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Abstract

Almost k-wise independent hash functions are function families whose outputs on any k distinct
queries are close to uniform in L1 distance; this is also called bounded independence. A close
relative, called almost k-wise unbiased functions, is a family of functions whose outputs on any k
distinct queries are close to uniform in L∞ distance.

In this work we investigated methods for increasing the bounded independence of a family
of hash functions. Namely, given an almost k-wise independent (unbiased) function family, we
aim to produce an almost k′-wise independent (unbiased) one with k′ > k. Our transformations
are generic in the sense that they only require black-box access to the underlying hash function
families, and in most cases only require these to be almost k-wise independent without any further
restrictions. To the best of our knowledge, no such method was published to date.

In order to achieve our goals we employed the following method: repeatedly sample from the
original function family and define a new function that is some combination of the samples. We
identified two types of predicates with which to combine the sampled functions. One type allows
one to decrease the bias of the output; the second type allows us to increase the bounded inde-
pendence parameter k. We finally combine the two types of predicates in an iterative construction
which has the required properties.
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1 Introduction

Hash functions are a fundamental element of modern computer science. They have been the subject
of extensive research dating back to the 1950s and have seen practical use in diverse settings (see
section 1.2). They come inmany flavors, which can be roughly divided into two types: information-
theoretic functions and cryptographic ones.

In 1979, Carter and Wegman [CW79] defined the concept of Universal-Hashing, which started
a vast array of publications on this topic. Roughly speaking, Universal Hash Families guarantee
that the function outputs are pairwise-independent. This notion was later extended by the same
authors to k-wise independence. Families of functions whose outputs are k-wise independent are
called k-Universal, or simply k-wise independent.

In simple words, this definition means that the distribution induced by the hash function family
over the outputs of up to any k distinct inputs is completely uniform. This notion can be relaxed
slightly without losing too much of its power if we only require that the distribution over output
tuples, is statistically close to uniform in L1 norm. That is to say, if we consider distributions over
{0, 1}k as vectors inR2k then the L1-norm of the difference between the output distribution and the
uniform one is small. Families of hash functions that satisfy this constraint are said to be almost
k-wise independent.

This notion provides a very strong guarantee on the k-tuple of outputs. Basically, it says that
the distinguishing advantage of any, even unbounded, adversary between the k outputs of such a
hash family and k completely random elements from the function family’s range is small.

A less stringent requirement is that the function family have small bias. We say that a function
has small bias if the expectation of any linear test over the components of the output distribution is
close 0.5. Families of functions (or distributions) which exhibit this property are said to be almost-
unbiased.

It turns out that these two notions are actually related to one another. In [Vaz86], it was shown
that an exponentially small bias can be translated into a bound on L1 distance. This was later
improved upon in [Dia88]. Specifically:

Lemma 1.1 (Diaconis-Shahshahani lemma restated). IfD is a distribution over {0, 1}k, whose bias
with respect to any linear test is at most ϵ: then this D is also at most 2k/2ϵ-far from the uniform
distribution in L1 norm.

Throughout this text, we use the notion of bias, rather than that of independence, which turns
out to be more natural to our analysis. These results can then be transformed via Lemma 1.1 into the
language of almost k-wise independence. In some cases we will specify the implications regarding
almost k-wise independence explicitly, but in others we will let these results remain implicit.
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1.1 Our Results

We consider function families which have small ϵ bias w.r.t. all linear tests of size at most t, where
the size of a linear test is the number of components in the output distribution that participate in
the test. Such families are called (t, ϵ)-biased. In this thesis we present a generic method for
transforming a (t, ϵ)-bias function family into a (t′, ϵ′)-biased onewhile only using black-box access
to the original family. Our constructions do not change the input or output length of the original
family.

We have several motivations for this approach. The first is that, while explicit constructions
for k-wise independent hash functions exist, it is plausible that in some applications k-wise hash
function are inherent to the problem, but that these functions do not admit a natural method for
increasing their independence parameter. In this case using a generic transformation may be useful.

A second, and possibly more important, motivation is in creating almost k-wise unbiased func-
tions which can be computed by small formulae. It has been shown in [RR97] that pseudo-random
functions cannot exist in complexity classes that admit Natural proofs. Our smallest constructions
lie very close in size to the current known bound for pseudo-random function (PRF) formulae. One
may conjecture that almost k-wise independent hash functions are information-theoretic relatives
of the computational PRFs. Therefore we hope to construct functions which are not only almost
k-wise unbiased but may also be valid PRF candidates.

In section 4 we prove the following theorem:

Theorem 4.1 (loosely stated). Let F0 ⊆ D → {0, 1} be a (k0, ϵ0)-biased function family for
some constants k0 ≥ 2 and ϵ0 < 1. Then it is possible to efficiently construct a family F ⊆ D →
{0, 1} that is (k, ϵ)-biased by deterministically combining at most a polynomial (in k and in log(1

ϵ
))

number of independent samples from F .

We first state and prove this theorem for hash functions that hash bit strings into single bits. In
section 5 we generalize this to arbitrary input and output sizes.

This theorem follows from two combination lemmas of complementing natures. We show that
XOR-ing two samples from a hash function family reduces bias, while AND-ing two samples effec-
tively doubles the independence parameter of the function family while, unfortunately, increasing
the bias. Alternating between these two combination methods allows us to increase the indepen-
dence parameter while controlling the bias. This process is roughly sketched in Fig. 1. In section
3 we state and prove these two lemmas.
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Figure 1: Sketch of a single independence increasing step

This latter process is the heart of our constructions. It is the means by which we increase the
titular bounded independence. However, it cannot work on its own; rather, it is the second stage of
three.

In the first stage the bias is reduced down to a ”small enough” constant using repeated XORs.
This is necessary in order to bound the bias in an AND step. The third and final stage is also a
bias-reduction one, which is needed since the second stage only provides a constant bias. In most
cases we will require sub-constant, and even exponentially small, final bias.

Applying theorem 1.1, we define a new type of hash-function family which is most easily de-
scribed as a formula, i.e. a circuit in which every gate has fan-out 1. Our construction follows in
the footsteps of [Val84]. In this paper the majority function of n bits is shown to be calculable by a
monotone formula which uses just one type of gate. The original construction works by sampling
with replacementm > n bits from the input and then calculating a formula with the structure of a
balanced tree that contains only majority gates.

Our construction uses the same sampling technique, but employs two types of gates: XOR and
AND, as in our theorem. By proving that the sampling procedure is effectively an almost pairwise-
independent hash function we will be able to directly apply our theorem and show that a suitable,
explicit formula over a suitably long series of independent samples from the input is almost k-wise
unbiased for some desired value of k and distance from uniformity. This is detailed in section 4.2

We then turn our attention to optimizing the performance of the construction. In this endeavour
we have two conflicting goals:

1. Reduce the randomness used in the construction

2. Reduce the construction’s formula size

In addition, onemay hope to support larger outputs andmore general inputs (i.e. not just bit strings).
The first goal is motivated primarily by practical reasons: in many applications it is important

to save on randomness. We explore this goal in section 5. First, we improve upon the efficiency
of the AND gate. In order to do this, we first need to generalize our construction to handle longer
outputs. We treat our hash functions as families F : D → Zq. At this point we replace the AND
gate with a different one which enables us to square the independence parameter k instead of just
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doubling it. This drastically reduces the required randomness. We also show that addition modulo
q generalizes the XOR bias-reduction operation.

Second, we optimize the final bias-reduction stage. We employ the well-known technique of
using random walks on expanders instead of independently sampling, first used in [AKS87]. In
lemma 5.11 we show that XOR-ing together samples taken from a random walk on an expander
graph is almost as good at reducing bias as XOR-ing completely independent samples from the
same graph. Using this idea, we are able to reduce the cost of a single XOR gate, which naïvely
requires doubling the randomness, to an additive constant number of bits. These two optimizations
are generic, and can be applied to almost any hash function family.

In section 6 we first derive a general transformation from (k0, ϵ0)-bias to (k, ϵ)-bias using the
improvements of the previous section. This implies a similar transformation for k-wise indepen-
dence. The parameters of our most randomness-efficient constructions are then shown to be only
linearly dependent on the final required value of k, and logarithmically dependent on the size of
the functions’ range.

We then generalize our simple circuit construction from section 4 to allow for multiple out-
put bits, and show how the new theorems relate to this construction. This is done by randomly
sampling multiple bits from the input to create a single bit-string output. We then show a further
simple optimization of this construction using error-correcting codes. Specifically, we show that
by applying a suitable code on the input prior to sampling from it, we can reduce the bias of the
bit-string output to a constant. This helps reduce the amount of randomness required by the initial
bias-reduction stage.

In section 7 we pursue a tangent direction: improving the formula size of our original {0, 1}n →
{0, 1} hash function family from section 4.2. It has been shown in [RR97] that PRFs cannot exist
in complexity classes that have a Natural Property. In [Nec66] a Natural proof was shown giving
a lower bound of O( n2

logn) for the formula size of any function computing the so-called selection
function. Furthermore, in the case of De-Morgan formulae, in a series of papers ([And87], [IN93]
and [Hås98]) a Natural proof was shown giving a lower bound of O(n3−o(1)) for the size of such a
formula computing some specific function. In this discussion we refer to general formulae as ones
comprised of AND, OR, XOR and NOT gates. De-Morgan formulae are restricted to AND, OR
and NOT gates.

We show constructions of almost n-unbiased hash functions which can be implemented by
general formulae of size Õ(n2) and by De-Morgan formulae of size Õ(n4). By doing so we hope
to promote further exploration of this kind of formulae, whichmay result in either a stronger support
for the possibility of constructing such PRFs or, alternatively, in finding Natural proofs of this size.
Our results in this area are summarized in theorem 1.2.

Theorem 1.2. There exists a family of (n, 2−n)-biased hash functions F : {0, 1}n → {0, 1} whose
formula size is:

1. O(n2 log2 n) for general formulae, and

2. O(n4 log2 n) for De-Morgan formulae
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In order to improve upon the naïve construction’s formula size we employ two additional tech-
niques. Reducing the starting bias is done using a well-known technique for generating pairwise
independent distributions from slightly unbiased ones. Namely, we compute the inner product be-
tween the input and a uniformly random vector over the same space. Then we replace our generic,
iterative independence-amplification technique with a more standard, but less generic, lemma from
[VV86]. The final stage of the construction, the bias-reduction stage, remains untouched. We com-
ment that this seems to be the main bottleneck in any attempt to increase bounded independence.

1.2 Related Work

k-wise independent hashing is very useful in a wide array of fields. To cite a few: It has been shown
by [PPR11] that 5-wise independent hash families provide optimal expected time-complexity for
adding key-value pairs to hash tables using linear probing. In Cuckoo Hashing introduced by
[PR04], when storing n key-value pairs, it is required to have 2 independently chosen logn-wise
independent hash functions in order to provide good analytical guarantees for the expected perfor-
mance of the system. In [TZ04] an online algorithm is shown that estimates the second moments of
a stream of data, using 4-wise independent hash functions. Another theorem proved in [Hus+12]
states that 2-wise almost independent hash families are Storage Enforcing, meaning that they allow
a verifier to ascertain that their data is indeed stored on a server by just saving some small hash of
the data.

The standard technique for generating k-wise independent hash functions is the original one
introduced in [WC81]. In that paper, in was shown that the family of hash functions defined by
all polynomials of degree at most k over some finite field Fp with p > k, sampled uniformly at
random, yields a k-wise independent hash function family. This construction is very efficient in
terms of key size (k log p). Our most efficient constructions have a key size larger by a constant
factor from their result. Furthermore, in the case when one is interested only in small bias (as
opposed to independence): the key size required by the polynomial-based construction is much
larger than the one used by the constructions presented here.

Another good property of the standard construction is that it is also exactly (as opposed to
almost) k-wise independent. However, it does not offer any insight into how to combine arbitrary
hash function families in order to improve their parameters, which is the main concern of this thesis.

Another common method, which has seen wide application in practice, for generating k-wise
independent hash families is Tabulation Hashing. This approach, which has many derivatives (e.g.
[TZ04], [PT13]), stores several ”small” copies of truly random hash functions over a smaller do-
main. These functions are stored as input-output tables, which give this method its name. When
queried with some input: the function splits it into several smaller parts, queries each table using a
different part of the input and then combines the results in a deterministic way. This sort of hash
function is only useful for small values of k and constant input length, as it needs to randomly draw
and then store tables of exponential size.

The usefulness of these functions comes from their time-efficiency: each one only requires a
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constant time to evaluate, and this constant is usually very small. However, from an asymptotic
point of view, they are prohibitive. Furthermore, it was shown in [Sie04] that constant evaluation
time can only be achieved using exponentially-large storage. Our constructions have logarithmic
evaluation time, and the amount of memory the require is polynomial in the output length and
independence parameter k.

In our work we use the notion of bias both for its own sake and in order to imply almost-
independence. The importance of small-bias distributions was first shown in [NN90], in which
probability spaces with this property are constructed using a low amount of entropy. In the fol-
lowing text we make use of the same definitions for bias but do so in a different setting. When we
consider k outputs of a hash function over k distinct inputs, we must assume that the hash function
is defined in the same way for each of these input-output pairs. Moreover, the i-th output can-
not depend on the j-th input, for any i ̸= j, since this would imply that the construction is not a
function. This restriction, which is not present in the setting of the original paper, means that our
constructions would be hard-pressed to compete with the original ones in terms of key-size. In fact,
they are altogether a different kind of object.

The main topic of this thesis is the introduction of methods that can be used to increase bounded
independence. Recently and independently, a similar result was shown in [GV15]. In that paper,
distributions over SL(2, q)m are considered. It was shown that a component-wise product of 2Ω(m)

pairwise independent distributions over that domain forms a distribution that is 1
|SL(2,q)| -close to

uniform on SL(2, q)m. The authors of that paper achieve this result via an iterative process which
takes some constant number of almost t-independent distributions and outputs an almost (t + 1)-
independent one. The motivation in that case was completely different, and the increase in inde-
pendence was the means to a very specific end, which we refrain from mentioning here for brevity.

In contrast, our methods allow for a doubly-exponential increase in the parameter t using a
small constant number of samples from a (t, ϵ)-biased distribution, for a suitably small ϵ. This
means that the same kind of results can be achieved using a much lower number of samples from
the original distribution. Our results are also more generic since they work over any group Zq.
They are not, however, directly applicable to the objects considered in [GV15], since in that case
there is no control over which function to use when combining the different samples.

2 Preliminaries

2.1 Notation

2.1.1 General

We denote scalars in lower-case (e.g x) and vectors in bold (e.g. x or X). Distributions are
designated by a calligraphic font (e.g. D). Random variables are denoted by upper-case letters
(e.g. X orX).

The uniform distribution over n bits is denoted by Un. The uniform distribution over a set S is
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denoted by US . When the domain is obvious from context, we sometimes simply write U .
For any natural number n ∈ N we denote by [n] the set {1, 2, 3, . . . , n}.
If x is a vector, i is an integer and S is a set of integers then we denote by vi the value of x in

the i-th coordinate and by xS the restriction of x to the coordinates in S.

2.1.2 Distributions and Hash Functions

For a distribution D over domain D we denote for any element x ∈ D its probability of being
drawn from D by: D(x) = PrX∼D [X = x].

Definition 2.1. The support of D: Supp (D) = {x ∈ D | D(x) > 0} is the set of elements in the
domain which have non-zero probability of being drawn from D.

The following definitions form the basic properties we expect our hash families to have.

Definition 2.2 (Distribution induced by a Function Family). Let F ∈ D × {0, 1}r → R be some
family of functions. We define the distribution induced byF and inputsx = {x1, x2, . . . , xk} ∈ Dk,
DF ,x : Rk → [0, 1], as a probability distribution over the outputs of the hash function:

DF ,x(y) = Pr
ρ
R←{0,1}r

[∀i : F(xi,ρ) = yi]

Definition 2.3 (L1 distance for distributions). Let D1 and D2 be two probability distributions over
the same domain D. Then the L1 distance between the distributions is defined as:

|D1 −D2| =
∑
x∈D

|D1(x)−D2(x)| =
∑
x∈D

∣∣∣∣∣ Pr
X
R∼D1

[X = x]− Pr
X
R∼D2

[X = x]

∣∣∣∣∣
Definition 2.4 (Almost k-Wise-Independent Hash Function Family). A family of functions
F : D × {0, 1}r → R is said to be (k, ϵ)-Wise-Independent if for any set of k distinct inputs
x = {x1, x2, . . . , xk} ∈ Dk, it holds that:

|DF ,x − URk | ≤ ϵ

In order to analyze the behaviour of a family of hash-functions on several inputs we extend
the definition of a hash family in the natural manner. If F is a family of hash functions F : D ×
{0, 1}r → R then we define for all F ∈ F and x ∈ Dk:

F (x) = (F (x1), F (x2), . . . , F (xk))

The latter definition simply states that each input is handled separately as originally defined and
the different outputs are outputted as a vector.

Definition 2.5. We say a distribution D over {0, 1}k is Symmetric iff for all x ∈ {0, 1}k:

D(x) = D(xc)

Where xc = (1− x1, 1− x2, . . . , 1− xk).
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2.2 Fourier Expansion

The proofs of the main lemmas rely heavily on the Fourier expansion of Boolean functions and
the notion of bias, which are defined next. The following is only be a cursory introduction to the
subject. For more details, we refer the reader to [ODo14]. In section 5 we further generalize these
definitions to the non-Boolean case, however the special case described here suffices for the coming
sections.

Definition 2.6 (Linear Boolean Functions). For every x ∈ {0, 1}n and every subset S ⊆ [n] we
define the linear function χS(x) by:

χS(x)
∆
=
⊕
i∈S

xi

By convention: χϕ(x) = 0 for all x.

Note 2.1. A linear test is defined by the subset S of indices included in the sum. This parameter S
can be viewed either as a set S ⊆ [n] or as an indicator vector S ∈ {0, 1}n. Although the definition
was given, for clarity’s sake, in the first form, we actually be use the second one more frequently.
This allows us to view the input to the function χS and the definition S of the function itself as
vectors over the same domain {0, 1}n. This, in turn, yields the equation χS(x) = ⟨S,x⟩.

The Fourier expansion of Boolean functions is written in a different basis from the usual one.
The values {0, 1} are mapped to the values {1,−1}, respectively. One can verify that under this
mapping, if x, y are Boolean variables then x ⊕ y = x · y, where ⊕ is the usual XOR and · is
multiplication over the reals.

Functions defined over D → {−1, 1} can be represented as vectors in {−1, 1}|D| where each
coordinate stores the function’s value for its respective input. It turns out that any Boolean function
f : {−1, 1}n → {−1, 1} can be written as a weighted sum of the linear functions.

Fact 2.1 (Fourier Expansion of a Boolean Function). For all f : {−1, 1}n → {−1, 1} there exists
a function f̂ : {−1, 1}n → [−1, 1] s.t. for all x ∈ {−1, 1}n:

f(x) =
∑
S⊆[n]

f̂(S) · χS(x) =
∑
S⊆[n]

f̂S ·
∏
i∈S

xi

f̂ is called the Fourier decomposition of f , and its values are given by:

f̂(S) = ⟨f, χS⟩

In this last equation we used the vector representation of Boolean functions,

2.3 Bias

The following notion of bias of a distribution w.r.t some linear test captures how much the test can
help distinguish between that distribution and the uniform one.

12



Definition 2.7 (Bias with respect to a linear test). For any distribution D over domain {−1, 1}k
and any set S ⊆ [k] s.t. S ̸= ϕ, we say D is ϵ-biased w.r.t to test χS if:∣∣∣ E

x∼D
[χS(x)]

∣∣∣ ≤ ϵ

The next notion we define here is central to our arguments. It allows us to aggregate bias bounds
over many tests, which proves to be extremely useful.

Definition 2.8. A distributionD over {−1, 1}k is said to be (t, ϵ)-biased if for any subset of indices
S ∈ [k] s.t. 0 < |S| ≤ t : D is ϵ-biased w.r.t χS .

We say a distribution D over {−1, 1}k is ϵ-biased if it is (k, ϵ)-biased.
One nice property of linear tests is that their output is completely uniform when given a uni-

formly random input. This property is one of the incentives for this definition. The exception to this
rule is the trivial linear test χϕ, which is always constant. This is why the definition only includes
linear tests S of size |S| > 0.

Definition 2.9. A function family F : {−1, 1}n×{−1, 1}r → {−1, 1} is said to be (t, ϵ)-biased if
for any set of up to t inputs x, DF ,x is (t, ϵ)-biased.

We note that (t, ϵ)-independence is stronger than, and indeed implies, (t, ϵ)-bias. The converse
is not true.

3 Basic Composition Lemmas

In this section we analyze the effects of the functions XOR and AND on (t, ϵ)-biased distributions.
We show that XOR reduces bias, while AND increases the independence parameter t. For simplic-
ity’s sake, we first assume that the input distribution is symmetric. In later sections we remove this
restriction.

We begin with the analysis of the XOR function. One of the properties of this function is that if
we take the XOR of two independent distributions, then the bias of the resultant distribution w.r.t.
any linear test is at most the minimum of the biases of the original distributions w.r.t. the same
test. This property will be quite useful to us both in producing a generic construction and when
generalizing to a construction that recursively uses just one type of gate.

3.1 Effects of XOR

Claim 3.1. LetD be any symmetric probability distribution over {−1, 1}k andD′ be any, not neces-
sarily symmetric, probability distribution over the same domain. ThenXOR(D,D′) is a symmetric
distribution.
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Proof. Letx ∈ Supp (XOR(D,D′)), and letA be the set of all pairs of inputs (x1,x2) ∈ {−1, 1}k×
{−1, 1}k s.t. x1 ⊕ x2 = x. Then:

Pr
X∼XOR(D,D′)

[X = x] = Pr
X1∼D,X2∼D′

[X1 ⊕X2 = x]

= Pr
X1∼D,X2∼D′

[Xc
1 ⊕X2 = x]

= Pr
X1∼D,X2∼D′

[
X1 ⊕X2 ⊕−1k = x

]
= Pr

X∼XOR(D,D′)
[X = xc]

Where the second equality follows from the assumption that D is symmetric.

Lemma 3.2 (XOR Bias reduction). Let S ⊆ [k] be a set of indices, D a distribution over {−1, 1}k
that is ϵ-biasedw.r.tχS andD′ a distribution over {−1, 1}k that is ϵ′-biasedw.r.tχS Then: XOR (D,D)
is (ϵ · ϵ′)-biased w.r.t. χS .

Proof. ∣∣∣∣ E
X∼XOR(D,D′)

[χS(X)]

∣∣∣∣ =
∣∣∣∣∣ E
X∼XOR(D,D′)

[∏
i∈S

Xi

]∣∣∣∣∣
=

∣∣∣∣∣ E
Y ∼D,Z∼D′

[∏
i∈S

(Yi · Zi)

]∣∣∣∣∣
=

∣∣∣∣∣ E
Y ∼D,Z∼D′

[∏
i∈S

Yi ·
∏
i∈S

Zi

]∣∣∣∣∣
=

∣∣∣∣∣ E
Y ∼D

[∏
i∈S

Yi

]
· E
Z∼D′

[∏
i∈S

Zi

]∣∣∣∣∣
=

∣∣∣∣∣ E
Y ∼D

[∏
i∈S

Yi

]∣∣∣∣∣ ·
∣∣∣∣∣ E
Z∼D

[∏
i∈S

Zi

]∣∣∣∣∣
< ϵ · ϵ′

Where the 4-th equality follows from the independence of Y and Z and the last inequality
follows from the assumption on D.

This lemma has two immediate and useful corollaries:

Corollary 3.2.1. If D is ϵ biased w.r.t. χS then:

14



1. XOR(D,D) is ϵ2-biased w.r.t. χS .

2. For any distribution D′ defined over the same domain: XOR(D,D′) is ϵ-biased w.r.t. χS .

3.2 Effects of AND

In this section we prove the following proposition.

Proposition 3.3. IfD is a symmetric, (t, ϵ)-biased probability distribution, then: XOR(D,AND(D,D))
is symmetric and (2t, 1

2
+ 2−t + ϵ)-biased, where the samples from D are independent.

The next lemma establishes the simplest form of our main idea, and can be treated as a proof-
of-concept. It basically states that AND-ing together two samples from a (t, ϵ)-biased distribution,
for t ≥ 2 and a suitably small value ϵ, forms a (2t, c)-biased distribution for some not-too-large
constant c.

Lemma 3.4. Let t ∈ N and let D be a symmetric, (t, ϵ)-biased probability distribution over
{−1, 1}k. Then for any S ⊆ [k] s.t. 0 < |S| ≤ 2t: AND(D,D) is 1

2
+ ϵ + 2−min(t,|S|)-biased

w.r.t χS .

Note that this result gives only the trivial bound on the bias of tests S of size 1. We can over-
come this by XOR-ing with an additional copy from the original distribution. This also has the
effect of making the final distribution symmetric once again. With this in mind, we now prove the
proposition.

Proof of proposition 3.3. Let S ⊆ [k] s.t. 0 < |S| ≤ 2t. If |S| ≥ t then we get the required bias
from lemma 3.4. If |S| < t, then we have two options:

1. If ϵ > 1
2
then the bound specified by the proposition is meaningless, since it bounds a prob-

ability by a constant larger than 1, which is a tautology.

2. If ϵ < 1
2
then the bias of w.r.t S must be at most 1

2
by corollary 3.2.1 and the fact that D is

(t, ϵ)-biased.

Finally, by claim 3.1: since D is symmetric: so is XOR(D, AND(D,D)).

We now turn to proving the lemma.

Proof of Lemma 3.4. The intuition behind the lemma is the following. Let x,y be independent
samples from D. Whenever a bit xi = 1: then AND(xi, yi) = 1 as well. This means that this bit
does not change the result of the test χS .

Let wt (xS) denote the weight of xS , which is the number of bits in xS which are equal to −1.
If 1 ≤ wt (xS) ≤ t, then χS(AND(x,y)) is a linear test of size between 1 and t over y, and its bias
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is be bounded by ϵ. We now show this more rigorously and then proceed to bound the probability
that wt (x) is outside the interval [1, t].

Let P1, P2 ⊆ {−1, 1}k s.t. P2 = {x ∈ {−1, 1}k |xc ∈ P1}, P1 ∩ P2 = ϕ and for all x ∈ P1 it
holds that wt (xS) ≤ t. Such sets can be constructed by greedily choosing pairs of complementing
vectors from {−1, 1}k and placing each element in the correct set, or placing them randomly when
both options are valid.

Since D is symmetric:
Pr

X∼D
[X ∈ P1] = Pr

X∼D
[X ∈ P2]

Therefore:
Pr

X∼D
[wt (XS) ≤ t] ≥ 1

2

Thus:∣∣∣∣∣ E
X∼AND(D,D)

[∏
i∈S

Xi

]∣∣∣∣∣ =
∣∣∣∣∣ E
Y ,Z∼D

[∏
i∈S

Yi ∧ Zi

]∣∣∣∣∣
≤

∣∣∣∣∣ PrZ∼D
[wt (XS) > t] · E

Y ,Z∼D

[∏
i∈S

Yi ∧ Zi

∣∣∣∣∣Z ∈ P2

]∣∣∣∣∣
+

∣∣∣∣∣ PrZ∼D
[1 ≤ wt (Z) ≤ t] · E

Y ,Z∼D

[∏
i∈S

Yi ∧ Zi

∣∣∣∣∣1 ≤ wt (Z) ≤ t

]∣∣∣∣∣
+

∣∣∣∣∣ PrZ∼D
[wt (Z) = 0] · E

Y ,Z∼D

[∏
i∈S

Yi ∧ Zii

∣∣∣∣∣wt (Z) = 0

]∣∣∣∣∣
≤1

2
+

1

2
ϵ+ Pr

Z∼D
[wt (Z) = 0]

(1)

Where the final inequality is by Y being ϵ-biased w.r.t. tests of size between 1 and t, and by
the trivial bound on the bias in the other cases.

We now need a bound on the probability that a random sample from D, restricted to S has all
of its components equal to 0. The following claim, which is subsequently proved, establishes the
required bound.

Claim 3.5. Let D be a (t, ϵ)-biased probability distribution over {−1, 1}k and S ∈ {−1, 1}k.
Then:

Pr
X∼D

[
XS = 1|S|] ≤ 2−min(t,|S|) +

1

2
ϵ

Assigning the values from this claim into Eq. (1) yields the lemma.

Proof of Claim 3.5. If |S| > t, then we can restrictX to some subset S ′ ⊆ S such that |S ′| = t. We
then need only prove that PrX∼D

[
XS′ = 1|S′|] ≤ 2−t+ 1

2
ϵ. Instead, and without loss of generality,

we will assume that |S| ≤ t and prove the originally stated inequality.

16



Let OR : {−1, 1}|S| → {−1, 1} be the binary OR function on |S| bits and let ÔR : {−1, 1}S →
[−1, 1] denote its Fourier decomposition. Notice thatXS = 1t iff ORi∈SXi = 1. Then:

∣∣∣∣∣ E
X∼D

[ORi∈SXi]− E
X∼U

[ORi∈SXi]

∣∣∣∣∣ =
=

∣∣∣∣∣ E
X∼D

[∑
M⊆S

(
ÔR(M) ·

∏
i∈M

Xi

)]
− E

X∼U

[∑
M⊆S

(
ÔR(M) ·

∏
i∈M

Xi

)]∣∣∣∣∣
=

∣∣∣∣∣ÔR(ϕ) + ∑
ϕ̸=M⊆S

(
ÔR(M) · E

X∼D

[∏
i∈M

Xi

])

− ÔR(ϕ) +
∑

ϕ ̸=M⊆S

(
ÔR(M) · E

X∼U

[∏
i∈M

Xi

]) ∣∣∣∣∣
≤ϵ

∣∣∣∣∣ ∑
ϕ̸=M⊆S

ÔR(M)

∣∣∣∣∣
≤ϵ

In which the penultimate inequality stems from our assumption that D is (t, ϵ)-biased, the fact
that |S| ≤ t and the fact that the uniform distribution is unbiased w.r.t. all (non-trivial) linear tests.
The final inequality stems from the following well-known fact about the Fourier expansion of the
OR functions:

Fact 3.6. Let V̂ : {0, 1}[t] → [−1, 1] be the Fourier coefficients of the OR function on t bits. Then:

0 ≤
∑

ϕ ̸=S⊆[t]

M̂(S) ≤ 1

Now, notice that

E
X∼U

[∨
i∈S

Xi

]
= 1 · 2−|S| − 1 · (1− 2−|S|) = −1 + 21−|S|

It therefore follows that:

2 · Pr
X∼D

[∨
i∈S

Xi = 1

]
− 1 = Pr

X∼D

[∨
i∈S

Xi = 1

]
− Pr

X∼D

[∨
i∈S

Xi = −1

]

= E
X∼D

[∨
i∈S

Xi

]
≤ −1 + 21−|S| + ϵ
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Which, in turn, means that:

Pr
X∼D

[
XS = 1|S|] = Pr

X∼D

[∨
i∈S

Xi = 1

]

≤ 1

2

(
21−|S| + ϵ

)
= 2−|S| +

1

2
ϵ

= 2−min(t,|S|) +
1

2
ϵ

4 Basic Construction

In this section we provide explicit constructions which serve as a basis for our more efficient ver-
sions. We first show how to apply the lemmas of the previous section to increasing the bounded
independence of any hash function family which takes bit strings and maps them into single bits.
We then show how these results may be applied in creating a hash function family which closely
resembles the construction of [Val84].

4.1 General transformation

In this sectionwe present our first theorem, which puts the lemmas and corollaries from the previous
section into a useful framework. We make no attempts at this point to optimize the construction in
any way. In particular, we only deal with hash function families which are defined over bit strings
and have single output bits. More general and efficient constructions are deferred to later sections.

We also note that in this section we use the more readily-familiar {0, 1}-basis since all calcula-
tions using the Fourier decomposition are contained in the previous section.

Theorem 4.1. Let F : {0, 1}n × {0, 1}r → {0, 1} be a family of (k0, ϵ0)-wise independent hash
functions, with k0 ≥ 2 and ϵ0 < 1. Then for all k and all ϵ > 0: it is possible to explicitly and
efficiently construct a family F : {0, 1}n × {0, 1}r → {0, 1} that is (k, ϵ)-wise independent with

r = poly
(
k, log 1

ϵ
, 1
log 1

ϵ0

)
· r0 using only black-box access to F0.

Proof. We construct the new hash function in three stages:

1. Reduce the initial bias enough to use corollary 3.3, by repeatedly XOR-ing samples fromF0.

2. Repeat the following two sub-steps until the independence parameter reaches k:
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(a) AND two samples from the current hash function family in order to increase the inde-
pendence parameter.

(b) Apply XOR on the result sufficiently many times to reduce the bias back to a useful
value.

3. Successively apply XOR steps in order to reduce the bias enough to imply ϵ-wise indepen-
dence.

This process is described in detail in figure 2.

Input: (k0, ϵ0)-biased hash family F0 : {0, 1}n × {0, 1}r0 → {0, 1}.

Output: (k, ϵ)-biased hash family F : {0, 1}n × {0, 1}r → {0, 1}.

Phase 1: Initial bias reduction

• Repeat until ϵi ≤ 1
8
:

– Fi ← XOR(Fi−1,Fi−1)

Phase 2: increasing the independence parameter

• Repeat until ki ≥ k:
– Fi ← XOR(Fi−1,AND(Fi−1,Fi−1))

– Repeat until ϵi ≤ 1
8
:

* Fi ← XOR(Fi−1,Fi−1)

Phase 3: Final bias reduction

• Repeat until ϵi ≤ 2−k/2ϵ:
– Fi ← XOR(Fi−1,Fi−1)

Figure 2: A basic algorithm for increasing bounded independence

First note that if the algorithm terminates then its output is (k, 2−k/2ϵ)-biased. By lemma 1.1
this makes it also (k, ϵ)-wise independent, as required. Now, by proposition 3.3 and corollary 3.2.1:
each of the loops in the algorithm always terminates. Therefore, the algorithm is correct. We now
analyze the amount of randomness required by it.

In the first stage of the construction we reduce the bias down to 1
8
. By corollary 3.2.1, after

s1 iterations of XOR-ing, the new hash function family Fs1 is (k0, ϵs1)-biased for ϵs1 = ϵ2
s1

0 . We
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therefore require s1 = max(0, log log 8−log log 1
ϵ0
) such steps, each of which requires two samples

from the previous step’s distribution.
In the second stage we sample 3 times from our new hash function family and then combine

these samples as suggested in 3.3: XOR(f1,AND(f2, f3)). This yields a (2k0, 78)-biased hash func-
tion. Applying 4 rounds of XOR results in a (2k0, 18)-biased hash function which can now be used
in the same process to produce a (4k0, 18)-biased family and so forth. The number of steps required
in this stage is s2 = log k − log k0, where each step needs 3 · 24 = 48 samples from the previous
step’s distribution.

The final stage is similar to the first and requires s3 = max(0, log log 2k/2

ϵ
− log log 8) steps.

We are now ready to calculate the amount of randomness required by this construction. For
simplicity, we assume that ϵ0 > 1

8
and that ϵ < 1

8
.

r′ = 3s2 · 2s1+4s2+s3 · r

= 3log k−log k0 · 2log log 8−log log
1
ϵ0

+4 log k−4 log k0+log log(2k/2· 1ϵ )−log log
1
8 · r

=

(
k

k0

)log2 3

·
(
k

k0

)4

· 1

log 1
ϵ0

·
[
1

2
k + log

1

ϵ

]
· r

= o

(
k6r

log 1
ϵ0

·
(
k + log

1

ϵ

))

The construction presented above can be viewed as a complete, balanced tree which has the
property that all nodes of equal depth contain the same type of gate. This simple structure can be
made even simpler at a further cost to the efficiency of the construction.

Specifically, consider the following gate:

Universal(x1, x2, x3, x4) = (x1 ∧ x2)⊕ x3 ⊕ x4

Claim 4.2. If all the gates in the construction of theorem 4.1 are replaced with the Universal gate
then the final output is still (k, ϵ)-wise-independent.

Proof. By corollary 3.2.1: Universal(x1, x2, x3, x4) has bias not larger than that of (x1 ∧ x2)⊕ x3
or that of (x3 ⊕ x4). Since these are the only types of gates used in the original construction, the
claim follows.

4.2 A new Family of Hash Functions

In [Val84], it was shown that a polynomial-size, monotone formula can be used to calculate the
majority function over n bits. This was done by sampling these bits independently at random some
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m > n times and calculating a formula on thesem bits. At this point a probabilistic argument was
used to prove that there exists a random seed such that the formula computes the majority of the
inputs for all possible inputs.

We will use the same random-sampling technique to generate a ”seed” (2, ϵ)-independent hash
function family. Our generic construction from theorem 4.1 can then be applied on this ”seed” to
achieve (k, ϵ)-independence for any k = poly (n) and ϵ ≥ Ω(2−2

poly(n)
).

Explicitly, let {0, 1}n be the domain of the hash function family, and let k and ϵ be some target
parameters. We define the following hash function family: F : {0, 1}n × [2n+ 2]→ {0, 1} as:

F(x, ρ) =


xi ρ ≤ n

1− xi n+ 1 ≤ ρ ≤ 2n

0 ρ = 2n+ 1

1 ρ = 2n+ 2

Where sampling a hash function from the family is done by sampling ρ R← [2n+ 2].
Note that any function from this family can be implemented as a formula with at most 2 inputs,

one of which is the constant 1, and at most a single XOR gate. Also, the number of bits required to
sample from this hash function family is r = log(2n+ 2) = O(logn).

Claim 4.3. F has the following two properties:

1. For all k > 0 and all x ∈ {0, 1}k: DF ,x is symmetric.

2. F is (2, 1− 2
n+1

)-biased.

Combining claim 4.3 with theorem 4.1 yields a family of (k, ϵ)-wise independent hash func-
tions. This construction has a structure similar to the formula for the majority function presented
in [Val84].

Proof. Let ρ ∈ [n+ 1]. Then for all x:

F(x, ρ) = F(x, ρ+ n+ 1)c

This concludes the proof of item 1 above.

Claim 4.4. If a distribution D over {−1, 1}k is symmetric, then it is also (1, 0)-biased.

Using this claim, which is proved shortly, we immediately obtain that F is (1, 0)-biased.
Now letX = (y,z) ∈ ({0, 1}n)2 be a set of two distinct inputs to the function. The pairwise

bias of F is:∣∣∣∣∣ Pr
ρ
R←[2n+2]

[F(X, ρ)1 ⊕F(X, ρ)2 = 1]− Pr
ρ
R←[2n+2]

[F(X, ρ)1 ⊕F(X, ρ)2 = 0]

∣∣∣∣∣
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Since y ̸= z: there exists at least one index i ∈ [n] s.t. yi ̸= zi. Without loss of generality, let
us assume that i = 1. Therefore, if ρ ∈ {1, n + 2} then F(X, ρ)1 ⊕ F(X, ρ)2 = 1. But by
the function definition, if ρ ∈ {2n + 1, 2n + 2} then F(X, ρ)1 ⊕ F(X, ρ)2 = 1. Therefore, for
b ∈ {0, 1}:

Pr
ρ
R←[2n+2]

[F(X, ρ)1 ⊕F(X, ρ)2 = b] ≤ 1− 1

n+ 1

Which means that:∣∣∣∣∣ Pr
ρ
R←[2n+2]

[F(X, ρ)1 ⊕F(X, ρ)2 = 1]− Pr
ρ
R←[2n+2]

[F(X, ρ)1 ⊕F(X, ρ)2 = 0]

∣∣∣∣∣ ≤ 1− 2

n+ 1

Note 4.1. Claim 4.2 together with these last results imply that replacing the gate in the construction
of [Val84] with theUniversal gate from the previous section results in an almost k-wise independent
hash function, where the parameters k and ϵ are determined by the number of samples taken from
the input.

We now prove claim 4.4. In fact, we prove a stronger claim that immediately implies it.
Claim 4.5. If a distribution D over {−1, 1}k is symmetric, then it is also 0-biased with respect to
all linear tests of odd size.

Proof. Let S ∈ {−1, 1}k s.t. wt (S) is odd; let A = {y ∈ Supp (D) |χS(y = 1)} and Ā =
Supp (D) \ A. Then:

Pr
Y ∼D

[χS(Y ) = 1] =
∑
y∈A

Pr
Y ∼D

[Y = y]

=
∑
y∈A

Pr
Y ∼D

[Y = yc]

=
∑
y∈Ā

Pr
Y ∼D

[Y = y]

= Pr
Y ∼D

[χS(Y ) = −1]

Above, we used symmetry in the second equality and the fact that |S| is odd in the third.

5 Reducing Key Size

In this section we are interested in reducing the key size of our generic constructions. In particular,
we would like it to be linearly, instead of polynomially, dependent on k. To this end, we generalize
our results to arbitrary input and output sizes.
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Wewill therefore start using the convention that hash function families are of the formF : D×
{0, 1}r → Zq for arbitrary domain D and q ∈ N. Note that although the outputs of hash functions
are sometimes not in any group Zq, they can always be embedded in such a group, so long as we do
not care how our transformations affect their original domain. Therefore, this definition is without
loss of generality.

It will later turn out to be the case that larger outputs allow us to rapidly increase the indepen-
dence parameter k without using more samples from the distribution, which will be very useful.
This is because there are many more functions over larger alphabets than over small ones. This
property will enable us to have more fine-grained control over the rate at which the independence
parameter increases. Details shortly follow.

In order to claim anything meaningful about functions of this sort we need to generalize the
notion of bias to functions over groups Zq, where Zq = {0, 1, . . . , q − 1} with addition modulo q
as the group operation. We also need to generalize the Fourier decomposition of functions to work
on ones that have outputs in Zq.

5.1 A Short Primer On Fourier Analysis of Functions Over Zq

We roughly follow the exposition given in [Bab89].
Let Zq be the group {0, 1, . . . , q − 1} with addition modulo q as the group operation, and let

G = Zk
q be the vector space of dimension k over Zq. Note that G with vector summation modulo

q is also a group.
We denote by C the field of complex numbers. We use T to denote the group of complex

numbers of unit length with multiplication over C as the group operation.

Definition 5.1. The characters of a group G are all homomorphisms χ : G → T. The set of
characters of G is denoted by Ĝ.

Fact 5.1. The set of characters ofG forms a group under the following definition of group product:

χ1 ∗ χ2(x)
∆
= χ1(x) · χ2(x)

In which · is the usual multiplication over the complex field.

It turns out that Ĝ is isomorphic toG. Specifically, with every element s ∈ G = Zk
q we identify

the following element χs : G→ T:

χs(x)
∆
= e

2πi
k
⟨s,x⟩

where i =
√
−1. One can observe that χS is the exponentiation of a linear test on x that is defined

by s.
The set of functions f : G→ C forms a |G| =

∣∣Zk
q

∣∣ = qk-dimensional vector space CG.
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Definition 5.2. The inner product of two functions f1, f2 : G→ C is defined as:

⟨f1, f2⟩ =
1

|G|
∑
s∈G

f1(s) · f2(s) = q−k
∑
s∈G

f1(s) · f2(s)

Fact 5.2. The set of characters {χs | s ∈ G} of a group G forms an orthonormal basis of CG.
That is, for all pairs s1, s2 ∈ G:

⟨χs1 , χs2⟩ =

{
1 s1 = s2

0 s1 ̸= s2

Any function f : G→ C can be decomposed in the following way:

f =
∑
s∈G

f̂(s) · χs

That is, f can be written as a linear combination of its characters.
The function f̂ is called the Fourier decomposition of f , and its values are given by:

f̂(s) = ⟨f, χs⟩

Note that a distribution D over G is itself a function D : G → C, and can be decomposed in
the same way. We next generalize the notion of bias as defined previously for the binary case.
Definition 5.3. The bias of a distribution D with respect to a linear test s ∈ G is the quantity:

biasD (s) =
∣∣∣ E
X∼D

[χs(X)]
∣∣∣

Note 5.1. The definition given here is not the only possible one. Other, stronger generalizations of
bias exist (see for example in [AMN98]). However, in our context the notion defined here fits best,
and in most cases replaces the special case seamlessly.
Definition 5.4. The support of a vector s ∈ Zk

q is defined to be the set of components of s that have
non-zero value and is denoted by Supp (s).
Definition 5.5. The Hamming weight of a vector s ∈ Zk

q is the number of non-zero components of
s and is denoted by wt (s) = |Supp (s)|.

Note that the weight of a vector s defines the number of components of x ∈ G = Zk
q which the

linear test χs(x) depends on.
Definition 5.6. A distribution D over Zl

q is said to be (t, ϵ)-biased if it is ϵ-biased w.r.t. any linear
test χs with 0 < wt (s) ≤ t.

As in the binary case, we say a distribution over Zk
q is ϵ-biased if it is (k, ϵ)-biased.

We now proceed to state the general version of the bias-to-independence bound which will be
used heavily in the following sections.
Lemma 5.3. Let F : D → Zq be a (k, ϵ)-biased hash function family for some domain D Then F
is (k, qk/2ϵ)-wise independent.

We give the proof of this lemma in appendix A.
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5.2 Generalized Combination Lemmas

5.2.1 Reducing Bias

We next present a general framework for enhancing the bounded independence of distributions over
general alphabets Zk

q . We begin with generalizing lemma 3.2. For this purpose we denote by ADD
the operation of addition modulo q defined both over Zq and over Zk

q .

Lemma 5.4. Let D1,D2 be probability distributions over Zk
q and let χs be a linear test defined

over the same domain. Then if Di is ϵi-biased w.r.t χs for i ∈ {1, 2} then D = ADD(D1,D2) is
ϵ1 · ϵ2-biased w.r.t. χs.

Proof. The proof is almost identical to the one in the binary case.

biasD (s) =
∣∣∣ E
X∼D

[χs(X)]
∣∣∣

=

∣∣∣∣ E
X1∼D1,X2∼D2

[χs(X1 +X2)]

∣∣∣∣
=

∣∣∣∣ E
X1∼D1,X2∼D2

[χs(X1) · χs(X2)]

∣∣∣∣
=

∣∣∣∣ E
X1∼D1

[χs(X1)] · E
X2∼D2

[χs(X2)]

∣∣∣∣
=

∣∣∣∣ E
X1∼D1

[χs(X1)]

∣∣∣∣ · ∣∣∣∣ E
X2∼D2

[χs(X2)]

∣∣∣∣
≤ ϵ1 · ϵ2

Where the third equality is by linearity of χs and the fourth by independence ofX1 andX2. The
final inequality is due to our assumption that Di is ϵi-biased w.r.t. χs.

We get from this lemma a corollary which is ”morally” equivalent to corollary 3.2.1.

Corollary 5.4.1. If D is ϵ biased w.r.t. χs then:

1. ADD(D,D) is ϵ2-biased w.r.t. χs.

2. For any distribution D′ defined over the same domain: ADD(D,D′) is ϵ-biased w.r.t. χs.

The proof of this corollary is almost identical to that of corollary 3.2.1.

5.2.2 Increasing The Independence Parameter

With the bias-reduction function defined, we proceed to increasing the independence parameter k.
This is done in two stages. In the first stage we show that an asymmetric function which receives

25



two inputs from very different domains can be used to almost square the value of k when given
inputs from suitable distributions. In the second stage we show how to generate these distributions
from two samples from a (k, ϵ)-biased hash family.

Definition 5.7. We define the function XIST with XIST : G× {0, 1} → G for any group G as:

XIST(x, b) =

{
x b = 1

e b = 0

Where e is the neutral element of G. Specifically, when G = Zk
q : e = 0k.

Note 5.2. The name XIST (read: transist) was chosen because this function behaves very much like
a transistor.

The intuition behind this definition is that whenever bi = 0: a linear test on XIST(x, b) will
not depend on xi, which is very similar to the effect of the AND gate from lemma 3.4.

We now define the properties we require a distribution over {0, 1}k to have, in order to be useful
when applying XIST.

Definition 5.8. Let Bp be any pairwise-independent probability distribution over {0, 1}k for arbi-
trary k s.t. each bit Bp is a Bernoulli random variable with expectation p. We say a probability
distribution B is an (ϵ1, ϵ2)-good approximation of Bp if it has the two following properties:

1. For all i ∈ [k]: Bi is ϵ1-close in L1 norm to Bp
i .

2. For all pairs i ̸= j ∈ [k]: the pair (Bi,Bj) is ϵ2-close in L1 norm to (Bp
i ,B

p
j ).

Lemma 5.5. Let D be a (t, ϵ)-biased distribution over Zk
q . Furthermore, let B be an (ϵ1, ϵ2)-good

approximation of Bp defined over {0, 1}k, and assume p > ϵ1. Then XIST(D,B) is ν + ϵ(1− ν)-
biased w.r.t. all linear tests χs of weight 1 ≤ wt (s) ≤ t

2(p+ϵ1)
, for:

ν =
wt (s) ϵ2 + ϵ1 + p

wt (s) · (p− ϵ1)2

Note 5.3. We only require B to have small pairwise correlations, while D has small bias in any
t-tuple of its components. This enables us to achieve relatively high efficiency in our lemma, above.

Proof. Let s ∈ Zk
q s.t. t < wt (s) ≤ 1

8
t2.

For all b ∈ {0, 1}k we denote by ψs,b = Supp (s)∩ Supp (b) ∈ [k] the mutual support of s and
b. Then, by definitions:

χs(XIST(x, b)) = e
2πi
q

∑
j∈[k] sj ·XIST(xj ,bj)

= e
2πi
q

∑
j∈Supp(s) sj ·XIST(xj ,bj)

= e
2πi
q

∑
j∈ψs,b

sj ·xj
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Thus, if 1 ≤ |ψs,b| ≤ t, then: χs(XIST(x, b)) is the exponent of a linear test of size between 1
and t on x, and is therefore at most ϵ-biased.

Next we begin with the same analysis technique used in the proof of lemma 3.4.

biasXIST(D,B) (s) =
∣∣∣∣ E
x∼D,b∼B

[χs(XIST(x, b))]
∣∣∣∣

≤
∣∣∣∣ Pr
x∼D,b∼B

[|ψs,b| ∈ [t]] · E
x∼D,b∼B

[
χs(XIST(x, b))

∣∣ |ψs,b| ∈ [t]
]∣∣∣∣

+

∣∣∣∣ Pr
x∼D,b∼B

[|ψs,b| /∈ [t]] · E
x∼D,b∼B

[
χs(XIST(x, b))

∣∣ |ψs,b| /∈ [t]
]∣∣∣∣

≤ Pr
b∼B

[|ψs,b| /∈ [t]] + ϵ · Pr
b∼B

[|ψs,b| ∈ [t]]

Using the following lemma concludes the proof:

Lemma 5.6. ψs,B admits the following property:

Pr
b∼B

[|ψs,b| /∈ [t]] ≤ wt (s) ϵ2 + ϵ1 + p

wt (s) · (p− ϵ1)2

To prove lemma 5.6, we use a Chebyshev’s inequality in order to bound the probability that
|ψs,b| /∈ [t]. We are guided by the following intuition: we require the Chebyshev bound to bound
the probability that |ψs,x| = 0. Stated in terms of distance from the expectation, we need a bound
on the probability that ψ is E [ψ]-far from E [ψ].

However, the Chebyshev bound is symmetric, and therefore will bound the probability that
0 < ψ < 2E [ψ]. This requires us to use t ≥ 2E [ψ]. In order to use Chebyshev’s inequality, we
need to establish bounds on both the bias and variance of |ψs,b|.

Claim 5.7. Let D, B and s be as defined in lemma 5.5. Then:

E
b∼B

[|ψs,b|] ∈ wt (s) · (p± ϵ1)
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Proof.

E
b∼B

[|ψs,b|] = E
b∼B

 ∑
i∈Supp(s)

bi


=

∑
i∈Supp(s)

E
b∼B

[bi]

∈
∑

i∈Supp(s)

(
E

b∼Bpi
[b]± ϵ1

)
=

∑
i∈Supp(s)

(p± ϵ1)

= wt (s) · (p± ϵ1)

Where the first equality is by definition and the second by linearity of expectation. The third row
inclusion is by assumption that Bi is ϵ1-close to P . The fourth row equality is by the formula for
the expectation of a Bernoulli random variable.

Note that all summations in this proof are done over R and not over some cyclic group.

Claim 5.8. Let D, B and s as defined in lemma 5.5. Then:

Var
b∼B

[|ψs,b|] ≤ wt (s) · (wt (s) ϵ2 + ϵ1 + p)

Proof. Let Pi,j = (Bp
i ,B

p
j ). Then:

Var
b∼B

[|ψs,b|] = Var
b∼B

 ∑
i∈Supp(s)

bi


=

∑
i∈Supp(s)

Var
b∼B

[bi] +
∑
i ̸=j

Cov
b∼B

[bi, bj]

≤
∑

i∈Supp(s)

(
Var
b∼Bpi

[b] + ϵ1

)
+
∑
i ̸=j

(
Cov
b∼Pi,j

[b1, b2] + ϵ2

)
=

∑
i∈Supp(s)

(p (1− p) + ϵ1) +
∑
i ̸=j

ϵ2

≤ wt (s) ·
(
wt (s) ϵ2 + ϵ1 + p− p2

)
≤ wt (s) · (wt (s) ϵ2 + ϵ1 + p)

Where the first equality is by definition and the second by the well-known formula for the variance
of a sum of random variables. The third row inequality is by assumptions on the distribution B.
The fourth row equality is derived from the formula for the variance of a Bernoulli random variable
and from the fact that the covariance of independent variables is 0.
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We now prove the lemma.

Proof of lemma 5.6. Let ψ = ψs,b. Then:

Pr
b∼B

[∣∣∣|ψ| − E
b∼B

[|ψ|]
∣∣∣ ≥ E

b∼B
[|ψ|]

]
= Pr

b∼B

∣∣∣|ψ| − E
b∼B

[|ψ|]
∣∣∣ ≥ E

b∼B
[|ψ|]√

Var
b∼B

[|ψ|]
·
√
Var
b∼B

[|ψ|]


≤

Var
b∼B

[|ψ|]

E
b∼B

[|ψ|]2

≤ wt (s) · (wt (s) ϵ2 + ϵ1 + p)

wt (s)2 · (p− ϵ1)2

=
wt (s) ϵ2 + ϵ1 + p

wt (s) · (p− ϵ1)2

Where the first equality is obtained simply by multiplying and dividing by the standard deviation
of |ψ|. The second row inequality is by Chebyshev’s inequality. The third row inequality is due to
claims 5.7 and 5.8 and the assumption that p > ϵ1.

Using claim 5.7 and the fact that ψ is integer-valued we obtain the following:

Pr
b∼B

[|ψ| ∈ [2wt (s) · (p+ ϵ1)]] ≤
wt (s) ϵ2 + ϵ1 + p

wt (s) · (p− ϵ1)2

Recalling that wt (s) ≤ t
2(p+ϵ1)

we obtain 2wt (s) · (p+ ϵ1) ≤ t. This concludes the proof.

Lemma 5.5 was presented in a rather general way. At this point it will prove instructive to
specify some of the lemma parameters more explicitly and derive a statement we can use in our
constructions.

5.2.3 Extracting Good Bits from a Hash Output

We next show how to extract a good approximation of Bp from a (t, ϵ)-biased distribution D over
Zk

q . To this end we define the following filter function FILTt : Zq → {0, 1}.

Definition 5.9.

FILTτ (x) =

{
1 x < τ

0 else

Note 5.4. The FILT function is basically a low-pass filter on x with threshold τ .

Lemma 5.9. Let D be a (t, ϵ)-biased distribution over Zk
q for t ≥ 2. Let τ > 0 Finally, let

p = (τ + 1) /q. Then: FILTτ (D) is a (
√
q · ϵ, q · ϵ)-good approximation of Bp.
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Proof. Since D is (2, ϵ)-biased, then by lemma 5.3:

1. Each component of D is√q · ϵ-close to uniform

2. Each pair of components is q · ϵ-close to uniform.

The claim follows from the definitions of FILT and p.

5.2.4 Increasing Bounded Independence

We now have all of the ingredients required to complete our goal of increasing the independence
parameter. For simplicity we define a combined function that achieves the required purpose.
Definition 5.10. Define the BOOST function as BOOSTτ : Zq × Zq × Zq → Zq as:

BOOSTτ (x, y, z) = ADD(x,XIST(y,FILTτ (z)))

Lemma 5.10. Let D be a (t, ϵ)-biased probability distribution over Zk
q with t ≥ 2. Let τ > 0 and

define p = (τ + 1) /q. Assume that ϵ1 =
√
q · ϵ > p. Then, BOOSTτ (D,D,D) is (t′, ν+ ϵ(1−ν))-

biased with:

t′ =
t

2
(
p+
√
q · ϵ

)
ν =

qϵ

p2 − 2
√
q · ϵp+ qϵ2

+
p+
√
q · ϵ

(t+ 1) ·
(
p2 − 2

√
q · ϵp+ qϵ2

)
Proof. By lemma 5.9: FILTτ (D) is a (

√
q · ϵ, q · ϵ)-good approximation of Pp for p = (τ + 1) /q.

The key idea at this point is to limit the test size to at least t+ 1. This will allow us to increase
the test size significantly while retaining a bounded bias. We then use corollary 5.4.1 to bound the
bias of smaller tests.

By lemma 5.5: XIST(D,FILTτ (D)) is ϵ′ = ν + ϵ(1− ν)-biased w.r.t. all tests χs with weight
t+ 1 ≤ wt (s) ≤ t′ for:

ν =
wt (s) ϵ2 + ϵ1 + p

wt (s) · (p− ϵ1)2

=
ϵ2

(p− ϵ1)2
+

p+ ϵ1

wt (s) · (p− ϵ1)2

≤ qϵ

p2 − 2
√
q · ϵp+ qϵ2

+
p+
√
q · ϵ

(t+ 1) ·
(
p2 − 2

√
q · ϵp+ qϵ2

)
And:

t′ =
t

2 (p+ ϵ1)

=
t

2
(
p+
√
q · ϵ

)
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Applying corollary 5.4.1 and noting that ν + ϵ(1− ν) ≥ ϵ we obtain the lemma.

We now give explicit assignments to the parameters to obtain a useful version of the lemma.

Corollary 5.10.1. Let D be a (t, ϵ)-biased probability distribution over Zk
q with ϵ = p2

8q
. Let τ =⌊

2q
t

⌋
. Then BOOSTτ (D,D,D) is ( 4qt2

18q+9t
, 11
14

+ 3
14
ϵ)-biased.

Note 5.5. When t ≪ q, then t′ ≈ 1
5
t2. However, when t = Ω(q) then t′ ≈ 1

7
qt. So q is an upper

bound on the growth rate of t that is possible to attain using this method.

Proof. First note that p =
(⌊

2q
t

⌋
+ 1
)
/q. Therefore: 2

t
≤ p ≤ 2

t
+ 1

q
.

Also notice that ϵ · √q = p2

8
√
q
≤ p

8
.

Using lemma 5.10 we obtain that BOOSTτ (D,D,D) is (t′, ν + ϵ(1− ν))-biased for:

ν ≤ qϵ

p2 − 2
√
q · ϵp+ qϵ2

+
p+
√
q · ϵ

(t+ 1) ·
(
p2 − 2

√
q · ϵp+ qϵ2

)
≤ 1

8
· p2

p2 − p3

4q
+ p4

64q2

+

(
1 + 1

8

)
p

(t+ 1) ·
(
p2 − p3

4q
+ p4

64q2

)
≤ 1

8
· p2

p2 − p2

8

+
9

8
· p

(t+ 1) ·
(
p2 − p2

8

)
≤ 1

8
· 8
7
+

9

8
· 8
7
· 1

p(t+ 1)

<
11

14

And:

t′ =
t

2
(
p+ ϵ

√
q
)

≥ t

2 · 9
8
p

≥ 4t

9
(

2
t
+ 1

q

)
=

4qt2

18q + 9t

Note 5.6. Corollary 5.10.1 is only useful for values of t larger than, say, 8. However, the same
basic operation with τ ≈ q

2
can be shown to increase the value of t for small values of t. This
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increase, although smaller that the one shown here, is sufficient to allow ”escaping” lower values
of t into a domain in which our lemmas hold. In order not to make this discussion too lengthy, we
omit further details.

We also remark that in [GV15] it is shown that addition overZk
q of a constant number of samples

allows one to increase the value of t by 1 without affecting ϵ. This approach can also be used until
reaching sufficiently large values of twithout affecting the asymptotic efficiency of our construction.

5.3 Bias Reduction via Expander Graphs

Close inspection of the results of section 4 reveals that the main bottleneck of our construction is
the final bias-reduction phase. One way to see this is by observing that in all other stages the ”cost”
in randomness of the construction is proportional to k

k′
, whereas in the final stage it is proportional

to k′. This means that even if one starts with k = k′/2 for instance, this stage still requires a lot of
randomness.

Therefore, we are interested in increasing the efficiency of this stage. This is done using a
common de-randomization technique originating in [AKS87]. Specifically, we replace independent
sampling with a random walk on an expander graph.

The notion of expander graphs will be recalled shortly, but first we consider how graphs in
general relate to this stage. Let us consider a (k, ϵ)-biased hash function family. This family defines
a distribution D over specific hash functions.

LetH be the support ofD, and assume for simplicity thatD is uniform onH . Consider the full
graph on H . That is, a graph G whose nodes are the functions h ∈ H and that has a single edge
between every two nodes, including self-loops. Observe that sampling two functions h1, h2 inde-
pendently fromD is equivalent to sampling one function h1 fromD and then sampling a neighbour
of h1 at random from G. This remains true for larger sets of samples h1, . . . , ht. This means that
sampling them independently at random fromD is equivalent to sampling the first fromD and then
for 2 ≤ i ≤ t sampling hi as a random neighbour of hi−1 in G. This latter process of iteratively
sampling a neighbour in G of the previous sample is called a random walk on G.

To this point we merely gave some definitions and pointed to the connections between them.
Now comes the crucial point. It turns out that if we replaceG with a so-called expander graph then
we can retain some of the useful properties that come from having a full graph. Specifically, we
will show that the bias of

∑t
i=1 hi, where {hi}i∈[t] is a random walk on an expander G over the

support H of D, decreases almost as much as it would have if G were a full graph. We next recall
the definition of expanders.

Definition 5.11. We say a graph G is d-regular if all of its vertices have exactly d neighbours.

Definition 5.12. Let G be a d-regular undirected graph over vertex set V . One way to define G is
by its adjacency matrix, which is a |V | × |V | matrix M̂ in which the cell in location M̂i,j contains
the number of edges between node i and node j. We define its normalized adjacency matrixM as
M = 1

d
M̂ .
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Note that we allow the graph G to contain parallel edges, and that since G is undirected: MG

is symmetric.
Expander graphs are graphs that have a striking property: any subset of vertices that is not too

large has a large neighbourhood. This is just one way to characterize expansion, and is called Vertex
Expansion. We mention this definition here since it seems to us to be more intuitive than others. In
[Alo86] it was shown that this notion is roughly equivalent to the following definition, which we
use in this text.

Definition 5.13 (Spectral expansion). LetG be a d-regular graph over n vertices, and letM be its
normalized adjacency matrix. By normalized we mean that each entry in the adjacency matrix is
divided by d: the degree of the graph. Let λ1, λ2, . . . λn be the n eigenvalues of M ordered such
that:

1 = |λ1| ≥ |λ2| ≥ · · · ≥ |λn|

Then the spectral expansion of G is λ(G) = |λ2|.

We denote by 1 ∈ Cn the all-ones vector of cardinality n. It is possible to prove that λ1 = 1,
withM1 = λ11 = 1. What makes a ”good” expander is having λ(G) = |λ2| as small as possible,
and in any case bounded away from 1. For further information regarding this topic, we refer the
reader to [HLW06]. For our purposes, we only require the following lemma:

Lemma 5.11. LetD be a (k, ϵ)-biased probability distribution overZl
q. LetG be a d-regular graph

with spectral expansion parameter λ, whose vertices are labeled by samples of D such that for all
x ∈ Zk

q : the number of vertices labeled x is proportional to D(x). For t ∈ N let Dt be the
distribution over tuples of t vertices of G that results from a random-walk of length t− 1 on G.

Let us define:
µ = µ(ϵ, λ) = 2 ·max

(
ϵ+ ϵλ, λ+ λ2

)
Then D2t+1 is (k, µt)-biased.

Using this lemma we obtain the following result.

Corollary 5.11.1. Let F : {0, 1}n × {0, 1}r → {0, 1}l be a (k, ϵ)-biased family of hash functions
for some ϵ ≤ 1

5
. Let G be a d-regular expander graph with expansion parameter λ ≤ 1

5
, whose

vertices are labeled by functions f ∈ F such that the number of vertices labeled f is proportional
to the probability of drawing f from F .

Let DG,t be the distribution over t-tuples of functions from F which is defined by a random
walk of length t − 1 on G. Define the hash function family FG,t : {0, 1}n × {0, 1}r

′ → {0, 1}l by
taking the sum of all functions sampled from DG,t.

Then FG,2t+1 is (k, 2−t)-biased. Furthermore: r′ = r + 2t log d.

Proof. Since ϵ, λ ≤ 1
5
, then: ϵ + ϵλ, λ + λ2 ≤ 6

12
. Therefore µ(ϵ, λ) ≤ 1

2
. The bound on the bias

then follows from lemma 5.11.
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We note further that the randomness required to sample fromDG,2t+1 is equal to the randomness
required to sample from D and then to sample a neighbour of the current vertex 2t times. Since G
is d-regular, sampling a neighbour requires log d random bits. The corollary follows.

Corollary 5.11.1 provides us with what one needs to improve upon our generic construction.
What remains is to prove lemma 5.11.

Proof of lemma 5.11. LetD andG be as defined in the lemma statement and assume that the vertex
set V of G has cardinality |V | = n. Let s ∈ Zl

q be a linear test with 1 ≤ wt (s) ≤ k.
For i ∈ Zq let Vi ⊆ V = {v ∈ V | ⟨s,v⟩ = i} be the set of vertices which are labeled in such

a way that χs applied on them, results in i. Note that the sets Vi form a partition of the vertices V .
Let Πi be the projection matrix on the set Vi. That is, for all i ∈ Zq: Πi is a diagonal matrix

with 1 entries in indices j ∈ Vi and 0 entries everywhere else.
Let w ∈ (Zl

q)
t denote the labels of the vertices in a random walk of length t − 1 on G, and

define W =
∑

i∈t wi ∈ Zl
q as the modulo-q sum of the labels. For all vectors u ∈ Zt

q define Au

to be the event in which for all i ∈ [t]: wi ∈ Vui . Noting that 1
n
· 1 can be viewed as the uniform

distribution over the vertices of V , it is straightforward to verify that the expression

ΠutMΠut−1M . . .MΠu1 ·
1

n
1

is the probability distribution over vertices given by a random walk of length t− 1 on G subject to
vertex number i in the walk belonging to Vui . Therefore:

Pr [Au] = ⟨1,ΠutMΠut−1M . . .MΠu1

1

n
1⟩

= ⟨ζ,ΠutMΠut−1M . . .MΠu1ζ⟩

Where ζ = 1√
n
1. This rescaling of 1

n
· 1 into ζ is done in order to increase its L2 norm from 1√

n
to

1. This simplifies calculations later on.
We now define the following parameter:

B
∥
t = biasDt (s)

=
∣∣∣E
W

[
e

2πi
q
⟨s,W ⟩

]∣∣∣
=
∣∣∣E
W

[
e

2πi
q

∑
j∈[t]⟨s,wj⟩

]∣∣∣
=

∣∣∣∣∣∣
∑
u∈Ztq

e
2πi
q

∑
j∈[t] uj Pr

W
[Au]

∣∣∣∣∣∣
Let 1⊥ = {v ∈ Cn | v⊥1 ∧ ∥v∥ ≤ 1} denote the set of vectors perpendicular to 1 with L2
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norm at most 1. We also define the following parameter:

B⊥t = max
v∈1⊥

∣∣∣∣∣∣
∑
u∈Ztq

e
2πi
q

∑
j∈[t] uj⟨ζ,ΠutMΠut−1M . . .MΠu1v⟩

∣∣∣∣∣∣
We are interested in finding a recursive bound for B∥t . That is, a bound that relates to B

∥
t−1.

Unfortunately, the bound we are able to get depends on B⊥t−1, which is the reason we defined this
quantity. Therefore, we also need a recursive bound on B⊥t . The following claim, whose proof we
delay, furnishes these bounds.

Claim 5.12. The following two inequalities hold:

1. B∥t ≤ ϵB
∥
t−1 + λB⊥t−1

2. B⊥t−1 ≤ B
∥
t−1 + λB⊥t−1

Using this claim we may derive:

B
∥
t ≤ ϵB

∥
t−1 + λB⊥t−1

≤ ϵ2B
∥
t−2 + ϵλB⊥t−2 + λB

∥
t−2 + λ2B⊥t−2

=
(
ϵ2 + λ

)
B
∥
t−2 +

(
ϵλ+ λ2

)
B⊥t−2

And also:

B⊥t ≤ B
∥
t−1 + λB⊥t−1

≤ ϵB
∥
t−2 + λB⊥t−2 + ϵλB

∥
t−2 + λ2B⊥t−2

= (ϵ+ ϵλ)B
∥
t−2 +

(
λ+ λ2

)
B⊥t−2

Define Bt = max
(
B
∥
t , B

⊥
t

)
. Then:

Bt ≤ max
((
ϵ2 + λ

)
Bt−2 +

(
ϵλ+ λ2

)
Bt−2, (ϵ+ ϵλ)Bt−2 +

(
λ+ λ2

)
Bt−2

)
≤ (ϵ+ ϵλ)Bt−2 +

(
λ+ λ2

)
Bt−2

≤ 2 ·max
(
ϵ+ ϵλ, λ+ λ2

)
Bt−2

= µ ·Bt−2

Noting that B1 ≤ 1 we obtain the following result:

B2t+1 ≤ µt ·B1 ≤ µt
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What remains is to prove claim 5.12, which is done next.

Proof of claim 5.12. Note thatΠ1ζ =
|Vu1|
n

ζ+v⊥ for some v⊥ ∈ 1⊥. Therefore, by the expansion
properties of G:

MΠu1ζ =M

(
|Vu1|
n

ζ + v⊥
)

=
|Vu1 |
n

ζ +Mv⊥ (2)

And ∥Mv⊥∥ ≤ λ. Therefore:

B
∥
t =

∣∣∣∣∣∣
∑
u∈Ztq

e
2πi
q

∑
j∈[t] uj Pr

W
[Au]

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
u∈Ztq

e
2πi
q

∑
j∈[t] uj⟨ζ,ΠutMΠut−1M . . .MΠu1ζ⟩

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∑

u∈Zt−1
q

e
2πi
q

∑
j∈[t] uj

∑
u0∈Zq

e
2πi
q

u0
|Vu0 |
n
⟨ζ,Πut−1MΠut−2M . . .MΠu1ζ⟩

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∑

u∈Zt−1
q

e
2πi
q

∑
j∈[t] uj

∑
u0∈Zq

e
2πi
q

u0λ⟨ζ,Πut−1MΠut−2M . . .MΠu1v⟩

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

u∈Zt−1
q

e
2πi
q

∑
j∈[t] uj⟨ζ,Πut−1MΠut−2M . . .MΠu1ζ⟩ · E

[
e

2πi
q

u0

]∣∣∣∣∣∣
+

∣∣∣∣∣∣
∑

u∈Zt−1
q

e
2πi
q

∑
j∈[t] uj⟨ζ,Πut−1MΠut−2M . . .MΠu1v⟩ · λ

∑
u0∈Zq

e
2πi
q

u0

∣∣∣∣∣∣
≤ϵB∥t−1 + λB⊥t−1

For some v ∈ 1⊥. The first two equalities are by definitions. The third row inequality is by
equation 2, a triangle inequality and splitting the sum into two parts. The fourth row equality is by
definition of expectation and independence of the inner products from u0. The last inequality is by
assumption on D and the fact that the sum over all q-th roots of unity is 1.

This establishes item 1 of the claim. As regards item 2: let v ∈ 1⊥ be the vector that maximizes
B⊥t and define:

z =
∑
u0∈Zq

e
2πi
q

u0Πu0v

Note that P =
∑

u0∈Zq e
2πi
q

u0Πu0 is an n × n diagonal matrix over the complex field C, where
Pi,i = e

2πi
q

u0 . Therefore, the eigenvalues of P are all complex roots of unity, which means that this
is a unitary matrix. Therefore ∥z∥ = ∥Pv∥ = ∥v∥ ≤ 1.
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We can therefore decompose z into z = z∥+z⊥, where z⊥ ∈ 1⊥ and z∥ = c ·ζ for some c ≤ 1.
Lastly, observe that ∥M(z∥)∥ = ∥z∥∥ and ∥M(z⊥)∥ ≤ λ∥z⊥∥. Then, similar to the analysis for
B
∥
t :

B⊥t =

∣∣∣∣∣∣
∑
u∈Ztq

e
2πi
q

∑
j∈[t] uj⟨ζ,ΠutMΠut−1M . . .MΠu1v⟩

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

u∈Zt−1
q

e
2πi
q

∑
j∈[t] uj⟨ζ,Πut−1MΠut−2M . . .MΠu1MPv⟩

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∑

u∈Zt−1
q

e
2πi
q

∑
j∈[t] uj⟨ζ,Πut−1MΠut−2M . . .MΠu1ζ⟩

∣∣∣∣∣∣
+ λ

∣∣∣∣∣∣
∑

u∈Zt−1
q

e
2πi
q

∑
j∈[t] uj⟨ζ,Πut−1MΠut−2M . . .MΠu1v

′⟩

∣∣∣∣∣∣
≤B∥t−1 + λB⊥t−1

Where the second equality is due to linearity, and v′ is some vector in 1⊥.

6 More General And Efficient Construction

6.1 Putting it all together

We now use the results obtained in this section to improve upon the generic construction of section
4. The improvements will be two-fold. Firstly, we generalize the construction to allow for arbitrary
input and output sizes. Secondly, we drastically reduce the amount of randomness needed by the
construction.

We assume access to a family of (k0, ϵ0)-wise independent hash functionsF0 : D → Zq, and are
interested in constructing a family of (k, ϵ)-wise independent hash functions with the same domain
and range.

To achieve this, we use the same construction used before, but now with our new improvements
applied. Using this method we prove the following theorem:

Theorem 6.1. Let F0 : D × {0, 1}r0 → Zq be a (k0, ϵ0)-biased hash function family with k0 ≥ 2
and constant ϵ0 < 1. Then for all k ≤ 1

7
q2 and ϵ > 0: it is possible to construct a (k, ϵ)-biased

hash function family F : D × {0, 1}r → Zq using only black-box access to F , with:

r = r0 · polylog (k) +O(log
1

ϵ
)
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Proof. We follow the same stages previously introduced:

1. Reduce the original bias down to a constant by repeatedly using addition modulo q.

2. Increase the independence parameter to k by repeated, interleaved applications of the BOOST
function and addition modulo q.

3. Reduce the final bias down to ϵ using addition modulo q.

Each stage i acts on a distribution over hash functions Di−1 and generates a new one Di by
repeatedly sampling from Di and applying some predetermined function to the samples. The final
stage, however, is changed. Instead of sampling directly from Di: we sample from a random walk
of suitable length on an expander whose vertices form the support of Di.

Note that we cannot use this approach in either of the first two stages, since the bias in these
stages is too large. However, if we further assume that ϵ is constant, then the dominating term in
the amount of randomness will be the one stemming from the final stage. This means that further
improvements to the first two stages will not be very helpful in our current context.

The analysis of the first stage is not changed at all from the one in 4. By corollary 5.4.1: we
need log log 8− log log ϵ0 rounds of ADD to reduce the bias down to 1

8
. Since we assume ϵ0 to be

some constant, this adds a constant factor to r0.
The second stage now uses the BOOST function. By corollary 5.10.1: each BOOST step takes 3

samples from a (t, 1
8
)-biased family of functions and outputs a sample from a (t′, 11

14
+ 3

14
· 1
8
< 0.82)-

biased function family, such that:

t′ =
4qt2

18q + 9t
≥ 4qt2

27q
>

1

7
t2

Between each two applications of the BOOST function, we must reduce the bias down to 1
8

once more. This requires 4 ADD steps. The total number of BOOST steps required isO(log log k).
Therefore this stage adds a polylog (k) factor to the required number of random bits.

For the final stage let G be a d-regular graph with spectral expansion parameter λ ≤ 1
5
whose

vertices are labeled as desired. Then by corollary 5.11.1 if we take the addition modulo q of the
samples from a length-2 log 1

ϵ
random walk on G then the result will have bias ϵ.

This stage costs an additional O(log 1
ϵ′
) random bits. In total, the construction uses r = r0 ·

O(1) · polylog (k) +O(log 1
ϵ
) random bits.

Corollary 6.1.1. Let F : D × {0, 1}r0 → Zq be a (k0, ϵ0)-wise independent hash function family
with k0 ≥ 2 and constant ϵ0 < 1. Then for all k ≤ 1

7
q2 and ϵ > 0: it is possible to construct a

(k, ϵ)-wise independent hash function family F ′ : D × {0, 1}r′ → Zq using only black-box access
to F , with:

r = r0 · polylog (k) +O(k log q + log
1

ϵ
)
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Proof. Setting ϵ′ = q−k/2ϵ: by theorem 6.1 it is possible to construct a (k, ϵ′)-biased hash function
family using the stated amount of randomness. By lemma 5.3 this is a (k, ϵ)-wise independent hash
function family.

6.2 Back To Circuits

We once again consider our new family of hash functions, and generalize it to allow for larger
alphabet outputs. At the same time, let us consider how our new theorems affect this construction.

One way this can be done is by using a (k, ϵ)-biased construction for single-bit outputs and in-
dependently sampling from this construction. This yields a construction with the following amount
of required random bits:

r = n logn · polylog (k) +O(kl + log
1

ϵ
)

While this may seem to be good, the quasi-linear dependency on n is bad, since in many cases kl
may be much smaller than n. However, we show further that it is possible to achieve a logarithmic
dependency on n.

Recall that in section 4.2 we defined a ”seed” function that is a random sample from the input
bits. We generalize this in a natural way: for any l ∈ Nwe define Fl : {0, 1}n×{0, 1}r0 → {0, 1}l
as a random element of {0, 1}l by sampling l bits from the input independently and uniformly.

Though we defined the output of the hash family as belonging to {0, 1}l, we here identify this
set with Z2l instead, for compatibility with our previous definitions and theorems. Note that our
definition implies r0 = l logn and that the special case of F1 is the same function family defined
previously, in section 4.

As in the former case, we wish to bound the pairwise bias of this function family. Looking back
at our analysis from section 4 we notice the reason we could bound the bias of the ”seed” family
F1 to begin with was that we applied a deterministic function on the input before sampling from it.
In the analysis we took advantage of three properties of the modified input:

1. Symmetry, i.e. relative weight of exactly 1
2

2. Relative distance of at least 1
n+1

3. Relative distance not exceeding 1− 1
n+1

The first property was achieved by basically concatenating the input with its complement. The
second property is an intrinsic property of having distinct inputs. The third property is a result of
appending constant bits to the input.

The first property allowed us to bound the bias of size-1 tests by 0. The last two properties
taken together allowed us to bound the bias of size-2 tests by 1− 2

n+1
. We wish to generalize these

properties. To this end, we employ balanced linear codes.
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Definition 6.1. a linear code C is said to be ϵ-balanced if all of its codewords c ∈ C, except the
zero codeword, have relative hamming weight 1

2
− ϵ ≤ wt (c) ≤ 1

2
+ ϵ.

We adjust our definition of the seed family to the following one.

Definition 6.2. Let C be a linear code of constant rate R and let Enc : {0, 1}n → {0, 1}n/R be
its encoding function. Define F̂C,l : {0, 1}n × {0, 1}r0 → {0, 1}l as the following function family.
For all x ∈ {0, 1}n, ρ ∈ {0, 1}r0 and i ∈ [r0]:

F̂C,l(x,ρ)i =

{
Enc(x)i ρi ≤ n

R

1− Enc(x)i n
R
+ 1 ≤ ρi ≤ 2 n

R

Note that r0 = log(2 n
R
) = O(logn).

We prove the following lemma in appendix B:

Lemma 6.2. If C is ϵC-balanced then F̂C,l is (2, 2ϵC)-biased over Z2l .

This lemma implies that if C is an ϵ-biased linear code, for some constant ϵ < 1
2
, having

constant rate R > 0 then using F̂C,l as a ”seed” hash family and applying the general construction
from theorem 6.1, we end up with a (k, ϵ)-wise independent hash function family with key length
r = O(kl + log 1

ϵ
) + lognpolylog (k).

Note 6.1. The improvement suggested above, i.e. using a balanced code to reduce initial bias,
reduces the asymptotic key length in the case when k = O(n1−δ) for any δ > 0. However, this
comes at a cost to the simplicity of the implementation by a circuit. This eventually depends on the
specific type of code used in a concrete construction.

6.3 Utilizing Good Seed Functions

In most cases that come to mind, the asymptotic amount of randomness needed by our generic
constructions is independent of the randomness required by the original ”seed” function. In fact,
inspection of corollary 6.1.1 shows that whenever sampling from the original seed family requires
r0 = O(k1−δ) random bits for some δ > 0 then the randomness required to sample from the final
family is r = O(k log q + log 1

ϵ
).

This is both a blessing an a curse. On the one hand: it means we do not have to work hard to
produce a very good ”seed” hash function family. However, it also means that we are not taking
full advantage of the properties of a strong hash function when we are given one.

We commented once before that the final bias-reduction step is the most ”costly”, since its size
depends on k rather than k

k0
. The reason is that our analysis techniques for BOOST tries to squeeze

out the maximum possible improvement to the bounded independence parameter t. This turns out
to come at the cost of bumping the bias back up to a constant.
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We remark that it is possible to prove that BOOST improves a (t, ϵ)-biased function to a, say,
(1.5t, c · ϵ)-biased one for some constant c. This is done using very similar techniques to the ones
shown here. Using this method, the bias-reduction stage is folded neatly into the independence-
parameter-increasing stage, and provides us with the k

k0
dependency we wanted. This is a more

efficient approachwhen k0 ≈ k. However, when one is interested in not-too-small bias and k ≫ k0:
the approach presented here works best.

7 Reducing Formula Size

In the previous section we reduced the amount of randomness, i.e. key size, required by our con-
struction. This sometimes comes at a cost to the formula size, as the efficiency of the different
predicates we use in changing the parameters k and ϵ is affected by the amount of entropy that is
streamed into them.

We are now interested in reducing the size of the furmulae that compute our functions, which
can thus increase the key size. In this context we do not mind this inefficiency in randomness, and
therefore refrain from explicitly stating it in our function family definitions. Instead, we consider
our constructions to be random functions f : {0, 1}n → {0, 1} with an implicit extra random input
of arbitrary, polynomial in n, size.

The basic construction used is the original one from subsection 4.2, without any of the im-
provements introduced in section 5. Our goal here is to construct an (n, 2−n)-biased function with
formula size Õ(n2).

We recall that the construction consists of three stages:

1. Reducing the initial bias down to a constant.

2. Increasing the independence parameter from 2 to n.

3. Reducing the bias down to 2−n

Our efforts are concentrated now on improving the first two stages. Specifically, we prove the
following lemma:

Lemma 7.1. There exists an (n, 1
2
) random function f : {0, 1}n → {0, 1} that can be calculated

by formulae of size O(n log2 n).

Using this lemma, we obtain the following theorem:

Theorem7.2. There exists an (n, 2−n) random function f : {0, 1}n → {0, 1} that can be calculated
by formulae of size O(n2 log2 n).

Proof. Let ffinal =
∏

i∈n fi, where each fi is an independent copy of f from lemma 7.1. Then by
corollary 3.2.1: ffinal is (n, 2−n)-biased. Recalling from lemma 7.1 that each copy of fi has formula
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size O(n log2 n) and noting that ffinal consists of combining n copies of f , allow establishing the
required bound on the size of ffinal.

As a first step to proving lemma 7.1 we prove the following claim.

Claim 7.3. There exists a (2, 0) random function f : {0, 1}n → {0, 1} that can be calculated by
formulae of size O(n).

Proof. For this proof we employ a standard technique for creating pairwise independent distribu-
tions. It is presented here in full for completeness. We define the random function f(x) = ⟨x, r⟩+
b, where r ∈ {0, 1}n is a uniformly random vector and b is a uniformly random bit. All operations
are over GF(2), i.e. + denotes XOR and multiplication is AND.

Let x,y ∈ {0, 1}n be to distinct inputs. Then, by independence of b from x and r, the bitwise
bias of f(x) is:∣∣∣∣∣ E

r
R←{0,1}n,bR←{0,1}

[
(−1)f(x)

]∣∣∣∣∣ =
∣∣∣∣∣ E
r
R←{0,1}n,bR←{0,1}

[
(−1)⟨x,r⟩+b

]∣∣∣∣∣
≤

∣∣∣∣∣ E
r
R←{0,1}n

[
(−1)⟨x,r⟩

]∣∣∣∣∣ ·
∣∣∣∣∣ E
b
R←{0,1}

[
(−1)b

]∣∣∣∣∣
= 0

Now we need to bound the pairwise bias. Since x ̸= y there exists an index i s.t. xi ̸= yi.
Without loss of generality, let us assume i = 1. Fix all bits of r except r1, and let:

z =
∑
i ̸=1

((xi · ri) + (yi · ri))

Noticing that x1 + y1 = 1, one has:∣∣∣∣∣ E
r1
R←{0,1},bR←{0,1}

[
(−1)f(x)+f(y)

]∣∣∣∣∣ =
∣∣∣∣∣ E
r1
R←{0,1},bR←{0,1}

[
(−1)⟨x,r⟩+b+⟨y,r⟩+b

]∣∣∣∣∣
=

∣∣∣∣∣ E
r1
R←{0,1}

[
(−1)z+x1·r1+y1·r1

]∣∣∣∣∣
=

∣∣∣∣∣(−1)z E
r1
R←{0,1}

[
(−1)(x1+y1)·r1

]∣∣∣∣∣
=

∣∣∣∣∣(−1)z E
r1
R←{0,1}

[(−1)r1 ]

∣∣∣∣∣
= 0
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This concludes the proof that f is (2, 0)-biased. We observe that f is the XOR of up to n
Boolean variables, each of which is the result of an AND between an input xi and a random bit ri.
Therefore, the formula size of f is at most 2n = O(n).

We now establish the most important ingredient in our construction: the method by which we
bootstrap pairwise independence to almost k-wise independence. In order to do so we require the
following strong lemma from [VV86].

Lemma 7.4 (Valiant-Vazirani restated). Let H be a pairwise-independent hash function family of
hash functions of the form {0, 1}n → {0, 1}l+2, and let S ⊆ {0, 1}n s.t. 2l ≤ |S| < 2l+1. For any
function h ∈ H , denote by Ah(S) = {x ∈ T | h(x) = 1}. Then:

Pr
h
R←H

[|Ah(S)| = 1] ≥ 1

8

In plain words, the probability that there is a unique element in T on which the hash function returns
zero is at least 1

8
.

Corollary 7.4.1. Let f : {0, 1}n → {0, 1} be a pairwise independent random function, and let
f1, . . . , fl+2 be independent copies of f . Define the function g : {0, 1}n → {0, 1} as:

g(x) = b ·
l+2∏
i=1

fi(x)

Where b is an independent random bit. Finally, let S ⊆ {0, 1}n s.t. 2l ≤ |S| < 2l+1.
Then g is 7

8
-biased w.r.t. the linear test χS .

Proof. Denote by H = (f1, . . . , fl+2) the hash function family that maps every (x) ∈ {0, 1}n to
(f1(x), . . . , fl+2(x)) ∈ {0, 1}l+2. Then H is a pairwise-independent hash function family with
functions of the form {0, 1}n → {0, 1}l+2.

Let A denote the event in which for exactly one input x ∈ S: the product
∏l+2

i=1 is equal to 1,
and let Ā denote the complement of A. Since 2l ≤ |S| < 2l+1, by lemma 7.4:

Pr [A] = Pr

[∣∣∣∣∣{x ∈ S |
l+2∏
i=1

fi(x) = 1}

∣∣∣∣∣ = 1

]
= Pr [|{x ∈ S | ∀i ∈ [l + 2] : fi(x) = 1}| = 1]

= Pr
h
R←H

[|Ah(S)| = 1]

≥ 1

8
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LetX ∈ {0, 1}k×n be a set of k inputsX1, . . .Xk ∈ {0, 1}n. Then the bias of g(X) w.r.t. χS

is:∣∣∣E [(−1)∑i∈S g(Xi)
]∣∣∣ = ∣∣∣E [(−1)∑i∈S b·

∏l+2
j=1 X

i
j

]∣∣∣
=
∣∣∣E [(−1)∑i∈S b·

∏l+2
j=1 X

i
j

∣∣∣A] · Pr [A] + E
[
(−1)

∑
i∈S b·

∏l+2
j=1 X

i
j

∣∣∣Ā] · Pr [Ā]∣∣∣
≤ 1

8
· E
[
(−1)b

]
+

7

8

=
7

8

In which the inequality stems from the trivial bound on the expectation in the event Ā and the fact
that when event A happens: the product

∏l+2
i=1X

i
j is equal to 1 for exactly 1 choice of value i and

equal to 0 in all other cases.

We can now prove our lemma.

Proof of lemma 7.1. For all i ∈ [⌈logn⌉+ 1] let gi = bi ·
∏i

j=1 fi,j , where fi,jare independent
copies of the pairwise independent random functions from claim 7.3.

Then by corollary 7.4.1: gi is 7
8
-biased w.r.t. all tests χS where 2i−2 ≤ |S| < 2i−1.

Define g =
∑

i gi. Then by corollary 3.2.1: g is (2⌈logn⌉,
7
8
)-biased, and therefore also (n, 7

8
)-

biased. Therefore, also by corollary 3.2.1: XOR-ing 6 copies of g yields an (n, 1
2
)-biased random

function.
The formula size of each gi is 2i ·O(n). Thus, the total formula size is:

6 ·
⌈logn⌉+1∑

i=0

i ·O(n) = O(n log2 n)

Note 7.1. The construction presented here is the smallest one known to us for achieving (n, 2−n)-
bias. However, its formula can be described by three layers of high fan-in XOR and AND gates.
Therefore, it cannot be a PRF. A similar construction can be achieved using the XIST gate, which
also achieves Õ(n2) formula size, albeit with a higher power in the logarithmic factor. That con-
struction cannot be readily ”flattened”, which gives some hope that a good PRF candidate may
eventually be found. At this stage, though, we are uncertain in this regard.

Examining the final construction presented above, one can see that it contains 2 logn+c1 levels
of XOR gates and 2 log logn+ c2 levels of AND gates, for some constants c1 and c2. This is why
the formulae have size roughly 22 logn+2 log logn = n2 log2 n.

When moving on to De-Morgan formulae, it is possible to replace each XOR gate with the
following predicate:

XOR(x, y) = (x ∨ y) ∧ ¬(x ∧ Y )
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Where ∧,∨ and ¬ are the AND, OR and NOT gates, respectively.
Since we are dealing with formulae (i.e. fan-out 1), the values of x and y need to be computed

twice each in order to implement this predicate. In conclusion, we have the following corollary.

Corollary 7.4.2. There exists an (n, 2−n)-biased random function f : {0, 1}n → {0, 1} which can
be implemented by De-Morgan formulae of size O(n4 log2 n).
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Appendices

A Proof of Lemma 5.3

In this section we prove a version of the Diaconis-Shahshahani bias-to-statistical-distance lemma
from [Dia88] which is suitable for our purposes. The proof follows the outline presented in [NN90],
in which it was stated for distributions over {−1, 1}k. We restate it here for convenience.

Lemma 5.3. Let F : D → Zq be a (k, ϵ)-biased hash function family for some domain D. Then
F is (k, qk/2ϵ)-wise independent.

Proof. Let x ∈ Dk be a set of k distinct inputs and D = DF ,x.
Recall that the bias of D w.r.t. a linear test s ∈ Zk

q is defined as:

biasD (s) = E
X∼D

[χs(X)] =
∑
x∈Zkq

D(x)χs(x) = qk⟨D, χs⟩ (3)

Let D̂ denote the Fourier coefficients of D. Using (3):

D̂(s) = ⟨D, χs⟩ = q−kbiasD (s) (4)

Let us calculate D̂(0):

D̂(0) = ⟨D, χ0⟩ = q−k
∑
x∈Zkq

D(x) · e
2πi
q

∑
j∈[k] xj ·0 = q−k

∑
x∈Zkq

D(x) = q−k (5)

Now, using (5):

|D − U|2 =

∑
x∈Zkq

∣∣D(x)− q−k∣∣
2

≤ qk ·
∑
x∈Zkq

(
D(x)− q−k

)2

= qk
∑
x∈Zkq

∑
s∈Zkq

D̂(s)χs(x)− q−k
2

= qk
∑
x∈Zkq

(∑
s̸=0

D̂(s)χs(x)

)2
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Opening this expression, since functions χs are orthonormal and using equation (4) we get the
following:

qk
∑
x∈Zkq

(∑
s ̸=0

D̂(s)χs(x)

)2

= qk
∑
x∈Zkq

∑
s1 ̸=0

∑
s2 ̸=0

D̂(s1)D̂(s2)χs1(x)χs2(x)

= qk
∑
s1 ̸=0

∑
s2 ̸=0

D̂(s1)D̂(s2)
∑
x∈Zkq

χs1(x)χs2(x)

= q2k
∑
s1 ̸=0

∑
s2 ̸=0

D̂(s1)D̂(s2)⟨χs1(x)χs2(x)⟩

= q2k
∑
s ̸=0

D̂(s1)2

= q2k
∑
s ̸=0

(
q−kbiasD (s)

)2
=
∑
s̸=0

biasD (s)2

≤ qkϵ2

Which implies:
|D − U| ≤ qk/2ϵ

B Proof of Lemma 6.2

In this appendix we prove lemma 6.2. This entails identifying bit strings in Zl
2 with integers in Z2l .

We use these forms interchangeably.
We restate the lemma here for convenience.

Lemma 6.2. Let C be an ϵ-balanced linear code and let Enc : Zn
2 → Z

n
R
2 be its encoding function.

Let F be a family of functions of the form Zn
2 → Zl

2 defined as follows. For any input x ∈ {0, 1}n
and for each output bit i ∈ [l]: independently sample a uniformly random bit from the codeword
Enc(x) and flip it with probability 1

2
. Then F is (2, 2ϵ)-biased.

Proof of lemma 6.2. LetX = (x1,x2) ∈ Z2
2l
be a pair of distinct inputs, and let Y = (y1,y2) =

(F (x1), F (x2)) for a randomly sampled F ∼ F . Similarly, let S = (s1, s2) ∈ Z2
2l
define a

non-empty linear test. That is to say there exists i ∈ {1, 2} s.t. si ̸= 0.
We are interested in the quantity:

biasF̂ (X) =

∣∣∣∣∣ E
ρ
R←{0,1}r0

[
e

2πi

2l
⟨S,Y ⟩

]∣∣∣∣∣
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Where the expectation is over sampling a function from F .
Note that for all y ∈ Z2l , we may write:

y =
∑
j∈[l]

2j−1yj

This yields:
e

2πi

2l
⟨S,Y ⟩ = e

2πi

2l
(s1·y1+s2·y2)

= e
2πi

2l
s1

∑
j∈[l] 2

j−1y1j · e
2πi

2l
s2

∑
j∈[l] 2

j−1y2j

= z
∑
j∈[l] 2

j−1y1j
1 · z

∑
j∈[l] 2

j−1y2j
2

=
∏
j∈[l]

z
2j−1y1j
1 · z2

j−1y2j
2

(6)

With zj = e
2πi

2l
si for j ∈ {1, 2}. Note that z2lj = 1 and that zj = 1 ⇐⇒ sj = 0.

Going back to the bias, we have:

∣∣∣E [e 2πi

2l
⟨S,Y ⟩

]∣∣∣ =
∣∣∣∣∣∣E
∏

j∈[l]

z
2j−1y1j
1 · z2

j−1y2j
2

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∏
j∈[l]

E
[
z
2j−1y1j
1 · z2

j−1y2j
2

]∣∣∣∣∣∣
≤
∏
j∈[l]

∣∣∣E [z2j−1y1j
1 · z2

j−1y2j
2

]∣∣∣
≤ min

j∈[l]

∣∣∣E [z2j−1y1j
1 · z2

j−1y2j
2

]∣∣∣

(7)

Where we used (6) in the first equality and independence of each pair (y1j , y2j ) from the other pairs
of the same form in the second one. The third row inequality is a triangle inequality and the final
one follows from the fact that all factors in the expression are non-negative.

Let p = Pr
[
y1j = y2j

]
denote the probability that y1 and y2 agree on index j. Note that p is

independent of j since each pair (y1j , y2j ) is distributed identically and independently from other
such pairs. Also, since C is ϵ-balanced: 1

2
− ϵ ≤ p ≤ 1

2
+ ϵ. Note that since each output bit is

flipped w.p. 1
2
, then:

Pr
[
y1j = 0

]
= Pr

[
y1j = 1

]
=

1

2
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Let us calculate the expectation in the final expression from (7):

E
[
z
2j−1y1j
1 · z2

j−1y2j
2

]
=1 · Pr

[
y1j = y2j = 0

]
+ z2

j−1

1 · Pr
[
y1j = 1 ∧ y2j ̸= y1j

]
+ z2

j−1

2 · Pr
[
y1j = 0 ∧ y2j ̸= y1j

]
+ (z1 · z2)2

j−1 · Pr
[
y1j = y2j = 1

]
=
p

2
+

1− p
2

z2
j−1

1 +
1− p
2

z2
j−1

2 +
p

2
(z1 · z2)2

j−1

(8)

Now, let ki be the order of zi as a root of unity for i ∈ {1, 2}. Note that ki = 2κi for some
κi ∈ N. Also note that κi = 1 ⇐⇒ zi = 1, and therefore for at least one of the values i: κi > 1.

We have two cases. If κ1 ̸= κ2 then assume without loss of generality that κ1 > κ2. Therefore,
for j = κ1: z2

j

1 = −1 and z2j2 = 1. In this case the expression in (8) evaluates to:

p

2
+

1− p
2

z2
j−1

1 +
1− p
2

z2
j−1

2 +
p

2
(z1 · z2)2

j−1

=
p

2
(1− 1) +

1− p
2

(1− 1) = 0

In which the final equality follows from the definition of p and the fact that Pr
[
y1j = 0

]
= 1

2
.

If κ1 = κ2, then for j = κ: z2j−1

1 = z2
j−1

2 = −1. Therefore, the expression can be bounded by:

p

2
+

1− p
2

z2
j−1

1 +
1− p
2

z2
j−1

2 +
p

2
(z1 · z2)2

j−1

= p− (1− p)

= 2p− 1

≤ 2ϵ
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תקציר

k של קבוצה כל פני על שלהן הפלטים של ההתפלגות אם תלויות בלתי k כמעט נקראות גיבוב פונקציות של משפחות
זו היא אליה קרובה תכונה מוגבלת. אי-תלות גם נקראת זו תכונה ;L1 בנורמה האחידה להתפלגות קרובה שונים קלטים
האחידה להתפלגות קרובה שונים קלטים k של פלטים של שההתפלגות כך ע”י המוגדרת חוסר-הטיה, k כמעט הנקראת

.L∞ בנורמה
של משפחה בהנתן כלומר, גיבוב. פונקציות משפחות של מוגבלת אי-תלות של להגדלה שיטות חקרנו זו בעבודה
k′ כמעט שהינה משפחה של חדשה משפחה ליצור היא מטרתנו בלתי-מוטה, ,או בלתי-תלויה k כמעט גיבוב פונקציות
למשפחת מתייחסות שהן במובן כלליות הינן שלנו (טרנספורמציות) ההעתקות .k′ > k עבור בלתי-מוטה או בלתי-תלויה
לתכונה מעבר זו משפחה לגבי דבר להניח דורשות אינן המקרים וברוב שחורה קופסא כאל המקורית הגיבוב פונקציות

כה. עד פורסמה לא כזו שיטה ידיעתנו, למיטב חוסר-תלות. k כמעט של הבסיסית
פונקציה באמצעות הדגימות של וחיבור המקורית מהמשפחה חוזרת בדגימה משתמשים אנו מטרותינו, את להשיג בכדי
המרחק את מקטינות אשר פונקציות הוא הראשון הסוג זו: למטרה שיעילות פונקציות של סוגים שני מזהים אנו כלשהי.
.k אי-התלות פרמטר את להגדיל לנו מאפשר השני הסוג האחידה; להתפלגות הפלטים של ההתפלגות בין L∞ בנורמה
הדרושות. התכונות את משיג דבר של בסופו אשר איטרטיבי בתהליך הללו הפונקציות סוגי שני את מחברים אנו לבסוף,
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רוזן. ואלון בוגדנוב אנדרי עם משותף מחקר על מבוססת העבודה רוזן. אלון של בהדרכתו בוצעה זו עבודה
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