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Abstract

Shiny floors, glasses and mirrors in indoor environments and wet surfaces in outdoor environments

reflect objects that are not necessarily in the region of interest in the scene. Although such reflective

surfaces are ubiquitous, they were hardly ever explicitly considered in previous studies. In this thesis we

address the problem of change detection on such reflective surfaces, when foreground objects are rela-

tively small in the scene, and their color is not guaranteed to differ significantly from the background.

Such objects are said to have low signal-to-noise ratio (SNR). Our goal is to recover the directly visible

changes and ignore the reflected ones. We make two contributions towards meeting this goal. Our first

contribution is a theoretical analysis of change detection at the pixel level in the presence of reflective

surfaces. The analysis is performed for both a single camera and a pair of wide baseline cameras in

the context of low SNR. Our second contribution is a change detection algorithm that allows reflections

from the ground to be removed, using a pair of cameras. By combining sensitive change detection at

the pixel level with the two-camera algorithm, we are able to detect objects in a low SNR scenario

while ignoring irrelevant reflections. Successful results of our algorithm on challenging scenes are

presented.
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Chapter 1

Introduction

The problem of detecting changes with respect to a learned background has been substantially dealt

with in recent literature. Reviews of the most common methods are presented in [Piccardi, 2004,

Radke et al., 2005, Cristani et al., 2010]. This thesis addresses a new variant of the change detection

problem where objects are located on a possibly reflective surface and the signal may be similar to the

background.

Reflective surfaces such as shiny floors in an indoor environment and wet surfaces outdoors may be

present in the scene. Although such reflective surfaces are ubiquitous, they were hardly ever explicitly

considered in previous change detection studies. In fact, without any additional prior information re-

garding the scene or the object to be detected, it would be impossible from a single view to differentiate

between a true object and a reflection of an object located outside of the region of interest (e.g., an

object reflected from a perfect mirror). The problem becomes even more challenging when significant

change between the possible foreground and background color values is not guaranteed, in particular

when the objects are very small, that is, have a low signal-to-noise ratio.

We present a theoretical analysis of the challenges imposed by low SNR and reflective surfaces.

In addition, we present a method for detecting foreground objects located on the ground surface while

ignoring their reflections. Our method overcomes the challenges imposed by low SNR and reflective

surfaces by using a of pair of cameras with overlapping fields of view in a wide-baseline configuration.

In addition, we assume that the ground surface is known and may be reflective. For simplicity, we
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Chapter 1 / Introduction

consider a planar ground surface.

Most change detection algorithms use a pre-processing stage for determining the probability of

each pixel to belong to the background (e.g., [Piccardi, 2004]) and then use post-processing to detect

foreground objects. The core of the preprocessing stage is building a model of the background using a

series of one or more images. Given a novel image, we classify each pixel (or region) as foreground by

comparing it to the background model. The main differences between the various methods is how the

background is learned and represented in order to be robust to gradual illumination changes, sudden

illumination changes, dynamic background, camouflage, shadows, etc. A naive post-processing stage

consists of thresholding the background probability of each pixel. However, meaningful foreground

objects in images usually consist of multiple pixels connected as a single ”connected component” or

blob. Indeed, most change detection algorithms use this fact to further process the map of foreground

probability using the methods of hysteresis thresholding, gap filling, discarding small blobs which

constitute noise, etc.

In this thesis we address both the pre-processing stage, where the probability of each pixel to belong

to the background is determined, as well as the post-processing where the objects are detected from the

computed pixel probabilities.

Reflections: Figure 1.1 depicts the different types of background which might be viewed by a single

camera focusing on a reflective surface. The blue arrow points to an image pixel which is the projection

of the floor. The green arrow points to an image pixel which is the projection of a point on the floor

reflecting the roof of a house which is outside the region of interest. Both the floor and the house are

static objects and their image projections can be treated as permanent background. The reflection of a

permanent background can be learned and treated using existing methods. However, as can be seen in

the red arrow, a bird which is not located inside the region of interest, and is not a foreground object, is

reflected by the surface and viewed by the camera. We call such background objects – which existing

methods will erroneously classify as foreground – transient background. Such background might also

include reflections of foreground objects, as can be seen in Figure 1.2 (a) and (b). In these figures, a

person is viewed by two cameras. A reflection of the person on the floor is also viewed by both cameras.

However, since they are located in different positions, each camera views a different reflection of the
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Chapter 1 / Introduction

object.

Reflected objects are not considered as foreground, and hence, should not be detected as such. In

addition, ignoring the reflections of foreground objects is necessary for obtaining their shape and exact

position on the ground. This is similar to omitting the shadows of an object from a foreground region.

Although reflections of objects within the scene may be thought of as similar to shadows, there are

inherent differences between the two. Reflections retain edge and color information of the reflected

object, whereas shadows do not. In addition, shadows can be regarded as flat objects on the ground

surface, while reflected objects can be regarded as real objects in the scene that are behind (or below)

the reflective surface. An illustrative example of this would be to look at the bannister in Figure 1.2

(b). It is reflected on the floor and is a mirror image of the true object. The task of detecting and

removing shadows was previously addressed and solutions suggested by means of color properties

using a single camera (e.g., [Cucchiara et al., 2001]) or by detecting objects on the ground plane using

a pair of cameras (e.g., [Lanza et al., 2007]). However, none of these methods are directly applicable

for handling reflections.

Pixel classification: A preprocessing step of many change detection algorithms would be to classify

each pixel as background or foreground, using the expected distribution of the grey-level (or color) of

the background. The background distribution can be learned from the data (e.g., [Stauffer and Grimson, 1999]).

However, the foreground distribution is often unknown and may overlap that of the background. Hence,

the foreground classification method should be carefully chosen to ensure detection of low SNR ob-

jects.

Most existing change detection methods ignore low SNR since they often consider quite large

objects (e.g., people or cars) that are assumed to be different than the background (e.g., for tracking).

Probably for this reason, the choice of the threshold used to classify a pixel was usually not a problem

in these methods. We select our threshold using a significance test that is guaranteed to provide the best

possible detection performance subject to a predefined, acceptable false alarm rate.

A theoretical analysis is presented for pixels corresponding to a point on a reflective surface. We

formally show that for an acceptable false alarm rate, the detection rate from a single camera is very

small. The intuition for this result is that the background may contain reflected objects outside the

3



Chapter 1 / Introduction

Figure 1.1: Possible background objects in an image of a reflective surface.

region of interest, which have the same distribution as a foreground object. However, since the reflected

scene depends on the viewing direction, a pair of corresponding pixels taken from a pair of wide-

baseline cameras can be used to reduce the ambiguity between foreground objects and reflected ones.

We show how corresponding pixels in the two images can be used to significantly improve the ROC

curve of each.

Our Method: The key idea of our method is to detect changes on the ground plane which are not due

to reflections. To do so, a homography transformation is applied to align the ground plane pixels of

the two images. Objects on the surface are those detected as foreground in both images while objects

above the surface are detected in only one of the images. This idea was previously used for removing

shadows that are detected as changes on the ground plane (e.g., [Lanza et al., 2007]). However, we note

that reflected objects that can be interpreted as lying below the surface will also be detected in only one

of the images. Moreover, removing shadows would also remove small objects on the surface.

Using this observation, our method detects only the foreground object and ignores its reflection.

4
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The detected foreground objects on the ground plane are used as seeds for further processing. The

foreground regions detected by a single camera are those connected to these seeds and located above

them. Regions connected to the seeds but located below them are ignored. These are the reflections of

the foreground regions.

The plane alignment is also used for classifying foreground pixels on the ground when the SNR

may be low. The chances that uncorrelated noise from each camera will generate false detections in

corresponding pixels are very low. Moreover, the different viewing angles of each camera increase

the chances that one of the cameras will have a better view of the object, allowing the use of lower

thresholds.

Applications:

One possible application of low SNR change detection is in the problem of foreign object debris

on runway surfaces (FOD), as explained in the work of [Qunyu et al., 2009]. FOD was found to be the

source of the crash of the Concorde at Charles de Gaulle airport back in 2000. A metal strip that fell off

a DC-10 just few minutes before caused a tire to rupture, and the ensuing explosion caused the aircraft

to crash, killing all 113 people on board. In such situations there is no prior knowledge of the object to

be detected: any object which is not part of the runway surface should be detected. These objects can

be very tiny screws and bolts, and they might even be pieces of detached asphalt chunks exhibiting very

similar color to the background. The runway might be wet after rain and reflections of objects outside

the region of interest might pose further difficulties on a detection system. Other examples could be

camouflaged objects which vary only slightly from the background statistics. In all these examples, the

challenge is made more difficult by the need to consider a reflective surface.

Thesis Contribution:

In this thesis we have made the following contributions:

• We explicitly deal with reflective surfaces for change detection, which was not done before.

Dealing with such surfaces is necessary since reflective surfaces are present in many indoor as

well as outdoor scenes.

• We provide a statistical background model which explicitly models the properties of reflective
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(a) (b) (c)

Figure 1.2: (a) An example of a scene containing 4 very small objects (with red arrows pointing to their
locations) and a large foreground object (a person) walking in the scene. The person’s self reflection
can be seen on the floor too. (b) The same scene as (a) as seen by the second camera. (c) The final
detection result of our method. All 4 objects were detected including the person. However, the person’s
self reflection has been eliminated.

backgrounds and theoretically analyze its performance. Such a background model is necessary

for any change detection method that computes changes at the pixel level as its first step.

• We provide a statistical model of a reflective background as seen by two cameras. Such a back-

ground model is necessary for a change detection algorithm which uses two cameras.

• We develop a change detection method which has high detection performance while eliminating

false detections due to reflections and noise.

• We deal with the detection of small and low SNR objects which is suitable for applications that

do not have prior knowledge of the object to be detected. This is an important challenge for

various applications such as FOD detection systems. Again, despite its important value, this

challenge received only limited attention in previous work.

• Our algorithm is adaptive and automatically sets a pixel-wise threshold according to a prede-

fined false-alarm rate parameter. This allows to achieve the best detection performance (high

sensitivity) subject to an acceptable false alarm rate which is configured by the user.

• We provide a challenging data set for testing scenes with reflective surfaces and small objects

that are similar to the background.

The rest of the thesis is organized as follows: In Chapter 3 we model the reflective background
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model in a single camera as a mixture of the permanent and transient background models. The weight

of the mixture depends on the rate at which transient background changes occur. We will show that the

higher the prior probability for a transient change in the background, the poorer the classification of

foreground objects will be.

In chapter 4 we provide a novel reflective background model based on two views of the reflective

scene. We will assume a dense correspondence between pixels viewing the same scene points in both

cameras. Since the reflected object viewed by a camera depends on the angle between the camera and

the object being reflected, it is obvious that a wider baseline between the two views decreases the chance

that two corresponding background pixels will both show a reflection of the same transient background

object. The wider the baseline is, the slimmer that chance becomes. Moreover, since the probability of

viewing different transient background objects in each view is independent, combining the information

from two cameras will substantially reduce the false detection rate. Since true foreground objects will

be seen by both cameras, this method will maintain high probability of detection.

In chapter 5 we present our full method for detecting objects on reflective ground planes using

two views. Not only does our method handle transient background very well, but it also removes the

reflected areas of foreground objects.

In chapter 6 we present the results of our method in different scenarios. In order to demonstrate

the power of our method, we focus on detecting very small objects with low SNR, which are typically

more difficult to detect than large objects with large contrast to the background.

7



Chapter 2

Previous Work

Background subtraction is commonly used in the literature for foreground segmentation. Good reviews

of these methods are presented in [Radke et al., 2005] and [Piccardi, 2004]. Brutzer et al. ([Brutzer et al., 2011])

provide an evaluation of these methods’ performance in various conditions such as gradual or sudden

illumination changes, dynamic background, camouflage, and shadows. None of these papers attempt

to deal with reflective surfaces or specular reflections. This is no coincidence since, as we will show

in chapter 3, it is impossible to distinguish between reflections of objects outside and within the region

of interest and true foreground objects using a single monocular camera. Any attempt, without use of

additional prior knowledge, will either produce many false alarms or missed detections.

In [Cristani et al., 2010] a review of multi-sensor techniques for change detection is presented. In

this paper the performance of each of the considered change detection methods was also evaluated on

reflective surfaces. It was concluded that using multiple cameras, 3D structure, and depth information

is necessary to deal with reflective surfaces. We will show that for our method only partial depth

information that allows alignment of the ground surface is sufficient.

In the past few years several methods using multiple cameras have been proposed for robust change

detection. Most of these use the depth or disparity from a pair of cameras. They are usually ap-

plicable only for narrow baseline configurations ([Krumm et al., 2000, Goldlucke and Magnor, 2003]).

Goldlucke and Magnor [Goldlucke and Magnor, 2003] simultaneously compute the foreground and

the depth by minimizing a discrete energy functional which evaluates both properties at the same
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time. Another example of using a stereo camera for computing background subtraction is presented by

[Bahadori et al., 2007]. There, the background model consists of intensity, disparity, and edge informa-

tion. The 3D information is also used for improving segmentation. Gordon, et al. [Gordon et al., 1999]

use both depth and color, with the depth coming from range data. Harville et al. [Harville et al., 2001]

suggest a method in which the background is defined by per-pixel, time-adaptive, Gaussian mixtures

in the combined input space of depth and luminance invariant. Zhao et al. [Zhao et al., 2005] use

disparity for modeling the background. The main limitation of all these methods is the dependency

on computing stereo correspondence between the two views. Stereo methods typically require narrow

baseline configurations, where most configurations consist of a network of wide-baseline monocular

cameras with overlapping fields of view. The online computation of dense stereo matches is usually

very intensive and requires specialized hardware to handle it efficiently [Lim et al., 2005]. The most

important limitation of these methods is when dealing with reflective surfaces such as glossy flooring.

In this case, corresponding pixels on reflective surfaces are likely to have different color or texture

since different parts of the scene are reflected to each of the images. Hence, the stereo algorithm is

most likely to fail.

A novel work which performs the above tasks well in realtime without the need of any special hard-

ware assistance is [Ivanov et al., 2000]. The authors construct the disparity fields of the background

offline using dense stereo methods. This creates a pixel-to-pixel transformation from one image of an

empty (background) scene to another. When a foreground object is in the scene, the colors between

two corresponding pixels do not match because of the disparity changes. This method does not handle

non-Lambertian surfaces well and also requires color calibration between the cameras.

Lim et al. [Lim et al., 2005] base their work on [Ivanov et al., 2000]. This is the only work in

the literature which specifically addresses change detection in specular reflective surfaces. The authers

suggest placing the cameras in a vertical configuration, which is optimal for minimizing occlusion shad-

ows and missed detections as defined in [Ivanov et al., 2000]. However, the proposed configuration has

some limitations. First, it does not fit many existing configurations of a network of overlapping wide

FOV cameras covering as large an area as possible with a minimal number of cameras. There would

usually also be some limitation on the required height for this configuration. Second, placing the cam-
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eras vertically will make them parallel to the direction of the reflection on the surface, which is always

towards the camera. This will, in fact, maximize the common area where both cameras view the same

reflection in corresponding pixels. In our work we will show that a horizontal configuration with as

large a base-line as possible will minimize this effect. Finally, the method proposed in [Lim et al., 2005]

to eliminate foreground object pixels that are due to reflections on the surface is based on the vertical

configuration and will not work on a wide baseline horizontal configuration.

A method which meets the requirements of a wide baseline configuration is presented in [Akman et al., 2008].

It relies on the homography between two views of a planar surface to create a combined background

model. The background model is based on a multivariate Gaussian mixture model, which is a gen-

eralization of the model initially proposed by [Stauffer and Grimson, 1999]. Then, the Mahalanobis

distance between a pair of corresponding pixel values and each multivariate Gaussian is computed. If

the pixel pair does not match any Gaussian, it is considered as a new foreground pixel. This method

has a few shortcomings. It does not handle non-planar objects which are above the surface. Thus,

this method is more suitable for cases where the cameras are placed high above the scene, where the

height of the object becomes negligible. The other problem is that the classification method that uses

the Mahalanobis distance does not handle transient background pixels well. In such cases, only one of

the corresponding pixel values will incorporate the color change while the other pixel will match the

background model. The Mahalanobis distance will still be large and thus this pixel will not match any

Gaussian and will be erroneously classified as foreground.

The approach most closely related to ours is presented in [Khan and Shah, 2006]. The main motiva-

tion is tracking people in crowded scenes, but the authors employ a multi-view background subtraction

method as a first step. Since their motivation was to track the people’s feet on the ground plane, the

authors do not mention that their method can effectively handle reflective surfaces, as we indeed show

in this work. Also, they do not put any emphasis on the threshold selection since they assume that

the foreground objects will have high contrast relative to the background. In our work we attempt to

detect very small objects with low SNR and propose a foreground classification method that can be

statistically proven to be optimal.
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Chapter 3

Single Camera Limitations

The objective of this chapter is to formalize and analyze change detection from a single camera at the

single pixel level. Computing changes at the pixel level is a common step in many existing change de-

tection methods (e.g., [Piccardi, 2004]). The post-processing step of integrating connected components

of changed pixels into foreground blobs is addressed in chapter 5.

Here we formalize and analyze the required threshold to optimize the performance of an algorithm

in the presence of reflective surfaces in the scene. In particular, we consider scenes with low SNR. For

such scenes, discriminating between foreground and background pixels is more challenging and this

challenge clearly increases in the presence of a reflective surface. We prove the limitations of a single

camera to detect changes at the pixel level when reflective surfaces are presented. In particular, we

show that for an acceptable false positive detection rate, the probability of true detection is very low.

3.1 Foreground Classification Method

Throughout this work we will use hypothesis testing in the same manner used in [Aach and Kaup, 1995],

to classify the source of each pixel as a projection of a foreground or a background scene point, which

we name foreground and background pixels respectively. We will use the same notation as defined in

[Duda et al., 2001] and also used in [Aach and Kaup, 1995]. We consider the pixel value x to be a con-

tinuous random variable. The value of x can be scalar in the case of a single channel (gray) camera, but
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can also be a vector of values in the case of multi-channel images (for example RGB). The distribution

of x depends on the state of nature (where the states of nature can be either background or foreground)

and is denoted as P (x|B), indicating the conditional density function of x given that the true state of

nature is background (that is, the value of x originates from a background pixel) or P (x|F ) indicating

the conditional density function of x given that the true state of nature is foreground.

The likelihood ratio test is used to classify the source of a given pixel value x to be a background

or a foreground scene point:

Λ (x) =
P (x|B)

P (x|F )

B

≷
F

t. (3.1)

We classify the pixel as background if the likelihood ratio is above the threshold t, and otherwise

we classify it as foreground. The threshold t defines the tradeoff between false positive and false

negative detections. When using this formulation, we must decide (i) how to set P (x|B), (ii) how

to set P (x|F ), (iii) how to set t. How to best set P (x|B) was extensively studied in the literature,

whereas how to best set P (x|F ) is application specific. Both are discussed in Sections 3.2-3.3. The

problem of setting the threshold t, which we next describe, has received less attention in previous work

since signals with low SNR were rarely considered.

According to [Aach and Kaup, 1995] we may choose the threshold t such that

α = P (Λ (x) < t |B ) , (3.2)

where α is a predefined acceptable false alarm rate. This procedure is termed a significance test with the

false alarm rateα being the significance. According to the Neyman-Pearson theorem [Neyman and Pearson, 1933]

this procedure will maximize Pd, the probability of detecting a true change, subject to the predefined

probability of false alarm α.

We denote the set of values x that are classified as foreground by R (t). Formally, R (t) is defined

by:

R (t) = {x |Λ (x) < t} . (3.3)

12
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In order to compute the false alarm rate α we need to consider the set of false detections: pixels

belonging to the background but classified as foreground. Formally, it is given by integrating P (x|B)

over R (t):

P (Λ (x) < t |B ) =

∫
x∈R(t)

P (x|B) dx = α (3.4)

A closed form solution to the above integral is beneficial. In particular, it allows the detection

threshold to be efficiently updated when the background model is updated. In some cases, a closed

form solution to 3.4 can be obtained, as presented in the next section. In other cases, it can be solved

numerically and used to generate ROC curves (e.g., [Duda et al., 2001]).

3.2 Nonreflective Background

We will now analyze the classification method of the simple single Gaussian case, which is used in

[Wren et al., 1996] for gray level images. We analyze its theoretical performance in the presence

of a non-reflective surface (the ordinary case). This method was chosen because it is easy to ana-

lyze mathematically. The same analysis can be performed for color images, mixture of Gaussians

([Stauffer and Grimson, 1999]), and other methods presented in [Piccardi, 2004], but the analysis ex-

pected to be far more rigorous. In our analysis the background distribution of each pixel, P (x|B), is

independently modeled as a Gaussian distribution parameterized by µ and σ, which are both estimated

using a sequence of background images (see, for example, Chapter 5). Although not explicitly stated in

[Wren et al., 1996], it is assumed that the foreground (without any additional prior knowledge) is uni-

formly distributed, and hence its value is constant. We further assume that the pixels’ gray level values

are valid in the range of 0-255. Thus we obtain the following distribution functions for the background

and foreground respectively:

P (x |B;µ, σ ) =
1√
2πσ

e−
1
2(x−µσ )

2

(3.5)

13
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P (x|F ) =


1

255 0 ≤ x ≤ 255

0 else
. (3.6)

By substituting equations 3.5 and 3.6 into 3.1, the likelihood ratio can be replaced by

P (x |B;µ, σ )

P (x|F )
=

255√
2πσ

e−
1
2(x−µσ )

2 B

≷
F

t. (3.7)

By applying a log on both sides and simple algebraic manipulation we obtain

∣∣∣∣x− µσ
∣∣∣∣ F≷
B

−

√√√√2 log

(
t
√

2πσ

255

)
= t1. (3.8)

Thus, we may conclude that the region of x where the likelihood ratio value is above some constant

threshold t is equivalent to the Mahalanobis distance (x−µσ ) being less than a constant threshold t1 that

is defined above. It follows that the region R (t) in equation 3.3 is equivalent to

R (t1) =

{
x

∣∣∣∣ ∣∣∣∣x− µσ
∣∣∣∣ > t1

}
. (3.9)

Then, for a given false alarm rate α, t1 is obtained (according to equation 3.4) by solving the following

integral ∫
x∈R(t1)

P (x|B) dx = α, (3.10)

which is equivalent to solving ∫
x/∈R(t1)

P (x|B) dx = 1− α. (3.11)

Substituting equations 3.9 and 3.5 into the above, we get

14
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1− α =
µ+σt1∫
µ−σt1

1√
2πσ

e−
1
2(x−µσ )

2

dx

=
−t1∫
−t1

1√
2π
e−x

2
dx,

(3.12)

and then finally

1− α = FN (t1)− FN (−t1) = 2 · (FN (t1)− 0.5) , (3.13)

where FN is the cumulative distribution function of the normal distribution. For a false alarm rate

α = 0.001, for example, we will choose, according to the normal CDF, a value of t1 = 3.2905.

It turns out that the decision rule produced by our analysis is identical to that proposed in [Wren et al., 1996],

where the Mahalanobis distance is compared against a threshold.

Figure 3.1 shows ROC curves depicting this classification performance for different values of σ,

assuming µ = 128 and the foreground pixel is uniformly distributed between 0 and 255. Not surpris-

ingly, it can be seen that for pixels with larger σ values (i.e., noisier pixels), the expected detection rate

decreases. We added specific data cursors for the different ROC curves, indicating the values where α

is 0.001. This will be an acceptable false alarm rate in many cases. For example, the expected number

of false detections in a 1M pixel image is about 1000. Since the pixels are independent, these spo-

radic detections will be uniformly distributed along the image space, and the probability of connected

components (see chapter 5) in the image being created due to noise will be very small.

3.3 Reflective Background

We now introduce a new concept to our description of a background. Up to now, all previous work has

assumed that the background is static. The more advanced methods attempt to handle some form of

dynamic background such as swaying trees and bushes (see [Radke et al., 2005, Piccardi, 2004]). In our

environment the background consists of reflective surfaces. In that case, the intensities viewed by the

camera might be some static background reflected from the surface (e.g., the photo frames and staircase

15
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Figure 3.1: ROC curves of single Gaussian performance for different σ values. The data cursers indi-
cate the expected PD for each curve for PFA value of 0.001.
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in Figures 1.2 (a) and (b)). We will call this the permanent background scene, for which the reflection

can be modeled by existing methods. However, non-static objects not physically located in the area of

interest might be reflected and captured by the camera. These objects, if not correctly handled by the

background model, will obviously produce false alarms. We call this kind of background a transient

background. An example of such objects are the lights in the ceiling reflected by the floor as seen in

Figures 1.2 (a) and (b). These reflections might appear or disappear when turning the light switch on

and off. Another example of a transient background object can be seen in Figure 3.2. A person is

walking out side the room but is seen through the glass window and is reflected on the floor.

Figure 3.2: An example of a transient background object reflected on the floor. The person is walking
out side the room however, he is seen through the window and reflected on the floor. This will produce
a false detection.

We next show that without additional prior knowledge of the intensity distribution of reflected

objects, it is (almost) impossible to distinguish between true objects (objects which are in the area of

interest) and reflections. We use the same flow as in the previous section: first the foreground and

background models are defined, then the classification rule is shown to be given by the Mahalanobis

distance, and finally it is shown that for an acceptable false alarm rate, the detection rate is very low.

3.3.1 Background and Foreground Probability

The background model is assumed to be a mixture of static and non-static distributions. At any given

moment, the intensity of the pixel measured by the camera might either be a projection of the static

(permanent) background or a reflection of a transient background. We denote the prior probability,
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P (BP ), as the probability that at any given time, the measured pixel value will be the projection of the

permanent background. Then, the prior probability that a pixel value will be a projection of a transient

background is given by P (BT ) = 1− P (BP ).

We model the permanent background distribution as a single Gaussian distribution with the param-

eters µ and σ identical to the one in Eq. 3.5. Thus we have:

P (x |BP ;µ, σ ) =
1√
2πσ

e−
1
2(x−µσ )

2

. (3.14)

Without any additional information about the transient background and its reflection properties, we

model by a uniform distribution the transient background as in Eq. 3.6. Thus we have:

P (x|BT ) =


1

255 0 ≤ x ≤ 255

0 else
, (3.15)

where transient background is denoted by BT . Then, using 3.14 and 3.15, we get the combined back-

ground density:

P (x |B;µ, σ ) = P (x |BP ;µ, σ ) · P (BP ) + P (x|BT ) · (1− P (BP )). (3.16)

The foreground distribution is assumed to be identical to the foreground distribution of the non-

reflective model and is equal to equation 3.6.

3.3.2 Classification Performance

We next show that the classification is equivalent to the Mahalanobis distance from a Gaussian. Hence,

the limits of the integral are similar to the simple case with non-reflective surfaces. However, the func-

tion that is required to integrate is more complex. We substitute equations 3.16 and 3.6 into equation

3.1 and get

Λ (x) =
P (x |BP ;µ, σ ) · P (BP ) + P (x|BT ) · (1− P (BP ))

P (x|F )

B

≷
F

t. (3.17)
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By simple algebraic manipulation we obtain:

P (x |BP ;µ, σ )
B

≷
F

t · P (x|F )− P (x|BT ) · (1− P (BP ))

P (BP )
= t1. (3.18)

We denote by t1 the right-hand side of the inequality, which is constant. By substituting with 3.14,

some simple manipulation and applying log to both sides, we get, as in equation 3.8, that

∣∣∣∣x− µσ
∣∣∣∣ F≷
B

t2, (3.19)

and thus we have obtained a detection region similar to the one we found in equation 3.9. Then, using

the same reasoning, we can obtain the threshold t2 given the false alarm rate α by solving the following

integral:

µ+σt2∫
µ−σt2

P (x |BP ;µ, σ ) · P (BP ) +
1− P (BP )

255
dx = 1− α, (3.20)

after which we obtain

P (BP ) (FN (t2)− FN (−t2)) +
1− P (BP )

255
2σt2 = 1− α, (3.21)

where FN is the cumulative distribution function of a standard normal distribution. Note that µ was

eliminated from the equation but, unlike in the previous case, σ remains.

Once t2 is solved, given α and σ, the classification rule, similar to the simple Gaussian model, is

simply the Mahalanobis distance compared to t2. Unfortunately, there are no analytical means to solve

3.21. Nonetheless, the function is easy to sample and can be used to generate ROC curves. These

curves, shown in figures 3.3 (a) and (b), allow us to analyze the theoretical properties of this model.

3.3.3 Single Camera Limitations

Using the formulation and given the acceptable false alarm rate, α, we next study the detection rate, PD.

The ROC curve depends on σ as well as on P (BP ), as can be seen from Equation 3.21. Note that FN ()

also depends on σ. The ROC curves were computed for different values of 0.5 ≤ σ ≤ 5, for a fixed
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(a) (b)

Figure 3.3: (a) ROC curves of single Gaussian performance with reflective background for different σ
values. The curves where generated with the value P (BP ) = 0.99. (b) ROC curves of single Gaussian
performance with reflective background for different P (BP ) values. The curves where all generated
with the value σ = 1.

P (BP ) = 0.99 (Figure 3.3). It can be seen that for all considered σ values, the ROC curves converge to

the same linear function for which the same PD value of 0.1 and α value of 0.001 is obtained (the same

α as considered in Section 3.2). This can also be shown analytically when considering large enough

values of t2. For large values of t2 the integral of P (x |BP ;µ, σ ) will be approximately 1. Substituting

P (x |BP ;µ, σ ) = 1 into equation 3.21 we get that:

P (BP )− 1− P (BP )

255
2σt2 = 1− α, (3.22)

which can be solved for t2, giving us t2 as a function of P (BP ) and α:

t2 =
255 (1− P (BP )− α)

2σ (1− P (BP ))
. (3.23)

Using t2 we wish to compute the value of PD, which is given by integrating P (x|F ) over R (t), which

in our case would be:

µ+σt2∫
µ−σt2

P (x|F ) dx =

µ+σt2∫
µ−σt2

1

255
dx = 1− PD. (3.24)
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Solving the above integral we get:

PD =
255− 2σt2

255
. (3.25)

Finally, substituting 3.23 into 3.24 we get the final result for PD:

PD =
α

(1− P (BP ))
. (3.26)

We can see from equation 3.26 that PD is a linear function of α (for small enough values of α). We can

also see that this function’s slope depends only on P (BP ).

In figure 3.3(b), the ROC curves are computed using different values of P (BP ); thus, it can be

seen that each curve begins with a linear part for which the slope is different. This figure also depicts

the drastic reduction of the PD as P (BP ) decreases. Note that for P (BP ) = 1, there are no transient

reflections. Hence, it corresponds to the case of no reflections. This can be seen by comparing it to

Figure 3.1. However, even for a small probability (0.005) of transient background, for which P (BP ) =

0.995, the performance decreases to PD of 0.2 for α = 0.001, which would be unacceptable in most

systems. This analysis motivates the use of an additional camera.

3.4 Summary of Single Camera Limitations

In this chapter we showed that the detection performance induced by the simple mechanism of back-

ground subtraction decreases drastically when reflective surfaces appear in the background. This is

quite obvious since the very essence of background subtraction is to identify regions that differ from

the normal background and since reflections of objects look identical to true foreground objects when

viewed by a camera. Thus, the only single-camera method for reducing false alarms induced by these

reflections is post-processing, additional prior knowledge, and trying to eliminate changed blobs after

the change takes place, as is done, for example, in [Yoon and Kweon, 2004].

In the next chapter, we will provide a framework that uses a wide baseline stereo configuration to

create a dual-view change detection method that handle reflective surfaces very well without the need
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for complex post-processing and additional prior knowledge.
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Chapter 4

Pixel Level Two Camera Analysis

In chapter 3 we discussed detection from a single camera in the presence of a reflective surface. We

showed that it is virtually impossible to produce a system for detection with good performance (low

false alarm rate with high detection rate) without any additional prior knowledge about the object to be

detected.

The objective of this chapter is to formalize and analyze the information available from two images

taken from different viewpoints. We propose a method that combines the information from a pair of

cameras in order to overcome the limitations of a single camera as presented in Chapter 3. In particular,

we consider the detection of changes in a pair of corresponding pixels in two images. The manner in

which the correspondence is obtained can vary, and a specific application which uses a homography

based correspondence is discussed in Chapter 5. Again, we consider scenes with low SNR and reflective

surfaces. As in the previous chapter, we will develop a hypothesis testing method to obtain the optimal

decision boundary, but the background and foreground distribution functions will now be of a pair of

pixel values from two images.

4.1 Reflective Background Using Two Images

We assume two cameras, each maintaining an independent background model. The PDF of each back-

ground is the same as described in equation 3.16. The background model for each camera is indepen-
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dent since we assume that the noise arising from the permanent model is independent and there is no

correlation between the color values each camera is viewing. Since the PDF is independent between

the cameras, we may use univariate Gaussian distributions in our method instead of the multivariate

distributions proposed in [Akman et al., 2008].

Hence, given two corresponding pixel values from each camera, x = (xL, xR), the probability

density function for x given that the state of nature is background, is:

P (x |B;µL, σL, µR, σR ) = PL (xL |B;µL, σL ) · PR (xR|B;µR, σR ) , (4.1)

where PL (xL |B;µL, σL ) is the conditional density function of left camera pixel xL, given that it comes

from the left camera view of the background. PR (xR|B;µR, σR ) is the conditional density function

of right camera pixel xR, given that it comes from the corresponding camera view of the background.

We assume the foreground distribution in each camera to be the same as in section 3.2 equation 3.6.

We also assume that the distribution in each camera is independent of the object. This is true since the

views might be from very wide baseline cameras and we do not wish to impose correlation between the

color and texture values in each view. Thus the foreground distribution for a pair of views would then

be

P (x|F ) =


1

2552
0 ≤ xL, xR ≤ 255

0 else
. (4.2)

4.2 Classification Performance

We substitute equations 4.1 and 4.2 into the likelihood ratio function, which is valid in the range

0 ≤ xL, xR ≤ 255:

Λ (x) =

[
P (BP ) 1√

2πσL
e
− 1

2

(
xL−µL
σL

)2

+ 1−P (BP )
255

]
·
[
P (BP ) 1√

2πσR
e
− 1

2

(
xR−µR
σR

)2

+ 1−P (BP )
255

]
1

2552

B

≷
F

t

(4.3)
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Figure 4.1: The likelihood function for two camera detection

To better understand how this likelihood function affects classification, we consider a concrete

example. We use values of µL = 128, σL = 1, µR = 150, σR = 1 and P (BP ) = 0.99, as depicted in

Figure 4.1. It can be seen that highest likelihood ratio is when both xL is close to µL and xR is close to

µR. This occurs when the values viewed in both pixels are from the permanent background. Since the

prior probability for permanent background is P (BP ) = 0.99, then the prior probability for a reflection

of a transient background object is 0.01. Thus there is still a high (but less likely) chance that xL or xR

will be from a transient background object. Consequently, we can still see quite high likelihood ratio

values when xL is close to µL but xR can be any value in the range of 0-255 and vice versa. Since

the chance of viewing a reflection of two different transient background objects in both pixels is much

lower – 0.01 · 0.01 = 0.0001, we can see in the figure that the likelihood ratio where both xL is far

from µL and xR is far from µR is lowest.

Similar to the single camera case, setting a specific value of threshold t will produce a region in

the space of x denoted R (t), as defined in equation 3.3. Unlike the single camera case, however, the

space here is two-dimensional and there is a correlation between the two dimensions. This can be seen

in Figure 4.2(a), which was obtained by choosing a specific value for t such that PFA = 0.001. The

region labeled in black is the region where pixel values are classified as background. The white is the

region where pixel values are classified as foreground objects.
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(a) (b)

Figure 4.2: ((a)) The region obtained from the likelihood function of figure 4.1 after using the threshold
t = 2.1002e − 006. This region will produce a false alarm rate PFA = 0.001 caused by pixels with
intensity close to the background distribution. ((b)) The matching region obtained using the simple
detection method.

(a) (b)

Figure 4.3: ((a)) A zoom view of the region in figure 4.2((a)). ((b)) A zoom view of the region in figure
4.2((b)).
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(a) (b)

Figure 4.4: (a) ROC curves for the two Gaussian case using different P (BP ) values. The data cursers
indicate the expected PD for each curve for a PFA value of 0.001. (b) ROC curves for both single
and two Gaussian cases with reflective background using different P (BP ) values. The curves were all
generated with the value σ = 1.

As before, an analytical solution for equation 3.4 when substituting it with equations 4.1 and 4.1 is

not possible. Instead, we sample the function and generate the ROC curves depicted in figures 4.4(a)

and (b).

In figure 4.4(a) we depict the ROC curves computed for different values of P (BP ) where the σ

values for both Gaussians are set to 1. We compare the performance of the single Gaussian case and the

two Gaussian case. As can be seen, the performance for P (BP ) ≥ 0.99 is very good. It is interesting

to observe the case where P (BP ) = 1. In this case there are no transient background reflections and

the classification method converges back to the Mahalanobis distance in the 2D case, which is basically

the classification method in [Akman et al., 2008]. As can be seen in the ROC curve, the performance

for P (BP ) = 1 is almost perfect. However, for the same parameters, the single camera performance is

not as good. This demonstrates that using two cameras improves change detection for objects with low

SNR even when no reflective surfaces are present. For smaller values of P (BP ), performance degrades

substantially for the two-camera case, even to the point of yielding useless results. This demonstrates

the limitations of our method when the probability of transient background is high. We believe, in this

case, that additional cameras can lead to improved performance.
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4.2.1 Simplified Classification Method

In the previous section we developed the classification rule for the two image case. Ideally, a closed

form solution to t is desired, given the acceptable false alarm rate, α. However, since such a solution

is unknown, we computed t numerically by sampling the likelihood ratio function and generated ROC

curves that exhibited superior performance over the corresponding single image case. In this section we

propose an easier-to-compute approximation of the classification region presented in Figure 4.3(a). The

region, resembling an ellipse, is centered at µL and µR and holds most of the density of the background

density function. This component is weighted with P (BP ) · P (BP ), which causes it to have high

density values compared to the other regions. The two rectangular regions, one centered at µL and

the other at µR, cover cases that occur with probability P (BP ) · (1 − P (BP )), where one pixel value

originates from the permanent background and the other from the transient background.

Using two thresholds tP and tT , we define our simplified detection region as follows. The ellipse

shape is defined by:

RP (tP ) =

{
x = (xL, xR)

∣∣∣∣∣
((

xL − µL
σL

)2

+

(
xR − µR
σR

)2
)
> tP

}
. (4.4)

The two rectangles are defined by:

RLT (tT ) =

{
x = (xL, xR)

∣∣∣∣∣∣∣∣xL − µLσL

∣∣∣∣ > tT

}
(4.5)

RRT (tT ) =

{
x = (xL, xR)

∣∣∣∣∣∣∣∣xR − µRσR

∣∣∣∣ > tT

}
. (4.6)

Finally, R is defined using two thresholds rather than one:

R (tP , tT ) = RP (tP ) ∩RLT (tT ) ∩RRT (tT ) . (4.7)

In order to set thresholds tP and tT , we note the following:

• If both xL and xR originate from the permanent background, then they each should have a normal

distribution. Thus, the expression
((

xL−µL
σL

)2
+
(
xR−µR
σR

)2)
is distributed χ2 with 2 degrees
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of freedom. The χ2 CDF then defines the probability
((

xL−µL
σL

)2
+
(
xR−µR
σR

)2)
< tP .

• The expression
∣∣x−µ
σ

∣∣ is normally distributed N(0, 1), and thus the standard normal CDF defines

the probability that
∣∣x−µ
σ

∣∣ < tT .

We define αP to be the probability that
((

xL−µL
σL

)2
+
(
xR−µR
σR

)2)
< tP , and we define αT

to be the probability that
∣∣x−µ
σ

∣∣ < tT . Then, the problem of selecting tP and tT becomes one of

selecting an appropriate probability of false alarm αP and αT according to the χ2 CDF and normal

CDF, respectively.

As in Chapter 3, instead of integrating over the region classified as foreground, R (tP , tT ), we

integrate over the region classified as background, that is, its compliment R (tP , tT ). As in chapter 3,

we would like the integration of P (x|B) over the region R (tP , tT ) to produce the probability of a true

negative, which should be 1− α.

Substituting equations 4.1 and 4.7 into the above integral, we get the following equation:

∫
x/∈R(tP ,tT )

P (x |B;µL, σL, µR, σR ) dx =

∫
x/∈R(tP ,tT )

PL (xL |B;µL, σL ) · PR (xR|B;µR, σR ) dx

= P (BP )2 · PPP + P (BP )(1− P (BP )) · PPT

+ P (BP )(1− P (BP )) · PTP + (1− P (BP ))2 · PTT

= 1− α.

(4.8)

The expression in equation 4.8 is composed of a weighted sum of 4 integrals. The first integral,

PPP is defined by:

PPP =

∫
x∈R(tP ,tT )

[
1√

2πσL
e
− 1

2

(
xL−µL
σL

)2

· 1√
2πσR

e
− 1

2

(
xR−µR
σR

)2]
dx, (4.9)

where weight P (BP )2 models the probability that both pixels originate from the permanent back-
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ground. The second two integrals, PPT and PTP are defined by:

PPT =

∫
x∈R(tP ,tT )

[
1

255
√

2πσL
e
− 1

2

(
xL−µL
σL

)2]
dx (4.10)

PTP =

∫
x∈R(tP ,tT )

[
1

255
√

2πσR
e
− 1

2

(
xR−µR
σR

)2]
dx, (4.11)

where weight P (BP )(1−P (BP )) models the probability that one pixel originates from the permanent

background and the other from the transient background. The last integral PTT , is defined by:

PTT =

∫
x∈R(tP ,tT )

1

2552
dx, (4.12)

where weight (1 − P (BP ))2 models the probability that the two pixels originate from the transient

background.

The larger the area of R(tP , tT ) is, the higher the detection rate is. Hence, we wish the area

of the region that is classified as background R (tP , tT ) to be as small as possible while having the

integral in equation 4.8 satisfy the acceptable false alarm rate α. We next describe how these two

objectives are met by approximating the thresholds. As stated earlier, equation 4.8 is composed of a

weighted sum of 4 integrals: PPP , PPT , PTP , and PTT . The first component, PPP , which has the

largest weight, P (BP )2, is also very dense and an integral of a relatively small region will produce

very high probability. Selecting the threshold tP according to the CDF of the χ2 distribution such that

the probability will be 0.99999 will produce a fixed threshold tP = 23.0259. We do not choose 1

because this will produce an infinite region. Note that we have only considered the region RP defined

in equation 4.4. Integrating over the entire region R (tP , tT ) should produce an even higher value PPP

closer to 1. We will, in this approximation, assume that PPP = 1.

Since we assume that the region R (tP , tT ) will be as small as possible, we expect that (1 −

P (BP ))2 · PTT will be very small. Thus, we neglect it and set it as 0. We also assume that the region

R (tP , tT ) is symmetric and that PPT = PTP . Thus, plugging PPP = 1 and (1− P (BP ))2 · PTT = 0

and PPT = PTP into 4.8, we get that:
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Figure 4.5: ROC curve comparing the performance of our method against the optimal and naive meth-
ods. The blue shows the optimal likelihood ratio based method. The green is a naive method where we
simply perform a logical AND operation between the results of independent detections in each image.
The red is our proposed method.

P (BP )2 + 2P (BP )(1− P (BP )) · PPT = 1− α, (4.13)

and solve for PPT :

PPT =
1− α− P (BP )2

2P (BP )(1− P (BP ))
. (4.14)

Using the normal CDF, we may obtain the threshold tT , which satisfies PPT .

Figure 4.2(b) shows the detection region of the simplified classification method. It can be seen

that this region is very similar in shape to that of the region in Figure 4.2(a). In Figure 4.3 (a) and (b)

the zoomed view of same regions are presented. Figure 4.5 shows ROC curves created for each of the

following three methods:

• Using the optimal detection region as defined by equation 4.3.

• Using the naive method (as in [Lanza et al., 2007]) for which a logical AND operation is per-

formed between the results of a change detection performed on each image separately.

• Our simplified detection method.
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As can be seen, the performance of our simplified method is almost identical to that of the optimal one,

which is better than the naive method.

4.3 Summary of Detection From Two Cameras

In this chapter we showed how using images of the same scene obtained from two cameras from

different viewpoints substantially improves the change detection performance compared to the single

view case, when reflective surfaces appear in the background. We analyzed the detection performance

at pixel level, assuming a pixel-to-pixel correspondence between the two images. We further showed

how to set the threshold. The proposed detection is applicable only to those corresponding pixels which

consists of foreground objects.
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Detection of Foreground Objects From a

Pair of Images

In this section we present our method for detecting objects on a possibly reflective planar surface. Thus,

the bottom part of the objects are located directly on the surface but other parts might be above the

ground and can also be reflected from the surface, as can be seen in Figure 5.1 (a) and (b). We assume

that two cameras monitor an overlapping region. We also assume the availability of a homography

transformation that correlates each pixel of the ground plane in one image to the corresponding pixel

in the other.

Our method combines the detection of objects using a single image change detection algorithm

with the detection of objects using the more robust image pair change detection algorithm. The latter

algorithm only detects foreground objects located on the ground plane. Combining the two methods

allows us to detect low SNR objects, while discarding reflections and noise but still preserving the

detection of foreground objects above the ground plane. Our method consists of four steps:

• A single image change detection algorithm. The goal of this algorithm is to detect changes due

to large objects, not necessarily located on the ground plane.

• An image pair change detection algorithm. The goal of this algorithm is to detect changes on the

ground plane, including changes due to objects with low SNR that are not due to reflections.
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• A connected component labeling process combining the results of the above two steps in order

to remove reflections of objects that are not located on the ground, as well as detect small objects

with low SNR on the ground surface.

• A post-processing step to remove reflections of large objects from the detected blob.

We next describe each of these steps.

5.1 A Single Image Change Detection Algorithm

In general, our method can use any existing single image change detection algorithm that produces a bi-

nary image of the changed pixels. Here we will use the simple single Gaussian method described in sec-

tion 3.2. The background at the pixel level is defined independently for each camera. The background

model of each pixel is updated when a new frame is captured in order to deal with slow background

changes, using a method similar to that used in [Wren et al., 1996, Stauffer and Grimson, 1999]. That

is, µ and σ at time t are updated using the intensity value, x, at time t, and the previous values, µt−1

and σt−1 :

µt = αxt + (1− α)µt−1

σ2t = α(xt − µt)2 + (1− α)σ2
t−1
.

(5.1)

The Mahalanobis distance for each pixel from the background model is computed and a threshold is

applied. The threshold is chosen according to section 3.2 such that an expected false alarm rate will be

met, using the standard normal CDF. The output is a binary change image.

The result of this part of the algorithm is a binary map with the foreground blobs, as can be seen,

for example, in Figure 5.1 (c) and (d). It is important to note that any other change detection algorithm

could be used up to this point. The new challenge we address in this thesis is the detection of foreground

objects while discarding reflected ones using our image pair change detection method.
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5.2 An Image Pair Change Detection Algorithm

In 4.2.1 we defined a method for detecting pixels which originate from foreground objects using two

views. This method is applicable only if a correspondence is available. To compute a correspondence,

a homography transformation [Faugeras, 1993] is used to align the projection of the ground plane in the

two images. The homography can be computed offline using corresponding points in both background

images. Applying the homography transformation to one of the images aligns each pixel of the ground

plane to its corresponding pixel in the other image. Other pixels are aligned to arbitrary pixels in the

other image. The two pixels in the arbitrary pair cannot both be expected to be foreground objects, nor

can they both be expected to be reflected objects.

We use the method presented in the previous section to define and learn the background (Eq. 5.1).

The Mahalanobis distance of the foreground image from the background image is transformed to the

coordinates of the reference image. The method defined in section 4.2.1 (Eq. 4.7) is used to classify the

pixels in the reference image to foreground and background using the corresponding pixel defined by

the alignment. The foreground pixels on the ground will be aligned and hence detected as foreground.

Since our method deals with very small objects as well, we correct for small misalignments of the

transformation by applying a 3x3 Max filter to the transformed Mahalanobis distance image. This

allows for misalignments of up to 1 pixel.

Pixels that are projections of objects above the ground or that belong to reflected objects are not

aligned by the homography. Hence, they will not be detected as foreground. However, false posi-

tive foreground detections may occur when reflections of different objects are aligned. This has low

probability when a wide baseline setup of the cameras is used, and the foreground objects are sparse.

However, this may indeed be a limitation of our method. To mitigate this limitation, we apply an open-

ing morphological operation on the binary foreground image using a 1x2 structuring element. This will

eliminate tiny blobs which are most likely due to noise. Figure 5.1(f) shows the result of the foreground

detection.
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5.3 Combining Image Pair and Single Foreground Images

According to the analysis in chapter 4, we expect the foreground map produced in the previous section,

using a pair of images, to perform much better than the method which uses only a single image. How-

ever, since the latter method only detects parts of the object that are on the ground plane, the foreground

image will not reflect the true shape and size of the foreground object’s blob. On the other hand, the

single image method is expected to produce a foreground image which does reflect the true shape and

size of the blob, but is expected to result in more false detections. It might also miss very small objects

or objects with low SNR. We combine the foreground images by performing a logical OR operation

between the pixels of each image followed by a morphological closing operation using a 3x3 structured

element. This should close small holes and smooth the binary result. A labeling algorithm is then run

on the binary output image, producing a list of connected component blobs. These blobs are then fil-

tered out if their size is too small (5 pixels) or if they do not consist of at least one pixel that belongs to

the foreground produced by the image pair algorithm. This process ensures that only objects detected

by the more powerful image pair algorithm remain. It also ensures that small blobs that are due to noise

are removed as well.

5.4 Self Reflection Removal Process

In the process defined in the previous section, blobs are removed if they do not overlap with the fore-

ground detections produced by the image pair detection process. As a result, blobs originating from

reflections of objects that are not located on the ground plane are removed. The remaining blobs may

consist of both the foreground objects and their self reflections from the ground plane, in particular

when the object is not flat (see the person in Figure 5.1). To remove these self reflections, we use the

following observation, assuming we have a mapping between corresponding foreground blobs in each

image. After the homography transformation that aligns the ground plane of the two images is applied,

the overlapping area between the blobs in both images should always be located on the ground plane

(See [Khan and Shah, 2006] Propositions 1 and 2). Hence, the portion of the blobs above the inter-

secting area is part of the foreground object while those below the intersecting area are self reflections.
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Thus, a simple way to take advantage of this fact would be to remove all blob pixels which are located

underneath the intersecting area.

Ideally, there should be a one-to-one mapping between corresponding foreground blobs in each

image view. However, due to noise and other false detections, it is possible that a blob in one image

might have two or more blobs in the second image that overlap it. In this case, the foreground object

mapping is not uniquely defined. The larger the blob of the foreground object in the image is, the more

likely it is to occur (because more pixels might overlap). Thus, for small objects we can assume that

only a single blob in the corresponding image will overlap, whereas for large objects, there might be

more than just one. However, out of all the corresponding blobs in the second image, we can assume

that there will be a single, large, corresponding blob (this is the true foreground object blob) and the

rest of the corresponding blobs (which are due to noise) will be smaller.

This leads us to the following greedy matching algorithm:

1. Perform the detection algorithm presented in the previous sections on both images and produce

foreground blobs.

2. Sort all the blobs in the first image by size in descending order (larger blobs come first).

3. For each blob in the sorted list in the first image, select the largest overlapping blob from the

second image as the corresponding foreground blob.

4. Discard unmatched blobs from both first and second images.

Figure 5.1(f) shows the final result after removing self reflections. It can be seen that the person’s

self reflections are removed, but shadows are not.

Algorithms 5.1 and 5.2 provide pseudo-code implementation of the ideas discussed in the previous

sections.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.1: (a) An image containing 4 very small objects (with red arrows pointing to their location)
and a large foreground object (a person) walking in the scene. The person’s self reflection can be
seen on the floor too. (b) The same scene as (a) as seen by the second camera. (c) The result of a
(simple) single image change detection algorithm performed on (a). (d) The result of a (simple) single
image change detection algorithm performed on (b). (e) The normalized difference image between (a)
and its background model, superimposed with foreground pixels detected by the two image detection
algorithms. (f) The final result of our method.
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Algorithm 5.1 Algorithm for detecting objects using two cameras.
L← TwoCameraChangeDetection(IL, IR)

H - a 3x3 projective transformation matrix between the left image and the right image.

µL - The left background mean image.

σL - The left background standard deviation image.

µR - The right background mean image.

σR - The right background standard deviation image.

1: DL ←
∣∣∣ IL−µLσL

∣∣∣
2: DR ←

∣∣∣ IR−µRσR

∣∣∣
3: LL ← ChangeDetection(DL, DR, H)

4: LR ← ChangeDetection(DR, DL, H
−1)

5: L′R ← NearestNeighborInterpolation(LR, H)

6: L← ∅

7: LL ← Sort by descending size (LL)

8: for all l ∈ LL do

9: M ← Dilation (l)

10: S ← {l |l ∈ L′Randl ∩M 6= ∅}

11: if S 6= ∅ then

12: l′ ← largest label in S.

13: m← l′ ∩ l

14: m← RemoveBottom(l,m)

15: L← L ∪ {m}

16: end if

17: end for
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Algorithm 5.2 Algorithm for a single image change detection.
L← ChangeDetection(DREF , DSEC , H)

s - The minimal allowed blob size (in pixels).

1: DSEC ← Interpolate (DSEC , H)

2: DSEC ← MaxFilter3x3 (DSEC)

3: S ←
((
D2
REF +D2

SEC

)
> tP

)
& (DREF > tT ) & (DSEC > tT )

4: S ← MorphOpenning(S)

5: C ← MorphClosing(S‖DREF > tT )

6: Ltemp ← Labeling(C)

7: L← ∅

8: for all l ∈ Ltemp do

9: if |l| > s then

10: if there exist any overlapping pixels between l and S then

11: L← L ∪ {l}

12: end if

13: end if

14: end for

15: return L
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Experiments

To demonstrate the effectiveness of our method, we applied our detection algorithm to video sequences

of different scenes containing reflective surfaces. The detection algorithm was implemented in Matlab.

In all tests we use 2 USB cameras (IDS uEye UI-1545LE-C) connected to a laptop with an Intel(R)

Core(TM) i5-2520M CPU running at 2.5GHz. The camera’s raw pixel output was used as the source

of the change detection algorithm. Our camera’s CCD uses a Bayer matrix of elements to produce the

color images that are presented to the user. For change detection, it is better to use the raw output of

the camera before demosaicing is performed. The process of demosaicing increase the dependencies

between pixels and is non-linear in contrast to our assumption that pixel noise is independent and

Gaussian. It also allows us to perform the entire process on a single plane instead of the 3 RGB planes.

All though the algorithm is performed on the raw single channel images, in this Thesis we present the

resulting images after demosiacing so they may be displayed in color.

In all experiments, the algorithm from chapter 5 is run on a sequence of images taken from two

static cameras. The homography transformation between the two cameras was obtained by manually

finding corresponding points in the two images of each scene and then applying the normalized direct

linear transformation algorithm given by Hartley and Zisserman ([Hartley et al., 2003]).

We tested our method on 5 sets in 2 different environments, all of which are indoors with shiny

marble flooring. In contrast to other conditions such as illumination changes and dynamic background,

which are usually more challenging in outdoor conditions, indoor marble floors are the most challeng-
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ing background in the case of reflections since they act as almost perfect mirrors. In the first two exper-

iments, we tried to detect small objects, with some color similarity to the background, that were placed

on the shiny marble floor. These experiments demonstrate the effectiveness of our method in dealing

with low SNR and reflective surfaces. In the other 3 experiments, we placed both large and small

objects within the region of interest and discarded any reflections from foreground and background

objects that could be seen on the floor within the region of interest. These experiments demonstrate the

effectiveness of our method in dealing with low SNR as well as large objects. Finally, we tested the

performance of the method presented in [Hofmann et al., 2012] on our data sets and compared to our

method.

6.1 Experiment 1

The following images were taken in a challenging environment where the background consists of a

marble floor. An outdoor scene with moving trees, which is not in the region of interest, is reflected

by the floor. Figure 6.2 (a) shows the pair of background images. It can be seen that each image is

reflecting a different scene; hence, dense stereo matching based algorithms (e.g. [Krumm et al., 2000,

Goldlucke and Magnor, 2003, Ivanov et al., 2000, Lim et al., 2005]) are not applicable.

Figure 6.1: The objects in experiment 1 (3 small coins and a small key).
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In order to test our detection algorithm on objects with low SNR, we placed 4 very small objects

with varying contrast relative to the floor in the overlapping fields of view of the cameras. Close-up

images of these objects, which were not available to the algorithm, are presented in Figure 6.1. These

objects are also seen in figure 6.2 (a), where they are placed on the surface and viewed by the two

cameras. To help the viewer, the object locations are marked with small red arrows. Figure 6.3 (a)

shows the same images, but zoomed into the region of interest. The algorithm from section 5.1 was

applied to these images and figure 6.2 (b) shows the difference between the current images with the

placed objects and the background, normalized by sigma values for each pixel, that is, the value
∣∣x−µ
σ

∣∣.
As expected, it is very hard, when using a single image, to distinguish between the true changes due

to the objects on the floor, and changes due to reflections. Figure 6.3 (b) shows the same difference

images but zoomed into the region of interest. Figure 6.3 (c) shows these images superimposed with

the foreground seed pixels obtained using equation 4.7 (see section 5.2). As can be seen, the ”seeds”

are located at the bottom of the foreground objects, where they connect to the ground plane.

Figure 6.2 (c) shows the results of the change detection process applied to each image separately

without using the seed information. As can be seen, many other blobs were detected in addition to

the blobs created by our 4 objects. It was impossible to set a threshold such that these four blobs

would be eliminated without missing one of the 4 true objects. Figure 6.2 (d) shows the result of our

method. After the seed information was applied, all the false blobs were eliminated but the true objects

remained.

In the previous figures, we demonstrated our performance on a set of objects placed on the floor. In

figure 6.4 we show the distribution of the normalized difference values (the value
∣∣x−µ
σ

∣∣) in an image

taken without any objects. Thus, the values used consist of only noise. For each possible normalized

difference, we plot the percentage of the pixels in the image that have a greater difference value. We

also plot the percentage of corresponding pixels whose values in both images are greater. Basically this

provides us the false detection rate per threshold. As expected, using a single image would require a

much higher threshold to achieve the same false alarm rate.
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(a) Test Images

(b) Normalized
Diff (

∣∣x−µ
σ

∣∣)

(c) Single Camera
Detections

(d) Our Method

Figure 6.2: Results of experiment 1. (a) Test images from two cameras. (b) Images obtained after
background subtraction normalized by the temporal variance of each pixel. (c) Results of the change
detection method obtained from each image independently. (d) Results of our method.
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(a) Zoomed Test
Images

(b)
Zoomed Nor-
malized Diff
(
∣∣x−µ
σ

∣∣)

(c) Zoomed Diff
With Seeds

Figure 6.3: Zoomed results of experiment 1. (a) Zoomed images of figure 6.2(a). (b) Zoomed images
obtained after background subtraction normalized by the temporal variance of each pixel. (c) Differ-
ence images superimposed with pixels that were identified as foreground using the image pair change
detection method.
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Figure 6.4: The distribution for single and two cameras from experiment 1.
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6.2 Experiment 2

The following images were taken in a different environment than those in section 6.1. Here too the

background is a marble floor upon which we placed the small objects seen in figure 6.5. (Again, these

images are not available to the algorithm.) The floor in this scenario is less reflective than the one from

section 6.1, but the field of view is larger and the objects placed at a greater distance from the cameras.

This experiment demonstrates that despite this distance, and despite the fact that the colors of the

objects are sometimes similar to the floor, our method is still able to detect these objects with no false

positives. Note that as in the previous experiment, the threshold is set automatically and independently

for each pixel. The figures in this section exhibit the same flow as in the previous section.

Figure 6.5: The objects in Experiment 2 (A plastic pen, a coin, a whiteboard marker, and a small key).
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(a) Test Images

(b) Normalized
Diff

(c) Single Camera
Detections

(d) Our Method

Figure 6.6: Results of experiment 2. (a) Test images from two cameras. (b) Images obtained after
background subtraction normalized by the temporal variance of each pixel. (c) Results of the change
detection method obtained from each image independently. (d) Results of our method.
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(a) Zoomed Test
Images

(b) Zoomed Nor-
malized Diff

(c) Zoomed Diff
With Seeds

Figure 6.7: Zoomed results of experiment 2. (a) Zoomed images of figure 6.6(a). (b) Zoomed images
obtained after background subtraction normalized by the temporal variance of each pixel. (c) Differ-
ence images superimposed with pixels that were identified as foreground using the image pair change
detection method.
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6.3 Experiment 3

The scene in this experiment is identical to that of experiment 2. However, alongside the small objects

(coin, marker, and key), we also place a large handbag, whose image is reflected on the floor. The goal

here is to detect all 4 objects but also eliminate the reflective portion of the large one. The same figures

are used as in previous experiments to present the images and the results.

Due to its reflection on the floor, the handbag is reflected back to each of the cameras (6.9(a)).

Indeed these reflections are also detected as a change from the background (Figure 6.9(b)). It is quite

obvious that distinguishing between the true foreground and the reflective portion of the blob using a

single camera would be impossible without any additional information. This is true in particular when

the right image is considered. For the left image the contrast of the reflective portion of the object is

less than the contrast of the foreground, which makes the difference image slightly easier to segment.

However, again, this would be a post-processing step where an adaptive threshold would need to be

obtained, again, using some prior constraint about the contrast of the reflection.

The leftmost object was too similar to the noise level of the right image. This can be viewed in

Figure 6.10(b). As a result, the seed of this object was not detected and hence the detection in the left

image was discarded. In this case our method failed to recognize this tiny object.

In figure 6.9(d) it can be seen that the reflection of the bag on the floor was not detected as fore-

ground, as expected.
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Figure 6.8: The objects in Experiment 3 (A large handbag, a coin, A whiteboard marker, and a small
key).
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(a) Test Images

(b) Normalized
Diff

(c) Single Camera
Detections

(d) Our Method

Figure 6.9: Results of experiment 3. (a) Test images from two cameras. (b) Images obtained after
background subtraction normalized by the temporal variance of each pixel. (c) Results of the change
detection method obtained from each image independently. (d) Results of our method.
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(a) Zoomed Test
Images

(b) Zoomed Nor-
malized Diff

(c) Zoomed Diff
With Seeds

Figure 6.10: Zoomed results of experiment 3. (a) Zoomed images of figure 6.9(a). (b) Zoomed images
obtained after background subtraction normalized by the temporal variance of each pixel. (c) Differ-
ence images superimposed with pixels that were identified as foreground using the image pair change
detection method.
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6.4 Experiment 4

The scene in this experiment is the same scene from experiment 2. We use the same objects as in figure

6.5. In this experiment the change consists of a person standing on the floor next to 4 small objects.

The challenge here is to detect the four small objects and the person, while discarding his reflection.

In figure 6.12(c) it can be seen that the ”seeds” are located at the bottom of the foreground objects,

where they connect to the ground plane. The reflections of the person in the two cameras do not

generate seed pixels and thus the reflections are not detected as foreground objects, as expected. Thus,

when using only the single camera to detect the blob, the reflected part of the person on the floor is also

detected, as can be seen in 6.11(c), while our method in figure 6.11(d) correctly removes the person’s

reflection from the blob. Note, however, that shadows produced by the person are seen by both cameras

and thus not removed by our method.
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(a) Test Images

(b) Normalized
Diff

(c) Single Camera
Detections

(d) Our Method

Figure 6.11: Results of experiment 4. (a) Test images from two cameras. (b) Images obtained after
background subtraction normalized by the temporal variance of each pixel. (c) Results of the change
detection method obtained from each image independently. (d) Results of our method.
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(a) Zoomed Test
Images

(b) Zoomed Nor-
malized Diff

(c) Zoomed Diff
With Seeds

Figure 6.12: Zoomed results of experiment 4. (a) Zoomed images of figure 6.11(a). (b) Zoomed
images obtained after background subtraction normalized by the temporal variance of each pixel. (c)
Difference images superimposed with pixels that were identified as foreground using the image pair
change detection method.
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6.5 Experiment 5

The scene in this experiment is similar to experiment 1. In this experiment we have a person walking

outside of the region of interest, i.e., a transient background object. The person is seen via a glass

window and is reflected on the floor. The reflection of the person on the floor is seen by one of the

cameras, which causes a false positive in a single camera change detection algorithm. The challenge

here, using our method, is to identify the person’s reflection as a false detection.

In the right image of Figure 6.13(a) a reflection of a person is seen on the floor. This produces

the large change values that can be seen in the Figure 6.13(b) on the right. Figure 6.14(a) shows the

difference images after a homography transformation was applied such that each pixel originating from

the ground plane matches the corresponding pixel in the other image. The area with the large change

values that are due to the person’s reflection corresponds to an area on the floor in the other camera’s

FOV. However, the other camera does not see any reflections on those pixels since reflections depend

on the camera location. Thus, a foreground object is not produced.

Figure 6.13(c), shows the output of the single camera change detection method. It can be seen that

the right camera falsely detects the person as a foreground object, while our method correctly ignores

it (Figure 6.13(d)). However, small reflections of swaying trees outside the window produce a false

foreground detection. This agrees with our analysis that for smaller values of P (BP ) our method’s

performance degrades (section 4.2). Indeed, this is a limitation of our method. Using a background

model that is more robust to background motion is expected to improve this result. Nevertheless, using

the pair of cameras removes most of the false detection, in contrast to the single camera detection

method.
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(a) Test Images

(b) Normalized
Diff

(c) Single Camera
Detections

(d) Our Method

Figure 6.13: Results of experiment 5 - (a) Test images from two cameras. (b) Images obtained after
background subtraction normalized by the temporal variance of each pixel. (c) Results of the change
detection method obtained from each image independently. (d) Results of our method.
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(a) Transformed
Diff Images

(b) Diff With Seeds

Figure 6.14: Additional results from experiment 5. (a) Difference images from figure 6.13(b) trans-
formed to the corresponding image coordinates. (b) Difference images superimposed with pixels that
were identified as foreground using the image pair change detection method.
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6.6 Experiment 6

We compare the results of our method to one of the state-of-the-art change detection algorithms, PBAS

[Hofmann et al., 2012], which was ranked the highest in the CVPR 2012 change detection challenge

[Goyette et al., 2012]. We tried running the PBAS method, downloaded from the author’s website,

using the parameters for which the method ranked highest in the challenge. However, with these

parameters, the PBAS method did not handle our low SNR objects well, and many missed detections

occurred. We then ran the PBAS method using two values, Rlower = 7 and Rlower = 15, which are

lower than the value Rlower = 18 used in [Hofmann et al., 2012].

The results of running both the PBAS and our methods on the test data from experiments 1-5, are

presented in the following five figures (6.15 - 6.19). It can be seen that the threshold value Rlower = 7

is too low and produces false positives. This is especially clear in Figure 6.15, where using Rlower = 7

produced many false positive but the four true objects were, in contrast to our method, not detected.

Using Rlower = 15 reduces the false positives, but results in many miss detections instead. In figures

6.16, 6.17, and 6.18, it can be seen that for both thresholds the PBAS method falsely detects the large

object reflections on the floor, as expected, since no attempt is made to discriminate between reflected

and real objects. The five tests show that our method outperforms the PBAS method for the challenges

considered in this thesis, with a higher detection rate and lower false positive rates. In addition, our

method is able to discriminate between reflected and real foreground objects. By effectively using

the information available from both cameras, our method can use a relatively simple change detection

method and still out perform the PBAS method.

60



Chapter 6 / Experiments

Left Right

(a) Test Images

(b) PBAS method
(Rlower = 7)

(c) PBAS method
(Rlower = 15)

(d) Our Method

Figure 6.15: Results from experiment 6, Test 1. (a) Test images from two cameras. (b) Results obtained
after running the PBAS method using parameter Rlower = 7. Many false positives can be seen in both
images, but not all foreground objects were detected. (c) Results obtained after running the PBAS
method using parameter Rlower = 15. There are fewer false positives, but also fewer foreground
detections. (d) Results of our method. No false positives while all four foreground objects were
detected.
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(a) Test Images

(b) PBAS method
(Rlower = 7)

(c) PBAS method
(Rlower = 15)

(d) Our Method

Figure 6.16: Results from experiment 6, Test 2. (a) Test images from two cameras. In the right image,
a person is reflected on the floor. (b) Results obtained after running the PBAS method using parameter
Rlower = 7. The person’s reflection is detected in addition to many other false positives dues to swaying
trees being reflected on the floor. (c) Results obtained after running the PBAS method using parameter
Rlower = 15. Although there are fewer false positives produced by the swaying trees, the person’s
reflection is still detected. (d) Results of our method. The person’s reflection is correctly discarded,
and only one small false positive is detected.
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(a) Test Images

(b) PBAS method
(Rlower = 7)

(c) PBAS method
(Rlower = 15)

(d) Our Method

Figure 6.17: Results from experiment 6, Test 3. (a) Test images from two cameras. Four small objects
and a walking person are located on the floor. (b) Results obtained after running the PBAS method
using parameter Rlower = 7. All four objects are detected. The person’s blob is not complete and
his reflection on the floor is detected too.(c) Results obtained after running the PBAS method using
parameter Rlower = 15. Some of the small objects are not detected and the person’s blob has many
gaps. In the right image, the person’s reflection is still detected. (d) Results of our method. All four
objects are detected, with no false positives. The person’s blob is fully detected while his reflection is
correctly discarded.
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(a) Test Images

(b) PBAS method
(Rlower = 7)

(c) PBAS method
(Rlower = 15)

(d) Our Method

Figure 6.18: Results from experiment 6, Test 4. (a) Test images from two cameras. Three small objects
and a large handbag are placed on the floor. (b) Results obtained after running the PBAS method using
parameter Rlower = 7. Two small objects only, the handbag, and many false positives are detected. (c)
Results obtained after running the PBAS method using parameterRlower = 15. Two small objects only,
the handbag, and 1 small false positive were detected. (d) Results of our method. No false positives,
two small objects, and the handbag were detected.
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(a) Test Images

(b) PBAS method
(Rlower = 7)

(c) PBAS method
(Rlower = 15)

(d) Our Method

Figure 6.19: Results from experiment 6, Test 5. (a) Test images from two cameras. Four small objects
are placed on the floor. (b) Results obtained after running the PBAS method using parameter Rlower =
7. All four objects were correctly detected with no false positives. (c) Results obtained after running
the PBAS method using parameter Rlower = 15. No false positives but some of the foreground objects
were missed. (d) Results of our method. All four objects were correctly detected with no false positives.65



Chapter 7

Summary and Conclusions

In this thesis we deal with change detection on reflective surfaces such as shiny floors, glasses, and

mirrors in an indoor environment and wet surfaces outdoors. Although such scenes are very common,

they were hardly ever explicitly considered in previous studies. This is probably because most change

detection algorithms are based on information from a single camera, which makes the problem hard to

solve. In particular we demonstrated that it is impossible to achieve acceptable performance without

using additional prior knowledge about the object to be detected. This was our main motivation do

develop a multi-view method.

In order to deal with reflections, we first developed a model of a reflective background using a mix-

ture of a Gaussian and uniform distributions. We then showed how such a model would perform poorly

using a single camera. Next, we developed a background model using two cameras in a wide baseline

configuration, for which we assume a very low probability that transient objects will be reflected on the

ground plane at the same place and at the same time in both images. We also assume a high probability

that true foreground objects will appear in both images. Our method uses these assumptions to improve

the foreground/background segmentation performance.

Another motivation for our work was to detect objects which are very small or have low contrast

to the background. This is also considered to be a difficult problem when a single view is used. The

tradeoff that exists between the detection of such objects and the considerable amount of false positives

was shown both theoretically (Chapter 3) and empirically (Chapter 6). A set of experiments demon-
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strated the limitations of our single camera change detection method and that of the state-of-the-art

single camera change detection method ([Hofmann et al., 2012]). When using a pair of cameras, our

method’s detection performance drastically improved while producing almost no false detections. It

is important to note that a naive use of a pair of cameras for computing 3D structure of the scene is

not adequate for the considered scene, since objects seen from different views have different photo-

metric properties. Our method also uses the fact that the background noise seen by each camera is

independent, to improve the probability of detecting small and low contrast objects.

When developing our reflective background model, we chose to develop a very simple parametric

model based on a single Gaussian. We chose this simple model, rather than more expressive state-

of-the-art methods, for two main reasons. First, the single Gaussian model was simpler to analyze

mathematically and it was simple to generate the decision region based on the likelihood ratio function.

Second, this model made it simpler to demonstrate the performance gain achieved by adding an ad-

ditional camera to the change detection process. Using a more expressive single camera model might

have masked this gain. We concluded that the performance gain using two images for change detection

is so drastic as to outperform even a state-of-the-art single camera method despite the very simple and

very fast algorithm that we used.

When analyzing our algorithm we came across a number of limitations and improvements which

we address here:

• Our method does not perform well when the probability for transient background is high. This

caused, for example, the false detection in experiment 5. Such false detections could be elimi-

nated in several ways. We could adapt our method to use more than 2 cameras. Using additional

views would decrease the chance of false detections due to multiple transient objects, since the

chances of transient objects corresponding in all views is low. In cases where the transient back-

ground is due to moving items such as swaying trees or bushes, a very simple improvement would

be to replace the single image change method that we use as a first step in our algorithm with a

more advanced state-of-the-art method, which uses a more expressive background model. Since

such methods would produce fewer false detections, and since the algorithm would be used as

the first step of our method, the overall number of false detections in our method would decrease.
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A further improvement might be to use a more complicated background model in our image

pair algorithm. Instead of using a single Gaussian we could model our reflective background as

a mixture of Gaussians and adapt our likelihood ratio based decision region accordingly. This

should lower the chance of foreground detections in our method’s second step.

• Our method assumes that the ground surface is planar. This enables us to use a homography

transformation that maps corresponding pixel in each image. When the ground surface is not

planar then there is no projective transformation that maps corresponding pixels. If dense cor-

respondence is available using stereo methods, we can use it instead of the homography based

correspondence. No changes would be required to the remainder of the algorithm. This process

needs to be done only once offline. Thus, CPU intensive stereo matching algorithms can be used

with no need for specialized hardware assistance. This relatively easy and simple extension of

our method could only be used if the dense stereo based correspondence is available.

To summarize, we believe that using multiple cameras has great potential for improving the perfor-

mance of change detection methods in general, especially where reflective surfaces are present.
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 תקציר

 
 יםמשקפ ,בחוץ רטובים ומשטחים ,תוך מבניםב ומראות זכוכיות, רצפות מבריקות

משטחים ש למרות סצנה.של ה  ענייןהבאזור נמצאים  בהכרח אובייקטים שאינם

 באופן מפורש טופלו כמעט אף פעם לא הם, מקוםנמצאים בכל  כאלה רפלקטיביים

של  בבעיה אנו מטפלים בתזה זו .בהקשר של גילוי שינויים במחקרים קודמים

קטנים  הינם ם לגילויאובייקטיה כאשר במשטחים רפלקטיביים, יםשינוי גילוי

 מהרקע. שונה באופן משמעותילהיות  אינו מובטח וצבעם בזירה יחסית

המטרה שלנו . נמוך (SNR) לרעש יחס אותלהם  שישנאמר מסוג זה  אובייקטיםל

האמיתיים אשר נובעים מאובייקטים הנמצאים על  את השינויים לזהות נההי

שתי  מבצעיםאנחנו במסגרת העבודה . ממנו המשתקפים מאלה ולהתעלם המשטח

 גילוי ניתוח תיאורטי של נההי הראשונה התרומה זו. השגת מטרה לקראת תרומות

מצלמה  עבור מבוצעהניתוח  קפים.תמשטחים מש בנוכחות פיקסלה ברמת יםשינוי

 הינה התרומה השנייה נמוך. יחס אות לרעש בהקשר של מצלמותוזוג  אחת

על ידי . מצלמות באמצעות זוגלביטול השתקפות עצמית של אוביקטים אלגוריתם 

אנו  ,ותהמצלמ שתי אלגוריתם פיקסל עם ברמת רגיש יםשינויגילוי  שילוב

 התעלמותכדי תוך  בעלי יחס אות לרעש נמוך לזהות אובייקטים מסוגלים

של האלגוריתם  מוצלחות תוצאותמציגים  ונאנח לא רלוונטיות. השתקפויותמ

  .ביותר מאתגרות סצנותב
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