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Abstract

Cross Site Scripting (or XSS) attacks are one of the most popular web-application browser side

attacks. This attack is using the vulnerability that the (user) input to the web application is

not validated by the web application before being used in generating the response returned to the

user. The XSS attacks use vulnerabilities in the web-application code to inject malicious code

that runs within the victim browser and can cause various malicious activities such as theft of

passwords, theft of user sessions (cookies), scan the end user network, send requests to the web

application as if the victim made them (XSRF), etc. Although the vulnerability is known for a

relatively long time it still considered as one of the top web-application threats [20].

Most of the current mitigation techniques were based on negative security logic, i.e. try to

detect malicious input by detecting patterns that characterize XSS attacks in the input sent to

the web application. These detection mechanisms are subjected to numerous evasion techniques,

including JavaScript creating new JavaScript and several others, and as a result have limited

effectiveness, and have been bypassed many times by attackers. Another mitigation technique

requires the developer to encode/escape any input included in the web page. This encoding

should be done according to the position of the input in the web page. Since it relies on the

developer manual work it is subjected to human errors, and history has proven that these errors

happen frequently.

Modern browsers allow developers to develop plug-ins and add-ons to their browsers. Some

of these add-ons and plug-ins use the browser’s JavaScript engine to execute JavaScript code.

For example, Adobe flash animation can use JavaScript code that will be executed on the

browser, or an add-on that uses JavaScript to block ads from websites. For example, in 2007
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adobe reported [1] that SWF files (Flash animation) can perform XSS attack by embedding

JavaScript commands inside the SWF itself. Current detection mechanisms and filters focus

on HTML/XML responses to look for JavaScript, but not inside SWF files or other file types

that might embed JavaScript.

Our solution detects and prevents automatically and accurately XSS attacks, by detecting the

XSS attack in the JavaScript engine before the attack took place. By locating the XSS detection

mechanism in the JavaScript engine there is no need for the solution to learn how to look for

JavaScript. In addition, due to this location for the XSS detection and prevention mechanism,

it is not subjected to all the evasion techniques used to bypass previous XSS filters and can

handle all the XSS types of attacks: stored, reflected and DOM If the embedded JavaScript is

being executed it will reach the detection mechanism on its own, including JavaScript that has

been generated by execution of another JavaScript.

Our XSS detection and prevention mechanism is primarily based on a positive security logic

(white list), which is known to be more secure (allows only known and approved scripts to run).

To be able to use positive security logic to detect and prevent XSS required to be able to validate

that each script is legal and this can’t be done using the script itself. Thus, we have design

and implemented a generalizing mechanism on the compiled script, such that all variants of

a legal script are generalized to one generalized assembly version. This enables us to create a

whitelist of the signatures of the generalized assembly scripts. In some cases where the white

list is not updated our mechanism falls back into using negative security logic. This negative

logic mechanism is also using the generalized assembly scripts to detect malicious scripts. This

is done by detecting during the generalization process certain operations that are usually used

by malicious scripts. These operations are tagged, and in case the script is unknown, we check

if these tagged operation are common in the web application. Thus, small changes to scripts

in the web application, will not be detected as a malicious script, and unknown script that the

only change using these tags define unknown scripts that doesn’t contain any harmful operation

will not be blocked as well. Thus, operation will be blocked, until the script gets into the white

list. To summarize, our unique location for the XSS detection and prevention mechanism,
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combined with the fact that it works on the generalized assembly version of the script, and

the combination of both positive logic and negative logic enables us to block all XSS attack

with very low risk of false positives. After 3 months of evaluations of our mechanism we have

encountered only got only 4 false positives for all 33 Alexa top websites.
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Chapter 1

Introduction

Anyway, I know only one programming language worse than

C and that is JavaScript. [...] I was convinced that we

needed to build-in a programming language, but the devel-

opers, Tim first, were very much opposed. It had to remain

completely declarative. Maybe, but the net result is that

the programming-vacuum filled itself with the most horrible

kluge in the history of computing: JavaScript.

Robert Cailliau [29]

Back at 1995, at the days of

the early web, when blink and

marquee tags were still ”cool”,

and the battle between Netscape

and Microsoft was still raging.

Netscape considered their client-

server solution as a distributed

OS, running a portable version

of Sun’s Java which was a com-

petitor of C++ and aimed at

professional programmers. Netscape wanted a lightweight interpreted language that would

complement Java by appealing to nonprofessional programmers, like Microsoft’s VB. Brendan

Eich designed the lightweight language under the codename Mocha, which officially released in

the beta version of Netscape Navigator 2 under the name LiveScript, which finally announced

and deployed at December 4th 1995 as JavaScript in Netscape Navigator 2.0B3. The effect of

the JavaScript was huge, and of course Microsoft was quick to adopt the language at August

1996 in Internet Explorer 3.0 [30].

Since then JavaScript changed the face of the World Wide Web, but behind the scene the world
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Chapter 1 / Introduction

of web application security changed forever, when a new kind of code injection with countless

attack vectors verged into the virtual world.

In December 1999 at Microsoft, 4 years since JavaScript released officially, David Ross worked

on a code flaws found by Georgi Guninski. David demonstrated that he can inject code into

the web page where the fault is on the server side, and not the client side (the internet ex-

plorer). David entitled the Microsoft-internal as ”Script Injection”. Finally Microsoft met

with the Computer Emergency Response Team (CERT) which produced the first CERT advi-

sory about cross-site scripting (or XSS) [9] [5]. The CERT advisory describes 2 types of XSS,

reflected (a.k.a non-persistent) and stored (a.k.a persistent).

During July of 2005, Amit Klein published an article called “DOM Based Cross Site Scripting”

or “XSS of the Third Kind” [14]. As the name suggests, DOM-Based is the 3rd type of XSS

attack that has been uncovered, which its unique attack vector makes it harder to detect and

prevent. We will discuss this type of XSS as well as the first two in chapter 2.

Up to 2005, although XSS has been around for a decade and known officially for half a decade,

no real solution has been found to the problem. More than that, the main focus of the security

experts and developers was on buffer overflows, viruses, worms, spywares etc. The approach

of the industry regarding XSS was that it is a rather harmless, simply because XSS executes

JavaScript which used to be considered harmless. All of this changed overnight In October

4th, 2005 when “Samy” started to run loose. [9]

Samy is the first XSS worm ever developed (and discovered). Samy propagated through the

biggest social-network at the time - MySpace. Samy spread to over 1 million users within

20 hours making it the fastest spreading virus of all times [31]! In other words, MySpace was

shutdown overnight.

Samy used a simple XSS attack to propagate [13]. In order to block code injections MySpace

blocked many tags that users can use in the posts they made on MySpace websites. In fact they

allowed only <img>, <a> and <div> to make sure no tags like <script> would be available.

But MySpace developers missed that the style attribute of div tag allows placing a URL for

the background, so the attacker can place a URL of JavaScript code (a.k.a inline JavaScript
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Chapter 1 / Introduction

code) and evade their posting security policy:

<divstyle=’’background:url(’javascript:alert(’xss’)’)’’>

At this point the attacker can write a post on someone’s page and include this tag that contains

JavaScript code (this is a stored (or persistent) XSS attack).

The malicious code Samy injects has done 2 things:

1. Post the malicious message to all of my friends, causing all the friends to execute the

code as soon they read the post.

2. Send a friend request to Samy’s author, Samy Kamkar. Screenshot of his friend re-

quest count during the attack can be found at: http://namb.la/popular/ (last visited

22/3/2013).

Samy’s XSS attack shook the security world and massive research on JavaScript-based at-

tacks began and by early 2006 researchers were able to create JavaScript based port-scanners,

intranet hacks, browser keylogger, session hijacking, trojan horses and even browser history

stealer [9]. All of the above shows that XSS is a dangerous vulnerability with very high risk

to the users and the website itself.

In 2007 XSS is considered the top web application vulnerability [19], while CVE (Common

vulnerabilities and Exposures) report concludes that XSS is one of the most commonly re-

ported types of vulnerability since 2005 [26]: ”Buffer overflows were number 1 year after year,

but that changed in 2005 with the rise of web application vulnerabilities, including cross-site

scripting (XSS)...”. CVE continues and explains several contributing factors for this change:

• ”The most basic data manipulations for these vulnerabilities are very simple to perform,

e.g. [...] <script>alert(’hi’)</script> for XSS. This makes it easy for beginning

researchers to quickly test large amounts of software.” In other words, it is easy to

perform or test if a given web application is vulnerable to the attack, which means that

XSS attackers do not have to be computer-experts or keen programmers.

• ”With XSS, every input has the potential to be an attack vector, which does not occur
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Chapter 1 / Introduction

with other vulnerability types. This leaves more opportunity for a single mistake to occur

in a program that otherwise protects against XSS.”

• ”Despite popular opinion that XSS is easily prevented, it has many subtleties and vari-

ants. Even solid applications can have flaws in them; consider non-standard browser

behaviors that try to ”fix” malformed HTML, which might slip by a filter that uses

regular expressions.”

Although XSS is a 17 years old security issue which 13 years of them officially known, it seems

that instead of seeing less vulnerable applications, exactly the contrary happen [4] [23]. In the

recent years, user experience of web applications improved dramatically due to the usage of

JavaScript and JavaScript based technology developments (e.g. AJAX and ”Web 2.0”). The

wide and rapid usage of these JavaScript based technologies exposes many web-applications

to XSS. A quick look at xssed.com (XSS vulnerability news and archive) [6] shows XSS still is

very common and new application-specific attack vectors are being submitted to the archive

almost on a daily basis. Latest reports still show that XSS are still being widely exploited [23],

which shows why XSS is still considered one of the top threats to web-applications [20].

We must point out that the XSS does not have to occur only in ”classic” web applications,

but every plug-in or add-on that executes JavaScript. Modern browsers support plug-ins (e.g.

Adobe flash animation, adobe acrobat PDF reader) and add-ons that use JavaScript thus vul-

nerable to XSS.

In chapter 2 we discuss and explain the different types of XSS. Chapter 3 discusses popu-

lar solutions being used in the industry, how they try to mitigate with the XSS vulnerability

and their limitations. Chapter 4 shows different evasions that can bypass any popular solutions

and discusses the crucial key points that cause this failure in detecting and preventing XSS.

Chapter 5 presents previous and related work done in mitigating with XSS, their limitations

in mitigating the different evasions and their contribution.

After understanding the XSS challenge, their limitations and reading previous work we raise
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Chapter 1 / Introduction

in chapter 6 key concepts that guided us toward the presented solution in the thesis, and how

they are being used in the solution. Chapter 7 talks about the learning and publishing of the

legal assembly sets we discuss in chapter 6.

We have implemented a POC of the solution in Firefox JavaScript engine. In chapter 8 we

explain the design of the POC and present an execution example of the real system. We used

the POC in order to perform evaluation of the solution, we present the results in chapter 9.
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Chapter 2

Known XSS Attack Vectors

In this chapter we will present the different types of cross-site scripting vulnerabilities, their

key differences and how they are being exploited.

2.1 Reflected (or Non-persistent)

Many websites return HTML pages that parts of the page are based on given input received

in the HTTP request. If the web application does not verify and sanitize any given input

that is included in the HTML page, a well-crafted request can contain JavaScript code that

is placed by the web application in the returned HTML page, and the HTML and JavaScript

code included in the returned web page can change the expected behavior of the web page and

perform malicious actions within the browser. In other words the web application reflects the

user’s well-crafted input included in the request into the response, causing the requesting web

client to perform new, unwanted, functionality.

This XSS attack is not persistent, meaning the attack is not stored in the website’s server, and

as a result the attack affects only the users being lured into requesting a well-crafted request

(usually by social engineering).

Example: Alice is a user at the popular e-commerce website ”ebazon.com”. ebazon.com

notifies members, such as Alice, about new exciting deals. Also, ebazon.com allows users to
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Chapter 2 / Known XSS Attack Vectors

save their credit card in the website, so they won’t have to re-enter it every time they make

a purchase. When Alice makes a search at ebazon.com, the browser passes the search query

using the variable ”query” to the search.php page, so when Alice searches for ”myphone 5”,

the query URL is as follows: http://ebazon.com/search.php?query=myphone 5 (ignoring

URL encoding for easy reading).

ebazon.com has been designed to include in the search results page returned to the user, the

text the user requested. In other words, it returns to the user the value of the ”query” param-

eter. Therefore, the returned page of the HTTP request above contains the following HTML

code: <b>Results for ‘‘myphone 5’’<b> which renders into Results for ”myphone 5”.

ebazon.com is vulnerable to reflected XSS, and the vulnerability can be exploited as follows:

Assume that instead of searching for ”myphone 5”, Oscar, the evil hacker, lures Alice (by social

engineering via e-mail) into searching a malicious text that creates the following HTTP Re-

quest: http://ebazon.com/search.php?query=myphone 5 special offer<script>window

.location=’’http://oscarevilsite.com/submitsession.aspx?cookieid=’’+document.c

ookie</script>

The request sent by Alice causes ebazon.com to return a search results page containing the

value of the query variable. Therefore the return page HTML code contains the follow-

ing: <b>Results for ‘‘myphone5specialoffer<script>window.location=’’http://osca

revilsite.com/submitsession.aspx?cookieid=’’+document.cookie</script>’’<b>.

The browser cannot tell the returned <script> tag is not meant to be an HTML tag, but just

text came from the user, so the browser treats the <script> tag as HTML code, executing the

script inside. The script redirects Alice’s browser to http://oscarevilsite.com/submitses

sion.aspx?cookieid=[Alice cookie to ebazon.com], sending to Oscar Alice’s session ID

to ebazon.com. Now, that Oscar knows Alice’s session ID, as long as Alice does not log out of

ebazon.com and the session is active (and many, if not most, users never log out), Oscar can

surf ebazon.com as if he is Alice, and purchase the new myphone 5 using Alice credit card she

saved in the website.
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2.2 Stored (or persistent)

A website vulnerable to stored XSS allows an attacker to store the malicious JavaScript code

in the web application database, and this malicious code is included by the web application

in web pages returned as a response to normal requests (no specially crafted requests). This

XSS attack is persistent because the malicious code is stored in the server’s database, and the

malicious JavaScript code is returned to anyone that requests the web page.

Exmaple: EyesBook.com is a popular social network, allowing users to create a profile page,

mark other people as friends and share media between the different users. One important

security policy the website enforces is that users cannot tell which users watched their profile

page, to keep users privacy.

Oscar, a member of EyesBook.com, is very interested to see which users watch his profile.

Oscar notices that his current place of work ”the company” appears on his profile page. That

means that every user that watches Oscar’s profile page, EyesBook.com takes Oscar’s current

work place name, ”the company” from database and embeds it in the returned page to the

viewer. Also, Oscar knows the JavaScript function send private message() sends a message

to the user one is currently viewing, therefore he decides to change his work place from ”the

company” to ”the company<script>send private message(’’I am watching your profil

e’’);</script>”. Alice, Oscar’s Ex-girlfriend, who is not a friend of Oscar on EyesBook.com

(didn’t end well), wants to see his profile. Knowing that Oscar can never tell because she trusts

EyesBook.com, she does not worry that Oscar might find out and clicks the button to receive

his profile. EyesBook.com loads Oscar’s profile to return it to Alice, and the company is part of

this profile. The server reads from the database Oscar’s current work place, and embeds that

value in the HTML returned to Alice. Alice’s browser receives Oscar’s profile which contains

the malicious work place. The browser displays the text ”the company”, but it cannot tell

that the <script> block calling send private message() is just text inserted by Oscar and

not code to be executed, therefore the browser executes the code causing Alice, unknowingly,

send a private message to Oscar letting him know that she is watching his profile.

8
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2.3 DOM-Based XSS

DOM-based attacks emerged the use of DOM objects to develop and execute client-side web

applications in “web 2.0”. The attack is similar to reflected XSS in the sense that the victim

request causes the attack, but the main difference is that unlike reflected XSS, in DOM-based

XSS a DOM object in the browser generates the malicious code and not the server. In other

words, in DOM-based XSS the request sent by the browser to the web application does not

have to contain any malicious content, and the response from the server does not contain any

malicious content. The malicious content appears in the request after the pragma and as a

result kept in the browser and not sent to the web application. When the response is requested

by the web application the JavaScript code included in the web page process the JavaScript

code that was kept in the browser and as a result the web page perform undesired actions.

Due to the fact that the malicious code in not included in the request(s) sent by the browser to

the web application, any XSS prevention mechanism located outside the victim’s browser (for

instance, web application firewall acting as a front end to the web application) cannot detect

and prevent the attack.

Exmaple: The following code for the example is taken from Amit Klein’s paper ”Dom Based

Cross Site Scripting or XSS of the Third Kind” [14]. Alice wrote a simple website that displays

to the user the text ”Hi [name]”, where [name] is the value of the name parameter in the URL

of the website. Alice decided that instead of filling the name on the server using server-side

web application, it will be easier to fill the name on the client-side using JavaScript. Therefore

Alice added the following code to the HTML:

<HTML>

Hi

<SCRIPT>

var pos=document.URL.indexOf(’’name=’’)+5;

document.write(unescape(document.URL.substring(pos,document.URL.length)));

</SCRIPT></HTML>
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When bob surfs to Alice’s website using the URL http://whereisalice.com/index.html?na

me=Bob, the returned HTML page does not contain the name Bob, but only when the HTML

and JavaScript code reaches Bob’s browser, the JavaScript engine will extract the name ”Bob”

from the URL and place it inside the HTML.

Let’s assume Oscar lured Bob into surfing Alice’s website using the following link:

http://whereisalice.com/index.html?name=Bob<script>alert(xss’);<script>.

When Bob clicks the link, unlike reflected XSS, the server does not embed the injected code

(i.e. alert(xss’);) into the HTML page, but the server returns the same (static) page it

returned to the client when the value of name was ”Bob”. Only when the returned page is

being rendered on Bob’s machine the attack takes place and the injected JavaScript code ale

rt(xss’); is being embedded into the page and executed.
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Chapter 3

Popular Industry Solutions

Since the XSS problem became popular, some solutions became popular in the web applica-

tion security industry. These solutions, although they are popular are far from being complete.

More than that, in the evasion chapter (chapter 4) we will show that they cannot be complete.

In this chapter we are introducing the popular industry solutions, their limitations and prob-

lems.

3.1 Encoding

Encoding data transferred between the browser and the server is a popular method to mitigate

with XSS. The idea of encoding the data is that by encoding we turn executable injected code

into non-executable text. This way, theoretically, if we can encode correctly all the data sent

from the browser to the server and from the server back to the browser, any injected code by

an attacker would turn into a non-executable text, preventing the attack from being executed.

3.1.1 Input encoding

Input encoding encodes any input that comes from the client, turning any injected XSS code

into non-executable text. Input encoding must be done by all the developers, throughout all

the application’s lifetime. In case of out-sourcing parts of the application and using 3rd party
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code, the implementation of this approach gets more complicated and more prone to errors.

Moreover, even if all the developers implement the web application while implementing input

encoding without use of any 3rd party code, the developer needs to know what to encode,

and how to apply the encoding according to the current context. If one developer is writing

a form and later on another developer changes the form in any way, the input validation and

encoding might change by a new parameter that might need to be encoded, in other words,

the implementation is all about context. This task is very daunting and prone to errors [9],

exposing this approach to many types of evasions.

Input encoding encodes only the input of the application which might allow us to detect

reflected XSS which is being generated by the user’s input, causing malicious text in the request

to return a response with injected code, but input encoding is not effective against stored XSS

and DOM-based. If for example, an attacker managed to store XSS in application’s database

(creating stored XSS attack), the input encoding solution will not detect anything wrong in

a request that returns a web page with the injected code, simply because the request has no

malicious text, but it is a regular, legal, request. In DOM-XSS the vulnerability “exposes

itself” only after the webpage returned from the server and the client executes the JavaScript

code in the returned web page, therefore the attack happens too late. In AJAX it can be

even more complex where the malicious input might never even reach the server, and by that

workaround all the input encoding solution.

3.1.2 Output encoding

Output encoding solutions encode any data coming out from the server back to the user, and

by doing so it turns any injected code into non-executable string. One big advantage is that

using this approach we can mitigate easily with stored XSS. Assume that stored XSS attack

is placed in a database of a web application. Every time the data returns from the database

back to the client, the server encodes the data. That means that every stored XSS that has

already been injected in the past, becomes useless (as opposed to input filtering which will be

discussed in the next section).
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One of the main challenges in implementing output encoding is that the developer needs to

understand what is the output the application is sending back to the client, how it will be used,

and finally decide the encoding should be used. This gets extremely complicated in today’s

AJAX and JSON world and prone to errors. Also, all the developers of the application must

be aware of the use of output encoding and must use it all the time (like in input encoding),

meaning, you cannot write it once or give this job to a specific knowledgeable developer, but all

the developers must write the application while keeping in mind the user of output encoding [9].

Of course bugs in the output encoding of a web page means that this page is vulnerable to

XSS.

This kind of solution cannot address DOM Based XSS because the malicious code is being

generated on the client. The same limitations exist with plug-ins and add-ons, the server that

return the SWF or PDF (or any other file format that supports JavaScript) does not encode

the script inside these files. Besides these issues, output encoding has no generic solution and

the developer need to implement it correctly to every case encoding is being used, making this

approach prone to errors which lead to evasions. Like every solution that requires code change,

it cannot apply to some 3rd party libraries, and if the solution is being implemented after the

development has begun, the developers must go through all the code again.

3.2 Content-filtering / Input validation

Input validation solutions validate, at the server, the input they expect is really what they

received from the user. For example, if the server expects to get from a certain field in the

application a phone number, the developer in the server side must implement code that verifies

that the returned text is really a phone number. This approach becomes harder when it comes

to free-text fields like in discussion groups, and more complex when it comes to AJAX with

data that is being sent from the client. Just like in input/output encoding, there is no generic

solution. The security of the application depends on all the developers to perform the right

validation without any errors or mistakes that might lead to evasions. As we’ve seen in input
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encoding, if an attacker manages to store XSS in the application database, input validation will

not detect the attack, simply because there is nothing special or “illegal” in the request. Also,

this approach cannot mitigate with DOM-Based because the malicious input might not even

reach the server. Filter, as the name suggests, is filtering the data using positive or negative

security logic:

• Negative logic means that if the inspected “text” is in a known blacklist - it is illegal,

otherwise it is legal. In other words, we need to know all the possible illegal text (all

attack vectors) upfront.

• Positive logic means that if the inspected “text” is in a known whitelist - it is legal,

otherwise illegal. In other words, we need to know all the possible legal text (all non-

attack code) upfront.

If we focus on XSS solutions, a XSS solution using negative logic means that we need to know

all the possible attack vectors upfront. A XSS solution using positive logic means that we need

to know what all the possible legal JavaScript executions upfront.

A popular way to implement content-filtering is on the network traffic, there is no need to

install solutions on clients or servers, simply plug-in a new hardware in the entrance of the

organization and “you’re safe”. This way an organization places the solution as a “man-

in-the-middle”, allowing the solution to inspect the traffic and block suspected attacks. All

web-application firewalls belong to this type of solution. The first issue of using any kind

of network traffic monitoring, is that it cannot handle HTTPS traffic or encrypted traffic of

plug-in or add-ons. There is no simple way to override this problem. A possible approach is

to use a proxy inside the organization that will create the encrypted connection with the out-

side world, but then the traffic inside the organization is not encrypted, leaving sensitive data

(like passwords) unencrypted. This issue becomes more relevant as many applications start

to use HTTPS, especially on web-sites that require the user to log-in and maintain a session.

Assuming the traffic is not encrypted, the next challenge is to extract and find all JavaScript
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code in the network streams. Some cases might be easier like JS files, but parsing HTML with

inline code or even more challenging scenarios like XML, SWF or PDF could be a much harder

process in terms of time the analysis take and the extraction process. As experience shown us,

the extraction is very prone to errors and many evasions, which we discuss the most important

ones in the evasion chapter (chapter 4). Once the JavaScript has been extracted, the filter uses

negative security logic. Content-filter of network traffic cannot mitigate with DOM-Based XSS

because the vulnerability itself is being generated on the client side while the JavaScript engine

is executing the JavaScript code. Therefore, it is not necessary that there will be anything

suspicious on the traffic that the content-filter will be able to detect. Also, this approach suffers

from browser error-tolerance evasion and JavaScript generating JavaScript evasion, which will

be discussed in the next section.

3.2.1 Limitations of positive logic approach

The main limitation of positive logic approach is that the solution needs to have a predefined

whitelist of all the possible legal JavaScript code. This limitation becomes even more prob-

lematic when a new JavaScript code can be generated during runtime of the application. In

this work we will discuss how we workaround these limitations using “Generalized JavaScript

Assembly” and build successfully a whitelist for a give web application.

3.2.2 Limitations of negative logic approach

Many popular solutions to XSS are usually based on negative security logic content-filtering

of network traffic or HTTP Requests (i.e. they try to detect patterns typical to XSS attacks

on the HTTP request content). This approach is quite popular, for example a popular work

done by J.Shanmugam and M.Ponnavaikko [11] tries to match between user’s input at the

server with a predefined blacklist made out of keywords and special characters. However, the

effectiveness of these solutions is limited due to the following reasons:

• Negative logic can’t detect and prevent 0-Day attacks because the blacklist doesn’t con-

tain the patterns of new attacks that have just been developed by the attacker.
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• These solutions need constant updating of the XSS attack patterns (inherent limitation

of negative security logic). They are exposed to creative evasion techniques that hide the

XSS attack content in order to bypass the negative security logic filter. See for example

OWASP’s cheat sheet [21] that provides many evasion patterns, and xssed.com [6] keep

on posting new ones all the time. (As an example an evasion might occur because the

JS code is located in a place that the detection mechanism didn’t expect, for example

in OWASP’s XSS cheat sheet [21]: <BODYONLOAD=alert(String.fromCharCode(88,83

,83))>, and if the XSS filter does not look for JS code inside “ONLOAD” attribute of

BODY tag, the malicious JS code will not be detected.)

• They can’t address DOM-Based XSS attacks or plug-in attacks since these filters usually

are implemented on the server side or as “man-in-the-middle” while DOM based attacks

does not necessarily produce any traffic.

• User input can contain blacklisted JavaScript but it can be constructed only by actually

executing the response page. In other words, they can’t detect and prevent XSS attacks

where the malicious JavaScript code is generated by another JavaScript code (we further

discuss this issue in chapter 4.
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Evasions

Any negative logic approach, the detection mechanism should know where and how to detect

and extract forbidden JS code. Weather it is by location of the JS code or a way the JS

code masquerade itself, a negative logic approach must know about the existence of an attack

upfront in order to insert that attack into a known blacklist. That means that any XSS attack

vector or evasion technique that is not known and blacklisted, is not an attack. In other

words, any 0-day attack will surly evade any negative logic approach until the blacklist will be

updated.

In this chapter we will present a few evasions techniques that show that on one hand they

are quite easy to craft, and on the other hand they are quite difficult to detect using negative

logic. This situation is obviously very good for the attackers, and very bad for the defenders.

We also discuss in this section the JavaScript generating new JavaScript evasion that does not

have any solution in today’s popular approaches; this is because the detection problem of this

evasion is equivalent to the halting problem, which has no possible solution.

4.1 Hiding JavaScript by encoding

Many times filters assume that by blocking a number of characters, it is possible to block

XSS attack. The main problem that by changing the encoding of a page, we can use different
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symbols that equivalent to the blocked character. An example from OWASP XSS filter evasion

cheat sheet [21], the ‘<’ character can be encoded, by changing the page encoding into anyone

of the following (all the following symbols are equivalent to ‘<’ just under different encodings):

%3C,&lt,&lt;,&LT,&LT;,&#60,&#060,&#0060,&#00060,&#000060,&#0000060,&#60;,&#060

;,&#0060;,&#00060;,&#000060;,&#0000060;,&#x3c,&#x03c,&#x003c,&#x0003c,&#x00003

c,&#x000003c,&#x3c;,&#x03c;,&#x003c;,&#x0003c;,&#x00003c;,&#x000003c;,&#X3c,&#

X03c,&#X003c,&#X0003c,&#X00003c,&#X000003c,&#X3c;,&#X03c;,&#X003c;,&#X0003c;,&

#X00003c;,&#X000003c;,&#x3C,&#x03C,&#x003C,&#x0003C,&#x00003C,&#x000003C,&#x3C

;,&#x03C;,&#x003C;,&#x0003C;,&#x00003C;,&#x000003C;,&#X3C,&#X03C,&#X003C,&#X00

03C,&#X00003C,&#X000003C,&#X3C;,&#X03C;,&#X003C;,&#X0003C;,&#X00003C;,&#X00000

3C;,\x3c,\x3C,\u003c,\u003C.

By using the ability to represent one character in another way, it means that every entry in the

blacklist that contains ‘<’ character must also be placed in the blacklist with each and every

one of the encodings. Regular expressions might help us in detecting these different options for

each character, but it turns the regular expressions into quite complex to create, manage and

execute. Some web pages allow the client to choose the encoding being used, and this allows

an attacker to completely change the attacking string, creating many new attack vectors that

the filter need to detect.

Example: Let’s assume the following page allows the request to determine the encoding

used, when the default is UTF-8, and the value of “q” is being embedded into the response

page: http://www.example.com/q.php?enc=UTF-8&q=Test

Once the request is made, the filter checks if the value of “q” contains possible injected code,

so it I would use “<script>alert(‘xss’)</script>” the filter would detect our attack and

block it. Now, instead of using UTF-8 let’s use an evasion found by Kurt Huwig and set

US-ASCII encoding instead. US-ASCII is a 7 bit encoding, which means that the browser and

server ignores the 8th bit, so by flipping it, the client and server can look at ‘<’ and the other

symbols in the correct way, but if the filter does not handle US-ASCII encoding correctly it
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will miss the attack. Let’s take a deeper look:

′ <′= 0011 1100 = 0x3C → url encoded→ %3C

′ 1
4

′
= 1011 1100 = 0xBC → url encoded→ %BC

So in US-ASCII encoding both character ‘<’ and ‘14 ’ are the ‘<’ character (ignore the MSB),

but a filter that does not ignore the 7th bit does not know that, and thinks the text is not

malicious. This way the following request evades the filter and performs successful XSS attack:

%BCscript%BEalert(%A2XSS%A2)%bC/script%BE

4.2 JavaScript extraction from HTML evasion

JavaScript solutions need to extract the JavaScript code they need to verify. Weather it is

from network traffic, the client HTML or the server, there must be an extraction point that

the solution receives the data to analyze and extract the JavaScript code. Therefore a possible

evasion is to place JavaScript code in a place that the filter doesn’t search. A few examples

can be seen in OWASP filter evasion cheat sheet [21]:

• <META HTTP-EQUIV="refresh" CONTENT="0;url=javascript:alert(’XSS’);">

– META tag with HTTP-EQUIV attribute as refresh can tell the browser to refresh

the page.

– CONTENT attribute tells the browser what is the time interval to refresh, while

it is possible to place a URL to redirect the browser to. This URL can be used to

execute JavaScript code.

– Filter that fails to check the CONTENT attribute for “url” parameter, will miss

this JavaScript code.

• <META HTTP-EQUIV="refresh" CONTENT="0;url=data:text/html;base64,PHNjcmlwdD

5hbGVydCgnWFNTJyk8L3NjcmlwdD4K">

– This evasion uses an abnormal place to inject scripts like the previous bullet, but
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it also combines it with encoding evasion described in the previous section (sec-

tion 4.1).

– By adding type of data and encoding to base64, instead of actually writing the

injected script as it is “<script>alert(’XSS’)</script>”, by encoding to base64

we masquerade possible characters that the filter is looking for.

– Filter that fails to check the “url” parameter and take into account any possible

encoding will miss this JavaScript injected code.

– The “baset64” trick is available in more tags like “embed”.

As we’ve seen in these examples, just extracting the JavaScript code to be analyzed is a hard

task, with a huge number of possibilities. The only location that a solution does not need to

perform an extra-work to extract JavaScript is inside the JavaScript engine. When a solution

is located inside the JavaScript engine, the JavaScript code reaches to the solution on its own.

Any code that is being compiled and executed must go through the JavaScript engine, therefore

just by placing the solution inside the JavaScript engine, extraction becomes useless.

4.3 Browsers’ parser and engines error tolerance

JavaScript engines agree to tolerate different JS syntax errors by trying to guess “what the

developer meant”. Any solution that works outside the JavaScript engine will have to know all

browsers’ error tolerance up front (and the behavior of different engine versions). For example,

a typical negative XSS detection mechanism misses the following attack taken from OWASP

cheat sheet [21]: <IMG """><SCRIPT>alert("XSS")</SCRIPT>">. From pure HTML syntax

perspective there is no script element and a string. However, certain browsers do interpret

this script element and will execute it. A solution that is located inside the JavaScript engine

does not need to detect these errors, because only tolerated scripts arrive to the engine, and

all none-tolerated scripts are not detected or tolerated by the browser and does not reach

the engine. JavaScript code error tolerance occurs during the compilation of the code. If the

JavaScript code compiles successfully, than it means that any errors inside the JavaScript code
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has been tolerated by the engine and on the other hand, if compilation fails than errors in the

JavaScript has not been tolerated and the script will not be executed.

4.4 JavaScript code generating JavaScript code evasion

Even if all the above limitations can be solved, there is still a way to bypass XSS filters using

JS functions like eval(), document.write() and RegEx.replace() that can generate, during

runtime, new JavaScript code and new DOM objects. Thus, using these functions an attacker

can construct the attack code during runtime by performing any kind of string manipulations

(like building the malicious JS code from using string manipulations or decryption of encrypted

malicious JS code). The implication of this capability is that a response returned to the client

might contain many more JavaScript code that a simple parsing can’t discover. Thus, any XSS

detection and prevention mechanism will have to execute all eval() and document.write()

functions just to be able to uncover all the possible JavaScript code in order to be able to check

if they are legal JavaScript code or malicious. In other words, if a XSS filter wants to verify

that the code generated by eval(), document.write() or RegEx.replace() functions doesn’t

contain any malicious/“illegal” JavaScript code, it must generate all the JavaScript code that

they generate, which might contain more eval(), document.write() and RegEx.Replace()

or any other form of encoding (or custom encoding) that might “hide” more eval() and

document.write().

Exmaple: In order to explain why there is no generic way for a XSS filter to handle this eva-

sion technique of natural JavaScript code that generate malicious JavaScript code using func-

tions like eval(), document.write() and RegEx.replace() let’s take a look at the following

example generated by “javascriptobfuscator.com” [10]: var 0xa8a1=["\x65\x76\x61\x6C\x28

\x27\x61\x6C\x65\x72\x74\x28\x5C\x27\x61\x74\x74\x61\x63\x6B\x5C\x27\x29\x3B\x2

7\x29\x3B"];eval( 0xa8a1[0]); The XSS filter that would like to detect the malicious code

generated by this JS code will need to detect the JavaScript code in the response and to “un-

derstand” that the eval() function executed on the first cell of the “ 0xa8a1” array, just like
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a JS engine would do. Next it needs to “understand” there is more JS code to uncover and

recheck, the JS code inside “ 0xa8a1[0]”, just like a JavaScript engine, and to decode the

string into its original form which is eval("eval(’alert(\’attack\’);’);");. Then it will

need to re-execute the eval() recursively until the “attack” is being uncovered, just like a JS

engine would do. Since, there is no way to analyze the code that can be generated statically

since it is equivalent to solving the halting problem, in order to uncover all the JS code, a

XSS filter need to emulate the full JavaScript engine behavior and execute the JavaScript code

(while applying error tolerance of all different engines), and only then check the generated

content to verify if it contains malicious JS code. To overcome all the above limitations we

suggest to place the XSS detection and prevention mechanism inside the browser’s JavaScript

engine (not inside the browser or the interface between the browser and the engine, but inside

the engine module itself). This position enable the mechanism to get all runtime-generated

code, including code that comes from plug-ins, add-ons and to handle JS code that generates

more code as well as the JS engines’ errors tolerance (all non-tolerated errors, will not reach

our mechanism because the engine will fail to compile them).

4.5 JavaScript in plug-ins, add-ons and other filetypes

Modern browsers allow developers to develop plug-ins and add-ons to their browsers. Some

of these add-ons and plug-ins use the browser’s JavaScript engine to execute JavaScript code.

For example, Adobe flash animation can use JavaScript code that will be executed on the

browser, or an add-on that uses JavaScript to block ads from websites. For example, in 2007

adobe reported [1] that SWF files (Flash animation) can perform XSS attack by embedding

JavaScript commands inside the SWF itself. Current detection mechanisms and filters focus

on HTML/XML responses to look for JavaScript, but not inside SWF files or other file types

that might embed JavaScript; therefore many detection mechanisms do not even check SWF

or PDF file types. By locating the XSS detection mechanism in the JavaScript engine there is

no need to the solution to “learn” how to look for JavaScript. If the embedded JavaScript is
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being executed it will reach the detection mechanism on its own.
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Previous & Related Work

As far as we know, there is no attempt to mitigate XSS attacks from inside the JavaScript

engine using compiled JavaScript, but there are several approaches in the literature that have

common properties as we do. Besides that, there are several other approaches we argue against

because of limitations they might endure.

5.1 Automatic sanitization frameworks

Many web-application frameworks claim that their sanitization abstractions can be used to

make web applications secure against XSS. J. Weinberger, P. Saxena, D. Akhawe, M. Finifter,

R. Shin and D. Song [28] analyzed 14 major commercially-used web application frameworks

and reached the conclusion that these frameworks fail to secure the application from XSS.

One of the main limitations of this approach is that the sanitization happens on the server. In

other words it cannot handle JavaScript generating JavaScript, DOM-Based XSS or browser

error-tolerance evasions. The paper [28] also states that no framework supports any dynamic

sanitization for dynamic evaluation in the client.

We argue that even a dynamic client side automatic sanitization framework wouldn’t be good

enough because it would still have to detect and sanitize JavaScript and HTML with errors,

depending on the browser’s error-tolerance. On top of that it would have to sanitize non-
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standard JavaScript and HTML, JavaScript from plug-ins and add-ons, and do all that in

runtime.

5.2 Browser based detection and prevention mechanisms

Browser based XSS detection and prevention mechanism called BEEP [12] allows the developers

to mark in the code functions the developer wants to attach a security policy called “security

hook”. The writers present 2 observations:

1. Browsers perform perfect script detection. If a browser does not parse content as a script

while it renders a web page, that content will not be executed.

2. The web application developer knows exactly what scripts should be executed for the

application to function properly.

With the 1st observation we agree, we also observed that fact so our solution also depend on

it, but we disagree with the 2nd observation. Today’s web application can be huge and include

3rd party libraries. A developer in one of the development teams cannot know exactly where

his modules are being used and will be used in a huge project, let alone deciding which security

policy secure his script needs. The system architect might know but it is still a hard task and

very prone to errors. Elias Athanasopoulos, Vasilis Pappas, and Evangelos P. Markatos [3]

managed to attack BEEP also share this conclusion regarding the 2nd observation. Another

limitation of BEEP is the use of 3rd party libraries or frameworks, the developers cannot

change the source code, therefore they wouldn’t be able to secure the libraries code, and even

if they could, they need to go over the 3rd party library in order to decide which policy to attach.

ConScript [16], similar to BEEP, allows the developers to attach policies to a JavaScript code,

but ConScript, by using “deep advice” mechanism, allows the developer to apply very complex

and agile policies. ConScript allows the developer to “hook” functions, replace them and by

that restrict their usage. Although ConScript is very powerful, it requires the developer to

attach the right policy to the right functions, and writing a policy can be hard and prone to
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errors as can been seen in a presentation done by Leo Meyerovich and Benjamin Livshits [15].

These errors might lead to other vulnerabilities or allow attackers to evade the policy. Another

limitation is attaching policies to 3rd party libraries.

CSP [25] (by Mozilla) provides a large set of properties that describe a per-page policy. Using

these properties CSP can define a policy for the content in the received page. The property

“inline-scripts” tells CSP to allow or block JavaScript code running outside <script> blocks.

Using this property CSP tries to mitigate XSS attacks. Because of the way CSP works it forces

some web applications to change the way they’re built, also add-ons that use inline JavaScript

might stop working. Also, CSP causes a performance hit, as shown in an analysis done by A.

Barth and D. Song [27].

In BEEP, ConScript & CSP the responsibility on the security falls into the developer’s hands,

which in many (if not most) cases is not security aware, which may lead to other vulnerabilities,

bugs or even might end up in turning of the security mechanism.

Noxes [7], Unlike previous presented solutions, does not try to mitigate or prevent the XSS

attack itself, but it tries to prevent its consequences (like stealing the session ID). Noxes acts

as a web proxy and uses manual and automatically generated positive-logic rules to block out-

going connections to unauthorized sources. The user can manually define a set of web sites a

web application can connect, or use automatic learning mode (called snapshot) that monitors

the web application (while user surfs it) and generate the set of web sites allowed. Also, Noxes

allow the user to decide in real-time what to do with a new unexpected website connection,

to allow it or block it. This approach has severe limitations such as an attacker that uses

whitelisted domains, such as BlogSpot or Facebook as part of the attack, therefore the attack

will not be blocked simply because most users won’t block Facebook or BlogSpot. Also because

it does only prevent sending information out of the browser it does not prevent malicious JS

code running in the browser and attacks like XSS based defacement will not be prevented. We

also argue that solutions that depend on user’s decision cannot work in the “real-world”. Most
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users do not know or understand if a connection is legal or not, and if an attack will happen

and Noxes will ask the user what to do, many users will consent the malicious connection.

Kudzu system [22] is detecting XSS vulnerabilities using a symbolic-execution based framework

for client-side JS code analysis. The system explores the web application execution space and

detects XSS vulnerabilities and mitigates DOM-based XSS. One of the main problems with this

system is that it can only find vulnerabilities, but not block them. Users still depend on the de-

velopers to fix the problems in order to defend themselves. Moreover, many times the fix might

be in a 3rd party code which make the fixing much more problematic. Also, Kudzu ignores

the error tolerance problem of different JS-engines. Kudzu might assume that a specific given

JavaScript is behaving in one way, or even declare the code as flawed while a specific popular

browser might execute the code in a different way Kudzu anticipated and expose the user to

a possible attack vector. This limitation is inherit by the fact that Kudzu is not engine specific.

BLUEPRINT [17] is using a trusted JavaScript parser that is being used instead of the browser’s

built-in JavaScript engine in order to build the page by a given security policy called “blueprint”

generated by the server. The approach partially solves the issue of error tolerance vulnerability

by not trusting the browser’s JS engine but if it allows a non-standard script, then eventually

the browser might react differently than expected. Also, besides performance issues the solu-

tion claims that it can trust the server to know how to deal with untrusted content, while this

claim is arguable [27].

The most similar method to our approach has been proposed by Rotberg and Movshovitz [18],

but unlike our solution, it is implemented as a client side proxy that extracts the JavaScript

code. However, placing a XSS detection and prevention mechanism outside the JS engine

exposes the solution to all limitations we described above. Rotberg and Movshovitz show

that using a canonicalization function on the JavaScript code it is possible to create a set of

“canonical forms” of all the “legal JavaScript variants” generated by the web application. This
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database that holds all the canonical forms of the legal JavaScripts code elements used by the

web-application, can be used to verify if a canonicalized form of a returned JavaScript from the

web application is legal by looking it up in the database. However, performing canonicalization

over JS code is very complex, time consuming task and prone to errors.
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Key Concepts

By looking at previous solutions and today’s industry we realized that a solution cannot dictate

a new approach to build a website from scratch by suggesting to change all the code in the

application, simply because there are millions of applications (if not more), and some of them

are with millions of lines of code which many of them belong to different companies and 3rd

parties, and a fundamental change in the application code is simply not feasible because of the

size of the web applications. Another problem with a solution that requires code changes in

order to solve the XSS vulnerabilities is that developers make mistakes and bugs and just like

any other bug in web application, giving the developers the responsibility to add or modify

code in order to mitigate with XSS will lead to code that will end up with XSS or other vul-

nerabilities.

We also came to the conclusion that a solution cannot depend on an end-user decision in order

to mitigate with the attack. The end-user is not security-oriented, and many times hardly

understands what happens in the background. We think it is reasonable to assume the typical

end-user will click whatever will load the page the most quickly, without any “annoying secu-

rity questions”, especially if these questions happen frequently.

To sum up the key concepts that was leading us toward to the presented solution:

• The solution must not require any changes in the JavaScript code for 2 reasons:
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1. Many applications use 3rd party libraries to build their websites. Many times chang-

ing the code in these libraries is impossible due to legal or technical issues.

2. Requiring the developers to change the code might be prone to errors by the de-

veloper. Developers are people, and people make mistakes, these mistakes can turn

into new vulnerabilities.

• The solution must not depend on any end-user action or knowledge. The user many

times does not know or understand about what happens in the background. Involving

the user in the protection cycle is useless, and might only annoy the user that will click

any button that will get the web application running.

The presented solution does not require any code modifications by the developers that might

expose new vulnerabilities, or 3rd party codes that we cannot modify. Also, the solution does

not require any action from the end-user client. The solution teaches the JavaScript engine to

detect on its own unexpected code, and if such code has been detected, it protects the user

without any action taken by the user.

6.1 Detection of XSS attack within the JavaScript engine

All the different solutions that try to detect the XSS attack itself have limited effectiveness

due to the problematic detection of the malicious JavaScript code due to the various evasion

techniques and the inability to detect malicious JavaScript generated by another JavaScript.

To overcome this fundamental problem, our solution detects the malicious JavaScript when

the JavaScript engine is compiling the JavaScript code into a JavaScript Assembly (JSA) by

the JavaScript engine. This is the best way to detect the malicious JavaScript code since if the

browser and JavaScript engine won’t recognize the malicious content as JavaScript code due to

evasion techniques, then the attack wouldn’t occur in the first place and as a result we don’t

need to worry about it. On the other hand if the browser and JavaScript engine did uncover

the malicious content as JavaScript code and even if browser and JavaScript engine detect

errors but they tolerate the errors and will execute the malicious content as JavaScript code,
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then and only then the reveled JavaScript code, after successful compilation, will be presented

to the detection and prevention mechanism.

The location of the XSS detection and prevention mechanism inside the browser’s JavaScript

engine eliminates the need to detect the JavaScript code within the HTTP response because

the browser’s JavaScript engine detect the actual JavaScript to be executed by the browser’s

JavaScript engine, and as a result the detection and prevention mechanism can’t be bypassed

by the various evasion techniques that try to hide the JavaScript code in the response.

It is important to point out that this position of the detection mechanism allows it to detect

also DOM-Based XSS attacks (that out-of-browser XSS detection mechanism can’t detect),

this is due to the fact that the JavaScript engine compiles every JavaScript code that will be

executed by the engine, and it doesn’t matter if it comes from the server or was inserted into

the DOM by the client-side script code. This is also true for Add-ins and Plug-ins that use

the browser’s JavaScript engine, so if a SWF file (which is a flash animation client side web

application) tries to execute JavaScript code, since the compilation and the execution is done

by the browser’s JavaScript engine it will go through our detector and will be detected and

prevented (as will be explain below).

6.1.1 Solution advantages

By placing the solution inside the JavaScript engine we are natively able to detect all the

JavaScript code, even the code being generated by another JavaScript code.

The location of the solution is such that evasion techniques become non-relevant because it

does not matter which evasion technique is being used, at the end it will have to uncover the

real malicious JavaScript code in order to perform the attack. If an evasion technique is “so

good” that it evade our mechanism, it must also evade the JavaScript engine itself, therefore

it will not get executed.

Another advantage of this location is that the mechanism can work natively with plug-ins and

add-ons. If a PDF or SWF are executing JavaScript code, it will go through the mechanism

without any extra-work.
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All of the above shows that by placing the solution in the JavaScript engine, the solution

does not need to perform any extra-work in order to locate JavaScript code, it will reach the

mechanism on its own.

6.2 Positive approach

The second major concept of our solution is to base the detection of malicious JavaScript

code on positive logic (“white-list”) approach. We presented earlier the limitations of negative

logic, which makes the solution vulnerable to 0-day vulnerabilities and require never-ending

maintenance and update of the blacklist. All this and the fact that there is no reasonable

method to define malicious code and as a result if we want to lower false positives we need to

base our detection mechanism on positive security logic, and use negative only as last resort

and time limited until the database is being updated.

6.2.1 Limitations of näıve solution

A näıve solution to try and create a whitelist of all the JavaScript code of a given web applica-

tion would be at the beginning - to create a set of all the JavaScript code the application uses.

This kind of solution fails immediately because an application can generate new JavaScript

code during runtime, therefore we cannon pre-define all the possible JavaScript code. The use

of a canonicalization process over the JavaScript code shown in the work done by Rotberg and

Movshovitz [18] that we discussed in the related work section presents another näıve solution

for creating a the positive solution.

One of the main limitations of the canonicalization process, even if done inside the JavaScript

engine, is its complexity. The JavaScript code is very complex and permissive, all that causes

JavaScript parsing and canoninalizing very complex and time consuming. The worst problem

of the canonicalization is because of the complexity of the process, the implementation is prone

to errors.

The complexity of the JavaScript language makes it hard to work with, therefore a näıve so-
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lution that works directly on JavaScript is just not good enough for real-world use, from the

hard implementation to the time consuming process.

6.2.2 Positive logic with GA

Modern JavaScript engines don’t interpret JavaScript anymore, they compile it. For example,

SpiderMonkey (Firefox’s JS engine) compiles JavaScript to a series of opcodes called bytecode,

V8 (Chrome’s JS engine) compiles JavaScript to binary, which is also a series of opcodes. For

simplicity, we will call the compiled JavaScript code “JavaScript assembly”, and denote it by

JSA for short.

Every JavaScript code that is being executed by the browser is compiled first by the browser’s

JavaScript engine into JSA before execution, and the JSA is the actual code that is being

executed (executed directly in V8 case or by an interpreter as in SpiderMonkey’s case). It is

important to point out that JSA does not contain any comments, weird syntax or encodings

we need to overcome. By using JSA to detect injections, and not by looking at the JavaScript

code, any obfuscation or obscure evasion in the JavaScript code does not affect our detection

mechanism since it doesn’t affect the JSA that is being used for checking if the JavaScript is

legal JSA.

In today’s websites and web applications JavaScript can be generated dynamically based on

user’s input or application state. Thus, to be able to detect malicious JavaScript code using

positive security logic we need to generate the legal set of compiled JavaScript code that a

given web application can generate/execute. We cannot simply get the complied JavaScript

code and put it in the legal set, since the legal JavaScript code can change from one compiled

JavaScript generation to another. Thus, we need to translate the JavaScript Assembly (JSA)

into a Generic JSA (GA) that will enable us to check the compiled JavaScript Assembly

(JSA) against the legal set of Generic JSA of the web application. The main challenge in

generating a Generic JSA is to strip out all the elements in the code that change legally from

one execution to another. Each time the JS engine compiles the JavaScript code, it compiles

it with variables values that are unique to the current executions. Thus, the conversion of JSA

33



Chapter 6 / Key Concepts

into a Generic JSA needs to strip or modify all the opcodes that contain data that regards the

current execution, so the result Generic JSA code will contain only the opcodes that define

the behavior of the JavaScript code.

The idea of the Generic JSA (GA) is similar to a template class in C++ or generic class in

Microsoft.Net. When a programmer defines a generic (or template) class, the class does not

have a pre-defined exact behavior or execution (we cannot compile a generic class), but it

defines the general case for all the specific classes. GA is similar to that in the sense that

it is a generic assembly form of a specific JavaScript assembly. Thus, an important element

in our detection mechanism is the generalization function (fgeneralize()) that converts a given

JSA into Generic JSA (GA). It is important to point out that fgeneralize() has another task

which is detailed in section 6.3. Let’s assume JSA1 and JSA2 such that JSA1 and JSA2 are

different executions of the same JavaScript code (JSA1 6= JSA2), but the generalizing function

is defined such that fgeneralize(JSA1) = fgeneralize(JSA2) (The details of the generalization

function are described below.)

Example: Let’s take an example of JS based calculator.

A possible execution of the calculator is:

var x = 1; // some comments

y = 2; /* more comments */

result = x + y;

(Note: 1 and 2 are related to the specific user session and will have different values for different

user sessions)

The above JavaScript code will be compiled into JSA with the numbers “1” and “2” inside

it, because this is what the machine is going to execute. Thus, the following (pseudo) JS

Assembly will be generated by the JavaScript compiler:

MOV REG1 1 ; x = 1

MOV REG2 2 ; y = 2
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ADD REG1 REG2 ; x + y, put the result in RES_REG

MOV REG3 RES_REG ; result = 3

If a user chose to add 15 and 34, these numbers would appear in the JSA:

MOV REG1 15 ; x = 15

MOV REG2 34 ; y = 34

ADD REG1 REG2 ; x + y, put the result in RES_REG

MOV REG3 RES_REG ; result = 49

As a result, the JSA will be different from one execution to another. Therefore, we can’t create

a set of legal JSA that will be used to check the validity of the JSAs. As explained above,

to overcome this problem our mechanism generates Generic JSA (GA) out of the given JSA

using a generalizing function, fgeneralize(). In the example above the GA (which is the output

of fgeneralize() for add operation in the calculator) would look like this:

MOV REG1 literal ; literal is an OPCODE we added to symbolize a literal.

MOV REG2 literal

ADD REG1 REG2

MOV REG3 RES_REG

Due to this generalizing process it doesn’t matter which values the user chooses to add, all

the possible “add” executions in the calculator will generate the same GA. The ability to

create such GA for all the legal execution of the above JavaScript is essential for our detection

mechanism, and enables the “learning” process for each web application that constructs a

“white-list” made of the set of legal GAs that represents the JavaScript code used by the web

application. In this “learning” mode each generalized JSA is considered as a legal GA that

we place in the web application legal generic JSA set (LGAS for short) that will be used in

detection and prevention mode. In other words, the LGAS of a given web application is the

web application white-list. Given this set of legal generic JSA, the detection mechanism apply

the generalization function to each JSA it compiles and check if fgeneralize(JSA) appear in
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the LGAS. If it appears the JavaScript is legal and executed, and if it doesn’t the script is

considered a potential attack and if there is no update to the whitelist, the system falls back

to negative security over the JSA in order to determine if the script is an attack or an update.

If detected as potential attack, it is blocked to prevent XSS.

As example to the ability to detect malicious code and block it, let’s assume a web application

that receives “myname” value from the client and places the string without proper validation

or output encoding inside the following code: eval("alert(’"+myname value+"’);");. First

the eval() function will be executed which will generate the pseudo JS assembly:

MOV REG1 STR1

EVAL REG1

The execution of the opcode EVAL REG1 will cause the JS engine to compile the code written

inside STR1. In other words, the JS engine will now compile alert(’"myname value"’);.

This causes the JS engine to generate the pseudo JS assembly:

MOV REG1 STR2

ALERT REG1

Thus, as we can see the given JS code generated 2 JSAs, the eval() execution and the alert()

execution. Now let’s look at the GAs.

The first GA is:

MOV REG1 literal

EVAL REG1

While the second GA is:

MOV REG1 literal

ALERT REG1

In the “learning” phase we will place both of these legal GAs (or LGA) into the LGA set of

this web application (or LGAS for short). Now let’s assume an attacker tries to perform a XSS

attack on that webpage with the following input:
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myname = ‘‘’); window.location=’http://evilsite.com/’; //’’

As a result of this input the vulnerable application will return to the user the following code:

eval("alert(’’); window.location=’http://evilsite.com/;’//’);");

and the evaluated code will redirect the user to evilsite.com. Let’s take a look at the generated

JSA: First JSA does not change:

MOV REG1 STR1

EVAL REG1

Thus, it’s fgeneralize() output is the known LGA:

MOV REG1 literal

EVAL REG1

However, the second JSA that will be generated by the JavaScript compiler and it looks like:

MOV REG1 STR2

ALERT REG1

GPROP REG2 window

SPROP REG3 STR3; this code cause redirection.

And the generalization function will generate the following GA:

MOV REG1 literal

ALERT REG1

GPROP REG2 window

SPROP REG3 literal

As we can see this second GA is very different from the previous second GA and will not

appear in the LGAS of the web application (as opposed to the first run). Therefore it will be

considered as a XSS attack and will be blocked.

As can be seen in [18], performing canonicalization on the JavaScript code itself is a very hard
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task, and can be vulnerable to evasions. The location of the XSS detection and prevention

mechanism within the browser’s JavaScript engine allows the mechanism to perform the con-

version to generic form on the compiled JavaScript code instead of the JavaScript code itself.

This conversion of JavaScript assembly into generic form is much simpler and not vulnerable

to various evasion techniques. To summarize, the combination of the location of the detection

component and performing the generalization on JavaScript Assembly makes our mechanism

immune to evasion techniques.

6.3 Negative logic fallback

One limitation of positive logic approach is the inability to handle legitimate changes that are

not reflected in the white list, for instance and updated script that was not entered into the

whitelist. In that case our solution falls back into using negative security logic, but the solution

location allows us to perform negative logic over the JSA, which natively uncovers evasion

techniques. Our negative logic approach does not look for a pre-defined signatures of known

attacks, but for certain actions done in the JavaScript code that are considered suspicious. We

want to assess the threat of a JSA and determine if the JSA should be blocked or not. In

order to assess the threat of a JSA, during the construction of the GA in fgeneralize() we keep

tags of suspicious actions and the amount they are used and a histogram of the opcodes in the

GA. A suspicious action can be calling eval() or document.write() for generating new code,

but these actions are just raising suspicion, they cannot harm by themselves, but can be part

of an attack. We consider action like window.open(), settings document.location property to

redirect or even using XML objects open() function to start new HTTP request as dangerous

actions because these actions create new HTTP requests that can send personal data.

These suspicious and dangerous actions can be detected quite easily by parsing the JSA,

and hiding the use of these functions to evade detection is not possible because hiding these

functions in the JSA will cause the JavaScript compiler not to execute the attack. Even

manipulations like indirect use of an object can be detected easily in JSA, while can be quite
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complicated in JavaScript Code.

For instance:

A direct use of document object to perform redirection:

document.location = ‘‘http://google.com’’;

An indirect use of document object to perform redirection (one level of indirection):

var i = document;

i.location = ‘‘http://google.com’’;

Direct use can be detected quite easily in JavaScript code, but indirect can be much more

complex, especially when using multiple levels on indirection.

Our system detects indirect use easily and nativity thanks to the use of JSA and not the

JavaScript code. Analyzing a simple JSA is much simpler and faster then analyzing JavaScript

code that can be very complicated.

In case a script is not known the URL, JS, GA and negative tags are being submitted to

the web server to a module we call GA server and the following occurs:

• If there are no negative tags:

– The server automatically adds the GA to the whitelist and logs the operation.

– The script is allowed to be executed by the JavaScript engine.

• If there are negative tags:

– In the server:

∗ If there are only suspicious actions in the negative tags then the server does not

add the GA to the whitelist automatically, but logs and alerts the webmaster

(or any other knowledgeable employee) to decide if the GA enters the whitelist.

This information might also discover possible vulnerabilities in code that have

not been uncovered yet.
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∗ If there is at least one dangerous action in the negative tags then the server

does not add the GA to the whitelist automatically, also it logs and alerts the

webmaster that a dangerous action has occurred. The webmaster will need to

manually decide if the GA enters the whitelist.

– In the browser we want to check if these negative tags are not simple update of

known page which causes the hash to change. In order to do that we look for the

most similar scripts. We do that by calculating the distance between the unknown

script opcode histogram and every other histogram in the LGA. The closest GAs

are the ones that their distance is the smallest. Once we found the most similar

scripts we find the difference between their negative tags:

∗ If the difference between the negative tags contain only suspicious actions we

allow the execution.

∗ If the difference between the negative tags contain at least one dangerous action

the execution is being blocked.

– The script is allowed to be executed by the JavaScript engine.

6.4 Detection & Prevention

In case a script is not known the URL, JS, GA and negative tags are being submitted to the

web server to a module we call GA server and the following occurs:

• If there are no negative tags:

– The server automatically adds the GA to the whitelist and logs the operation.

– The script is allowed to be executed by the JavaScript engine.

• If there are negative tags:

– In the server:
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∗ If there are only suspicious actions in the negative tags then the server does not

add the GA to the whitelist automatically, but logs and alerts the webmaster

(or any other knowledgeable employee) to decide if the GA enters the whitelist.

This information might also discover possible vulnerabilities in code that have

not been uncovered yet.

∗ If there is at least one dangerous action in the negative tags then the server

does not add the GA to the whitelist automatically, also it logs and alerts the

webmaster that a dangerous action has occurred. The webmaster will need to

manually decide if the GA enters the whitelist.

– In the browser we want to check if these negative tags are not a simple update of a

known page which causes the hash to change. In order to do that we look for the

most similar scripts. We do that by calculating the distance between the unknown

script opcode histogram and every other histogram in the LGA. The closest GAs

are the ones that their distance is the smallest. Once we found the most similar

scripts we find the difference between their negative tags:

– If the difference between the negative tags contain only suspicious actions we allow

the execution.

– If the difference between the negative tags contain at least one dangerous action the

execution is being blocked.

The GA server can also perform deeper analysis on the code with other tools once it is

being submitted to allow the webmaster take a more knowledgeable action. If the webmaster

chooses to allow the GA, it is now considered as a legal GA (LGA) and it gets into the legal

generalized assembly set (LGAS), while if the webmaster chooses to block the GA it is con-

sidered now as illegal GA (IGA) and it gets into the Illegal generalized assembly set (IGAS).

Both of these sets hold GA hashes, but some are marked as legal and the other marked as illegal.

So in case a client knows GA and recognizes it as LGA, it allows the execution without further
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action, and if the GA is recognized as IGA it is being blocked without any further action.
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Learning & Publishing

In the following chapter we explain more deeply the generalization process of JavaScript as-

sembly. Then, we discuss the learning mode of the system, which creates the whitelist that is

being used during the detection & prevention modes. We talk about how the solution publishes

the whitelist to the clients (browsers).

7.1 The generalization process of JSA

As explained before the main goal of the generalization function that generates GAs from the

JS Assembly is to create a minimal series of Generic Assembly opcodes that represent the

legal JavaScript code in the web application. The algorithm of the generalization function

that generates Generic Assembly from a JSA iterates through all the opcodes in the JSA and

modifies them as follows:

1. Ignore the all the values of the opcodes, since in the Generic Assembly we are only

interested in the opcodes themselves that represents the behavior, not the data itself

(If an injection of JavaScript code happened which changes the behavior of the web

application, must add or change opcodes, not just data).

2. Ignore opcodes that their existence doesn’t affect the outcome of the code. For example

the following opcodes have been ignored in our Firefox implementation: JSOP NOP,
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JSOP STOP, JSOP THIS, JSOP NEW.

3. Modify all opcodes that represent a data type to literal, while making sure the two sequen-

tial literals turn to one literal. For example in our Firefox implementation: JSOP INT8,

JSOP UINT16, JSOP STRING → literal, literal, literal → literal.

4. Modify all opcodes that have the same goal into one unique opcode. For example in

our Firefox implementation: JSOP CALL, JSOP CALLGLOBAL, JSOP CALLLOCAL,

JSOP CALLGNAME would all change into JSOP CALLLITERAL.

5. Modify all opcodes that have performed a logical operator into one unique opcodes.

For example in our Firefox implementation: JSOP IFEQ, JSOP IFNE, JSOP AND,

JSOP OR would all change into JSOP LOGICLITERAL.

Note: the exact details of the generalization function depend on the exact details of the JSA

generated by each JavaScript engine. However, the concepts are the same and can be easily

tailored to each compiled JavaScript engine. Following the above rules, any variant of JS

Assembly that has been generated from a legal usage of the web application will be translated

into the one of the LGAs that has been generated for that web application and placed in the

LGAS. Any code injection that change the behavior of the JS code will ultimately lead to a

different GA that will not appear in the LGAS and as a result will be detected as illegal GA

(or IGA for short) and will be blocked by our mechanism.

7.1.1 Engine specific implementation

The proposal is implemented as part of the JavaScript engine itself and being tailored to its

JS Assembly. Therefore the solution must be tailored made to the engine’s JS Assembly, so

does the LGAS database being provided to the clients. With that we should stress out that

there aren’t many popular JavaScript engines out there.

In the evaluation chapter (chapter 9) we will show that the generalization function we imple-

mented in the POC does converge, which means that after a short time of surfing through the

web application we collect a finite set of GAs that present all the JSAs the application creates.
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7.2 Learning LGAS of a web application

In order to generate a LGAS for a new web application, or update an existing LGAS, our

mechanism needs to “learn” the new JSAs in order to create GAs for them. To do that the

solution is being executed in “learning mode”. “Learning mode” is being performed in a safe

environment (and the activities are legal ones), and as a result we can assume that all JSAs are

legal and every GA being created during learning mode is considered a LGA. Thus, in order

to learn a new web application, a legal user(s) surfs through the web application, making sure

all scripts are being executed at least once.

The update process of LGAS is similar to creating a new one. Once the website has been

updated, we surf the website and replace the new LGAS with the old one. Another way to

update is relying on the negative logic approach (section 6.3) to send the GA server unknown

hashes and then add them to the whitelist. After all scripts have been compiled at least once,

we have a set of LGAs describing the legal behavior of the application. During “detection

and prevention” mode every known GA being generated that has been found in the LGAS is

allowed. If GA has been found in the IGAS, is blocked, and if not found at all, we fall back to

negative approach and cache the result.

Since generating a new LGAS requires surfing through the web application, we suggest that

during the quality tests performed by the QA team responsible for checking the website, our

solution can run in the background in “learning mode”, producing the LGAs. This way by

the time the tests on the web application are over, the LGAS is ready to be published to the

world.

We should point out that there is one type of web application that cannot be converged. A web

application that its goal is to receives as an input JavaScript code from the user and returns in

the response a web page containing that JavaScript code. This kind of web application, which

its design and goal is to perform XSS, can create all possible JavaScript codes. Therefore, it is

impossible to prevent XSS in this website, simply because preventing XSS means preventing

the web application from doing its job.
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Figure 7.1: Learning mode activity diagram

7.3 Solution flow charts

7.3.1 Learning flow

In the following section we illustrate the flow of the learning process and detection & prevention

process using activity diagrams. Every time JS code is being compiled into JSA, we call

fgeneralize() to produce hash(GA), negative tags which tag scripts with suspicious or dangerous

actions and a histogram of the GA OPCODEs.

If the hash(GA) is found in the database, we continue because we already know that GA,

otherwise we add it to the database. We keep in the database the output of fgeneralize() by

using hash(GA) as the key.
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Figure 7.2: Detection & prevention activity diagram

7.3.2 Detection & Prevention Flow

Every time JS code is being compiled into JSA, we call fgeneralize() to produce hash(GA),

negative tags which tag scripts with suspicious or dangerous actions and a histogram of the

GA OPCODEs.

In case hash(GA) is found in the database, we check whether it is an LGA or IGA. In case of

an LGA, the script is known and legal therefore we allow the script, on the other hand if the

script is IGA we know the script and know it is illegal, therefore we block the script.

In case hash(GA) is not found in the database, we face an unknown script. First of all

we send the script to the GA server for further inspection. In the meantime the browser must

decide how to react, whether to block or allow the script.

If there are not negative tags to the script we conclude that it contains no suspicious or dan-

gerous scripts, therefore we allow the script and cache the result. If it does contain negative

scripts we will look for the most similar scripts. There might be a website that uses dangerous

scripts for its legal operation and our new script is a small update of the former script, so by
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finding the most similar scripts we can try and see if there are any new negative tags. We

determine the similarity by calculating the distance of the two scripts’ histograms. The most

similar scripts are the ones that have the smallest distance between the histograms, meaning

they have the most common GA OPCODEs. We check if there are any differences between

the negative tags of the current script and the most similar scripts. In case these differences

contain dangerous negative tags, we block the script, otherwise we allow it.

7.4 Publishing GAS to browsers

Once GAS (Generalized Assembly Sets which contains LGAS and IGAS) of the web application

is ready, we need to make sure the detection and prevention mechanism in the clients (browsers)

receive the GAS of our application. We suggest publishing the GAS of a web application

using the same mechanism being used to publish CRL (certificate revocation lists), i.e. a

downloadable GAS file (based on CRL file publishing):

Each web application that has GAS, places at least 2 files in a predefined path:

• gas.dec - descriptor file

• gasX.dat - LGAS for engine X

A client checks the predefined path in the website, looking for the GAS file descriptor (for

example: http://www.somesite.com/gas.dec). The descriptor contains the gasX.dat publish

date (version), where X changes for each engine. For example:

• gasFF.dat is the GAS of the web application for Firefox

• gasChrome.dat is the GAS of the web application for Chrome

Notice that the descriptor may also contain more information like hash of gasX.dat and a

signature on its data. The client first checks if it already downloaded the file, if not, it

downloads the gasX.dat and replaces it with its own. The client should check gas.dec when it

surfs to a web application that the client does not have LGAS for it (of course, the absence
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of gas.dec means there is no GAS for this web application). If a client detects a JSA that

produces GA that does not appear in eithr of the GAS (meaning, not in the LGAS nor IGAS)

than before falling back to negative solution, the client should check if there is a new version

of GAS. If so, the client downloads the new GAS and checks if the GA still does not appear

in the GAS. If it appears in the new GAS, than the site has been updated, if not we fall back

to negative logic. In order to minimize updating the GAS during runtime of JavaScript (and

reduce performance), the client should check the gas.dec once in a while (for example, when

surfing to the website for the first time in at least 24 hours).

Another possible design is instead of publishing the whole database, we can use a central server

that clients can ask if a given GA hash is known or not, and keep the answer in a local database

that acts as cache. Every time the client detects GA it doesn’t recognize, it sends a request to

the central server to ask if the hash is legal or not. We do not recommend using this design

due to the impact this design might have over the browser performance. Requesting the server

for each and every GA hash might produce thousands of requests if the user surfs to a web

application for the first time or in case the web application has been updated. Furthermore,

if we try to bootstrap a client with the whole database on the first time it surf to the web-

application, an update can still generate many requests that might have a negative impact

over the performance of the JavaScript compilation-execution process in the web application.
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Firefox SpiderMonkey Proof of

Concept Implementation

To test our design we implemented the solution in Firefox’s SpiderMonkey on windows oper-

ating system under the codename Professor Monkey. SpiderMonkey compiles the JavaScript

code into JSA called “bytecode”. The bytecode is than being executed by the JavaScript

Engine to execute the code. The solution itself is placed in a DLL linked to SpiderMonkey

named profmonkey.dll. The only change in mozjs.dll (SpiderMonkey) is that at the end of the

compilation, instead of returning the bytecode, it calls professor monkey for inspection.

If a web application executes code using “javascript:” prefix, the browser does not have a URL,

but an opaque URL (the URL is “javascript: ...”). In this case in order to get the URL of the

page the solution we have implemented use the value of “document.URL”, which returns the

URL of the current loaded page in that tab to extract the domain of the web application.
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«component»

profmonkey.dll Professor Monkey
(our solution)

-m_gen : Generalizer

+on_compile()

Professor

-m_db : Database

+generalize()

Generalizer

+set_ga_entry()
+get_ga_entry()
+is_ga_entry()

Database

«component»

mozjs.dll 
(SpiderMonkey)

JSScript

Figure 8.1: POC high-level structure

8.1 Components Overview

8.1.1 mozjs.dll

The component is Firefox’s SpiderMonkey, which is Firefox JavaScript engine. We have slightly

modified it to call our DLL (section 8.1.2), and to allow or block the script by returning the

original script, or execute alternate script and fail the compilation.

8.1.2 profmonkey.dll:

The component implements our solution. The component is linked with mozjs.dll and becomes

part of the JavaScript engine. The design of this component is such that in order to support

new JavaScript engine, the only method that it is needed to implement is the generalize().

Professor:

Professor object is responsible for deciding whether to allow or block a given bytecode (JSA)

during detection/prevention mode, or generating the LGA during learning mode. The Profes-

sor object executes the flows we explained in sections learning flow (section 7.3.1) and detection

& prevention flow (section 7.3.2).
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Generalizer:

Generalizer object receive bytecode-JSA and returns bytecode-GA. In our implementation the

generalizer class has 1 function - generalize(). This class is the only class that needs to know

SpiderMonkey’s bytecode, therefore, in order to implement our solution in another JS Engine,

the only change required is to implement a dedicated generalizer for that engine. The func-

tion receives bytecode from SpiderMonkey, and calculates the generic assembly. The bytecode

in SpiderMonkey is a byte[] array. The generalizer receives byte[] as input, iterates all the

bytecode OPCODEs copying them to the new generalized bytecode while applying the rules

described in section 7.1, and returns a new byte[] that contains the GA. Also, during the iter-

ation over the bytecode OPCODEs, the generalizer marks negative tags.

Database:

The database object manages the GA entries (both LGA and IGA). The object is the DAL

between the professor and the database engine itself.

Database engine:

In our implementation we have expiremented with 2 types of databases:

• SQLite

• CRLF delimited files

We started with SQLite database, which was very convenient to work with but the INSERT

operation into the database during learning mode is so slow that it actually slowed down the

surfing in this mode to a point we couldn’t use the browser.

Next, we switched to simple text files using CRLF (CR=\r, LF=\n) as a delimiter between

records, also every file contained GA database for a different web application. In this database

the INSERT operation is very fast (by keeping a cursor to the file) and no performance hit

was noticed.
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Also, to lower the impact even more we use a cache system to keep the database of the opened

web application in the memory.

8.2 POC execution example

In this section we will present an actual execution of our POC.

We uploaded the following HTML to the internet:

The code uses eval() to evaluate an alert() function that the text inside it comes from the

variable “x” given to the application in the URL.
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8.2.1 Normal execution

If we surf to the website we will get an alert() message box with the text given in “x”:

But if we place inside X the following string:

Gotcha!’);window.location=’http://www.google.com’;//

The text “Gotcha!’);” is being evaluated to the end the alert() function and allows the

attacker to start a new JavaScript command.

Than the attacker inserts the text: “window.location=’http://www.google.com’;” which
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is being evaluated to JavaScript code that redirects the user to http://www.google.com.

Finally the attacker uses the text “//” so it will be evaluated into a comment sign, therefore

all the code after the redirection will be marked as a comment, preventing any errors that

might prevent the attack from being executed.

So finally the code that is being evaluated is:

alert(gotcha’);window.location=’http://www.google.com’;//’
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8.2.2 Learning mode

In learning mode we will surf to the website allowing professor monkey to build the whitelist.

The surf in learning mode resulted in 3 new GA hashes inside the LGAS (eval() has been

detected as a suspicious behavior):

8.2.3 Detection and prevention mode

Now, we switch the browser into detection & prevention mode. Every JSA will be turned into

hash(GA) and will be searched in the database. If the hash(GA) cannot be found inside the

database it will be considered as an attack. First, let’s run a legal page:

56



Chapter 8 / Firefox SpiderMonkey POC Implementation

The legal execution created only hash(GA)s that exist in the LGAS, this is why we got the

actual result we wanted.

Now let’s try to inject new JavaScript code we used earlier which contains redirection, and we

get:

This time the hash(GA) created does not appear in the database, that means new unexpected

code has been compiled. Also, we detect that window.location is being set, which is consid-
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ered a dangerous action, therefore in this case professor monkey displays an alert message box

alerting the user he/she “under attack”, and fails the malicious code compilation:
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Evaluation

In this chapter we detail the evaluation process of the system using Firefox’s SpiderMonkey

and present the results.

9.1 Learning Process

In order to make sure that we can generate a finite set of legal GAs, we learned using our

system 33 sites (detailed in appendix C) out of Alexa top sites [2] for 72 days, executing the

learning phase on the websites every other day.

In order to produce the GAs we crawled through all of these website, although due to the

large scale of these websites we decided to do the evaluation only on the first 100 pages we

came across. First, we used a web crawler to generate a list of these 100 pages per website.

Next, the list was given to Selenium WebDriver [24] to automate the surfing of the Firefox

POC through these 100 pages per website. Since we are in the learning mode during this

surfing prof-monkey generated the GAs for these 100 pages per website. In order to verify that

the learning mode is converging, we surf again through the 100 pages until we reach two full

consecutive iteration without any new GA being detected and added to the LGA. The reason

we need more than 1 iteration is because the web sites might add cookies or other data that
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Figure 9.1

can change the behavior of the website.

In figure 9.1(a) we can see all the new GAs being detected as a function of learning execution

iteration. In this figure we can easily see that most GAs are being detected in the initial itera-

tion (1st iteration). In figure 9.1(b) we can see the same data but without the initial iteration.

As we can see in this figure, every once in a while the site is being updated which leads to

updating the GA set quite frequently. Also, we have noticed that some websites build their

JavaScript code dynamically which makes it hard to learn all the possible GAs up front. Due

to these reasons we cannot simply use the GAs we’ve learned as a whitelist to the application,

but we also need to use a blacklist mechanism to deal with the new GAs (as explained in sub-

section 6.3). We present the results of the blacklist accuracy in the next section (specifically

subsection 9.2).
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Figure 9.2

9.2 Accuracy Measurements

9.2.1 Testing for false positives

The blacklist mechanism detects suspicious and dangerous actions in JSAs that produce un-

known GAs and allows the JavaScript engine to handle the new JSAs. Suspicious actions are

operations that are considered as being used in an attack, but they are not dangerous by them-

selves, for instance, eval() or document.write() function. Dangerous actions are operations

that can be used to attack the user and oppose a threat by themselves. For instance, setting

the property window.location can be used to redirect the browser.

In our POC we have decided that these actions are suspicious:

• eval() function
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• document.write() method

• Get of document.cookie property

• Get of document.location property

and these actions are dangerous:

• Set of document.cookie property

• Set of document.location property

• window.open() method

• document.write() method if writing text an iframe

As we pointed out in section 6.3, it is important to detect not only the direct use of the oper-

ations but also an indirect use.

With these actions defined we allow to execute JSAs that produce unknown GAs that have

no dangerous operations in them. The data of the suspicious and dangerous actions is being

sent to the website’s server as extra data to the webmaster to allow him decide better if it

is a legal JS or if there is higher potential that the web application is being attacked. JSAs

with dangerous actions is being blocked until the GA is officially added to the legal set of GA

(WhiteList).

Figure 9.2(a) shows the total number of new GAs in comparison to new GAS that has been

marked as suspicious or dangerous. In fact, only 2.39% of all the GAs (excluding initial itera-

tion) contain suspicious or dangerous GAs.

Figure 9.2(b) show the number of new GAs that has been marked as suspicious or dangerous to

the actually blocked scripts. By the graph we can see that the solution false positives (blocked

scripts) are 4 GAs with dangerous operations, which is 0.08% out of all the GAs excluding

the initial iteration. That means that out of all the GAs marked with suspicious or dangerous
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tags, 96.58% are allowed because of similarity to previously allowed GAs (no difference by their

histograms as explained in section 6.3).

Notice that the graphs starts from the fourth iteration in order to produce better scaling

in the presented graphs. The third iteration total new GAs (in all the 33 websites) is 1137

new GAs due to a website update. Using this iteration in the graph would change the scale

dramatically, therefore it was removed.

These results show that the usage of the histogram similarity in our solution provides a very

low rate of false positives.

9.2.2 Testing for false negatives

In order to test our solution for false negatives we created a small website (code can be found

in appendix A) that uses both eval() and document.write() as part of its normal usage. The

website is a calculator that receives number x, number y, binary operator op and calculates

the result of x and y by applying op over them (using eval()). The result is being written on

the page using document.write(). For example, if x = 1, y = 2 and op = + then the returned

page is the text: 1 + 2 = 3.

After learning the website, we executed all the attack vectors in OWASP [21] that successfully

got exploited in our Firefox browser, also we have tried a few more evasions of our own. The

attack vectors are detailed in appendix B. In our tests all code injections we have tried have

been blocked successfully by the solution, while the website worked correctly when the input

was not JavaScript code.

9.3 Performance measurements

We have evaluated the performance hit detection & prevention mode in our (non-optimized)

POC on Gmail. The reason we chose Gmail is because it is very rich in JavaScript compared to
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other websites. The time added to the web page loading time by the browser about 1.078sec

per page in normal operation mode (i.e. when the mechanism is working in detection and

prevention mode). This additional time is due to the fact that gmail web pages are heavily

using JavaScripts and in average number of JSAs per page is about 4900. The generalization

function itself takes about 0.0127ms per JSA, and the average time of the whole professor

monkey module is about 0.22ms per JSA, and when multiples by 4900 we get the 1.078sec.

We should point out that most of the compilations occur during the first loading of Gmail

web application, but it does not change the average. Web sites that use less JavaScript the

additional time per web page loading will be significantly smaller, Thus, even these performance

prove that our solution is a practical solution, especially that we strongly believe that our

solution implementation can be optimized to reduce the time it takes to perform its JavaScript

validation.
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Summary

In this work we presented a mechanism to detect and prevent XSS attacks by a modification

of a JIT JavaScript engine that allows the JavaScript engine, using a generalization function,

to convert each JavaScript assembly code generated by the JIT JavaScript engine to a gen-

eralized form and compare it to a whitelist of a given web application (that is created by a

learning phase). We have implemented a POC of this mechanism and have shown that the

learning phase is converging very fast to a finite list of generalized JavaScript assembly code,

and as a result the learning phase is short and the mechanism will not generate false positives.

The uniqueness of this mechanism due to its location within the JavaScript engine that it can

detect and prevent XSS attacks that are generated by other JavaScript code, and it handles

natively JavaScript generated by JavaScript, DOM-based attacks, non-HTML object executed

by plug-in and addons. In addition, the solution we presented does not require any action from

the developers to define a policy that could be incomplete or hard to craft.

The solution we presented discusses JavaScript assemblies being produced only in JIT-based

JavaScript engine, but the solution can also be implemented in interpreter-based engines by

replacing the generalization function to work on JS code instead of JSA code (use a canoni-

calization function like the one presented in Rotberg and Movshovitz paper [18]).

The näıve implementation of the generalized JSA database is vulnerable to return-to-libc at-

tack (executing legal code of the application in another place in the application), but this can
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be solved by adding more information to the hash placed in the LGAS, for example instead

of hashing only the JSA, we can hash JSA+URL, thus by executing the code in another page

will be detected as an attack. The more unique data we hash, the harder it is to use the attack

(but it can affect the time of the learning phase).

It is important to mention that the presented approach can be extended to other JIT-based

engine, not just JavaScript. Using the whitelist, at the end of the “compile” function, the

engine can check if the generalized-version of the compiled code is known and legal or should

be blocked.
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Prevention Testing of JavaScript

code

We wanted to build a vulnerable website that uses both eval() and document.write().

Therefore we created a calculator that receives from the URL the parameters x, y and op and

performs the operator op over x and y. For example, if x = 1, y = 2, op = + then the web

page looks like: 1 + 2 = 3. The function getQueryParams() has been written by Ates Goral

in stackoverflow.com [8].

<HTML>

<BODY>

<script>

function getQueryParams(qs)

{

qs = qs.split("+").join(" ");

var params = {}, tokens, re = /[?&]?([^=]+)=([^&]*)/g;

while (tokens = re.exec(qs))

params[decodeURIComponent(tokens[1])] = unescape(decodeURIComponent(tokens[2]));
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return params;

}

var \$_GET = getQueryParams(document.location.search);

document.write(\$_GET["x"]+\$_GET["op"]+\$_GET["y"]+" =

"+eval(\$_GET["x"]+\$_GET["op"]+\$_GET["y"]));

</script>

</BODY>

</HTML>
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Attacks Prevented

The following list are all the XSS attack vectors that worked on our Firefox POC. We have

tried all of them against the system, and all of them have been blocked successfully simply

because it created new GA hashes that did not exist in the website detailed in appendix A.

Most of them them are from OWASP XSS filter evasion cheat sheet [21], and the rest has been

created by us.

1. ?x=1&y=2;alert(’xss’);&op=+

2. ?x=document.loc&y=ww.google.com/’&op=ation=’http://w

3. ;alert(String.fromCharCode(88,83,83))

4. <aonmouseover="document.location=’http://www.google.com/’">xxslink</a>

5. <IMG"""><SCRIPT>document.location=’http://www.google.com/’</SCRIPT>">

6. <IMGSRC=#onmouseover="document.location=’http://www.google.com/’">

7. <IMGonmouseover="document.location=’http://www.google.com/’">

8. <IMGonmouseover=&#x64;&#x6F;&#x63;&#x75;&#x6D;&#x65;&#x6E;&#x74;&#x2E;&#x6C;

&#x6F;&#x63;&#x61;&#x74;&#x69;&#x6F;&#x6E;&#x3D;&#x27;&#x68;&#x74;&#x74;&#
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x70;&#x3A;&#x2F;&#x2F;&#x77;&#x77;&#x77;&#x2E;&#x67;&#x6F;&#x6F;&#x67;&#x6C;

&#x65;&#x2E;&#x63;&#x6F;&#x6D;&#x2F;&#x27;>

9. <<SCRIPT>document.location=’http://www.google.com/’;//<</SCRIPT>

10. <IMGonmouseover="document.location=’http://www.google.com/’"

11. <IMGsrc="doesntexists"onerror="document.location=’http://www.google.com/’"/

> - Works on any event.

12. <INPUTTYPE="IMAGE"onmouseover="document.location=’http://www.google.com/’">

13. <BODYonmouseover="document.location=’http://www.google.com/’">

14. <BODYONLOAD=document.location=’http://www.google.com/’>

15. <EMBEDSRC="data:image/svg+xml;base64,PHN2ZyB4bWxuczpzdmc9Imh0dHA6Ly93d3cud

zMub3JnLzIwMDAvc3ZnIiB4bWxucz0iaHR0cDovL3d3dy53My5vcmcvMjAwMC9zdmciIHhtbG5

zOnhsaW5rPSJodHRwOi8vd3d3LnczLm9yZy8xOTk5L3hsaW5rIiB2ZXJzaW9uPSIxLjAiIHg9I

jAiIHk9IjAiIHdpZHRoPSIxOTQiIGhlaWdodD0iMjAwIiBpZD0ieHNzIj48c2NyaXB0IHR5cGU

9InRleHQvZWNtYXNjcmlwdCI+ZG9jdW1lbnQubG9jYXRpb249J2h0dHA6Ly93d3cuZ29vZ2xlL

mNvbS8nOzwvc2NyaXB0Pjwvc3ZnPg=="type="image/svg+xml"AllowScriptAccess="alw

ays"></EMBED>

16. <iframeSRC=javascript:document.location=’http://www.google.com/’;<
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Learned Websites List

In the following table we present the results of the learning mode tests we conducted on the

Alexa top-sites. The table is built as follows:

• WebSite - The website the test has been conduct upon

• Total GAs - The total number of GAs the website generated

• The second part of the table excludes the initial iteration and contains the following

columns:

– Total GAs - The total number of generalized assemblies the website generated

– GAs marked - GAs marked with at least one suspicious or dangerous tags

– Blocked GAs - GAs marked with at least one dangerous tags, therefore being blocked

(false positive of the solution)

WebSite Total GAs Total GAs GAs marked Blocked GAs

163.com 1629 229 5 1

adobe.com 1370 233 13 1

alibaba.com 307 6 2 0

amazon.co.jp 145 33 1 1
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amazon.com 891 124 2 0

aol.com 1738 143 8 0

ask.com 1012 46 0 0

babylon.com 290 9 0 0

bbc.co.uk 634 359 6 0

bing.com 202 18 0 0

craigslist.org 333 5 0 0

ebay.com 752 94 2 0

fc2.com 460 61 0 0

flicker.com 146 82 9 0

go.com 1307 365 13 0

google.com.hk 1430 252 3 0

google.com.tr 943 109 0 0

google.de 1385 295 3 0

google.es 1355 222 3 0

google.fr 1390 313 3 0

google.com 1231 292 9 0

imdb.com 458 8 0 0

microsoft.com 687 20 1 0

pinterest.com 710 255 6 0

piratebay.se 133 0 0 0

rakuten.com 1349 161 3 0

soso.com 333 11 0 0

stackoverflow.com 139 50 3 0

tumblr.com 988 149 1 0

wikipedia.com 523 54 1 0
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yahoo.com 590 56 3 0

yandex.ru 546 43 1 0

youku.com 1118 277 16 1
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 תקציר

 

התקפות צד לקוח מ( היא אחת Cross Site Scripting or XSSהתקפת "סקריפט חוצה אתרים" )

והטקסט חוזר  מהלקוח אל השרתשנשלח בטקסט . ההתקפה משתמשת ברשת הפופולריות ביותר

לתוכנת הלקוח שיכולה לגרום לגניבת  עויןלהזריק קוד ח. בדרך זו יכול תוקף כקוד חזרה אל הלקו

, סריקת הרשת הפנימית של הלקוח, האתר ללקוחבין ( session key)חיבור -מפתחסיסמאות, 

. למרות שההתקפה ידוע שנים רבות, היא עדיין כו'ו באתרים שונים בקשות שנעשות בשם הלקוח

 אחת ההתקפות הפופולריות ביותר.

רוב טכניקות ההתגוננות מפני ההתקפה משתמשות בלוגיקה שלילית )רשימה שחורה( על מנת 

בהן קוד שמייצר קוד קויות רבות לטכניקות התחמ ותחשופ לזהות את ההתקפות, אך טכניקות אלו

רבות דורשות שינויי קוד או  טכניקות הגנהבנוסף  ההגנה. טכניקותאת יעילות  ותשמגביל ואחרות

נוסף שיכול לייצר עקב דרישה לפיתוח  לבעייתיים הפתרונותהתערבות המשתמש, מה שהופך את 

או הסתמכות על ידע המפתחים או/וגם בתשתיות וספריות קוד קיימות וכן אי תמיכה  החדש פגיעות

לבדיקה מציאת הקוד יא נוספת הקשה מגבלה  ., מה שהופך פתרונות אלו לבעייתייםהמשתמשים

בנוסף  .pdfוקבצי  Flash animation-אך גם ב jsאו  HTML טקסט כמו בקבצי להימצאול אשר יכ

)בגלל היכולת של קוד לייצר עוד קוד( ועל כן, את הקוד היא בעיה ששקולה לבעיית העצירה מצי

 פתרון שצריך למצוא קוד בעצמו איננו מסוגל באמת לעשות זאת ותמיד יהיה מוגבל.

המערכת שאנו מציבים את  ךע"י כ XSSהתקפות  ומדויקתמוצא בצורה יעילה  שאנו מציגיםהפתרון 

סקריפט, אלא -הוג'אומציאת ה, ובכך איננו צריכים להתמודד עם  סקריפט-שלנו בתוך מנוע הג'אווה

 המנוע עושה זאת בשבילנו.

להפוך את ובכך הפתרון משתמש בלוגיקה חיובית )רשימה לבנה( על מנת לאשר רק קוד מוכר, 

, שהוא מהודרסקריפט -הו. אנו עושים זאת ע"י שימוש בקוד ג'אויותר טוחלבמשמעותית הפתרון 

בקוד המהודר אנחנו יכולים ליצר  י שימושע" סקריפט רגיל.-מעותית יותר פשוט מקוד ג'אווהמש

סקריפט המהודר ולהשתמש בו על מנת לייצר את הרשימה הלבנה -גרסה מוכללת של קוד הג'אווה

 ים.ללוגיקה החיובית בא אנו משתמש

לפני באפליקציית הווב  עדכוניםהבעיה בלוגיקה חיובית היא שאינה יודעת להתמודד עם 

במקרה שבא מגיע סקריפט חדש אנחנו משתמשים בלוגיקה לכן ו, הלבנה שמעדכנים את הרשימה

 שלילית מבוססת על היוריסטיקה עד אשר הרשימה הלבנה מתעדכנת.

מצאנו  alexa.com-מהאתרים הפופולריים ביותר ב 33על גבי חודשי הערכה של הפתרון  3 לאחר

 אתר דמה שנלמד ונבדק.על התקפות את כל הסקריפטים, וכן חסם  4-טעה רק ב שהפתרון
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