

The Interdisciplinary Center, Herzlia
Efi Arazi School of Computer Science

M.Sc. program - Research Track

Exact Distance Oracles for
Planar Graphs with Failing

Vertices

by
Benjamin Tebeka

M.Sc. dissertation, submitted in partial fulfillment of the requirements
for the M.Sc. degree, research track, School of Computer Science

 The Interdisciplinary Center, Herzliya

July 2018

Acknowledgements

This work was carried out under the supervision of Dr. Shay Mozes from the Efi Arazi School

of Computer Science, The Interdisciplinary Center, Herzliya. I would like to thank him for all

the time and effort he put in teaching, tutoring and introducing me to the world of research,

for without the continuous support this work would not have been possible. Also I would like

to thank my partner Panagiotis Charalampopoulos for his major contribution to our result

[8], on which the thesis is based on.

Abstract

We consider exact distance oracles for directed weighted planar graphs in the

presence of failing vertices. Given a source vertex u, a target vertex v and a set X

of k failed vertices, such an oracle returns the length of a shortest u-to-v path that

avoids all vertices in X. We propose oracles that can handle any number k of failures.

More specifically, for a directed weighted planar graph with n vertices, any constant k,

and for any q ∈ [1,
√
n], we propose an oracle of size Õ(n

k+3/2

q2k+1) that answers queries

in Õ(q) time.1 In particular, we show an Õ(n)-size, Õ(
√
n)-query-time oracle for any

constant k. This matches, up to polylogarithmic factors, the fastest failure-free distance

oracles with nearly linear space. For single vertex failures (k = 1), our Õ(n
5/2

q3
)-size,

Õ(q)-query-time oracle improves over the previously best known tradeoff of Baswana

et al. [SODA 2012] by polynomial factors for q = Ω(nt), t ∈ (1/4, 1/2]. For multiple

failures, no planarity exploiting results were previously known.

1The Õ(·) notation hides polylogarithmic factors.

Contents

1 Introduction 1

1.1 Our Results and Techniques . 6

1.2 Road map . 9

2 Preliminaries 9

3 Near linear space data structure for any number of failures 15

4 Tradeoffs 20

4.1 The case of a single failure . 20

4.2 Handling multiple failures . 23

5 Efficient preprocessing 26

6 Dynamic Distance Oracles can handle Vertex Deletions 30

7 Final Remarks 31

Appendices 39

A Approximative distance oracle with failed vertices 39

1 Introduction

The contents of this section were partially extracted from [41].

Distance Oracles Computing shortest paths is one of the most well-studied algorithmic

problems. The shortest-path query problem is different from the classical single-source (SSSP)

and all-pairs shortest paths (APSP) problems in that there are two stages: preprocessing and

answering queries. We are first presented with a network (also termed graph). A so-called

preprocessing algorithm may compute certain information (a data structure or index, in the

theory community referred to as a distance oracle [43]) to prepare for the second phase. After

this preprocessing step, applications may ask queries, which should be answered efficiently.

A lazy solution to the shortest-path query problem is not to precompute any data structure

at all but to use an SSSP algorithm [12, 22] to answer queries. Answering a query then

requires time roughly linear in the network size. An eager solution is to precompute the

results for all possible queries using an APSP algorithm [20, 44, 29]. Both solutions have

their advantages and disadvantages: for the SSSP strategy, no preprocessing is necessary but

the query processing is rather slow; for the APSP strategy, the query execution is extremely

fast: one table lookup suffices to obtain the shortest-path distance; but the preprocessing step

is expensive and the space consumption is prohibitively large for many real-world networks,

spanning millions or even billions of nodes. In the shortest-path query scenario, we mediate

between these two extremes, that is, we analyze the tradeoff between space, preprocessing

time, and query time. If the query algorithm is allowed to return an approximate shortest

path, the worst-case accuracy (often called stretch) is also an important factor of the tradeoff.

Designing a shortest-path query processing method raises questions such as: How can these

data structures be computed efficiently? What amount of storage space is necessary? How

much improvement of the query time is possible? How good is the approximation quality of

the query result? What are the tradeoffs between pre-computation time, space, query time,

and approximation quality?

1

Distance Oracles for Planar Graphs Efficiently finding “good” routes in transportation

networks is arguably the main application scenario for shortest-path query methods. Due

to the importance of planar graphs as a more-or-less accurate model for road networks,

shortest-path queries for planar graphs have been studied extensively over the past three

decades [13, 3, 9, 18, 37, 6, 10, 25].

Exact distance Oracles for Planar Graphs Djidjev [13], improving upon [19], proves

that, for any S ∈ [n, n2], there is an exact distance oracle using space O(S) with query time

O(n2/S). The oracle uses two common main concepts, r-divisions and portals. An r-division

is a partition of the edges into O(n/r) regions of size O(r) such that each region R has

at most O(
√
r) boundary nodes ∂R (a node is called a boundary node if it is adjacent to

edges in different regions). Portals, are a set of carefully selected points (usually a subset

of the node set of the graph) which represent shortest paths. The oracle defines a set of

O(n/
√
r) portals to be the set of boundary nodes on the r-division. Pairwise distances among

all portals are computed and stored. The space requirements for this distance oracle are

S = O((n/
√
r)2) = O(n2/r).

At query time, a pair of nodes (s, t) is given. Let Rs and Rt be the regions that contain s

and t respectively in the r-division. The algorithm first searches (using SSSP [26]) both regions

Rs and Rt. If s and t are in the same region R and if the shortest path is entirely contained in R,

the shortest-path distance has been found in time O(r) (short-range query). Otherwise, exact

distances to all corresponding portals (boundary nodes in ∂Rs, ∂Rt, respectively) have been

computed, and the distance is the minimum among all pairs of portals (ps, pt) ∈ ∂Rs × ∂Rt

of d(s, ps) + d(ps, pt) + d(pt, t) where d(., .) is the shortest distance between two nodes. Since

the number of boundary node pairs is bounded by O((
√
r)2), the query time for long-range

queries is also O(r).

Fakcharoenphol and Rao [18] exploit a certain property due to the planarity of the graph

which is known as the Monge property [36] (a definition will be given in Section 2). They

2

represent the distances among the boundary vertices of each piece in a complete bipartite

(non-planar) graph, which they call a Dense distance graph. Their query algorithm can run

Dijkstra’s algorithm on a union of DDGs in time roughly proportional only to the number of

nodes in these DDGs (as opposed to the number of edges, which for DDGs is quadratic in the

number of nodes). They obtain a distance oracle of size Õ(n), that answer queries in Õ(
√
n)

time. This technique is used for various distance oracles with low space and preprocessing

complexities [18, 28, 40, 37].

The known space to query-time tradeoffs have been significantly improved very recently [25,

10]. The currently best known tradeoff for exact distance oracles in planar graph is an oracle

of size Õ(n3/2/q), that answers queries in time Õ(q) for any q ∈ [1, n1/2] [25]. One of the

main ideas is the use of Voronoi diagram which was previously used in [10]. More details

about this algorithm will be given in Section 2. Note that all known oracles with nearly

linear (i.e. Õ(n)) space require Ω(
√
n) query time.

Approximate distance oracles for Planar Graphs To obtain constant or polylogarith-

mic query times while maintaining almost linear space, approximate distance oracles were

considered. Thorup [42] presents efficient (1 + ε)-approximate distance oracles for directed

planar graphs. One of the main ingredients of Thorup’s construction is a special separator

consisting of a constant number of shortest paths. In contrast to the standard small O(
√
n)

separator, a shortest path separator might contain Ω(n) nodes. The main benefit of such

separators is the fact that shortest paths between two nodes in a directed planar graph,

cross a shortest path separator at most once. Each node computes and stores shortest-path

distances to a set of O(1/ε) portals per level, recursively for O(log n) levels. It yields a near

linear space approximate distance oracle with Õ(1) query time for a weighted planar digraph.

Dynamic distance oracles In recent decades researchers have investigated the shortest

path problem in graphs subject to failures, or more broadly, to changes. One such variant is

the replacement paths problem. In this problem we are given a graph G and vertices u and

3

v. The goal is to report the u-to-v distance in G for each possible failure of a single edge

along the shortest u-to-v path. Another variant is that of constructing a distance oracle that

answers u-to-v distance queries subject to edge or vertex failures (u, v and the set of failures

are given at query time). Perhaps the most general of these variants is the fully-dynamic

distance oracle; a data structure that supports distance queries as well as updates to the

graph such as changes to edge lengths, edge insertions or deletions and vertex insertions or

deletions.

One obvious but important application of handling failures is in geographical routing.

Further motivation for studying this problem originates from Vickrey pricing in networks [39,

27]; see [11] for a concise discussion on the relation between the problems. A long-studied

generalization of the shortest path problem is the the k-shortest path, in which not one but

several shortest paths must be produced between a pair of vertices. This problem reduces to

running k executions of a replacement paths algorithm, and has many applications itself [16].

Demetrescu et al. presented an O(n2 log n)-size oracle answering single failure distance

queries in constant time [11]. Bernstein and Karger, improved the construction time in [5].

Interestingly, Duan and Pettie, building upon this work, showed an O(n2 log3 n)-size oracle

that can report distances subject to two failures, in time O(log n) [14]. Based on this oracle,

they then easily obtain an Õ(nk)-space oracle answering distance queries in Õ(1) time for

any k ≥ 2. Oracles that require less space for more than 2 failures have been proposed,

such as the one presented in [45], but at the expense of Ω(n) query time. Such oracles are

unsatisfactory for planar graphs, where single source shortest paths can be computed in linear

or nearly linear time.

For planar graphs, the replacement paths problem (i.e. when both the source and destina-

tion are fixed in advance) can be solved in nearly linear time [15, 33, 46].

For the single source, single failure version of the problem (i.e. when the source vertex

is fixed at construction time, and the query specifies just the target and a single failed

vertex), Baswana et al. [4] presented an oracle with size and construction time O(n log4 n)

4

that answers queries in O(log3 n) time. They then showed an oracle of size Õ(n2/q) for

the general single failure problem (i.e. when the source, destination, and failed vertex are

all specified at query time), that answers queries in time Õ(q) for any q ∈ [1, n1/2]. They

conclude the paper by asking whether it is possible to design a compact distance oracle for a

planar digraph which can handle multiple vertex failures. We answer this question in the

affirmative.

Fakcharoenphol and Rao, in their seminal paper [18], presented distance oracles that

require O(n2/3 log7/3 n) and O(n4/5 log13/5 n) amortized time per update and query for non-

negative and arbitrary edge-weight updates respectively.2 The space required by these

oracles is O(n log n). Klein presented a similar data structure in [31] for the case where

edge-weight updates are non-negative, requiring time O(n2/3 log5/3 n). Klein’s result was

extended in [28], where, assuming non-negativity of edge-weight updates, the authors showed

how to handle edge deletions and insertions (not violating the planarity of the embedding),

and in [30], where the authors showed how to handle negative edge-weight updates, all within

the same time complexity. In fact, these results can all be combined, and along with a

recent slight improvement on the running time of FR-Dijkstra [24], they yield a dynamic

distance oracle that can handle any of the aforementioned edge updates and queries within

time O(n2/3 log5/3 n

log4/3 logn
). We further extend these results by showing that vertex deletions and

insertions can also be handled within the same time complexity. The main challenge lies in

handling vertices of high degree.

On the lower bounds side, it is known that an exact dynamic oracle requiring amortized

time O(n1/2−δ), for any constant δ > 0, for both edge-weight updates and distance queries,

would refute the APSP conjecture, i.e. that there is no truly subcubic combinatorial algorithm

for solving the all-pairs shortest path problems in weighted (general) graphs [1].

Abraham et al. [2] gave a (1 + ε) labeling scheme for undirected planar graphs with

polylogarithmic size labels, such that a (1 + ε)-approximation of the distance between vertices

2Though this is not mentioned in [18], the query time can be made worst case rather than amortized by
standard techniques.

5

u and v in the presence of |F | vertex or edge failures can be recovered from the labels of u, v

and the labels of the failed vertices in Õ(|F |2) time. They then use this labeling scheme to

devise a fully dynamic (1 + ε)-distance oracle with size Õ(n) and Õ(
√
n) query and update

time.3 See Appendix A for more details about this result.

In this thesis we focus on these problems, and in particular on handling vertex failures

in planar graphs. Observe that edge failures easily reduce to vertex failures. Indeed, by

replacing each edge (a, c) of G with a new dummy vertex b and appropriately weighted edges

(a, b) and (b, c); the failure of edge (a, c) in G corresponds to the failure of vertex b in the new

graph. Note that this transformation does not depend on planarity. In sparse graphs, such

as planar graphs, this transformation only increases the number of vertices by a constant

factor. Also note that there is no such obvious reduction in the other direction that preserves

planarity. In general graphs, one can replace each vertex v by two vertices vin and vout, assign

to vin (resp. vout) all the edges incoming to v (resp. outgoing from v) and add a 0-length

directed edge e from vin to vout. The failure of vertex v in the original graph corresponds

to the failure of edge e in the new graph. However, this transformation does not preserve

planarity.

1.1 Our Results and Techniques

In this work we focus on distance queries subject to vertex failures in planar graphs. Our

results can be summarized as follows.

1. We show how to preprocess a directed weighted planar graph G in Õ(n) time into an

oracle of size Õ(n) that, given a source vertex u, a target vertex v, and a set X of k

failing vertices, reports the length of a shortest u-to-v path in G \X in Õ(
√
kn) time.

See Lemma 12.

2. For k allowed failures, and for any r ∈ [1, n], we show how to construct an Õ(n
k+1

rk+1

√
nr)-

3A fully dynamic distance oracle supports arbitrary edge and vertex insertions and deletions, and length
updates.

6

size oracle that answers queries in time Õ(k
√
r). See Theorem 15. For k = 1, this

improves over the previously best known tradeoff of Baswana et al. [4] by polynomial

factors for r = Ω(nt), t ∈ (1/2, 1]. To the best of our knowledge, this is the first tradeoff

for k > 1. See Fig. 1.

3. We extend the exact dynamic distance oracles mentioned in the previous section to also

handle vertex insertions and deletions without changing their space and time bounds.

23/2 7/4

1/4

1/2

lgS/ lg n

lgQ/ lg n

[14, 11, 5]

[4]

[4]

[Sec. 4]

2 3 4 5

1/4

1/2

lgS/ lg n

lgQ/ lg n

[4]

[Sec. 4]

[14] [14] [14]

Figure 1: Left: Tradeoff of the Space (S) vs. the Query time (Q) for exact distance oracles
for a single failed vertex (i.e. k = 1) on a doubly logarithmic scale, ignoring constant and
logarithmic factors. The previous tradeoff is indicated by a solid line, while the new tradeoff
is indicated by a dashed line. Right: the same tradeoff for k = 1, . . . , 5, shown with different
colours. The points on the x-axis correspond to the result of [14], while the new tradeoffs are
indicated by dashed lines.

Our nearly-linear space oracle that reports distances in the presence of k failures in

Õ(
√
kn) time is obtained by adapting a technique of Fakcharoenphol and Rao [18]. In a

nutshell, a planar graph can be recursively decomposed using small cycle separators, such that

the boundary of each piece in the decomposition (i.e. the vertices of a piece that also belong

to other pieces in the decomposition) is a cycle with relatively few vertices. Instead of working

with the given planar graph, one computes distances over its dense distance graph (DDG);

a non-planar graph on the boundary vertices of the pieces which captures the distances

between boundary vertices within each of the underlying pieces. Fakcharoenphol and Rao

developed an efficient implementation of Dijkstra’s algorithm on the DDG. This algorithm,

nicknamed FR-Dijkstra, runs in time roughly proportional to the number of vertices of the

7

DDG (i.e. boundary vertices), rather than in time proportional to the number of vertices in

the planar graph. Roughly speaking, Fakcharoenphol and Rao show that to obtain distances

from u to v with k edge failures, it (roughly) suffices to consider just the boundary vertices

of the pieces in the recursive decomposition that contain failed edges. Since pieces at the

same level of the recursive decomposition are edge-disjoint, the total number of boundary

vertices in all the required pieces is only O(
√
kn). This Õ(n)-size, Õ(

√
kn)-query-time oracle,

supporting distance queries subject to a batch of k edge cost updates, leads to their dynamic

distance oracle.

The difficulty in handling vertex failures is that a high degree vertex x may be a boundary

vertex of many (possibly Ω(n)) pieces in the recursive decomposition. Then, if x fails, one

would have to consider too many pieces and too many boundary vertices. Standard techniques

such as degree reduction by vertex splitting are inappropriate because when a vertex fails all

its copies fail. To overcome this difficulty we define a variant of the dense distance graph

which, instead of capturing shortest path distances between boundary vertices within a

piece, only captures distances of paths that are internally disjoint from the boundary. We

show that such distances can be computed efficiently, and that it then suffices to include in

the FR-Dijkstra computation (roughly) only pieces that contain x, but not as a boundary

vertex. This leads to our nearly-linear-space oracle reporting distances in the presence of k

failures in Õ(
√
kn) time (item 1 above). See Section 3. Plugging the same technique into the

existing dynamic distance oracles extends them to support vertex deletions (item 3 above).

See Section 6.

Our main result, the space vs. query-time tradeoff (item 2 above), is obtained by a

non-trivial combination of this technique with ideas from the recent static distance oracle

presented in [25]. Namely, by a combination of FR-Dijkstra on our variant of the DDG with

r-divisions, external DDGs, and efficient point location in Voronoi diagrams. See Sections 4

and 5.

8

1.2 Road map

Lemma 12 is proved in Section 3. Theorem 15 is proved in Section 4 except for the

preprocessing of the distance oracle, which is proved in Section 5. Finally, in Section 6 we

describe how to achieve item 3 above.

2 Preliminaries

In this section we review the main techniques required for describing our result. Throughout

the paper we consider a weighted directed planar graph G = (V (G), E(G)), embedded in the

plane. (We use the terms weight and length for edges and paths interchangeably throughout

the paper.) We use |G| to denote the number of vertices in G. Since planar graphs are

sparse, |E(G)| = O(|G|) as well. For an edge (u, v), we say that u is its tail and v is its head.

dG(u, v) denotes the distance from u to v in G. We denote by dG(u, v,X) the distance from

u to v in G \ X, where X ∈ V (G) or X ⊂ V (G). If the reference graph is clear from the

context we may omit the subscript. We assume that the input graph has no negative length

cycles. If it does, we can detect this in O(n log2 n
log logn

) time by computing single source shortest

paths from any vertex [38]. In the same time complexity, we can transform the graph in

a standard way so that all edge weights are non-negative and distances are preserved. We

further assume that shortest paths are unique as required for a result from [23] that we use;

this can be ensured in O(n) time by a deterministic perturbation of the edge weights [17].

Each original distance can be recovered from the corresponding distance in the transformed

graph in constant time.

Separators and recursive decompositions in planar graphs. Miller [35] showed how

to compute a Jordan curve that intersects the graph at O(
√
n) nodes and separates it into two

pieces with at most 2n/3 vertices each. Jordan curve separators can be used to recursively

separate a planar graph until pieces have constant size. The authors of [32] show how to

9

obtain a complete recursive decomposition tree T of G in O(n) time. T is a binary tree

whose nodes correspond to subgpraphs of G (pieces), with the root being all of G and the

leaves being pieces of constant size. We identify each piece P with the node representing it

in T . We can thus abuse notation and write P ∈ T . An r-division [21] of a planar graph,

for r ∈ [1, n], is a decomposition of the graph into O(n/r) pieces, each of size O(r), such

that each piece has O(
√
r) boundary vertices, i.e. vertices incident to edges in other pieces.

Another usually desired property of an r-division is that the boundary vertices lie on a

constant number of faces of the piece (holes). For every r larger than some constant, an

r-division with this property (i.e. few holes per piece) is represented in the decomposition

tree T of [32]. Throughout the paper, to avoid confusion, we use “nodes” when referring to

T and “vertices” when referring to G. We denote the boundary vertices of a piece P by ∂P .

We refer to non-boundary vertices as internal.

Lemma 1 ([25]). Each node in T corresponds to a piece such that (i) each piece has O(1)

holes, (ii) the number of vertices in a piece at depth ` in T is O(n/c`1), for some constant

c1 > 1, (iii) the number of boundary vertices in a piece at depth ` in T is O(
√
n/c`2), for

some constant c2 > 1.

We use the following well-known bounds (see e.g., [25]).

Proposition 2.
∑

P∈T |P | = O(n log n),
∑

P∈T |∂P | = O(n) and
∑

P∈T |∂P |2 = O(n log n).

We show the following bound that will be used in future proofs.

Proposition 3.
∑
P∈T
|P ||∂P |2 = O(n2).

Proof. Let P `
1 , P

`
2 , . . . , P

`
j be the pieces at the `-th level of the decomposition.

∑
i |P `

i | = O(n)

since the pieces are edge-disjoint. We know by Lemma 1 that |∂P `
j | = O(

√
n/c`2) for all j and

hence |∂P `
j |2 = O(n/c2`2) for all j. It follows that

∑
i |P `

i ||∂P `
i |2 = O(n2/c2`2) and the claimed

bound follows by summing over all levels of T .

10

Dense distance graphs and FR-Dijkstra. The dense distance graph of a piece P ,

denoted DDGP is a complete directed graph on the boundary vertices of P . Each edge (u, v)

has weight dP (u, v), equal to the length of the shortest u-to-v path in P . DDGP can be

computed in time O(|∂P |2 + |P | log |P |) using the multiple source shortest paths (MSSP)

algorithm [31, 7]. Over all pieces of the recursive decomposition this takes time O(n log2 n)

in total and requires O(n log n) space by Proposition 2. We next give a —convenient for our

purposes— interface for FR-Dijkstra [18], which is an efficient implementation of Dijkstra’s

algorithm on any union of DDGs. The algorithm exploits the fact that, due to planarity,

certain submatrices of the adjacency matrix of DDGP satisfy the Monge property. (A matrix

M satisfies the Monge property if, for all i < i′ and j < j′, Mi,j +Mi′,j′ ≤Mi′,j +Mi,j′ [36].)

The interface is specified in the following theorem, which was essentially proved in [18], with

some additional components and details from [30, 38].

Theorem 4 ([18, 30, 38]). A set of DDGs with O(M) vertices in total (with multiplicities),

each having at most m vertices, can be preprocessed in time and space O(M logm) in total.

After this preprocessing, Dijkstra’s algorithm can be run on the union of any subset of these

DDGs with O(N) vertices in total (with multiplicities) in time O(N log2m), by relaxing

edges in batches. Each such batch consists of edges that have the same tail.

The algorithm in the above theorem is called FR-Dijkstra. It is useful in computing

distances in sublinear time, as demonstrated by the following lemma and corollary.

Definition 5. Let u be a vertex. Let Pu be a leaf piece in T containing u. A cone of u is the

union of the following DDGs: (i) DDGPu, with u considered a boundary vertex of Pu. (ii)

For every (not necessarily strict) ancestor P of Pu, DDGQ of the sibling Q of P .

Lemma 6. Let x and y be two vertices in the cone of a vertex u. The x-to-y distance in G

equals the x-to-y distance in the cone of u.

Proof. Let Pu = P0, P1, . . . , Pd = G be the ancestors of Pu ordered by decreasing depth in

T . Let Qi be the sibling of Pi in T . Let conei be DDGPu ∪
⋃
j<iDDGQj

. We will prove by

11

induction that for any two vertices x, y ∈ conei, the x-to-y distance in Pi equals the x-to-y

distance in conei. This statement is trivially true for i = 0. Let us assume it is true for k.

Consider an x-to-y shortest path p in Pk+1, where x, y ∈ conek+1. Path p can be decomposed

into maximal subpaths that are entirely contained in Pk or Qk and whose endpoints are in

{x, y} ∪ (∂Pk ∩ ∂Qk). For each such subpath we either have a path with the same length in

conek by the inductive assumption, or an edge of DDGQk
. This shows that the length of p is

at least the length of the x-to-y distance in conek. Since every edge of conek corresponds to

some path in Pk, the opposite also holds, so the two quantities are equal.

Corollary 7. Let u, v be two distinct vertices in G. Let p be a shortest u-to-v path in G. If

p is not fully contained in Pu then we can compute the length of p by running FR-Dijkstra on

the union of the cone of u and the cone of v. This takes O(
√
n) time.

Proof. Since p is not fully contained in Pu, p must visit a vertex w in the separator of the

LCA of Pu and Pv in T . We are done by decomposing p into the prefix ending at w and the

suffix beginning at w an, and applying Lemma 6. The running time follows by Theorem 4

and Lemma 1.

Voronoi diagrams with point location. In mathematics, a Voronoi diagram is a parti-

tioning of a plane into regions based on distance to sites in a specific subset of the plane. The

set of sites is specified beforehand, and for each site there is a corresponding region consisting

of all points closer to that site than to any other. These regions are called Voronoi cells.

Let P be a directed planar graph with real edge-lengths, and no negative-length cycles.

Let S be a set of vertices that lie on a single face of P ; we choose the elements of S as

the sites for the (graphical) Voronoi diagram of P . Each site u ∈ S has a weight ω(s) ≥ 0

associated with it. The additively weighted distance between a site s ∈ S and a vertex v ∈ V ,

denoted by dωP (s, v) is defined as ω(s) plus the length of the s-to-v shortest path in P .

Definition 8. The additively weighted Voronoi diagram of (S, ω) (V D(S, ω)) within P is

a partition of V (P) into pairwise disjoint sets, one set Vor(s) for each site s ∈ S. The set

12

Vor(s) which is called the Voronoi cell of s, contains all vertices in V (P) that are closer

(w.r.t. dωP (. , .)) to s than to any other site in S (assuming that the distances are unique).

There is a dual representation V D∗(S, ω) of a Voronoi diagram V D(S, ω) as a planar graph

with O(|S|) vertices and edges.

Theorem 9 ([25, 23]). Given subsets S ′1, . . . , S
′
m of S, and additive weights ωi(u) for each

u ∈ S ′i, we can construct a data structure of size O(|P | log |P |+
∑

i |S ′i|) that supports the

following (point location) queries. Given i, and a vertex v of P , report in O(log2 |P |) time

the site s in the additively weighted Voronoi diagram V D(Si, ωi) such that v belongs to Vor(s)

and the distance dωi
P (s, v). The time and space required to construct this data structure are

Õ(|P ||S|2 +
∑

i |S ′i|).

We now describe the distance oracle of [25], for exact distance oracles in planar graph

which uses O(n3/2)-space and answers queries in O(log n) time. This description is given as

a background to the reader since we will adapt these ideas in Section 4.

First, we compute a recursive decomposition of G using Jordan separators as described

above. For each piece R = (VR, ER) in the recursive decomposition we perform the following

preprocessing. We compute and store, for each boundary node v of R, the shortest path tree

TRv in R rooted at v. Additionally, we store for every node u of R the distance from v to u

and the distance from u to v in the whole G. For a non-terminal piece R, let P = (VP , EP)

and Q = (VQ, EQ) be the two pieces into which R is separated. For every node u ∈ VQ and

for every hole h of P we store an additively weighted Voronoi diagram V D(Sh, ω) for P ,

where the set of sites Sh is the set of boundary nodes of P incident to the hole h, and the

additive weights ω correspond to the distances in G from u to each site in Sh. We enhance

each Voronoi diagram with the point location data structure of Theorem 9. We also store

the same information with the roles of Q and P exchanged.

Consider a piece R with n(R) nodes and b(R) boundary nodes. The trees TRv and the

stored distances in G require a total of O(b(R)n(R)) space. Let R be further decomposed

into pieces P and Q. We bound the space used by all Voronoi diagrams created for R. Recall

13

that every Voronoi diagram and point location structure corresponds to a node u of P and a

hole of Q, or vice versa. The size of each additively weighted Voronoi diagram stored for a

node of P is O(b(Q)), so O(n(P)b(Q)) for all nodes of P . The total space for each piece R is

thus O(n(R)b(R)) plus O(n(P)b(Q) + n(Q)b(P)) if R is decomposed into P and Q. Using

Lemma 1, it can be shown that the sum of O(n(R)b(R)) over all pieces R is bounded by

O(n3/2) (The same reasoning can be applied to bound O(n(P)b(Q) + n(Q)b(P))).

To compute the distance from u to v, we traverse the recursive decomposition starting

from the piece that corresponds to the whole initial graph G. Suppose that the current piece

is R = (V,E) , which is partitioned into P and Q with a Jordan curve separator C. If v ∈ C

then, because the nodes of C are boundary nodes in both P and Q, we return the additive

weight ω(v) in the Voronoi diagram stored for u, which is equal to the distance from u to v

in G. Similarly, if u ∈ C then we retrieve and return the distance from u to v in the whole G.

The remaining case is that both u and v belong to a unique piece P or Q. If both u and v

belong to the same piece on the lower level of the decomposition, we continue to that piece.

Otherwise, assume without loss of generality that u ∈ Q and v ∈ P . Then, the shortest path

from u to v must go through a boundary node vi of P . We therefore perform a point location

query for v in each of the Voronoi diagram stored for u and for some hole h of P . Let s1 . . . sg

be the sites returned by these queries, where g = O(1) is the number of holes of P . The

distance in G from u to si is ω(si), and the distance in P from si to v is stored in T Psi . We

compute the sum of these two terms for each si, and return the minimum sum computed.

The query time is O(log n) since at each step of the traversal, we either descend to a

smaller piece in O(1) time or terminate after having found the desired distance in O(log n)

time by O(1) queries to the point location structure.

Remark. Part of Theorem 9 is proved in [25], though not stated there explicitly as a

theorem. It is a tradeoff to Theorem 1.1 of [25], requiring less space, and hence more

applicable to our problem.

14

3 Near linear space data structure for any number of

failures

In this section we show how to adapt the approach of [18] for dynamic distance oracles

supporting cumulative edge changes to support distance queries with failed vertices. The

main technical challenge is in dealing with failures of high-degree vertices, since such vertices

may belong to many pieces at each level of the decomposition. For example, think of a

failure of the central vertex in a wheel graph, which belongs to all the pieces in the recursive

decomposition. Note that standard degree reduction techniques such as vertex splitting are

not useful because when a vertex fails all its copies fail. This is in contrast with the situation

when dealing only with edge-weight updates, since each edge can be in at most one piece

per level. We circumvent this by defining and employing the strictly internal dense distance

graph. The main intuition is that strictly internal DDGs enable us to handle pieces that only

contain failed boundary vertices, i.e. do not contain any internal vertex that fails. Then, only

pieces that contain internal failed vertices are “problematic”. Note however, that a vertex is

internal in at most one piece per level of the decomposition.

Definition 10. The strictly internal dense distance graph of a piece P , denoted DDG◦P , is

a complete directed graph on the boundary vertices of P . An edge (u, v) has weight d◦P (u, v)

equal to the length of the shortest u-to-v path in P that is internally disjoint from ∂P .

The sole difference to the standard definition is that in our case paths are not allowed

to go through ∂P . Observe that the shortest path in P between two vertices of ∂P is still

represented in DDG◦P , just not necessarily by a single edge as in DDGP . This establishes

the following lemma.

Lemma 11. For any piece P and any two boundary vertices u, v ∈ ∂P , the u-to-v distance

in DDG◦P equals the u-to-v distance in DDGP .

We now discuss how to efficiently compute DDG◦P . We construct a planar graph P̂ ,

15

by creating a copy of P and incrementing the weight of each edge uv, such that u ∈ ∂P ,

by C = 2
∑

e∈E(G) |w(e)|. DDGP̂ can be computed in O(|∂P |2 + |P | log |P |) time using

MSSP [31, 7]. Observe that any u-to-v path in P̂ that is internally disjoint from ∂P̂ has

exactly one edge uw with u ∈ ∂P , so its length is at least C and less than 2C, while any

u-to-v path that has an internal vertex in ∂P is of length at least 2C. Therefore, the u-to-v

distance in P̂ is equal to C plus the length of the shortest u-to-v path in P that is internally

disjoint from ∂P if the latter one is not ∞. We thus set d◦P (u, v) = dP̂ (u, v) − C. This

completes the description of the computation of DDG◦P . Note that since C is defined in

terms of G rather than P , edge weights greater than C in DDG◦P effectively represent infinite

length in the sense that such edges will never be used by any shortest path (in P nor in G).

Also note that it follows directly from the definition of the Monge property that subtracting

C from each entry of a Monge matrix preserves the Monge property. Therefore, we can use⋃
P DDG

◦
P in FR-Dijkstra (Theorem 4) instead of

⋃
P DDGP .

Preprocessing. We compute a complete recursive decomposition tree T of G in time O(n)

as discussed in Section 2. We compute DDG◦P for each non-leaf piece P ∈ T and preprocess

it as in FR-Dijkstra. By Proposition 2, Theorem 4 and the above discussion, the time and

space complexities are O(n log2 n) and O(n log n) respectively.

Query. Upon query (u, v,X), for each i ∈ {u, v} ∪X we arbitrarily choose a leaf-piece Pi

containing i, and run FR-Dijkstra on the union of the following DDG◦s, which we denote by

D (inspect Fig. 2 for an illustration):

1. For each w ∈ {u, v}, DDG◦Pw
of Pw \X with w regarded as a boundary vertex. This can

be computed on the fly in constant time since the size of the leaf piece Pw is constant.

2. For each w ∈ {u, v}, for each ancestor P of Pw (including Pw), DDG◦Q of the sibling Q

of P if Q does not contain an internal (i.e. non-boundary) vertex of X.

16

PuPv Px

G
v

u
x

v
u

x

u v x

u v u x x

v uv x x

Figure 2: A complete recursive decomposition tree T of a graph G. The light gray and red
pieces are the ones that would be considered by the failure-free distance oracle. However,
given the failure of vertex x, the DDG◦ of the red piece is invalid. The dark gray pieces are
the ones that our algorithm considers instead. They allow us to represent the DDG◦ of the
red piece subject to the failure of x.

3. For each x ∈ X, DDG◦Px
of Px \X. This can be computed on the fly in constant time

since the size of the leaf piece Px is constant.

4. For each x ∈ X, for each ancestor P of Px (including Px), DDG
◦
Q of the sibling Q of P

if Q does not contain an internal vertex of X.

We can identify these DDG◦s in O(k log n) time by traversing the parent pointers from

each Pi, for i ∈ X, and marking all the nodes that have an internal failed vertex. We make

one small but crucial change to FR-Dijkstra. When running FR-Dijkstra, we do not relax

edges whose tail is a failed vertex. This guarantees that, although failed vertices might

appear in the graph on which FR-Dijkstra is invoked, the u-to-v shortest path computed by

FR-Dijkstra does not contain any failed vertices. We therefore obtain the following lemma.

17

Lemma 12. There exists a data structure of size O(n log n), which can be constructed in

O(n log2 n) time, and answer the following queries in O(
√
kn log2 n) time. Given vertices u

and v, and a set X of k failing vertices, report the length of a shortest u-to-v path in that

avoids the vertices of X.

Proof. We have already discussed the space occupied by the oracle and the time required to

build it. It remains to analyze the query algorithm.

Correctness. First, it is easy to see that no edge (y, z) of any of the DDG◦s in D represents

a path containing a vertex x ∈ X, unless {y, z} ∩ X 6= ∅. The latter case does not affect

the correctness of the algorithm, since in FR-Dijkstra we do not relax edges whose tail is a

failed vertex. Hence, the algorithm never computes a distance corresponding to a path going

through a failed vertex.

It remains to show that the shortest path in G \ X is represented in D. For this, by

Corollary 7, it suffices to prove that for each piece A in the cone of u (and similarly in the cone

of v), either DDG◦A for A \X belongs to D, or D contains enough information to reconstruct

DDG◦A for A \X (i.e. subject to the failures) during FR-Dijkstra. In the latter case we say

that DDG◦A is represented in D. Note that, for any piece P , DDG◦P is represented in D if

the DDG◦s of its two children in T are represented in D. (This follows by an argument

identical to the one used in the proof of Lemma 6.) If A contains no internal failed vertex

then DDG◦A is in D by point 1 or 2 above. We next consider the case that A does contain

some failed vertex x ∈ X as an internal vertex. Thus A is an ancestor of Px. To show that A

is represented in D, we prove that for any failed vertex y ∈ X, the DDG◦ of any non-root

ancestor of Py in T is represented in D.

We proceed by the minimal counterexample method. For any y ∈ X, DDG◦Py
is in D

since it is computed on the fly in point 3. Let F be the deepest node in T that is a strict

ancestor of Py for some y ∈ X and whose DDG◦ is not represented in D. It follows that one

of F ’s children must also be an ancestor of Py and by the choice of F its DDG◦ is represented

in D. Let the other child of F be J . If J is an ancestor of some Pz, z ∈ X, then DDG◦J is

18

also represented in D by the choice of F . Otherwise, J does not contain any internal failed

vertex, and hence DDG◦J is in D by point 4. In either case, the DDG◦s of both children of

F are represented in D, so DDG◦F is also represented in D, a contradiction.

Time complexity. Let r = n/k and consider an r-division of G in T . The pieces of this

r-division have O(n√
r
) = O(

√
kn) boundary vertices in total and this is known to also be an

upper bound on the total number of boundary vertices (with multiplicities) of ancestors of

pieces in this r-division (cf. the discussion after Corollary 5.1 in [25]).

Recall that we have chosen a leaf-piece Pi for each vertex i ∈ {u, v} ∪ X. Each piece

(other than the Pis) whose DDG◦ belong to D is a siblings of an ancestor of some Pi. This

implies that each i ∈ {u, v} ∪X contributes the DDG◦s of at most two pieces per level of

the decomposition. Let the ancestor of Pi that is in the r-division be Ri. For each Pi, we

only need to bound the total size of pieces it contributes that are descendants of Ri, since

we have already bounded the total size of the rest. We do so by applying Lemma 1 for the

subtree of T rooted at each Ri. (The extra O(
√
r) boundary vertices we start with do not

alter the analysis of this lemma as these many are anyway introduced by the first separation

of Ri.) It yields 2
∑

`

√
r

c`2
, where c2 > 1, which is O(

√
r). Summing over all k+ 2 pieces Pi we

obtain the upper bound O(k
√
r) = O(

√
kn).

FR-Dijkstra runs in time proportional to the total number of vertices of the DDG◦s in D

up to a log2 n multiplicative factor and hence the time complexity follows.

Remark. By using existing techniques (cf. [30, Section 5.4]), we can report the actual

shortest path ρ in time O(|ρ| log log ∆ρ), where ∆ρ is the maximum degree of a vertex of ρ in

G.4

4This remark also applies to the dynamic distance oracle presented in Section 6. However, it does not
apply to the oracles presented in Section 4, where we use a different modification of DDGs for which we
can not afford to store the MSSP data structures that would allow us to return the actual shortest paths
efficiently.

19

4 Tradeoffs

In this section we describe a tradeoff between the size of the oracle and the query-time. We

first define another useful modification of dense distance graphs.

Definition 13. The strictly external dense distance graph of G for pieces P1, . . . , Pi (DDG◦ext(P1, . . . , Pi))

is a complete directed graph on the boundary vertices of P1, . . . , Pi. The edge (u, v) has weight

equal to the length of the shortest u-to-v path in G \
((i⋃

j=1

Pj
)
\ {u, v}

)
.

DDG◦exts can be preprocessed using Theorem 4 together with DDG◦s so that we can

perform efficient Dijkstra computations in any union of DDG◦exts and DDG◦s.

The number of pieces in an r-division is at most cn/r for some constant c. For convenience,

we define

g(n, r, k) =

(
cn/r

k

)
≤ (cn)k

rkk!
≤ nk

rkk
,

where the last inequality holds for sufficiently large k and we use it throughout, to hide

factors that are solely dependent on k.

4.1 The case of a single failure

For ease of presentation we first describe an oracle that can handle just a single failure. We

prove the following lemma, which is a restricted version of our main result, Theorem 15.

Lemma 14. For any r ∈ [1, n], there exists a data structure of size O(n
5/2

r3/2
+ n log2 n), which

can be constructed in time Õ(n
5/2

r3/2
+n2), and can answer the following queries in O(

√
r log2 n)

time. Given vertices u, v, x, report the length of a shortest u-to-v path that avoids x.

We first perform the precomputations of Section 3. We also obtain an r-division of G

from T in O(n) time. Let us denote the pieces of this r-division by R1, . . . , Rq.

Warm up. We first show how to get an O(n
3

r2
)-space oracle with Õ(

√
r) query time for

a single failure using the approach of Section 3. For each triplet Ri, Rj, Rk of pieces in the

20

r-division we store DDG◦ext(Ri, Rj, Rk); these require space O(g(n, r, 3)(
√
r)2) = O(n

3

r2
) in

total. Given u, v, x in Ru, Rv and Rx, respectively, we consider the required DDG◦s that

allow us to represent DDG◦Rj
subject to the failures for each j as in Section 3 (i.e. the DDG◦s

in items 2 and 4 in Section 3 are only taken for ancestors of Pi that are descendants of Rj).

We then run FR-Dijkstra on these along with DDG◦ext(Ru, Rv, Rx), not relaxing edges whose

tail is x if encountered. This takes time O(
√
r log2 n).

Main Idea for reducing the space complexity. Instead of storing information for

triplets of pieces, we will store more information, but just for pairs. Given u, v, x we show

how to compute d(u, v, x) relying on the information stored for the pair of pieces Ru and Rx.

We first compute the distances from u to each w ∈ ∂Ru ∪ ∂Rx in G \ {x} using FR-Dijkstra

with DDG◦ext(Ru, Rx) as in the warm up above. We then identify an appropriate piece Q in

T that contains v, and does not contain u nor x. Exploiting the fact that distances within Q

remain unchanged when x fails, we employ Voronoi Diagrams with point location for the

piece Q, adapting ideas from [25].

Additional Preprocessing. For each pair of pieces (Ri, Rj) of the r-division we compute

and store the following:

1. DDG◦ext(Ri, Rj).

2. Let S be a separator in the recursive decomposition, separating a piece into two

subpieces Q and R, such that Ri ⊆ R and Rj 6⊂ Q. For each y ∈ ∂Ri ∪ ∂Rj, for each

hole h of Q, we compute and store a Voronoi diagram with the point location data

structure for Q, with sites the boundary vertices of Q that lie on h, and additive weights

the distances from y to these sites in G \ ((Ri ∪Rj) \ {y}).

We now show that the space required is O(n
5/2

r3/2
+ n log2 n). The space required for the

preprocessed internal and external dense distance graphs is O(n log n) and O(n
2

r
), respectively,

by Theorem 4. We next analyze the space required for storing the Voronoi diagrams. We

21

consider O(g(n, r, 2)) = O(n
2

r2
) pairs of pieces (Ri, Rj), and for each of the O(

√
r) boundary

vertices of each such pair we store, in the worst case, a Voronoi diagram for each of the O(1)

holes of each sibling of the nodes in the root-to-Ri and root-to-Rj paths in T . The total

number of sites of all Voronoi diagrams we store for a pair of pieces can be upper bounded by

O(
√
n) by noting that the number of sites at level ` of TG has O(

√
n/c`2) boundary vertices

by Lemma 1. By Theorem 9, the space required to store a representation of a set of Voronoi

diagrams with the functionality allowing for efficient point location queries for a piece P , with

sites a subset of the boundary vertices of P , lying on a hole h is O
(∑

P∈T (SP,h+ |P | log |P |)
)
,

where SP,h is the total cardinality of these sets of sites. Summing over all holes of all pieces

P , noting that
∑

P∈T
∑

h SP,h = O(n
5/2

r3/2
) by the above discussion, and using Proposition 2,

the total space required for all Voronoi diagrams is O(n
5/2

r3/2
+ n log2 n).

We analyze the construction time in Section 5. The internal dense distance graphs can be

computed in time O(n log2 n). The external dense distance graphs and the additive weights

can be computed in time O(n
2

r
log2 n) and O(n

2

r

√
nr log3 n), respectively; see Lemmas 16

and 17. We show in Lemma 18 that we can compute all required Voronoi diagrams in time

Õ(n2 + S), where S is the size of their representation described in Section 2.

Query. If any two of {u, v, x} are in the same piece of the r-division, then we can use

FR-Dijkstra taking into account just two pieces of the r-division containing u, v, and x,

similarly to the description in the warm up above. We therefore assume no two of {u, v, x}

are in the same piece of the r-division. We first retrieve a piece Rv of the r-division, containing

v (to support that, each vertex stores a pointer to some piece of the r-division that contains

it). In the following we will need to check whether a vertex is in some particular piece of

T . This can be done in O(log n) time by storing, for each piece in T , a binary tree with the

vertices in the piece. We then proceed as follows (inspect Fig. 3 for an illustration).

1. Following parent pointers of Rv in T , we find the highest ancestor Q of Rv containing

neither u nor x. Thus, the sibling R of Q in T contains a vertex i ∈ {u, x}. We find a

22

descendant Ri of R that is in the r-division and contains i. We then find any piece Rj

of the r-division containing the element of {u, x} \ {i}. Note that, by choice of Q, Rj

is not a descendant of Q. Finding these pieces requires time O(log2 n).

(a) The DDG◦s that allow us to represent DDG◦Ru
as in Section 3.

(b) DDG◦ext(Ru, Rx);

(c) the DDG◦s that allow us to represent DDG◦Rx
subject to the failure of x as

in Section 3.

This takes time O(
√
r log2 n) and returns dG(u, y, x) for each y ∈ ∂Ru ∪ ∂Rx.

2. For each y ∈ (∂Ru ∪ ∂Rx) \ {x}, for each hole h of Q, we perform an O(log2 n)-time

query to the Voronoi diagram stored for Ru, Rx, y, and h to get the distance from y to v

in G \ ((Ru∪Rx) \ {y}). The required distance is the minimum d(u, y, x) +d(y, v, (Ru∪

Rx)\{y}) over all y. Each query takes O(log2 n) time and hence the total time required

is O(
√
r log2 n).

We now argue the correctness of the query algorithm. Let ρ be a shortest u-to-v path

that avoids x. Let z be the last vertex of ρ that belongs to ∂Ru ∪ ∂Rx. Let h′ be the hole of

Q such that the last vertex of ρ that belongs to the boundary of Q belongs to hole h′. The

distance dG(u, z, x) from u to z in G \ {x} is computed by the FR-Dijkstra computation in

step 2, while the distance from z to v in G \ {x} is obtained from the query to the Voronoi

diagram stored for Ru, Rx, z, and h′. It is easy to see that we do not obtain any distance

that does not correspond to an actual path in G \ {x} and hence the correctness of the query

algorithm follows.

4.2 Handling multiple failures

The warm-up approach of Section 4.1 can be trivially generalized to handle k failed vertices

by considering (k + 2)-tuples of pieces of the r-division. (We consider the elements of tuples

23

root

S

R Q

Rx Ru Rv

(a) root-to-Ri paths in T

𝐺𝐺𝑥𝑥

𝑅𝑅𝑢𝑢 𝑅𝑅𝑣𝑣
𝑢𝑢 𝑣𝑣

𝑆𝑆𝑅𝑅 𝑄𝑄

𝑅𝑅𝑥𝑥

𝑧𝑧

(b) The u-to-v path in G \ {x}

Figure 3: To the left: A view of the root-to-Ri paths in T . Straight edges denote edges of
the tree, while snake-shaped edges denote paths. To the right: A view of the shortest path in
G. The paths in blue are represented by the DDG◦s, the ones in green by DDG◦ext and the
length of the one in red is returned by the point location query in the Voronoi diagram.

to be unordered throughout.) The space required is Õ(g(n, r, k + 2)(
√
r)2) = Õ(n

k+2

rk+1) and

queries can be answered in Õ(k
√
r) time. We reduce the space to Õ(n

k+1

rk+1

√
nr) by generalizing

the main algorithm of Section 4.1.

Preprocessing.

1. We perform the precomputations of Section 3.

2. For each (k + 1)-tuple of pieces (Ri1 , . . . , Rik+1
) of the r-division we compute and store

the following:

(a) DDG◦ext(Ri1 , . . . , Rik+1
).

(b) Let S be a separator in the recursive decomposition, separating a piece into Q

and R, such that for some j Rij ⊆ R and none of the other pieces of the tuple is a

subgraph of Q. For each y ∈
k+1⋃
j=1

∂Rij , for each hole h of Q, we store a Voronoi

diagram with the point location data structure for Q, with sites the boundary

24

vertices of Q that lie on h, and additive weights the distances from y to these sites

in G \
((k+1⋃

j=1

Rij

)
\ {y}

)
.

Query. We first retrieve a piece Rv of the r-division, containing v. We can again assume

that no two elements of {u}∪X are in the same piece of the r-division, since otherwise we can

answer the query in O(k
√
r) time by running FR-Dijkstra on the DDG◦ext of a (k + 1)-tuple

and the DDG◦s we add for each of the pieces in the tuple, following the algorithm of Section 3.

The algorithm is then essentially the same as that of Section 4.1.

1. We find the highest ancestor Q of Rv in T that does not contain any of the elements

of {u} ∪X and retrieve a descendant of its sibling in the r-division that does contain

some element i ∈ {u} ∪ X. We then identify a piece Rj in the r-division for each

j ∈ {u} ∪X \ {i}. This requires time O(k log2 n).

2. We run FR-Dijkstra on DDG◦s of total size O(k
√
r).

3. We perform O(k
√
r) point location queries to Voronoi diagrams of Q, each requiring

time O(log2 n).

We hence obtain the general tradeoff theorem.

Theorem 15. For any integer r ∈ [1, n] and for any integer k ≤ n
r
, there exists a data struc-

ture of size O((cn)
k+1

rk+1
1
k!

√
nkr + n log2 n), which can be constructed in time Õ((cn)

k+1

rk+1
1
k!

√
nkr +

n2), for some constant c > 1, and can answer the following queries in O(k
√
r log2 n) time.

Given vertices u and v and a set X of at most k failing vertices, report the length of a shortest

u-to-v path that avoids X.

Remark. Our distance oracle can handle any number f of failures that lie in at most k

pieces of the r-division in time Õ((k+
√
fk)
√
r) with an Õ(n

k+1

rk+1

√
nr)-size oracle. This follows

from the fact that the DDG◦s we will add for a piece with fi failures have total size Õ(
√
fir)

by the same analysis as in the proof of Lemma 12 and the fact that, given f1, . . . , fk such

that
∑k

i=1 fi = f , we have
∑k

i=1

√
fi ≤

√
fk by the Cauchy-Schwarz inequality.

25

Proof of Theorem 15. The correctness of the query algorithm follows by an argument identical

to the one for the case of single failures (see Section 4.1); its time complexity is analyzed

above. We next analyze the space required by our data structure and its construction time.

Space Complexity. The space occupied by the preprocessed DDG◦s and DDG◦exts is

O(n log n) and O(g(n, r, k + 1)k2r) = O((cn)
k+1

rk+1
kr
k!

), respectively, by Theorem 4.

We bound the space required for the Voronoi diagrams by O(g(n, r, k+1)k
√
nkr+n log2 n)

as follows. For each of the of the O(k
√
r) boundary vertices of each of the O(g(n, r, k + 1))

(k + 1)-tuples, we store a Voronoi diagram for each of the O(1) holes, of (at most) each

of the siblings of the nodes in the root-to-Ri path in T for each Ri in the tuple. With an

argument identical to the one used in the proof of Theorem 4, the total number of boundary

vertices (with multiplicities) of all of these pieces is O(
√
kn). Hence the total number of all

Voronoi diagrams that we store is O(g(n, r, k+ 1)k
√
nkr). By Theorem 9, the size required to

store them, with the required functionality, is O(g(n, r, k + 1)k
√
nkr +

∑
P∈T |P | log |P |) =

O((cn)
k+1

rk+1
1
k!

√
nkr + n log2 n), where the last equality follows by Proposition 2.

The total space is thus O((cn)
k+1

rk+1
1
k!

)(kr+
√
nkr) + n log2 n) = O((cn)

k+1

rk+1
1
k!

√
nkr+ n log2 n)

since k ≤ n/r.

Preprocessing time. We compute the DDG◦exts and the required additive weights of all

(k+1)-tuples in time Õ((cn)
k+1

rk
1

(k−1)!) and Õ((cn)
k+1

rk+1
1

(k−1)!

√
nkr), respectively, using Lemmas 16

and 17. Finally, constructing the Voronoi diagrams requires time Õ(n2 + S), where S is the

total size of their representation, which is equal to the total number of sites in these diagrams

(with multiplicities), as shown in Lemma 18; this dominates the time complexity.

5 Efficient preprocessing

In this section we show how to efficiently compute the data structures described in Section 4.

It is shown in [32] (cf. see Theorem 3 therein) that, given a geometrically increasing sequence

26

of numbers ∇ = (r1, r2, . . . , rν), where r1 is a sufficiently large constant, ri+1/ri = b, for

all i, for some constant b > 1, and rν = n, we can obtain r-divisions for all r ∈ ∇ in time

O(n) in total. These r-divisions satisfy the property that a piece in the ri-division is a —not

necessarily strict— descendant (in T) of a piece in the rj-division for each j > i.

We first show how to efficiently compute the external DDGs for all k-tuples of pieces of

an r-division, r ∈ ∇.

Lemma 16. Given ri ∈ ∇ and an integer d ≤ n
ri

, one can compute DDG◦ext for all d-tuples

of pieces of each rt-division, t ≥ i, in time O((cn)
d

rd−1
i

1
(d−2)! log2 n) for some constant c > 1.

Proof. We prove this lemma by induction on ∇ from top to bottom. For rν = n, the only piece

is G. DDG◦ext(G) is the empty graph. Assume inductively that we have DDG◦ext(R1, . . . , Rd)

for every d-tuple (R1, . . . , Rd) of pieces at the ri+1-division. Let Q1, . . . , Qd be pieces at the ri-

division. Note that every piece at level ri is contained in some piece at level ri+1, but a piece at

level ri+1 might contain multiple pieces at level ri. Let R1, . . . , Rd be pieces of the ri+1-division

such that each Qj is a subgraph of some Rj′ . Let QRj
be the maximal subset of {Q1, . . . , Qd}

such that each piece in QRj
is contained in Rj . For every j ∈ {1, . . . d} let R′j = Rj \ (

⋃
QRj

)

(i.e. the allowed internal part of Rj). Since Rj and each Qm ∈ QRj
have O(

√
ri+1) and O(

√
ri)

boundary vertices respectively, R′j has O(
√
ri+1 +

√
ri|QRj

|) = O(|QRj
|√ri+1) boundary

vertices (recall that ri+1/ri = b).

We compute DDG◦R′j
in a similar manner to the query of Section 3 by running FR-Dijkstra

on the union of the following DDG◦s. For each piece Qm ∈ QRj
, for each ancestor Q of Qm

(including Qm) that is a strict descendant of Rj in T , we take the DDG◦P of the sibling P of Q

if P contains no piece of QRj
. The pieces of QRj

have O(|QRj
|√ri) boundary vertices in total

and the total number of boundary vertices for their ancestors is bounded by O(|QRj
|√ri+1).

Running FR-Dijkstra from each of the O(|QRj
|√ri+1) boundary vertices of R′j yields

DDG◦R′j
and requires O(|QRj

|√ri+1|QRj
|√ri+1 log2 n) = O(|QRj

|2ri+1 log2 n) time in total.

When summing over R1, . . . , Rd we get
∑d

j=1 |QRj
|2ri+1 log2 n ≤ ri+1 log2 n

(∑d
j=1 |QRj

|
)2

=

d2ri+1 log2 n. The inequality is due to the Cauchy-Schwarz inequality and the equality follows

27

from the fact that
∑d

j=1 |QRj
| = d.

Let D = DDG◦ext(R1, . . . , Rd)
⋃

(
d⋃
j=1

DDG◦R′j
). DDG◦ext(R1, . . . , Rd) and

d⋃
j=1

DDG◦R′j
con-

tribute O(d
√
ri+1) and O(d(

√
ri+1 +

√
ri)) boundary vertices to D, respectively. We run

FR-Dijkstra on D from each boundary vertex of Qm for m ∈ {1, . . . d}. There are O(d
√
ri)

such boundary vertices, so this requires O(d
√
rid(
√
ri+1 +

√
ri) log2 n) = O(d2ri+1 log2 n)

time, and yields DDG◦ext(Q1, . . . , Qd).

We can thus computeDDG◦ext(Q1, . . . , Qd) for all d-tuples at level ri inO((g(n, ri, d)d2ri+1 log2 n) =

O((cn)d

rdi
ri+1

1
d!
d2 log2 n) = O((cn)d

rd−1
i

1
(d−2)! log2 n) time, assuming that we have the DDG◦exts for

all d-tuples of pieces of rt-divisions, t > i.

The time to compute the DDG◦exts for all d-tuples of pieces of all rt-divisions, t > i, is,

inductively, O
(
(cn)d 1

(d−2)! log2 n
∑ν

t=i+1
1

rd−1
t

)
, and

∑ν
t=i+1

1

rd−1
t

= 1

rd−1
i

∑ν−i
t=1(

1
bd−1)t = O(1

rd−1
i

)

since bd−1 > 1. Thus computing the DDG◦exts for d-tuples of pieces of the ri-division dominates

the time complexity.

We next show how to efficiently compute the additive distances with respect to which the

Voronoi diagrams stored by our oracle are computed.

Lemma 17. Let Rr be an r-division, such that r ∈ ∇, and let d ≤ n
r

be an integer. For all

d-tuples of pieces R1, . . . , Rd in Rr and for all pieces Q ∈ T such that Q does not contain

any of the pieces Ri, and Q is a sibling of a node in the root to-Ri path in T for some Ri, one

can compute the distances from each y ∈
d⋃
i=1

∂Ri to each boundary vertex of Q in the graph

G \
((d⋃

i=1

Ri

)
\ {y}

)
in time O

((cn)d
rd

1
(d−2)!

√
ndr log3 n

)
in total, for some constant c > 1.

Proof. Let us consider a d-tuple of pieces (R1, . . . , Rd) and a piece Q, satisfying the properties

in the statement of the lemma. To compute the desired distances, we run FR-Dijkstra from

each y ∈
d⋃
i=1

∂Ri on the union of the following DDGs:

1. DDG◦Q.

2. For each piece Ri ∈ {R1, . . . , Rd} for each ancestor A of Ri (including Ri) in T , we

take the DDG◦B of the sibling B of A if B contains no piece of R1, . . . , Rd.

28

This correctly computes the distances by the same arguments that were applied in Section 3.

It remains to analyze the time complexity. Consider the (n/d)-division of G in T . By the same

argument that was applied in the proof of Lemma 12 we can bound the number of boundary

vertices for all the included DDG◦s by O(
√
dn). There are O(d

√
r) choices of y ∈

d⋃
i=1

∂Ri, so

the time required to run FR-Dijkstra from each y is O(d
√
r
√
dn log2 n) = O(d

√
nrd log2 n).

Each piece Ri ∈ {R1, . . . , Rd} has O(log n) nodes in the root-to-Ri path in T , hence com-

puting the distances for all possible choices of Q requires time O(d2
√
nrd log3 n). Finally, in or-

der to compute the distances for all d-tuples of pieces we need timeO((g(n, r, d)d2
√
nrd log3 n) =

O(((cn)
d

rd
) 1
d!
d2
√
nrd log3 n) = O(((cn)

d

rd
) 1
(d−2)!

√
nrd log3 n).

Lemma 18. We can compute the representation of the Voronoi diagrams described in Sec-

tion 2 with respect to sets of sites, of total cardinality S, each corresponding to a piece P ∈ T ,

consisting of nodes of ∂P that lie on a single hole of P , and specifying an additive weight for

each of these nodes in time Õ(n2 + S) in total.

Proof. We apply Theorem 9 and construct all the Voronoi diagrams corresponding to each

of the O(1) holes of each piece as a batch. For a hole h of a piece P , the time required is

Õ(|P ||∂P |2 +
∑

h SP,h), where SP,h is the total cardinality of the sets of sites corresponding

to nodes of ∂P lying on h. Then we have that

∑
P∈T

(
|P ||∂P |2 +

∑
h

|SP,h|
)

= O(n2 + S),

by Propositions 2 and 3 and hence the stated bound follows.

29

6 Dynamic Distance Oracles can handle Vertex Dele-

tions

In this section we briefly explain how the techniques of Section 3, and specifically our notion

of strict dense distance graph DDG◦ can be used to facilitate vertex deletions in dynamic

distance oracles for planar graphs. The dynamic distance oracle of [18] for non-negative

edge-weight updates was improved and simplified in [31]. In [31], the algorithm obtains an

r-division of G, and then computes and preprocesses the DDGs of the pieces of the r-division

in O(n log n) time to allow for FR-Dijkstra computations in the union of these DDGs in

O(n√
r

log2 n). For a given query asking for the distance from some vertex u to some vertex

v, the algorithm performs standard Dijkstra computations within the piece containing u

(resp. v) to compute the distances from u to the boundary vertices of the piece (resp. from the

boundary vertices of the piece to v) and combines this with an FR-Dijkstra on the boundary

vertices of the r-division. Given an edge update, only the DDG of the unique piece in the

r-division containing the updated edge needs to get updated, and this requires O(r log r)

time. The balance is at r = n2/3 log2/3 n, yielding O(n2/3 log5/3 n) time per update and query.

This result was extended in [28], where the authors showed how to allow for edge insertions

(not violating the planarity of the embedding) and edge deletions and further in [30] where

the authors showed how to handle arbitrary (i.e. also negative) edge-weight updates. The

time complexity was improved by a log4/3 log n factor in [24].

We observe that, by using DDG◦s instead of the standard DDGs, vertex deletions can

also be handled as follows. Each vertex is either a boundary vertex in each piece of the

r-division containing it, or an internal vertex in a unique piece. If a deleted vertex is a

boundary vertex, we just mark it as such and do not relax edges outgoing from it during

(FR-)Dijkstra computations. If a deleted vertex is internal, we recompute the DDG◦ of the

piece containing it, and reprocess it in time O(r log r) exactly as in the case of edge-weight

updates. The only slightly technical issue we need to take into account is that in Section 3,

30

edge weights in DDG◦ are shifted by the large constant C (recall that C is defined as twice

the sum of edge weights in the entire graph G). The problem is that C might change after

each update operation, and this update affects the weights of all the edges in all DDG◦s.

This can be easily solved using indirection. Instead of using the explicit value of C in each

edge weight, we represent C symbolically, and store the actual value of C explicitly at some

placeholder. Updating C can be done in constant time because only the explicit value at

the placeholder needs to be updated. Whenever an edge weight is required by the algorithm,

it is computed on the fly in constant time using the value of C stored in the placeholder.

The data structures underlying FR-Dijkstra do not make use of any, for instance, integer

data structures like predecessor data structures —informally, all used data structures are

comparison based. Hence, since the value of C is greater than all edge-weights at the time

they are built, they are identical to the data structures that would have been built for this

piece with any subsequent value of C. Vertex additions do not alter shortest paths and hence

can be treated trivially. Note that, as in [28], we can afford to recompute the entire data

structure from scratch after every O(
√
r) operations. This guarantees that the number of

vertices and number of boundary vertices in each piece remain O(r) and O(
√
r), respectively,

throughout. We formalize the above discussion in the following theorem.

Theorem 19. A planar graph G can be preprocessed in time O(n log2 n
log logn

) so that edge-weight

updates, edge insertions not violating the planarity of the embedding, edge deletions, vertex

insertions and deletions, and distance queries can be performed in time O(n2/3 log5/3 n

log4/3 logn
) each,

using O(n) space.

7 Final Remarks

Perhaps the most intriguing open question related to our results is whether it is possible to

answer distance queries subject to even one failure in time Õ(1) with an o(n2)-size oracle.

Recall that the best known exact failure-free distance oracle that answers queries in Õ(1)

31

occupies Õ(n3/2) space [25]. Note that if the source vertex is fixed, there is a data structure

with Õ(n) space that supports a single failure in Õ(1) time [4]. Expanding this result to

support more than one failure is also a subject of interest. Although not mentioned explicitly,

the approximate dynamic distance oracle of [2] can be used as an approximate distance

oracle of size Õ(n) to support k failures, with query time Õ(k
√
n) simply by updating the

graph k-times, each time with an additional failed vertex. As explained in Appendix A,

no approximate dynamic distance oracle for directed planar graph is known to this date.

Another question of interest, is whether there is an exact distance oracle with near linear

space that can support any number of failures in o(
√
n) query time.

References

[1] Amir Abboud and Søren Dahlgaard. Popular conjectures as a barrier for dynamic planar

graph algorithms. In Irit Dinur, editor, IEEE 57th Annual Symposium on Foundations

of Computer Science, FOCS 2016, 9-11 October 2016, Hyatt Regency, New Brunswick,

New Jersey, USA, pages 477–486. IEEE Computer Society, 2016.

[2] Ittai Abraham, Shiri Chechik, and Cyril Gavoille. Fully dynamic approximate distance

oracles for planar graphs via forbidden-set distance labels. In Howard J. Karloff and

Toniann Pitassi, editors, Proceedings of the 44th Symposium on Theory of Computing

Conference, STOC 2012, New York, NY, USA, May 19 - 22, 2012, pages 1199–1218.

ACM, 2012.

[3] Srinivasa Rao Arikati, Danny Z. Chen, L. Paul Chew, Gautam Das, Michiel H. M. Smid,

and Christos D. Zaroliagis. Planar spanners and approximate shortest path queries

among obstacles in the plane. In Josep Dı́az and Maria J. Serna, editors, Algorithms

- ESA ’96, Fourth Annual European Symposium, Barcelona, Spain, September 25-27,

1996, Proceedings, volume 1136 of Lecture Notes in Computer Science, pages 514–528.

Springer, 1996.

32

[4] Surender Baswana, Utkarsh Lath, and Anuradha S. Mehta. Single source distance oracle

for planar digraphs avoiding a failed node or link. In Proceedings of the Twenty-Third

Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2012, Kyoto, Japan,

January 17-19, 2012, pages 223–232, 2012.

[5] Aaron Bernstein and David R. Karger. A nearly optimal oracle for avoiding failed

vertices and edges. In Michael Mitzenmacher, editor, Proceedings of the 41st Annual

ACM Symposium on Theory of Computing, STOC 2009, Bethesda, MD, USA, May 31 -

June 2, 2009, pages 101–110. ACM, 2009.

[6] Sergio Cabello. Many distances in planar graphs. Algorithmica, 62(1-2):361–381, 2012.

[7] Sergio Cabello, Erin W. Chambers, and Jeff Erickson. Multiple-source shortest paths in

embedded graphs. SIAM J. Comput., 42(4):1542–1571, 2013.

[8] Panagiotis Charalampopoulos, Shay Mozes, and Benjamin Tebeka. Exact distance

oracles for planar graphs with failing vertices. CoRR, abs/1807.05968, 2018.

[9] Danny Z. Chen and Jinhui Xu. Shortest path queries in planar graphs. In F. Frances Yao

and Eugene M. Luks, editors, Proceedings of the Thirty-Second Annual ACM Symposium

on Theory of Computing, May 21-23, 2000, Portland, OR, USA, pages 469–478. ACM,

2000.

[10] Vincent Cohen-Addad, Søren Dahlgaard, and Christian Wulff-Nilsen. Fast and compact

exact distance oracle for planar graphs. In Chris Umans, editor, 58th IEEE Annual

Symposium on Foundations of Computer Science, FOCS 2017, Berkeley, CA, USA,

October 15-17, 2017, pages 962–973. IEEE Computer Society, 2017.

[11] Camil Demetrescu, Mikkel Thorup, Rezaul Alam Chowdhury, and Vijaya Ramachandran.

Oracles for distances avoiding a failed node or link. SIAM J. Comput., 37(5):1299–1318,

2008.

33

[12] E. W. Dijkstra. A note on two problems in connexion with graphs. NUMERISCHE

MATHEMATIK, 1(1):269–271, 1959.

[13] Hristo Djidjev. On-line algorithms for shortest path problems on planar digraphs. In

Fabrizio d’Amore, Paolo Giulio Franciosa, and Alberto Marchetti-Spaccamela, editors,

Graph-Theoretic Concepts in Computer Science, 22nd International Workshop, WG ’96,

Cadenabbia (Como), Italy, June 12-14, 1996, Proceedings, volume 1197 of Lecture Notes

in Computer Science, pages 151–165. Springer, 1996.

[14] Ran Duan and Seth Pettie. Dual-failure distance and connectivity oracles. In Claire

Mathieu, editor, Proceedings of the Twentieth Annual ACM-SIAM Symposium on Dis-

crete Algorithms, SODA 2009, New York, NY, USA, January 4-6, 2009, pages 506–515.

SIAM, 2009.

[15] Yuval Emek, David Peleg, and Liam Roditty. A near-linear-time algorithm for computing

replacement paths in planar directed graphs. ACM Trans. Algorithms, 6(4):64:1–64:13,

2010.

[16] David Eppstein. Finding the k shortest paths. SIAM J. Comput., 28(2):652–673, 1998.

[17] Jeff Erickson, Kyle Fox, and Luvsandondov Lkhamsuren. Holiest minimum-cost paths

and flows in surface graphs. In Ilias Diakonikolas, David Kempe, and Monika Henzinger,

editors, Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Com-

puting, STOC 2018, Los Angeles, CA, USA, June 25-29, 2018, pages 1319–1332. ACM,

2018.

[18] Jittat Fakcharoenphol and Satish Rao. Planar graphs, negative weight edges, shortest

paths, and near linear time. J. Comput. Syst. Sci., 72(5):868–889, 2006.

[19] Esteban Feuerstein and Alberto Marchetti-Spaccamela. Dynamic algorithms for shortest

paths in planar graphs. Theor. Comput. Sci., 116(2):359–371, 1993.

34

[20] Robert W. Floyd. Algorithm 97: Shortest path. Commun. ACM, 5(6):345, 1962.

[21] Greg N. Frederickson. Fast algorithms for shortest paths in planar graphs, with applica-

tions. SIAM J. Comput., 16(6):1004–1022, 1987.

[22] Michael L. Fredman and Robert Endre Tarjan. Fibonacci heaps and their uses in

improved network optimization algorithms. J. ACM, 34(3):596–615, 1987.

[23] Pawel Gawrychowski, Haim Kaplan, Shay Mozes, Micha Sharir, and Oren Weimann.

Voronoi diagrams on planar graphs, and computing the diameter in deterministic Õ(n5/3)

time. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete

Algorithms, SODA 2018, New Orleans, LA, USA, January 7-10, 2018, pages 495–514,

2018.

[24] Pawel Gawrychowski and Adam Karczmarz. Improved bounds for shortest paths in

dense distance graphs. In Ioannis Chatzigiannakis, Christos Kaklamanis, Dániel Marx,

and Donald Sannella, editors, 45th International Colloquium on Automata, Languages,

and Programming, ICALP 2018, July 9-13, 2018, Prague, Czech Republic, volume 107

of LIPIcs, pages 61:1–61:15. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2018.

[25] Pawel Gawrychowski, Shay Mozes, Oren Weimann, and Christian Wulff-Nilsen. Better

tradeoffs for exact distance oracles in planar graphs. In Proceedings of the Twenty-Ninth

Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018, New Orleans, LA,

USA, January 7-10, 2018, pages 515–529, 2018.

[26] Monika Rauch Henzinger, Philip N. Klein, Satish Rao, and Sairam Subramanian. Faster

shortest-path algorithms for planar graphs. J. Comput. Syst. Sci., 55(1):3–23, 1997.

[27] John Hershberger and Subhash Suri. Vickrey prices and shortest paths: What is an

edge worth? In 42nd Annual Symposium on Foundations of Computer Science, FOCS

2001, 14-17 October 2001, Las Vegas, Nevada, USA, pages 252–259. IEEE Computer

Society, 2001.

35

[28] Giuseppe F. Italiano, Yahav Nussbaum, Piotr Sankowski, and Christian Wulff-Nilsen.

Improved algorithms for min cut and max flow in undirected planar graphs. In Lance

Fortnow and Salil P. Vadhan, editors, Proceedings of the 43rd ACM Symposium on

Theory of Computing, STOC 2011, San Jose, CA, USA, 6-8 June 2011, pages 313–322.

ACM, 2011.

[29] Donald B. Johnson. Efficient algorithms for shortest paths in sparse networks. J. ACM,

24(1):1–13, 1977.

[30] Haim Kaplan, Shay Mozes, Yahav Nussbaum, and Micha Sharir. Submatrix maximum

queries in monge matrices and partial monge matrices, and their applications. ACM

Trans. Algorithms, 13(2):26:1–26:42, 2017.

[31] Philip N. Klein. Multiple-source shortest paths in planar graphs. In Proceedings of

the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2005,

Vancouver, British Columbia, Canada, January 23-25, 2005, pages 146–155. SIAM, 2005.

[32] Philip N. Klein, Shay Mozes, and Christian Sommer. Structured recursive separator

decompositions for planar graphs in linear time. In Dan Boneh, Tim Roughgarden, and

Joan Feigenbaum, editors, Symposium on Theory of Computing Conference, STOC’13,

Palo Alto, CA, USA, June 1-4, 2013, pages 505–514. ACM, 2013.

[33] Philip N. Klein, Shay Mozes, and Oren Weimann. Shortest paths in directed planar

graphs with negative lengths: A linear-space O(n log2 n)-time algorithm. ACM Trans.

Algorithms, 6(2):30:1–30:18, 2010.

[34] Richard J. Lipton and Robert Endre Tarjan. A separator theorem for planar graphs.

SIAM J. Appl. Math., 36(2):177–189, 1979.

[35] Gary L. Miller. Finding small simple cycle separators for 2-connected planar graphs. In

Richard A. DeMillo, editor, Proceedings of the 16th Annual ACM Symposium on Theory

36

of Computing, April 30 - May 2, 1984, Washington, DC, USA, pages 376–382. ACM,

1984.

[36] Gaspard Monge. Mémoire sur la théorie des déblais et des remblais. De l’Imprimerie

Royale, 1781.

[37] Shay Mozes and Christian Sommer. Exact distance oracles for planar graphs. In

Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms,

SODA 2012, Kyoto, Japan, January 17-19, 2012, pages 209–222, 2012.

[38] Shay Mozes and Christian Wulff-Nilsen. Shortest paths in planar graphs with real lengths

in O(nlog2n/loglogn) time. In Mark de Berg and Ulrich Meyer, editors, Algorithms

- ESA 2010, 18th Annual European Symposium, Liverpool, UK, September 6-8, 2010.

Proceedings, Part II, volume 6347 of Lecture Notes in Computer Science, pages 206–217.

Springer, 2010.

[39] Noam Nisan and Amir Ronen. Algorithmic mechanism design (extended abstract).

In Jeffrey Scott Vitter, Lawrence L. Larmore, and Frank Thomson Leighton, editors,

Proceedings of the Thirty-First Annual ACM Symposium on Theory of Computing, May

1-4, 1999, Atlanta, Georgia, USA, pages 129–140. ACM, 1999.

[40] Yahav Nussbaum. Improved distance queries in planar graphs. In Algorithms and Data

Structures - 12th International Symposium, WADS 2011, New York, NY, USA, August

15-17, 2011. Proceedings, pages 642–653, 2011.

[41] Christian Sommer. Shortest-path queries in static networks. ACM Comput. Surv.,

46(4):45:1–45:31, 2014.

[42] Mikkel Thorup. Compact oracles for reachability and approximate distances in planar

digraphs. J. ACM, 51(6):993–1024, 2004.

[43] Mikkel Thorup and Uri Zwick. Approximate distance oracles. J. ACM, 52(1):1–24, 2005.

37

[44] Stephen Warshall. A theorem on boolean matrices. J. ACM, 9(1):11–12, 1962.

[45] Oren Weimann and Raphael Yuster. Replacement paths and distance sensitivity oracles

via fast matrix multiplication. ACM Trans. Algorithms, 9(2):14:1–14:13, 2013.

[46] Christian Wulff-Nilsen. Solving the replacement paths problem for planar directed

graphs in o(n log n) time. In Moses Charikar, editor, Proceedings of the Twenty-First

Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2010, Austin, Texas,

USA, January 17-19, 2010, pages 756–765. SIAM, 2010.

38

A Approximative distance oracle with failed vertices

As we mentioned in Section 1, Abraham et al. [2] gave the best known fully dynamic (1 + ε)-

distance oracle for undirected planar graphs. First we summarize their methods and then we

explain why similar methods seem not to work in the directed setting.

Current Approach In order to decompose the graph into regions, they use a shortest-path

separator for planar graphs [34].

Lemma 20. Given a subgraph C of G, one can find in linear time an edge (u, v) ∈ E(G)\E(T)

such that C \ (Tu ∪ Tv) is divided into two subgraphs A,B of at most 2|C|/3 vertices such

that no edge of G links a vertex of A to a vertex of B. Moreover, A and B lie on different

faces of the plane graph Tu ∪ Tv ∪ {(u, v)}

Using Lemma 20 recursively, they define a separator hierarchy tree T as follows. The

tree T is binary, each node ν of T corresponds to an edge (u, v) of G induced by Lemma 20

applied on some subgraph C of G. The root of T is the edge (u, v) of Lemma 20 in the case

C = G. The two children of (u, v) are then the two edges corresponding to the two path

separators when applying Lemma 20 to the subgraphs A and B, The decomposition stops

whenever we find (u, v) for C such that C ⊆ Tu ∪ Tv, that is there is no more subgraphs A

and B. Such a tree T has depth O(log n) and can be constructed in O(n log n) time.

Using the recursive decomposition they first show how to compute failure free distance

labels. For each region R ∈ T and for each vertex v ∈ R they store the distance d(v, p) where

p is portal of v. The portals are vertices on the boundary of R chosen in a manner that for

every vertex t ∈ ∂R, v has a portal at distance O(εd(v, t)). Given a source vertex s, and a

target vertex t, taking the edges of the labels of s and t and the edges connecting portals

that belong to the same separator, gives us a relatively small graph that approximates the

distance d(s, t) by a factor of 1 + ε. Running the standard Dijkstra algorithm retrieve the

required distance.

39

In order to extend their labels to handle faults, they double the failure free labels in the

following manner. The fault tolerant label of a vertex v contains:

1. the failure free label of v (as described above)

2. for each portal p in the label of v, the failure free label of p.

By doing so, at query time the label of a fault contains enough information to represent

paths that does not go through the fault. Given a source vertex s, a target vertex t and

a set F of failed vertices, they construct a graph H containing all of the safe edges in the

labels of s, t and vertices of F . An edge (u, v) is safe if ∀f ∈ F : d(u, f) + d(f, v) > d(u, v).

Although the distances d(u, f) and d(f, v) are unknown, they are able to approximate them.

Note that any edge that represents a path that goes through some failed vertex will not be

safe. Therefore the graph H contains only valid paths. They show H contains a path of

length at most (1 + ε)d(s, t, F) from s to t. One of the main complications, is that a vertex

may belong to many regions and thus his label might become too large. To solve this issue,

they show that each region contains at most O(log n) special vertices (apices) that need to

be handled differently. The rest of the vertices belong to only O(log n) regions.

Directed Graphs We show that similar methods seem not to work in directed graphs.

Specifically, reachability cannot be satisfied under the assumption that the label of a vertex

contains connections to o(
√
n) vertices in the graph.

Following is a description of a family of directed planar graphs. Note that we only describe

the shortest path tree with n as its parameter. Given an integer n that is a multiple of three

and a small constant c, let r be the root vertex of the tree T with three child vertices. Let T1

and T2 be two trees that emerge from the children of r, and let s be the third child of r. T1

contains a path P with 1/3n+ c vertices where the degree of each vertex on P is two. Let w

be the last vertex on P . T2 contains two consecutive vertices u and v. v is of degree one (u

is its only neighbour) and u is of degree n/3− 2c− 4. Finally, we add edges from s to all

vertices on P . Inspect Fig. 4 for an illustration.

40

𝑇𝑇1

𝑇𝑇

𝑇𝑇2

𝑟𝑟

𝑠𝑠

𝑢𝑢

𝑣𝑣𝑤𝑤

𝑃𝑃

Figure 4: An example of the shortest path tree T where n = 48 and c = 1. Two paths
emerge from r, T1 and T2. P has 1/3n + c = 17 vertices and and u has a degree of
1/3n − 2c − 4 = 10. The dotted line is one of the possible edges that satisfies Lemma 20.
There are 1/3n − 2c − 3 = 11 red vertices and 1/3n + c = 17 green vertices which are on
different sides of the separator. The purple vertices indicate a possible choice for portals of s.

Note that when C = G, one of the edges that satisfies Lemma 20 is (v, w) because

Tw ∪ Tv ∪ (v, w) divides the graph into two subgraphs of lengths 1/3n+ c and 1/3n− 2c− 3,

both smaller than 2/3n. Other choices for an edge would be an edge connecting v and a

vertex relatively close to w on P . Any other edge would unbalance the division and thus not

satisfy Lemma 20.

Given a portal labeling scheme such that each vertex keeps O(k) information, we choose

the source vertex to be s. The label of s has distances to O(k) portals on P so there must

be two portals p1, p2 ∈ P with Ω(n/k) vertices between them that are not in the label of s.

Setting any vertex f between p1 and p2 to be a failed vertex, s might lose reachability to

the vertices between f and p2, in contrast to the undirected case where p2 could provide the

relevant information. Let x be first vertex after f in P1 that is reachable from s in G \ {f}.

Unless the label of f stores information about the reachability of x from s, s would not be

41

able to reach x. If n/k > k the label of f cannot store distances to all of the vertices between

f and p2. Concluding that if k <
√
n for some vertex f between p1 and p2 there is such a

vertex x that is not a portal of f hence not reachable from s using the labels of s and f .

Finally we set the target vertex to be the neighbour of x that is not on P1.

42

 תקציר

אנו עוסקים בחישוב אוב שעונה על מרחקים קצרים בגרף מישורי ממושקל בהנתן קודקודים כושלים.
, אוב קודקודים כושלים 𝑘𝑘של 𝑋𝑋ואוסף 𝑣𝑣, קודקוד יעד 𝑢𝑢מישורי ממושקל, קודקוד מקור 𝐺𝐺יהי גרף

. אנו מראים אוב אשר 𝑋𝑋אשר אינו עובר באף קודקוד של 𝑣𝑣ל 𝑢𝑢בין כזה מחזיר את המרחק הכי קצר
𝑞𝑞 קבוע ועבור כל 𝑘𝑘יכול להתמודד עם מספר לא מוגבל של כשולונות. בפרט, עבור ∈ [1,𝑛𝑛] אנו

)Õמראים אוב בגודל 𝑛𝑛
𝑘𝑘+32

𝑞𝑞2𝑘𝑘+1
 .𝑞𝑞אשר עונה לשאילתא בזמן (

 המרכז הבינתחומי בהרצליה
ספר אפי ארזי למדעי המחשב-בית

 מחקרימסלול -).M.Scהתכנית לתואר שני (

אוב מרחקים קצרים
מדוייק לגרף מישורי עם

 קודודים כושלים

 מאת
 בנימין טבקה

 בהנחיית ד"ר שי מוזס

 .M.Scכחלק מהדרישות לשם קבלת תואר מוסמך עבודת תזה המוגשת
 הרצליה זי למדעי המחשב, המרכז הבינתחומיבמסלול המחקרי בבית ספר אפי אר

2018יולי

	Introduction
	Our Results and Techniques
	Road map

	Preliminaries
	Near linear space data structure for any number of failures
	Tradeoffs
	The case of a single failure
	Handling multiple failures

	Efficient preprocessing
	Dynamic Distance Oracles can handle Vertex Deletions
	Final Remarks
	Appendices
	Approximative distance oracle with failed vertices

