

The Interdisciplinary Center, Herzlia
Efi Arazi School of Computer Science

M.Sc. program - Research Track

IoT or NoT
Identifying IoT Devices in a Short

Time Scale

by

Haim Levy

M.Sc. dissertation, submitted in partial fulfillment of the requirements

for the M.Sc. degree, research track, School of Computer Science
 The Interdisciplinary Center, Herzliya

April 2020

This work was carried out under the supervision of Prof. Anat Bremlar-

Barr and the assistance of Prof. Zohar Yakhini from the Efi Arazi School

of Computer Science, The Interdisciplinary Center, Herzliya.

Abstract

In recent years the number of IoT devices in home networks has increased dra-

matically. Whenever a new device connects to the network, it must be quickly

managed and secured using the relevant security mechanism or QoS policy. Thus

a key challenge is to distinguish between IoT and NoT devices in a matter of min-

utes. Unfortunately, there is no clear indication of whether a device in a network

is an IoT. In this paper, we propose different classifiers that identify a device as

IoT or non-IoT, in a short time scale, and with high accuracy.

Our classifiers were constructed using machine learning techniques on a seen

(training) dataset and were tested on an unseen (test) dataset. They successfully

classified devices that were not in the seen dataset with accuracy above 95%. The

first classifier is a logistic regression classifier based on traffic features. The sec-

ond classifier is based on features we retrieve from DHCP packets. Finally, we

present a unified classifier that leverages the advantages of the other two classi-

fiers.

1

Contents

1 Introduction 6

2 Related work 10

3 Methodology 13

4 Classifier on Traffic Features 15

4.1 Learning phase . 16

4.1.1 Feature Selection . 16

4.1.2 Constructing an Optimized Feature Set 18

4.2 Intuition . 20

4.3 Testing phase . 21

4.4 Implementation Considerations 22

5 DHCP based Classifier 23

5.1 Learning Phase . 24

5.2 Intuition . 25

5.3 Testing Phase . 26

5.4 Implementation Considerations 27

6 Unified Classifier 28

7 Conclusion 29

8 Appendix 30

2

8.1 Further data analysis . 30

8.1.1 Redistributing the database 30

8.1.2 Redefining Unified Classifier 31

8.1.3 Training . 31

8.1.4 Test Process . 33

8.1.5 Results . 34

8.2 Devices . 34

3

List of Figures

1 The values of maximum TCP window size in IoT devices (pre-

sented as CDF) and NoT devices (presented as Reverse-CDF),

seen dataset, 10-minute time slot. 17

2 The number of unique DNS queries in IoT devices (presented as

CDF) and NoT devices (presented as Reverse-CDF), seen dataset,

10-minute time slot. 18

3 CDF of classification success rate of devices, classifier on traffic

features, 10 minute time-slot, unseen dataset. 22

4 Interleaving time distribution of DHCP packets on the seen dataset 23

5 Decision tree visualization for DHCP -based classifier. 26

6 CDF of a classification success rate of devices, unified classifier,

20 minute time-slot, unseen dataset. 28

7 Design of the Unified Classifier. 31

8 Decision tree visualization for DHCP-based classifier. 33

4

List of Tables

1 Experimental results of the presented classifiers over the unseen

dataset . 8

2 List of raw features tested. 15

3 List of features with F1-score above 0.5 (seen dataset, time slot of

10 minutes). 16

4 Best feature sets for each classification latency with the F1-Score

over cross-validation data (seen dataset) 20

5 Best feature sets for each classification latency over cross-validation

data (training data) . 32

6 Experimental results of the Unified Classifier over the testing dataset

. 34

7 Seen Dataset . 35

8 Unseen Dataset . 35

9 IoT devices database from IMC’19 [32] 36

5

1 Introduction

The number of IoT devices in home network has increased dramatically in recent

years. IoT devices are much more vulnerable to attacks than general-purpose

endpoint computers and will be insecure in the foreseeable future. In most cases,

the IoT device is strong enough to host an attacking zombie but too weak to protect

itself from malicious code. Thus, it clearly poses new security challenges. Attacks

on IoT have severe implications in both the cyber and physical domains [6, 40,

38, 20]. There are many proposed security and management solutions, with the

common practice being a network-based solution that is geared to protecting IoT

devices and resides at the home router [2, 12] or in an additional security device

designed to protect the home network [9, 5, 7, 4]. The security solution cannot

reside in the IoT device itself, due to the low CPU power and memory of IoT.

Whenever a new device connects to the network, it must be managed and

secured as quickly as possible using the relevant security policy. Incorrect device

classification may lead to incorrect display for network administrator and may

lead to incorrect security policies applied to the device / user. The effect is mainly

dependent on the policy characteristics that have been applied and may range from

a slight to significant injury to the user experience.

A key challenge is thus to quickly distinguish between IoT (smart camera,

bulbs, speakers and so on) and non-IoT devices(general purpose computers, mo-

bile phones, desktops, tablets and laptops and so on), referred to in our paper as

NoT devices. We assume that the classification is done in a device that observes

6

the LAN 1 traffic. Our paper focuses on IoT that are actual physical entities con-

nected to the internet. Classification of borderline devices such as smartTVs (that

can be used to surf the Internet and to run different applications) is part of our

future work.

In this paper, we propose three classifiers for identifying devices as IoT or NoT

(see a summary of results in Table 1). We use a machine learning methodology,

where we trained classifiers on the seen dataset of labeled (IoT or NoT) devices,

and then analyze the accuracy of our classifiers on an unseen dataset of devices.

The unseen dataset includes IoT device types that were not in the seen dataset.

This challenging requirement is due to the huge variety of IoT devices, types and

vendors. Moreover, the IoT market is very dynamic, with new vendors and new

devices appearing constantly. We therefore seek a general classifier: one that

identifies the inherent characteristics of IoT vs NoT devices.

The desired classification approach should have the following properties:

• Universality - the classifier should be generic and work for all IoT device

types, including those with encrypted traffic. It should also work on device

types it has not yet seen.

• Low classification latency - We consider 1 to 20 minute latency.

• Accuracy - the classifier should be accurate. We use F1-score, recall and

precision as measures for accuracy.

1wired and/or wireless traffic

7

• Efficient - the classifier should also be efficient, with low CPU processing

and memory requirements, since it needs to process on-line traffic.

• Passiveness - the classifier should passively process the traffic and may

not use active probing of devices. Active techniques are usually tailored

for specific IoT devices and/or require special permission from the owner.

Moreover, in some cases, active probing might unintentionally activate the

devices.

Classifier Classification Latency F1-Score Recall Precision Efficiency
Classifier I: Traffic Features 1 min 91.54% 97.38% 87.02% Counters

5 min 96.59% 98.72% 94.54% Counters
10 min 98.12% 98.91% 97.34% Counters
20 min 98.07% 98.71% 97.43% Counters

Classifier II: DHCP Long 95.73% 93.75% 97.82% DPI required
Classifier III: Unified 20 min 99.04% 100% 98.11% DPI required

Table 1: Experimental results of the presented classifiers over the unseen dataset

The first classifier, presented in Section 4, is a logistic regression classifier

using traffic features. The resulting classifier is efficient and requires light pro-

cessing on a few features of the traffic (up to 5). We found the most informative

features to be the TCP window size and the number of unique DNS queries. We

show that these features were chosen by our ML algorithm because of the very

limited number of endpoints with which IoT devices communicate, as well as

their small TCP buffer size.

The second classifier, presented in Section 5, is based on a decision tree on

DHCP information. The DHCP protocol is very common in home networks, and

8

the resulting decision tree is simple (with a height smaller than 5). The downside

of the algorithm is that not all the networks or devices use DHCP. Moreover, it

might have a long classification latency, since DHCP appears relatively seldom in

the traffic.

We then present in Section 6 a unified classifier that leverages the advantages

of the other two above classifiers and achieves F-score, precision and recall above

98. The unified classifier can be found in our github repository [1].

The closest work to ours is the recent published work, DeviceMien [30], where

the authors also note the blind spot in the literature in categorizing as IoT previ-

ously unseen IoT devices. However we achieve better accuracy, and we also pro-

vide a clear intuition behind the features and signatures selected by our classifiers

(see Section 2). Thus, our work sheds light on the unique network characteristics

of IoT devices.

9

2 Related work

A technique that uses user-agent field information was suggested in [27] to clas-

sify IoT devices. A user-agent value is sent during HTTP requests, and it contains

a short description of the properties of the requesting device. For NoT devices,

this parameter is usually of greater length, since it describes properties relevant

only for NoT devices, such as screen size, OS language and browser. However,

we discovered that the technique does not meet our requirements. The user-agent

parameter cannot be observed in encrypted traffic. In our dataset, only 69.5% of

devices transmit this parameter as a plain text, and a similar result was shown in

[23]. Moreover classification latency is high - the chance to find an user-agent

value sent by an IoT device in a slot of 20 minutes is about 25%. We note that

unlike the DHCP client information, the user- agent is information that was sent

to the endpoints, and hence it is not stored at the home-router and thus cannot be

actively retrieved.

MAC OUI can be helpful in identifying the manufacturer of a device. But is of

very limited use as a unique identifier of IoT due to manufacturers that supply both

IoT and non-IoT device types (such as Samsung’s smartcam and smartphones).

The authors of [26] tried to associate MAC ranges of manufacturers with models,

but their technique was often ineffective due to lack of regularization in this field.

Other works address related areas, such as device fingerprinting [35, 19, 27,

28], but IoT devices that were not seen before cannot be identified by these tech-

niques.

10

The authors of [18] propose a proactive request to IoT devices in order to

classify the exact IoT vendor/model device. However, this work does not meet the

passiveness requirement, since sending packets to IoT requires non-trivial permis-

sions.

OS fingerprinting is addressed in [22, 21, 23]; however, the device type cannot

be easily identified from the resulting OS information. The Satori project [22, 21]

inspired our use of some of the features we tested in this work, mostly data from

the IP-TCP layers.

The closest work to ours is DeviceMien [30], where the authors also note the

blind spot in the literature in categorizing as IoT previously unseen IoT devices.

Their approach, which uses auto-encoder, a deep-learning technique, cannot pro-

vide any intuition regarding the received classifier, in contrast to our approach. We

also achieve better accuracy: F1-score of above 95% on ours dataset, as opposed

to 76% by the authors of [30] on theirs. Since they did not publish the dataset or

their resulting classifier, we cannot compare our techniques on the same dataset.

However, they did provide a list of the devices in the dataset, which are very sim-

ilar to our. We note that they also checked a few borderline IoT devices, such as

SmartTVs. We predict, based on the list of devices, that we would achieved an

F1-score of 92% on their dataset, assuming misclassification in the borderline IoT

devices. We suspect that our superior results due to the ability of machine learn-

ing techniques such as the one we used to achieve good results on small datasets.

Deep learning techniques, on the other hand, require huge datasets, which are dif-

ficult to obtain due to the need to label the devices. Another advantage of our

11

classifiers is that their latency is time-bound. Finally, our implementation is more

efficient since they require only a few memory references.

We note that a recent initiative calls for IoT device vendors to provide a Man-

ufacturer Usage Description (MUD) for their IoT products [24], which as a by-

product identifies the device as an IoT. Only a very few IoT currently provide

MUD files. It is moreover questionable whether the majority of the vendors would

comply with MUD, since the vendor apathy is one of the root causes of the IoT

security problems.

12

3 Methodology

Our dataset is composed of captured network traffic data (pcap files), recorded at

the router or at an access point, of labeled devices from various sources: [35, 33,

34, 8, 14] and pcaps collected from our IoT lab. The IoT devices in our dataset are

unique by type, model and/or OS version. Overall we had about 46GB of data.

Recording time varied greatly, with some devices that were recorded for weeks

and some for hours. Overall, our dataset contained 121 devices: 77 IoT and 44

NoT devices.

At first, we arbitrarily split the dataset into two groups: seen and unseen.

Later on, we gained access to more devices, and we added them to the unseen

dataset. Our seen group contained 45 devices, 24 IoT and 21 NoT (see Table 7 in

Appendix). Our unseen group contained 76 devices, 53 IoT devices and 23 NoT

(see Table 8 in Appendix).

As the names indicate, we performed the learning on the seen group and tested

our classifiers on the unseen group. We want to emphasize that the samples of the

unseen group were not available to us during the learning phase.

In order to test classification performance in various time periods, we divided

our dataset into time slots of 1, 5, 10 and 20 minutes. Working with a model

of slots, our classifiers process information of a time slot (in the training phase

and testing phase). Slots with a small number of packets were also considered,

since we observed that they might contain sufficient information for classification.

Some devices were characterized by their very rare network usage, such as the

13

Nest Smoke Alarm, which sends only a few packets every 23 hours. Thus, our

classifier can classify a device as soon as it sends data.

Our goal is to classify a new device in a network as being IoT or NoT. This

goal of dichotomy classification is a choice we made. We could also have used

a scoring mechanism, estimating the probability of being in one of the classes,

or classification to three categories: IoT or NoT or Undecidable. The dichotomy

classification fits well with our need to always decide how to protect and manage

the device, as a general purpose computer or as an IoT device.

In our model, an IoT device is considered ’Positive’, and a NoT device is

considered ’Negative’. We thus defined the following performance metrics: True

Positive (TP) - correct classification of an IoT device; False Positive (FP) - mis-

classification of a non-IoT (NoT) device as IoT ; True Negative (TN) - correct

classification of a non-IoT (NoT) device; False Negative (FN) - misclassification

of an IoT device as non-IoT (NoT).

We measure the accuracy using recall, precision and F1-Score: Recall is the

probability of an actual IoT to be successfully classified as such, i.e., TP
TP+FN

. Pre-

cision is the probability that an IoT-classified device is truly an IoT, i.e., TP
TP+FP

.

F1-score is a unified performance index defined as 2 · recall·precision
recall+precision

.

14

4 Classifier on Traffic Features

In this section, we propose a logistic regression classifier that operates on traffic

features. We start by explaining the two-step learning phase (see Section 4.1),

which consists of a feature selection followed by constructing an optimized fea-

ture set. We then explain the intuition behind the selected features in Section 4.2.

In Section 4.3 we present the testing phase results that demonstrate its accuracy

on the unseen data set. We then discuss some implementation considerations (in

Section 4.4).

Layer Feature description
Link-Layer Number of outgoing packets
Link-Layer Bandwidth (in bytes) of outgoing traffic
Link-Layer Average (in bytes) of packets length
Link-Layer Average of interleaving time for outgoing packets
Link-Layer Standard deviation of interleaving time for outgoing packets
IP Number of unique interacted endpoints of remote IPs
IP Average of the TTL value in outgoing IP packets
IP Average of the header length value in outgoing IP packets
IP Maximum of the header length value in outgoing IP packets
IP Minimum of the header length value in outgoing IP packets
IP Count of unique header length values in outgoing IP packets
IP Number of unique outgoing ports
IP Ratio between the number of TCP to UDP packets
IP Number of unique interacted endpoints of remote End-Points (IP × Ports)
TCP Maximum TCP window size
TCP Mean TCP window size
TCP Minimum TCP window size
TCP Count of unique TCP window size values
TCP Linear-least-square error for TCP timestamp value
DNS Number of unique DNS queries
DNS Number of DNS queries
HTTP Average length of user-agent field in http requests

Table 2: List of raw features tested.

15

Feature name Feature description F1-score
window size maximum TCP window size 0.942
unique DNS reqs number of unique DNS queries 0.845
remote IPs number of unique interacted endpoints of remote IPs 0.829
dns reqs number of DNS queries 0.738
ports number of unique outgoing ports 0.658
bandwidth bandwidth (in bytes) of outgoing traffic 0.601
pckt count number of outgoing packets 0.588
tcp ts deviation linear-least-square error for TCP timestamp value 0.582
interleaving deviations standard deviation of interleaving time for outgoing packets 0.576
tcp/udp ratio ratio between the number of TCP to UDP packets 0.548

Table 3: List of features with F1-score above 0.5 (seen dataset, time slot of 10
minutes).

4.1 Learning phase

4.1.1 Feature Selection

We tested 22 features from standard protocols (Link-Layer, IP, TCP, DNS, HTTP)

(see Table 2). We tested every feature that we thought might be an indicator.

We then automatically selected from among them a small set of ten informative

features that achieved an F1-score above 0.5 for the seen dataset (see Table 3).

The feature selection was done as follows: the seen data traffic was first divided

into sets of IoT or NoT. For each feature, we analyzed those sets (IoT vs. NoT)

using statistical tools (Welch’s t-test, ROC curve and AUC calculation [39, 17])

to determine the separation potential for each feature. We narrowed our feature

set to the best performing features. Then, we normalized the seen traffic, such

that each device had the same number of samples. This helped us deal with the

big differences in recording time, where some devices were recorded for weeks

16

Figure 1: The values of maximum TCP window size in IoT devices (presented as
CDF) and NoT devices (presented as Reverse-CDF), seen dataset, 10-minute time
slot.

and some for hours. In order to represent a wide range of scenarios, we chose

representative samples according to bandwidth (low, medium and high).

We calculated the F1-score using 5-fold cross-validation, a common technique

in machine learning, to choose features with no over-fitting. Our 5-fold cross-

validation method randomly splits the devices in the dataset into 5 independent

sets of train (80%) and test (20%). Note that no device appears in more than

one test set. Every test was run 5 times, once for each fold, and the results were

averaged. We ran this test separately for every classification latency.

For feature information that appears only from time to time in the traffic (e.g.,

TCP timestamp or user-agent), we filled slots with missing values with the average

values of the feature, as learned from the seen dataset. Therefore, a low F1-score

may also indicate that this feature does not appear in most slots.

17

Figure 2: The number of unique DNS queries in IoT devices (presented as CDF)
and NoT devices (presented as Reverse-CDF), seen dataset, 10-minute time slot.

4.1.2 Constructing an Optimized Feature Set

Our classifier uses sklearn’s StandardScaler function [11] in order to standardize

feature values and relies on the logistic regression algorithm [31] when applying

classification. In order to test incoming traffic against the classifier, we again im-

puted any missing value from an average we learned for each feature. Later on, we

used logistic regression on the standardized values in order to get a classification

result.

In Algorithm 1 we illustrate the simplicity of our technique. x is a sample

contains a feature set. θ are the trained coefficients for the logistic regression

algorithm, µ and σ are the vectors of the trained mean and scale for the standard

scaling for each feature type in the sets, and def is a vector used to impute values

for each feature type in case of missing values. µ, σ and def are general vectors

for either IoT or NoT.

In constructing a machine learning model, we chose a combination of fea-

tures that optimizes prediction rates, for each classification latency separately. We

18

Algorithm 1 Traffic Classifier Execution Algorithm
1: procedure PREDICT(~x)
2: learned parameters: ~θ, (~µ, ~σ), ~def
3: x←imputation(~x, ~def)
4: x←normalize(~x, (~µ, ~σ))
5: prediction← (1, ~x) · ~θ
6:
7: if prediction ≤ 0 then
8: return NoT
9: else

10: return IoT
11:
12:
13: procedure IMPUTATION(~x, ~def)
14: for i← 1 to ||~x|| do
15: if xi is undefined then
16: xi ← defi
17: return ~x
18:
19:
20: procedure NORMALIZE(~x, (~µ, ~σ))
21: for i← 1 to ||~x|| do
22: xi ← (xi − µi)/σi

23: return ~x

applied our learning using 5-fold cross-validation, as proposed in Section 4.1.1

To learn the optimal number of features and the optimal features themselves,

we used a greedy algorithm. Our goal was not only to optimize the F1-score for

each classification latency but also the number of selected features. We used a

parameter α (set to 1%) as a threshold in order to prefer a smaller vector size

over a larger one with a tiny performance gain (less than α). Table 4 shows the

optimal combinations and their averaged F1-score over the 5-fold cross-validation

19

for each classification latency (on the seen dataset).

Classification Latency F1-Score Feature set
1 min 89.52% window size, # unique DNS reqs, tcp/udp ratio, pckt count
5 min 95.41% window size, # unique DNS reqs, # remote IPs
10 min 96.33% window size, # unique DNS reqs, # remote IPs, interleaving deviations
20 min 96.48% window size, # unique DNS reqs, # remote IPs

Table 4: Best feature sets for each classification latency with the F1-Score over
cross-validation data (seen dataset)

4.2 Intuition

We then tried to understand the reason behind the dominant selected features:

window size and number of unique DNS requests. We noticed that IoT device

hardware is not as well equipped as NoT devices hardware, and have small buffer

size for TCP stack and therefore commonly has a smaller TCP window size [16].

Figure 1 compares the CDF of the IoT window size values to the reverse-CDF

of the NoT window size values. This comparison shows the separability over

this feature. This feature is highly available, visible and unencrypted. All of our

devices had TCP traffic in their time slots.

In addition, IoT devices connects to limited endpoints (mostly vendor cloud

servers), and thus have fewer unique DNS requests, remote IPs and ports (a similar

observation was made in [35]). Figure 2 compares the CDF of the number of

unique DNS queries of IoT devices to the reverse-CDF for NoT devices. Note

that if there is no DNS traffic, this is also data, and the value of the feature for that

slot will be zero.

20

The classifiers that work on time-slots from 5 minutes and above used the num-

ber of unique remote IPs in addition to the number of the unique DNS requests.

We suspect that these numbers differ since we capture the traffic in some slots,

i.e., in the middle of the device operation, we might not capture the DNS queries

that resolve the IPs. Thus the number of unique remote IPs adds information.

4.3 Testing phase

After training our models, we validated the classifiers against the unseen dataset

(see Table 1). Again, we considered all the time-slots and average the results per

device. We received a good F1-score (91.54%) for 1 minute time slot and very

high F1-scores (above 96.5%) from 5 minutes time slot and above.

In Figure 3 we present the CDF of the classification success rate, defined as

the fraction of time-slots, with correct classification of a device. For a given class

classification success rate x, the graph shows the fraction of devices with a suc-

cessful classification rate smaller than or equal to x. Except for one device, all the

inconsistently classified devices were classified in more than 82% of the time slots

in the same correct way. The most inconsistent devices were NoT devices, such

as Apple iPAD, Samsung Android, Win 10 and Win 7. Devices are incorrectly

classified when the window size is not informative enough, and the NoT device is

not very active in that time slot. To improve the results for these cases, we present

in the next section, a classifier that works on the DHCP information. This result

also motivated us to test a classifier with longer classification latency that uses the

majority in a sequence of time slots. This observation is applied in our unified

21

classifier (see Section 6).

Figure 3: CDF of classification success rate of devices, classifier on traffic fea-
tures, 10 minute time-slot, unseen dataset.

4.4 Implementation Considerations

Performance wise, implementing the classifier on traffic features requires finding

the number of distinct elements efficiently (e.g., of the number of unique DNS

queries and the number of remote IPs). Note, however, that if the number of dis-

tinct elements, denoted by x, is small, the naive solution would be to store the last

x+1 unique elements seen. In our retrieved classifier the threshold of the number

of unique elements was small (less than 15), and hence this is a practical solu-

tion. Another possible implementation is to apply algorithms that approximate

the number of distinct elements, as was done in [37, 15, 25].

22

5 DHCP based Classifier

In this section, we present a decision tree based on DHCP information. For de-

vices that are configured to use the DHCP, IoT and NoT devices use the protocol

to notify the router of their existence in the network with some information about

the device.

The DHCP classifier has some inherent drawbacks: First, DHCP packets are

not available in certain network configurations such as static-IP and in some IPv6

networks due to SLAAC (stateless address auto-configuration [29]). Second, clas-

sification requires the use of DPI, which is costly in terms of CPU. Third, DHCP

packets are sparsely available, since DHCP traffic occurs when a device connects

to the network or renews its IP. Figure 4 represents the interleaving time distri-

bution. The median between consecutive DHCP packets is about 3 hours in our

dataset.

Figure 4: Interleaving time distribution of DHCP packets on the seen dataset

Nonetheless, on DHCP enabled networks, this can be overcome and DHCP

23

packets can be retrieved instantly, if active requests can be taken. We can actively

disconnect all devices in the network (for example, by running the aireplay-ng

tool[3]). This action causes every device to renegotiate and triggers DHCP traffic,

and hence we can retrieve the DHCP information in less than three seconds. With

the appropriate credentials, it might be possible to use tr-69 [36] (the common

protocol that is used by ISPs to manage and operate the home-routers) to retrieve

the required values from the router. 2

In the next sections, we explain the learning phase of the decision tree on

DHCP information, the intuition behind the retrieved tree, the testing results on

the unseen data, and some implementation considerations.

5.1 Learning Phase

In order to construct the classifier automatically, we collected all possible infor-

mation from DHCP packets, obtained from five fields: hostname, vendor-class ID

(vci), parameter-request-list (prl), maximum-dhcp-size and message-types. We

created a list of labels (words/values/numeric values) using the following algo-

rithm: For the hostname and vci fields, which contain concatenations of words,

we extract labels by splitting those values into labels separated by delimiters (such

as ,./ -+), while filtering numbers. For the parameter-request-list, which is a list of

identifiers, we add the identifiers as labels. For maximum-dhcp-size and message-

type, which have numerical values, we add the numerical values as labels. We then

construct a binary vector according to those labels for each device. Every i-th bit

2Hostname and vci are mandatory in TR-69, other DHCP values are optional.

24

in a vector represents the fact that the i-th label exists.

We trained a decision tree model [10] using vectors we constructed according

to the seen dataset. We obtained a simple decision tree (see Figure 5). Fortunately,

due to the plurality of devices in the seen dataset, this tree was generic and did not

receive any specific vendor IoT information.

5.2 Intuition

The chosen tree uses parameter-request-list (prl) information, which is a list of

parameters the device requests from the DHCP server. We saw two dominant

values: the first is the hostname value (tag number 12), which indicates that the

device wants its hostname to be assigned by the DHCP server. In our dataset,

only IoT devices request it. The second is the domain name value (15), which is

used primarily to support easy access to other LAN entities using domain names

instead of IP addresses. This value is mainly relevant for NoT devices.

The decision tree also uses vendor-class ID (vci) information. The vci field

mostly contains an information about the type of DHCP client of the device. Some

of our IoT devices use vci values of SOC (system on chip). We observed a number

of other prominent values with high potential, such as ’udhcp’ - a lightweight

dhcp client (common for IoT), as opposed to ’dhcpcd’ - a featureful dhcp client.

However, the prl values were more prominent and were chosen by the algorithm.

We note that the hostname field is the device’s name and it usually contains

a value configured by the vendor (but can be changed by the user). Note that the

decision tree did not choose to use this information, we suspect since there are too

25

Figure 5: Decision tree visualization for DHCP -based classifier.

many possible IoT vendors and NoT vendors.

5.3 Testing Phase

We tested our model on the unseen dataset and achieved an F1-score of 95.7%

on devices that use DHCP (see Table 1). The incorrectly classified devices were

Harmon Kardon Invok, RENPHO Humidifier, Ubuntu PC and Homepod of Apple.

We note that the NoT devices from [33] were configured with a static IP, and thus

the technique cannot be applied to them. These devices comprised 10% of our

unseen dataset. We classified the devices according to their DHCP packet (one

packet is enough), regardless of the classification latency (i.e., without division

to time-slots). Thus, the classification latency might be long, if no active request

to the router is allowed. We tried to utilize also a random forest algorithm and

achieved only slightly better results.

26

5.4 Implementation Considerations

Implementing the DHCP classifier required light deep packet inspection, since the

required information is in very specific locations, only in the DHCP packets, so

that analyzing one such packet is sufficient. Thus, the DPI would require only

very few memory references using known DPI algorithms [13].

27

6 Unified Classifier

As mentioned, the DHCP information is not always available, but the traffic fea-

tures classifier is inaccurate for some of the NoT devices in time-slots where the

devices are not very active, and when tcp window size information is not indicative

enough. Hence, we created a unified classifier using the traffic features classifier

on different time slots and the DHCP classifier to improve accuracy.

Figure 6: CDF of a classification success rate of devices, unified classifier, 20
minute time-slot, unseen dataset.

The unified classifier was heuristically created. We focused on a classifica-

tion time of 20 minutes. For 20 minutes we checked four 5-minute traffic feature

classifiers, two 10-minute classifiers, and one 20-minute classifier. Then we com-

bined the classifying results based on traffic features with the DHCP classifier

result, and weighted the result as two classifiers if DHCP information exists (as a

tie breaker). We classified according to the majority (of nine classifiers). The uni-

28

fied approach slightly improves the accuracy, acheiving an F1-score of 99.04; see

Table 1 for comparison. We present in Figure 6 the analysis of the classification

success rate per device.

7 Conclusion

In this paper, we show that it is possible to classify devices as IoT or NoT with

short classification latency using simple and efficient classifiers. Understanding

whether a device is IoT or NoT is crucial for visibility and security. Our classifiers

are able to classify devices that were not seen in the learning phase. This is an

important property of our classifier, since there are no datasets that can cover the

huge variety of devices, especially IoT devices. A key benefit of our classifiers

is that we can explain the intuition behind the learned classifiers. The unified

classifier code was published in our github repository [1], for use and comparative

study by the community.

A limitation of our research is that we did not focus on borderline IoT devices

(such as Android TV and Echo Show). A further study should be performed on

the ability to identify this borderline category.

29

8 Appendix

8.1 Further data analysis

Towards the end of November 2019, we gained access to a huge database [32] of

about 89 IoT devices. We filtered out devices that did not have enough information

as well as devices that were in the gray area. We ended up remaining with 60 IoT

devices.

Due to the high number of new IoT devices, in order to maintain balance

in the training and test data groups. We redistributed the database. In addition,

we improved the model of the unified classifier in order to use state of the art

techniques (Instead of the ad-hoc technique used in section 6).

8.1.1 Redistributing the database

The redistribution was performed randomly, with the condition that no identical

devices would appear in two different groups.

• 70% from the devices chosen for Training group -

– 70% from IoT devices (96 devices)

– 70% from NoT devices (31 devices)

• 30% chosen for Test group -

– 30% from IoT devices (41 devices)

– 30% from NoT devices (13 devices)

30

8.1.2 Redefining Unified Classifier

The unified classifier consists of three classifiers as illustrated in figure 7; The

first two classifiers are the classifiers being used in the previous sections: section

4 and section 5. The third classifier is a logistic regression classifier that accepts

the previous two classification results as input and uses them to produce a final

result.

Figure 7: Design of the Unified Classifier.

8.1.3 Training

Due to the redistribution of the devices into groups, we have re-learned all the

classifiers. The learning process is very similar to the learning process we dis-

cussed in sections 4.1 and 5.1, the main difference being that the process was

performed on a different set of devices.

Learning Process: Traffic Classifier We have re-studied the optimal feature

sets, the result is shown in table 5. The new sets are not much different from the

old sets. We trained the model using the new sets.

31

Classification Latency Feature set
1 min window size, # remote IPs
5 min window size, # unique DNS reqs, # remote IPs, tcp/udp ratio, pckt count
10 min window size, # unique DNS reqs, # remote IPs, average UA length
20 min window size, # unique DNS reqs, tcp/udp ratio, average UA length

Table 5: Best feature sets for each classification latency over cross-validation data
(training data)

Learning Process: DHCP Classifier We created a list of labels from the train-

ing traffic. We re-learning the decision-tree based on the new tag list. The new

decision tree is shown in the figure 8.

Decision Tree Intuition First, the tree is much more complex than the tree

presented earlier (in section 5), this property is due to the difference in the amount

of information we used for learning. Second, We can see nodes that filter well

devices: devices that requested an auto-complete list of post-domains (DNS Do-

main Search list) are mostly no IoT, devices that didn’t request a configuration of

”hostname” are mostly NoT, and devices that reports ”msft” as their DHCP soft-

ware will be NoT. In addition, you can see that the default classification is IoT,

which corresponds to our premise that IoT devices are of high variance.

Learning Process: Unified Classifier The Unified Classifier training process

is similar to the Traffic Classifier process, except that here we define exactly what

features it uses (the intermediate results). We have trained the unified classifier

separately for each classification latency, and we have learned default values for

filling in case that no information is available for one or the other classifier (usually

32

Figure 8: Decision tree visualization for DHCP-based classifier.

relevant when no DHCP information is available)

8.1.4 Test Process

For each device we want to test, we take data from one slot and divide it into two

parts: 1. Traffic 2. DHCP. Enter the relevant data for each classifier as input. Then

take the intermediate results and insert them as input to the Unifier Classifier. If

DHCP data does not exist, then instead of running the DHCP classifier we will fill

the missing intermediate result with default information we learned in advance.

33

8.1.5 Results

The results are as shown in table 6. In our case the results are stable around

97.5%. This model slightly improves our accuracy in tests that is performed in

short classification latency but slightly compromises performance for tests in long

classification latency.

Classifier Classification Latency F1-Score Recall Precision
Unified Classifier 1 min 97.17% 100% 94.51%

5 min 97.79% 100% 95.69%
10 min 97.68% 99.83% 95.63%
20 min 97.48% 100% 95.08%

Table 6: Experimental results of the Unified Classifier over the testing dataset

8.2 Devices

The list of devices we used in this article is shown in tables 7, 8 and 9.

34

Category Device Name

NoT

Samsung Galaxy Tab
Android Phone
Windows Laptop
MacBook
Android Phone
IPhone
MacBook/Iphone
Lg Smartphone
Nexus 5x Smartphone
Apple Macbook
Xiaomi Smartphone
Laptop win10
Macbook
Macbook
Samsung s7
Xiaomi mi5
Galaxy-A7-2017 Smartphone
Lenovo Win10 laptop
LG G3 Smartphone
Asus ZenPad Tablet
Dell Win7 laptop

IoT

Smart Things
Netatmo Welcome
TP-Link Day Night camera
Samsung SmartCam
Dropcam
Insteon Camera, wifi
Insteon Camera, wired
Withings Smart Monitor
Belkin Wemo switch
TP-Link Smart plug
iHome
Belkin wemo motion sensor
NEST Protect smoke alarm
Netatmo weather station
Withings Smart scale
Blipcare Blood Pressure meter
Withings Aura smart sensor
LiFX Smart Bulb
Triby Speaker Smart Speaker
PIX-STAR Photo-frame
HP Printer
Nest Dropcam
Chromecast Streamer
Yeelink Smart Light Bulb

Table 7: Seen Dataset

Category Device Name

NoT

Samsung s5 Smartphone
Android samsung
Apple iPhone
Windows Laptop
Ubuntu PC
Apple ipad
xiaomi A2
Dell Laptop win 10
Mac laptop
Xiaomi smartphone
VM Win 8.1 64B
VM Win 7 Pro 64B
VM Ubuntu 16.4 64B
VM Win 10 pro 32B
VM Ubuntu 16.4 32B
VM Ubuntu 14.4 64B
VM Ubuntu 14.4 32B
Macbook
VM Testbed09 (windows)
VM Testbed13 (windows)
iPad
Iphone
Android Tablet

IoT

2X Amazone Echo
Apple HomePod
August Doorbell Cam
Belkin Netcam
Belkin WeMo Link
Bezeq smarthome
Bose SoundTouch 10
Canary
Caseta Wireless Hub
Chamberlain myQ Garage Opener
Chinese Webcam
D-Link DCS-5009L Camera
Foscam
Google Home
3X Google Home Mini
Google OnHub
Harmon Kardon Invoke
Insteon Hub
iRobot
Koogeek Lightbulb
lifiLab
Logitech Harmony Hub
Logitech Logi Circle
MiCasaVerde VeraLite
2X Motorola Hubble
NestCam
NestDetector
Nest Camera
Nest Cam IQ
Nest Guard
Netgear Arlo Camera
Philips HUE Hub
Piper NV
Provision ISR
RENPHO Humidifier
Ring Doorbell
Roku 4
Roomba
samsung smart home camera
Securifi Almond
smartHub
Sonos
TP-Link Smart WiFi LED Bulb
2X TP-Link WiFi Plug
WeMo Crockpot
Wink 2 Hub
Withings Home
Wyze Cam

Table 8: Unseen Dataset

35

Device Name

uk-allure-speaker
uk-blink-camera
uk-blink-security-hub
uk-bosiwo-camera-wired
uk-charger-camera
uk-echo-dot
uk-echo-plus
uk-echo-spot
uk-google-home
uk-google-home-mini
uk-honeywell-thermostat
uk-lightify-hub
uk-magichome-strip
uk-nest-tstat
uk-ring-doorbell
uk-sengled-hub
uk-smarter-coffe-mach
uk-sousvide
uk-t-phillips-hub
uk-tplink-bulb
uk-wansview-cam-wired
uk-xiaomi-cam2
uk-xiaomi-cleaner
uk-xiaomi-hub
uk-yi-camera
us-amcrest-cam-wired
us-blink-camera
us-blink-security-hub
us-brewer
us-bulb1
us-cloudcam
us-dlink-mov
us-dryer
us-echodot
us-echo-plus
us-echo-spot
us-fridge
us-google-home-mini
us-ikettle
us-invoke
us-lefun-cam-wired
us-lightify-hub
us-luohe-spycam
us-magichome-strip
us-microseven-camera
us-microwave
us-nest-tstat
us-phillips-bulb
us-ring-doorbell
us-sengled-hub
us-sousvide
us-t-phillips-hub
us-tplink-bulb
us-wansview-cam-wired
us-washer
us-wink-hub2
us-xiaomi-cleaner
us-xiaomi-hub
us-xiaomi-ricecooker
us-xiaomi-strip
us-yi-camera
us-zmodo-doorbell

Table 9: IoT devices database from
IMC’19 [32]

36

References
[1] https://github.com/haimlevyy/IoT-or-NoT-Execution-code.

[2] McAfee: Built-in Protection for Your Connected Devices.
https://securehomeplatform.mcafee.com/.

[3] aireplay-ng - Linux man page. https://linux.die.net/man/1/aireplay-ng.

[4] Bitdefender BOX. https://www.bitdefender.com/box.

[5] CUJO. https://www.getcujo.com/.

[6] DDoS attack halts heating in Finland amidst winter.
https://metropolitan.fi/entry/ddos-attack-halts-heating-in-finland-amidst-
winter.

[7] Fing-Box. https://www.fing.com/products/fingbox.

[8] IoT devices’ First-Time Bootup Traces, PREDICT ID: USC-
LANDER/IoT Bootup Traces-20181107. Provided by the USC/LANDER
project http://www.isi.edu/ant/lander.

[9] RATtrap. https://www.myrattrap.com/.

[10] scikit-learn DecisionTreeClassifier python documenta-
tion. https://scikit-learn.org/stable/modules/generated/
sklearn.tree.DecisionTreeClassifier.html.

[11] scikit-learn StandardScaler python documenta-
tion. https://scikit-learn.org/stable/modules/generated/
sklearn.preprocessing.StandardScaler.html.

[12] Trend Micro partners with Asus to beef up IoT security in homes.
https://internetofbusiness.com/trend-micro-asus-iot-security/.

[13] AHO, A. V., AND CORASICK, M. J. Efficient string matching: An aid to
bibliographic search. Commun. ACM 18, 6 (June 1975), 333–340.

[14] ALRAWI, O., LEVER, C., ANTONAKAKIS, M., AND MONROSE, F. SoK:
Security Evaluation of Home-Based IoT Deployments. IEEE Symposium on
Security and Privacy (2019).

37

[15] BANDI, N., AGRAWAL, D., AND EL ABBADI, A. Fast algorithms for heavy
distinct hitters using associative memories. In In International Conference
on Distributed Computing Systems (ICDCS) (2007).

[16] C. GOMEZ, J. CROWCROFT, SCHARF, M. TCP Usage Guidance in the
Internet of Things (IoT). IETF Internet Draft (2018).

[17] FAWCETT, T. An introduction to ROC analysis. Pattern Recognition Letters
(2006).

[18] FENG, X., LI, Q., WANG, H., AND SUN, L. Acquisitional Rule-based En-
gine for Discovering Internet-of-Things Devices. In Usenix Security (2018),
pp. 327–341.

[19] GUO, H., AND HEIDEMANN, J. IP-Based IoT Device Detection. IoT
S&P’18 (2016), 36–42.

[20] KOLIAS, C., KAMBOURAKIS, G., STAVROU, A., AND VOAS, J. DDoS in
the iot: Mirai and other botnets. Computer 49, 7 (2017), 80–84.

[21] KOLLMANN, E. GitHub - xnih/satori.

[22] KOLLMANN, E. Chatter on the Wire : A look at DHCP traffic.

[23] LASTOVICKA, M., JIRSIK, T., CELEDA, P., SPACEK, S., AND FI-
LAKOVSKY, D. Passive os fingerprinting methods in the jungle of wireless
networks. In IEEE/IFIP Network Operations and Management Symposium:
Cognitive Management in a Cyber World, NOMS 2018 (2018).

[24] LEAR, E., DROMS, R., AND ROMASCANU, D. RFC 8520: Manufacturer
Usage Description Specification. Internet Engineering Task Force, March
2019.

[25] LOCHER, T. Finding heavy distinct hitters in data streams. In SPAA (2011),
ACM.

[26] MARTIN, J., RYE, E., AND BEVERLY, R. Decomposition of MAC address
structure for granular device inference. Proceedings of the 32nd Annual
Conference on Computer Security Applications - ACSAC ’16 (2016), 78–88.

38

[27] MEIDAN, Y., BOHADANA, M., SHABTAI, A., GUARNIZO, J. D., OCHOA,
M., OLE TIPPENHAUER, N., AND ELOVICI, Y. ProfilIoT: A Machine
Learning Approach for IoT Device Identification Based on Network Traf-
fic Analysis. SAC 2017: The 32nd ACM Symposium On Applied Computing
(2017).

[28] MSADEK, M., SOUA, R., AND, T. E. T. I. W. C., AND 2019, U. IoT De-
vice Fingerprinting: Machine Learning based Encrypted Traffic Analysis. In
The IEEE Wireless Communications and Networking Conference (WCNC)
(2019).

[29] NARTEN, D. T., JINMEI, T., AND THOMSON, D. S. IPv6 Stateless Address
Autoconfiguration. RFC 4862, Sept. 2007.

[30] ORTIZ, J., CRAWFORD, C., AND LE, F. DeviceMien: Network device
behavior modeling for identifying unknown IoT devices. In IoTDI 2019
- Proceedings of the 2019 Internet of Things Design and Implementation
(2019).

[31] REGRESSION, L. Logit Models for Binary Data. Bernoulli (1978).

[32] REN, J., DUBOIS, D. J., CHOFFNES, D., MANDALARI, A. M., KOLCUN,
R., AND HADDADI, H. Information Exposure for Consumer IoT Devices:
A Multidimensional, Network-Informed Measurement Approach. In Proc.
of the Internet Measurement Conference (IMC) (2019).

[33] SHARAFALDIN, I., HABIBI LASHKARI, A., AND GHORBANI, A. A. To-
ward Generating a New Intrusion Detection Dataset and Intrusion Traffic
Characterization. In 4th International Conference on Information Systems
Security and Privacy (2018).

[34] SHIRAVI, A., SHIRAVI, H., TAVALLAEE, M., AND GHORBANI, A. A. To-
ward developing a systematic approach to generate benchmark datasets for
intrusion detection. Computers and Security (2012).

[35] SIVANATHAN, A., SHERRATT, D., GHARAKHEILI, H. H., RADFORD, A.,
WIJENAYAKE, C., VISHWANATH, A., AND SIVARAMAN, V. Character-
izing and classifying IoT traffic in smart cities and campuses. In 2017
IEEE Conference on Computer Communications Workshops, INFOCOM
WKSHPS 2017 (2017).

39

[36] THE BROADBAND FORUM. TR-069 - CPE WAN Management Protocol.
https://www.broadband-forum.org/technical/download/TR-069.pdf.

[37] VENKATARAMAN, S., SONG, D., GIBBONS, P. B., AND BLUM, A. New
streaming algorithms for fast detection of superspreaders. In Proc. Network
and Distributed System Security Symposium (NDSS) (2005).

[38] WEI, W. Casino Gets Hacked Through Its Internet-Connected Fish Tank
Thermometer, 2018.

[39] WELCH, A. B. L. The Generalization of ‘ Student ’ s ’ Problem when Sev-
eral Different Population Variances are Involved Published by : Biometrika
Trust Stable URL : http://www.jstor.org/stable/2332510. Biometrika (2008).

[40] YU, T., SEKAR, V., SESHAN, S., AGARWAL, Y., AND XU, C. Handling
a trillion (unfixable) flaws on a billion devices: Rethinking network security
for the Internet-of-Things. Proceedings of the 14th ACM Workshop on Hot
Topics in Networks - HotNets-XIV (2015).

40

 תקציר

ברשתות ביתיות. כאשר מכשיר חדש מתחבר IoT בשנים האחרונות חל גידול דרמטי במספר מכשירי

 QOS -ה מנגנון אבטחה או מדיניותלרשת, קיים צורך לנהל אותו במהירות ולאבטח אותו באמצעות

 .הרלוונטית

למרבה הצער, אין שום דקות.פרק זמן של תוך NoT ו IoT מכשיריבין קיים אתגר להבחין לפיכך,

 .IoTא אכן אינדיקציה ברורה אם מכשיר ברשת הו

ת זמן קצר וברמ תוך פרק IoT-או לא IoT -במאמר זה אנו מציעים מסווגים שונים המזהים מכשיר כ

 .דיוק גבוהה

שחולק לשני חלקים: אחד נתונים בסיסבע"י שימוש המסווגים שלנו נבנו בטכניקות למידת מכונה

 .)test(לצורך בדיקה והשני) train(לצורך למידה

ברמת בבסיס הנתונים עליו בוצעה הלמידה, בהצלחה מכשירים שלא נמצאו המסווגים הצלחי לזהות

 .95% מעלשל דיוק

. מידע כללי שנלקח מתעבורת הרשתהמבוסס על logistic regressionמסוג המסווג הראשון הוא מסווג

 .DHCP שנשלפו מחבילותהמסווג השני מבוסס על תכונות

בכדי להשיג תוצאות לבסוף, אנו מציגים מסווג אחיד הממנף את היתרונות של שני המסווגים האחרים

 .טובות אף יותר

מבי"ס זהר יכיניובסיועו של פרופ' בר-ענת ברמלר עבודה זו בוצעה בהדרכתו של פרופ'

 אפי ארזי למדעי המחשב, המרכז הבינתחומי, הרצליה.

 המרכז הבינתחומי בהרצליה
ספר אפי ארזי למדעי המחשב -בית

 מחקרימסלול -).M.Scהתכנית לתואר שני (

IoT or NoT
 בפרק זמן קצר IoTזיהוי רכיבי

 מאת
 חיים לוי

 .M.Scכחלק מהדרישות לשם קבלת תואר מוסמך עבודת תזה המוגשת
 הרצליה זי למדעי המחשב, המרכז הבינתחומיבמסלול המחקרי בבית ספר אפי אר

2020 אפריל

