitions
f(v, σ) and f(g(v), σ) are defined (vσ and g(v)σ do not have a suffix in P).
If vσ /∈ pref(P), then f(v, σ) ̸= vσ, implying that f(v, σ) is a proper suffix
of vσ. Hence, both f(v, σ) and g(vσ) are equal to the longest proper suffix
of vσ that is in pref(P), establishing (1) above.

To prove (2), we need to show that f(g(v), σ) is the longest proper
suffix of vσ that is in pref(P). The definition of f implies that f(g(v), σ) ∈
pref(P). Furthermore, f(g(v), σ) is a proper suffix of vσ because f(g(v), σ)
is a suffix of g(v)σ and g(v) is a proper suffix of v. We are left to show that for
any proper suffix w of vσ that is in pref(P) it holds that |w| ≤ |f(g(v), σ)|.
If w = ϵ, then |w| = 0 ≤ |f(g(v), σ)|. Otherwise, w = uσ, where u is a
proper suffix of v. Since w is in pref(P), then so is u. So, the definition of
g implies that u is also a suffix of g(v), which implies in turn that w = uσ is
a suffix of g(v)σ. Finally, since f(g(v), σ) is the longest suffix of g(v)σ that
is in pref(P), we get |w| ≤ |f(g(v), σ)|, as required.

The two equations in Claim 15 imply a recursive procedure for jointly
computing the functions f and g. The validity of the recursion is guaranteed
by the fact that g(v) is strictly shorter than v. The recursion halts either
when vσ ∈ pref(P) (and then f(v, σ) = vσ), or when v = ϵ (and then
g(vσ) = ϵ, since the only proper suffix of vσ = σ is ϵ). A similar recursive
procedure can also be used to compute the state space V by applying the
following claim:

Claim 16. vσ has a suffix in P iff vσ ∈ P or g(v)σ has a suffix in P.

Proof. If vσ ∈ P , then clearly vσ has a suffix in P . Furthermore, since g(v)
is a suffix of v, then g(v)σ is a suffix of vσ, and so if g(v)σ has a suffix in P ,
then so does vσ. This establishes the ⇐ direction of the claim. To establish
the other direction, we consider vσ /∈ P s.t. vσ has a suffix w ∈ P , and we
show that w is also a suffix of g(v)σ. We know that w ̸= ϵ (because ϵ /∈ P),
and that w ̸= vσ (because vσ /∈ P). So, w is a proper suffix of vσ of the
form w = uσ, where u is a proper suffix of v. Since u ∈ pref(P) and g(v)
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is the longest proper suffix of v in pref(P), then |g(v)| ≥ |u|. This implies
that u is a suffix of g(v), because they are both suffixes of v, and so w = uσ
is a suffix of g(v)σ that belongs to P .

Algorithm 5 described below implements the two recursive procedures
for computing V and f using forward recursion (establishing the base cases
first). The algorithm keeps track of undefined transitions f(v, σ) (when vσ
has a suffix in P) by setting their values to NULL. The first phase of the
algorithm (lines 1–6) computes all the transitions f(v, σ) associated with
elongations of pattern prefixes (where vσ ∈ pref(P) \ P), and identifies
elongations that result in complete patterns as invalid transitions (where
vσ ∈ P). Note that some prefix elongations may later be identified as invalid
transitions, when vσ has a proper suffix in P .

After the initial phase, the state space V is initialized with the the initial
state ϵ, and all transitions f(ϵ, σ) are considered (lines 9-17). If f(ϵ, σ) has
not been set in the first phase of the algorithm, then no pattern in P starts
with σ, implying that f(ϵ, σ) = ϵ. If, on the other hand, f(ϵ, σ) was set in the
first phase of the algorithm to σ, then there is a pattern in P that starts with
σ and there is no pattern equal to σ, so σ is added to the processing queue of
states, and we compute g(σ) = ϵ. When the second phase is complete (line
17), the processing queue contains all states in V of length 1, and each of
these state is associated with the correct value of g.

The final phase of the algorithm (lines 18-33) processes all states in V
using a queue that effectively implements a breadth-first search on the graph
of the FSM from the initial state ϵ. When v is processed, the state g(v) is
known (because g(v) is set before pushing v into the queue). Furthermore,
because g(v) corresponds to a shorter string than v, it precedes it in the
search order, and we are guaranteed that all transitions f(g(v), σ) are set
when v is processed. If f(g(v), σ) is undefined (set to NULL), we know that
g(v)σ and vσ have a suffix in P , so f(v, σ) should also be undefined. Note
that vσ could be a prefix of a pattern in P , and then f(v, σ) is first defined as
a prefix elongation in line 3 and later identified as an invalid transition and
set to NULL in line 23. Also note that if f(g(v), σ) is defined, the algorithm
ensures that f(v, σ) will also be defined as long as it has not been set to
NULL in the first phase (line 5). This follows from Claim 16, which implies
that if g(v)σ does not have a suffix in P and vσ is not a complete pattern,
then vσ does not have a suffix in P . If f(v, σ) has not been set in the first
phase, then vσ is not a prefix of a pattern in P , and Claim 15 is invoked
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Algorithm 5 Calculating the state space V and the functions f and g

1: for p ∈ P do
2: for j ∈ [1..|p| − 1] do
3: Set f(p1..j−1, pj)← p1..j ▷ prefix elongation
4: end for
5: Set f(p1..|p|−1, p|p|)← NULL ▷ invalid transition into complete pattern
6: end for

7: InitEmptyQueue(stateQueue) ▷ initialize processing queue

8: V ← {ϵ} ▷ process initial state of FSM (ϵ)
9: for σ ∈ Σ do

10: if f(ϵ, σ) is not set yet then ▷ “failure” transition
11: Set f(ϵ, σ)← ϵ
12: end if
13: if f(ϵ, σ) == σ then ▷ σ is an FSM state
14: Set g(σ)← ϵ
15: stateQueue.push(σ)
16: end if
17: end for

18: while stateQueue is not empty do
19: v ← stateQueue.pop()
20: V ← V ∪ {v}
21: for σ ∈ Σ do
22: if f(g(v), σ) == NULL then ▷ invalid transition
23: Set f(v, σ)← NULL

24: end if
25: if f(v, σ) is not set yet then ▷ “failure” transition
26: Set f(v, σ)← f(g(v), σ)
27: end if
28: if f(v, σ) = vσ then ▷ vσ is an FSM state
29: Set g(vσ)← f(g(v), σ)
30: stateQueue.push(vσ)
31: end if
32: end for
33: end while
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to set f(v, σ). If, on the other hand, f(v, σ) was set in the first phase, then
vσ is a prefix of a pattern in P that does not have a suffix in P . Thus, the
elongation transition is maintained, vσ is added to the processing queue, and
g(vσ) is computed according to Claim 15.

This procedure guarantees to process all prefixes in pref(P) that do
not contain complete pattern matches. States in V not covered by this pro-
cedure correspond to prefixes that contain unwanted patterns as non-suffix
subsequences. These states are unreachable from the initial state, ϵ, and are
thus effectively not part of the KMPP FSM. The algorithm processes ev-
ery prefix in pref(P) once in the first phase, and the main processing loop
processes each combination (v, σ) ∈ pref(P)× Σ once. Furthermore, every
calculation step done by the algorithm can be achieved in O(1) as long as
previously computed values of f and g can be retrieved in O(1). Thus, the
total time and space complexity of Algorithm 5 is O(|pref(P)||Σ|), meaning
that it is linear in the size of the resulting FSM.

7 Input specification for design

We implemented the dynamic programming algorithm that uses the KMP-
based FSM to generate all and only sequences without unwanted patterns,
and an application that utilizes the algorithm for easy elimination of DNA
patterns. The implementation is available in a public repository:
https://github.com/zehavitc/EliminatingDNAPatterns.git. For usability, we
changed the inputs presented in Section 6 such that the application inputs
are:

� Sequence file - contains a raw DNA sequence: lower-case letters indicate
positions that are allowed to be changed, and upper-case letters indicate
positions that are not allowed to be changed. We use IUPAC standard
letters to indicate ambiguity in base specification (see Table 2).

� Patterns file - contains a comma-separated list of patterns to elimi-
nate. We use IUPAC standard letters to indicate ambiguity in base
specification (see Table 2).

� Optional result file - the path to which the result should be written, if
not specified, the result will be printed to the console.

� Optional cost unit - the cost of substituting a letter. The default is 1.
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� Optional transition transversion ratio - the cost of a letter substitution
that results in a transversion (i.e., {A,G} ↔ {C, T}) is defined as
cost unit× transition transversion ratio. The default ratio is 1.

7.1 IUPAC support

The following table describe the IUPAC code: IUPAC code in the input

Table 2: IUPAC code

IUPAC letter Matching bases

A A
C C
G G
T T
U T
R A,G
Y C, T
S G,C
W A, T
K G, T
M A,C
B C,G, T
D A,G, T
H A,C, T
V A,C,G

sequence is supported such that cost(i, σ) = 0 iff σ ∈ IUPAC(S[i]). For
example, consider the sequence S = rmtGD. Let the cost unit be 1 and the
transition transversion ratio be 2. Then we get the following cost function:
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position (i) 1 2 3 4 5
S[i] r m t G D

cost(i, A) 0 0 2 ∞ 0
cost(i, T ) 2 1 0 ∞ 0
cost(i, C) 2 0 1 ∞ ∞
cost(i, G) 0 1 2 0 0

The IUPAC code of r, in position 1, is associated with {a, g}, implying that
bases A,G are associated with a zero-cost substitution, and bases C, T are
associated with cost of 2, because they require a transversion-type substitu-
tion (from either A or G). On the other hand, the IUPAC code m in position
2 means that its bases A,C are associated with a zero-cost substitution, but
the other two bases (T,G) are associated with cost of 1, because they can be
obtained by transition-type substitutions (C → TorA→ G). Positions 4 and
5 are not allowed to be changed and therefore the cost of any substitution
that is not in the IUPAC matching bases is ∞.

When used in one of the unwanted patterns, IUPAC code is supported
such that the application replaces the given pattern with all of the pat-
terns implied by the IUPAC code. For example, consider the pattern
P = RMT , then the application will replace it with the following set of
patterns: AAT,ACT,GAT,GCT .

8 Summary and conclusion

In this work, we suggested a systematic approach for eliminating unwanted
patterns. We first established the connection between the elimination prob-
lem and the hitting set problem. We used this connection to present three
linear-time algorithms that solve the problem of eliminating a single un-
wanted pattern, P , from a sequence S. The first two algorithms use a greedy
algorithm to find a minimal hitting set with a slight computational addition
that finds the substituting letter for each position in the set. This addition
does not add much to the total complexity of finding a hitting set. The third
algorithm supports position-specific restrictions modeled using a cost scheme
that defines a cost for each substituted position. Therefore, a minimum-cost
hitting set should have been found. We suggested solving this using a dy-
namic programming approach with linear time complexity (O(|P ||S|)). We
then generalized this approach in two directions: first to support eliminating
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multiple unwanted patterns, and second to support a more generalized cost
scheme, where the cost of a letter substitution depends on the letter we sub-
stitute to. We described Algorithm 4 that solves this more general problem
using a FSM that generates all and only sequences without unwanted pat-
terns. Using this approach, the algorithm does not seek pattern matches, but
generates the desired sequence from scratch. Finally, we showed an efficient
FSM that can be used in Algorithm 4 such that the total time complexity
is linear in the product of the desired sequence length and the sum of the
lengths of all unwanted patterns.

Our approach to the elimination problem is strict. Our algorithm either
eliminates all instances of unwanted patterns, or reports that there is no
solution (the minimum-cost clean sequence has an infinite cost). The other
objectives are treated as secondary optimization tasks. As opposed to this
approach, other related theoretical works treat the elimination problem as
a minimization problem. For example, the problem of minimizing the num-
ber of unwanted patterns in a sequence presented in [23] has been proved
to be NP-complete. Our algorithm can detect if the minimal number of un-
wanted patterns is zero or not, and if it is, we can find the resulting sequence
efficiently. Moreover, our algorithm can be used as a subroutine in the mini-
mization problem using a hierarchical grouping of the unwanted patterns. In
this approach, each unwanted pattern is assigned with a rank that describes
the priority for its removal. If there is no valid set of substitutions that elim-
inates all unwanted patterns, patterns can be iteratively removed from the
set according to their rank, to relax the elimination constraints, until a valid
(optimal) elimination set is found.

The approach we suggest here has the potential to solve some of the
problems with existing DNA design tools (see Section 2.1). One of the prob-
lems observed in existing design tools is that they do not have a well-defined
behavior when posed with conflicting design requirements. When posed with
such conflicting design objectives, the dynamic programming algorithm (Al-
gorithm 4), will indicate that the minimum-cost sequence has an infinite
cost, and there is no finite cost solution. Furthermore, the suggested cost
scheme can be used to define the constraints flexibly. One possible usage is
to prioritize substitutions, such that the cost captures the expected change
in the functional consequence. For example, one can set a low cost for sub-
stitutions that do not change the amino acid translation and a higher cost
to substitutions that change the amino acid to a different amino acid with
similar chemical properties. The cost scheme can also be used to optimize
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codon usage. The codon set for the great majority of amino acids can be
specified by fixed bases in the first two positions and a choice for the third
position base. The cost of substituting the third base can be associated
with −log(p) where p is the frequency of this codon. This way, the score of
a sequence is inversely correlated with its likelihood under a simple codon
frequency model, and a minimum-cost corresponds to maximum-likelihood.
For example, Phenylalanine codons are TTT, TTC so the cost of substitut-
ing the first two bases (T ) will be set to infinity, and the cost of substituting
the third base will be set infinity if substituting to G or A, −log(p(TTT )) if
substituting to T and −log(p(TTC)) if substituting to C. Another common
objective of design tools is to set a GC content objective. We can use the
cost scheme to favor substitutions of C with G and A with T to minimize
this also.

There are several key extensions that we suggest as future work. The ap-
proach described above for modeling codon usage does not work for Leucine
(LEU), Arginine (ARG), and Serine (SER). Each of these amino acid has
six codons, such that the first two positions cannot be fixed, and the allowed
substitutions for the third base depend on the first two bases. Therefore, to
fully support codon usage modeling, a fairly modest extension of the cost
function needs to be defined in the context of base triplets. With this ex-
tension, one can also easily allow substituting amino acid with a different
but similar amino acid. Another observation is that the unwanted patterns
associated with many binding sites (e.g., transcription factor binding sites)
can be represented using a short sequence with wildcard characters. Note
that the number of unwanted patterns implied by a sequence with wildcard
is exponential in the number of wildcard characters. An interesting open
question is whether there is an algorithm, which is linear in the total length
of unwanted wildcard patterns, and not just in the total length of all implied
patterns. Since Algorithm 4 makes use of a FSM, it seems reasonable that
one can create a FSM that recognizes this short sequence with wildcard char-
acters and use it to eliminate the patterns. In conclusion, we made the first
step in presenting a formal description of the pattern elimination problem.
The algorithms we suggest here are very efficient and relatively simple, and
thus can easily be incorporated in DNA design tools. The next step in this
line of research would be to extend the basic framework we propose here to
allow addressing a combination of complex design objectives.
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Appendices

A Eliminating unwanted patterns over binary

alphabet

While the elimination problem for non-binary alphabet sequences is ad-
dressed by Algorithm 1 (see Section 4), the elimination problem for binary
alphabet sequences cannot be solved by the same algorithm. Recall that
Algorithm 1 uses the positions in the hitting set as the positions in the elim-
inating set. However, over the binary alphabet, flipping a position in the
hitting set can create a new P -match, as shown in the example in Figure
1. While alphabets representing molecular data (e.g. DNA) are not binary
and do not have this problem, for the sake of theoretical completeness, we
devote this section to present a variant of the algorithm for binary alphabet
sequences. Our main objective in this section is to figure out a way to modify
the minimal hitting set such that:

1. It remains a hitting set

2. Its size does not increase

3. Flipping bits in the specified positions does not create new P -matches.

For this purpose, we distinguish between overlapping matches and non-
overlapping matches. Our solution is largely based on the following claim,
which is a corollary of Lemma 5 that also applies to binary alphabets (unlike
Claim 6).

Claim 17. If a position j in S belongs to two or more P -matches, then
flipping the bit in this position eliminates all P -matches that overlap position
j and no new P -match is created (Lemma 18 of [3]).

Proof. Any bit flipped within a given P -match eliminates that P -match, so
we are left to show that no new P -match is created when flipping a bit that
belongs to two or more P -matches. Let i1 and i2 denote the two starting
positions of two overlapping P -matches, and assume that flipping the bit in
position j creates a new P-match starting at position i3. Consider the se-
quence S ′ created from S by flipping position j. S ′ has a P -match starting in
index i3 and no P -matches starting at positions i1, i2. Flipping j in S ′ creates
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two new P -matches, starting at positions i1 and i2. Since this contradicts
Lemma 5, we reach a contraindication to our initial assumption that flipping
bit j creates a new P -match.

Consider the minimal hitting set, H, returned by Algorithm 2. Claim
17 implies that if i ∈ H belongs to more than one P -match, then Si can be
flipped without creating a new P -match. We are left to handle the indices
that belongs to a single P -match. Recall that Algorithm 2 always selected
the right-most index in a P -match. So, a position in H does not belong to
an overlap if it belongs to an isolated P -match or if it belongs to a P -match
that only has left overlaps. In the second case, we simply replace index i
with index i−k+1. Index i covered only one P -match and is the right-most
index of that P -match, then i − k + 1 is the left-most index of the same
P -match. Since this P -match has a left overlap, then i − k + 1 belongs to
more than one P -match. Therefore, replacing index i with index i − k + 1
maintains the hitting set, and since index i − k + 1 belongs to an overlap,
Claim 17 guarantees that we can flip it without creating new P -matches.

We are left to deal with isolated P -matches. For this purpose, we uti-
lize the observation made in [3] (Theorem 9), stating that for all but four
degenerate patterns 01k−1, 10k−1, 0k−11, 1k−10, there is a position in each P -
match that can be flipped without creating a new P -match. For nearly all
non-degenerate patterns the offset of this position relative to the starting
index of the P -match depends only on P and is constant across P -matches.
We describe here how to compute the offset for a given (non-degenerate)
pattern. The offset is computed by considering the first bit in P (b ∈ {0, 1})
and examining the longest substring in P that does not contain b (b̄-streak);
let t denote the length of this b̄-streak.

� Case a: P ∈ {0k, 1k}: the offset is set to 1.

� Case b: There is a b̄-streak that ends in position j < k in P (not a
suffix): the offset is set to j + 1.

� Case c: The only b̄-streak is a suffix of P but P ̸= bk−tb̄t: the offset is
set to be the index of the left-most b̄ in P .

� Case d: P = bk−tb̄t, where 1 < t < k − 1: if the P -match is not in the
beginning of S and the bit before the P -match is b̄, then the offset is
set to 2, otherwise, it is set to 1.
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For an isolated P -match starting in position i, we compute the relevant
offset and add the position i+ offset(i)−1 to the hitting set (instead of the
rightmost position selected by Algorithm 1). Note that for most P -matches
in S, offset(i) does not depend on the location of the specific P -match, and
only in case d offset(i) can be either 1 or 2 depending on Si−1. A case-by-
case analysis shows that flipping the bit in that position does not generate a
new P -match (see Theorem 1 in [3])

We presented two simple modifications to the minimal hitting set re-
turned by Algorithm 2 that produce a minimal hitting set that is also an
eliminating set. The modification requires:

1. Identifying the isolated P -matches

2. Selecting a position to substitute in each isolated P -match

3. Identifying P -matches that have only left overlaps

The added complexity of these steps is O(k + |H|).
There are four degenerate patterns that are not handled in the analysis

done in [3] and in the modified algorithm we described above: {01k−1 , 10k−1,
0k−11, 1k−10}. With degenerate patterns there are cases in which every bit
we flip in a P -match creates a new P -match. Consider, for example, the
unwanted pattern P = 0001 and the sequence S = 0000001001. The sequence
S has a single P -match in positions 4−7. If we flip a bit in position j ∈ 4, 5, 6
(from 0 to 1), then we create a new P -match ending in position j. On the
other hand, if we flip the bit in position j = 7 (from 1 to 0), we create
a new P -match ending in position 10. Indeed, to eliminate P from S we
need to flip two bits (e.g. positions 7 and 10). This example demonstrates
that eliminating degenerate patterns may require more substitutions than
the size of the smallest hitting set. Therefore, Algorithm 1 from Section 4 is
not appropriate in this case and a different algorithmic approach is needed.
On the other hand, an algorithm for eliminating degenerate patterns may
exploit their special attributes, such as the fact that degenerate patterns
cannot have overlapping matches.
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 תקציר 

יצירת מולקולות דנ"א בצורה מלאכותית מהווה חלק חשוב בחקר של מנגנונים ביולוגיים. תכנון של 

מולקולות דנ"א מלאכותיות מערב לרוב התחשבות בכמה מטרות. אחת המטרות החשובות היא 

או גורמי שעתוק. בעוד שכלי  יתוךחהסרה של תבניות קצרות המתאימות לאתרי קישור של אנזימי 

של  לבעיה פתרון הולם פורמלי אופןבים מטפלים בבעיה זו באופן כלשהו, הם לא מתארים תכנון רב

. בעבודה זו אנו מציגים תיאור רשמי של בעיית ההסרה של תבניות לא רצויות הסרת תבניות

ממחרוזת ארוכה. אנו מציעים מספר אלגוריתמים שפותרים את הבעיה ומאפשרים באותה עת גם 

פרעה לפונקציונליות הרצויה של מולקולת אופטימזציה של מטרות תכנון אחרות עם מינימום ה

שניתן לשלב אותה בכלי תכנון כך הדנ"א. הגישה שאנו מציעים היא מספיק גמישה, יעילה ופשוטה 

  דנ"א קיימים, ולחזק בכך את יכולותיהם באופן משמעותי.
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