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Abstract

A fundamental task of aspect-based sentiment analysis is aspect and opinion terms extraction.

Supervised-learning approaches have shown good results for this task; however, they underper-

form in real-world settings where labeled data is lacking. Non pre-trained methods that incor-

porate external linguistic knowledge have proven effective in unsupervised domain adaptation

settings; however, pre-trained transformer-based models like BERT and RoBERTa already ex-

hibit substantial syntactic knowledge. We propose a method for incorporating external linguis-

tic information into a self-attention mechanism coupled with BERT. This enables leveraging the

intrinsic knowledge existing within BERT together with externally introduced syntactic infor-

mation, to bridge the gap across domains. We demonstrate enhanced results with this method

on three benchmark datasets. Another approach for low-resource scenarios is few-shot learning.

Pattern-exploiting training has been shown to be effective in few-shot sequence classification.

We design a method to use pattern-exploiting training for the token classification task of as-

pect term extraction. We demonstrate that this method significantly outperforms the standard

supervised baseline in few-shot setups on three datasets.
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Chapter 1

Introduction

Discovering and analysing opinions in user-generated content is crucial for widespread appli-

cations, including business review analysis, financial market prediction and political analysis

(Yadav and Vishwakarma, 2020). Given the large scale of online content, it is intractable to

manually process the opinion information. Therefore, an automatic computational solution for

analyzing opinions in unstructured text is necessary. This has resulted in the emergence of the

field of Sentiment Analysis (SA), or opinion mining.

Conventional SA operates at the sentence or document level, attributing one polarity value (pos-

itive, negative, neutral, etc.) to a whole sentence or document. It is assumed that a single overall

sentiment is conveyed towards the single topic in the given text. However, opinionated text usu-

ally contains various emotional tendencies, expressed towards different aspects of entities. For

example, in the sentence “The battery life on this laptop is incredible but the performance is

sluggish”, the entity is the laptop, a positive sentiment is expressed towards the aspect battery

life but a negative one is expressed towards the aspect performance. In consequence, the need

for detecting more fine-grained sentiments at the aspect-level, termed Aspect Based Sentiment

Analysis (ABSA), has received increasing attention in the past decade.

ABSA is the task of extracting, from a given corpus, aspect terms (opinion targets), and the

sentiment expressed towards them. An aspect refers to a word or a phrase describing an aspect

of an entity. A fundamental task of ABSA is aspect and opinion terms extraction (ATE and OTE,

respectively). In the example sentence above, the aspect terms battery life and performance are

associated with the opinion terms incredible and sluggish, respectively. Since ATE and OTE are

crucial for ABSA, these tasks have also gained increasing attention, and featured on SemEval
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shared tasks (Pontiki et al., 2014, 2015, 2016). Several ABSA datasets have been compiled,

including SemEval Restaurant Review dataset and Laptop Review dataset (Pontiki et al., 2014),

and Digital Device Review dataset (Hu and Liu, 2004a). These datasets have since become the

main benchmark datasets for the ABSA task.

The fine-grained trait of ABSA makes it effective for generating a comprehensive detailed sum-

mary of opinion polarities expressed per aspect. Such information provides extremely valu-

able insight for businesses and consumers, since it enables measuring levels of satisfaction

from different aspects of a product or service, based on a massive volume of consumer experi-

ences. ABSA has been successfully applied to many domains and downstream tasks, including

analysing reviews on laptops and restaurants (Karimi et al., 2021), hotels (Bajaj et al., 2021),

education (Chauhan et al., 2019), product reviews on Twitter (Zainuddin et al., 2018), and more

recently, social media trend analysis, like tracking COVID-19 discourse on Twitter (Jang et al.,

2021). Furthermore, ABSA can be used to automate customer support tasks in response to user

queries, and to improve recommendation systems (Da’u et al., 2020).

Most of the work related to aspect and opinion term extraction is formulated as a supervised to-

ken classification task. RNN-based models (Liu et al., 2015a) and Transformer-based (Vaswani

et al., 2017) pre-trained language models (PLMs) showed promising results in single-domain

setups when trained on thousands of labeled examples which come from the same domain as the

test data. However, real-world scenarios are often required to handle multiple domains, while

labeled training data per domain is scarce and costly. The supervised approaches typically do

not scale across different domains, where only unlabeled data is available for the target domain,

since aspect terms from two different domains are usually semantically different hence sepa-

rated in the embedding space. For example, frequent aspect terms in the restaurant domain, like

salad and dessert, have little or no semantic relatedness to frequent aspect terms in the laptop

domain, like screen size and battery life.

This study offers two distinct strategies to address the problem. The first method (Chapter 2)

tries to bridge the gap between domains by using auto-generated syntactic information in an

unsupervised domain adaptation setting; that is, without requiring any labels from the target

domain. The second method (Chapter 3) is a few-shot learning system, which leverages the
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existing language modeling capability of PLMs and requires only a handful of in-domain labels.

1.1 Related Work

The most active line of ATE related work has been based on supervised learning, where token

classification methods that utilize RNNs (Liu et al., 2015b), CRFs (Yin et al., 2016) and CNNs

(Xu et al., 2018) have been proposed. Xu et al. (2019) proposed to post-train BERT (Devlin

et al., 2019a), a pre-trained language model (PLM), on domain-specific data to obtain better

word representations. Karimi et al. (2021) employed a CRF in conjunction with BERT using

layer aggregation without fine-tuning. Although they achieve promising results, these methods

require large amounts of labeled data, especially when training very sophisticated models.

There are several lines of work that address labeled data scarcity in ATE. One approach em-

ploys domain adaptation techniques, namely, utilizing existing labeled data from one domain to

adapt a model to another domain. Ding et al. (2017) proposed using dependency-based aspect

extraction rules as auxiliary supervision for an RNN model. However, this method depends on

the quality of manually-crafted rules. Wang and Pan (2019) addressed this issue by designing

a dependency prediction task that encodes dependency relations into the hidden representations

of words, thus shifting the representations of different aspect terms having similar dependency

relations, close to each other. Wang and Pan (2020) have further enhanced this model by inte-

grating a conditional domain-adversarial network that encodes both word features and syntactic

parent relation types. The above methods rely on the fact that syntactic information is important

for identifying aspect and opinion terms (Hu and Liu, 2004b; Qiu et al., 2011).

This recent line of work demonstrates effective domain adaptation by incorporating syntactic

knowledge into non pre-trained models during their training step. Subsequently, recent studies

(Clark et al., 2019; Htut et al., 2019) show that pre-trained transformer-based models such as

BERT and RoBERTa (Liu et al., 2019) already exhibit substantial linguistic knowledge. The

model we present in Chapter 2 is designed to leverage both the syntactic information from pre-

trained transformer models, and that from external sources, to further enhance domain adapta-

tion in ATE.

Another approach for data scarcity in ATE, which is in its initial stages, is zero-shot ATE. Shu
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et al. (2022) demonstrated that ATE can be successfully presented as a natural language infer-

ence task, achieving state-of-the-art results for zero-shot. However, the accuracy degradation

compared to supervised methods is significant.

Recently, few-shot methods have demonstrated impressive results in sequence classification

tasks. PET (Schick and Schütze, 2021a,b) is a recent approach that leverages patterns for few-

shot learning, by reformulating natural language understanding tasks as cloze-style questions.

ADAPET (Tam et al., 2021) modifies PET’s objective to provide denser supervision during

fine-tuning, alleviating the need for task-specific unlabeled data.

Subsequently, in Chapter 3 we propose a new framework to reformulate ATE, a token classifi-

cation task, as a masked language modeling (MLM) task. As opposed to other ATE methods,

this approach does not rely on out-of-domain labels, specialized neural architecture or hand-

crafted rules. Instead, we build upon the native token prediction capability of PLMs, combined

with very few in-domain labels.
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Chapter 2

Syntactically Aware Cross-Domain Aspect
and Opinion Terms Extraction1

2.1 Introduction

This chapter examines whether the incorporation of external syntactic knowledge into pre-

trained models contributes to bridging the gap across domains. For this purpose, we propose an

approach for unsupervised domain-adaptation of aspect and opinion terms extraction based on

incorporating linguistic knowledge into a pre-trained BERT model.

Specifically, inspired by Strubell et al. (2018), we incorporate externally-generated dependency

relations into a self-attention mechanism that is coupled with the pre-trained BERT model

(Stickland and Murray, 2019), where the external information is introduced during the fine-

tuning and testing stages of the model.

2.2 Motivation and Background

Formally, the task of aspect and opinion terms extraction can be formulated as a sequence tag-

ging task. The input is a sequence of tokens X = {x1, x2, .., xn} where the objective is to pre-

dict a corresponding sequence of labels Y = {y1, y2, ..., yn} with yi ∈ {BA, IA,BO, IO,N},

where BA, BO, IA and IO represent a beginning of aspect/opinion and inside of as-

pect/opinion, respectively, and N represents all other tokens. The goal of unsupervised do-

main adaptation is to predict the token-level labels yTi of unlabeled target domain sentences

DT = {(xT
i )}, given a set of labeled sentences from a source domain DS = {(XS

j , Y
S
j )}.

1Published as a short paper at COLING 2020 (Pereg et al., 2020).
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Figure 2.1: An example of opinionated sentences from two different domains with similar syntactic patterns.
Opinion terms are colored green and aspect terms are colored blue.

It was observed that aspect and opinion terms maintain often-occurring syntactic patterns (Hu

and Liu, 2004b; Qiu et al., 2011). Consider for example, a sentence from the laptop domain "The

display is absolutely wonderful" and a sentence from the restaurant domain "The cheesecake

was simply wonderful". In the first sentence, an NSUBJ dependency relation exists between the

opinion term (’wonderful’) and the aspect term (’display’). Assuming that the pattern aspect-

NSUBJ-opinion is frequently observed in the laptop domain, then the term cheesecake can

be extracted as an aspect term in the restaurant domain (Figure 2.1). This domain-independent

trait of the syntactic structure can be leveraged for transferring knowledge from a labeled source

domain to an unlabeled target domain. Recently, syntactic structure has been used for domain

adaptation in non pre-trained models (see Chapter 1.1).

Analyses of pre-trained transformer-based models like BERT reveal substantial syntactic in-

formation captured within their attention mechanisms; however, those analyses also show that

for many syntactic relations BERT only slightly improves over a simple baseline (Clark et al.,

2019; Htut et al., 2019). Our goal is to design a neural network model that leverages both the

information captured in the pre-trained model, and externally introduced syntactic information,

to bridge the gap between the source and target domains.

2.3 The Proposed Model

The basis for our model is a pre-trained BERT-base model (Devlin et al., 2019b) with a fully

connected sequence tagging classifier on top. Inspired by the work of Strubell et al. (2018),

we incorporate dependency relations into a self-attention mechanism denoting a syntactically-

aware attention head. Our approach differs from previous approaches which modify an existing

self-attention head within a transformer-based model and train it from scratch. Our method

modifies the BERT function by adding syntactically-aware self-attention heads in parallel to
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Figure 2.2: Coupling a syntactically-aware self-attention with a multi-head self-attention layer in a BERT model.

the BERT model (Stickland and Murray, 2019), and introduces the syntactic knowledge during

the fine-tuning and testing stages. This leaves the original pre-trained model intact, enabling

the model to utilize both the external linguistic information that is incorporated into the model

and the intrinsic knowledge gained during the pre-training stage of the model. We refer to this

model as syntactically-aware extended attention layer (SA-EXAL).

Multi-Head Self-Attention. The basis of our implementation is BERT’s multi-head self-

attention mechanism (Vaswani et al., 2017), which consists of I scaled dot-product attention

heads. For each attention head i, the hidden token representations hl ∈ Rd×T , at the input

of layer l, are projected to key, query and value representations Ki, Qi and Vi of dimensions

T × dk, where T is the number of tokens in the input sequence and dk = d/I . Attention head

i denotes attention weights that are a distinct distribution of every input token over all other

tokens in the sequence:

Ai = softmax(
QiK

T
i√

dk
) (2.1)

The output of attention head i is denoted by Mi = AiVi, where Mi is a T × T matrix, in which

each row t, represents a weighted sum of the value representations of all other tokens with

respect to token t. Finally, the outputs of all I attention heads are concatenated and projected

through a feed-forward(FF) network: SA = FF (M1,M2, ...,MI).

Syntactically-Aware Self-Attention. Inspired by the work of Strubell et al. (2018), we in-

corporate syntactic information into the self-attention head, forming a syntactically-aware self-

attention, by encouraging it to attend to specific tokens corresponding to the syntactic structure

of the sentence. As in the original attention-heads, we project hl denoting Kparse, Qparse and

Vparse matrix representations of dimensions T × dk, but unlike the original heads, we also use
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an external syntactic parser (Dozat and Manning, 2017) to generate Pparse, a T × T matrix in

which each row t represents the probability of each token in the sentence to be the syntactic

head of token t. We encourage this self-attention head to attend to the syntactic head of each to-

ken by performing an element-wise multiplication between Pparse and the dot product between

the key and query matrices:

Aparse = softmax(
(QparseK

T
parse) ∗ Pparse√
dk

) (2.2)

As in the original heads, The output of the syntactically-aware self-attention head is denoted

by: SAparse = FF (AparseVparse).

Adding Syntactically-Aware Self-Attention to BERT. Inspired by the work of Stickland and

Murray (2019) we modify the BERT(·) function by adding a syntactically-aware self-attention

head in parallel to each self-attention layer of the BERT model (see Figure 2.2) as follows:

hl+1 = LN(hl + SA(hl) + SAparse(h
l)) (2.3)

where LN is BERT’s layer normalization function and hl ∈ Rd×T are the T hidden token

representations at the input of layer l. Note that the contribution of the SAparse(h
l) component

to the representation of each token t in layer l + 1, is mostly the representation of the syntactic

head of token t. This shifts the representations of aspect terms from distinct domains, that

syntactically relate to the same opinion term, closer to each other, thus contributing to bridging

the gap between the domains.

2.4 Experiments

Data & Experimental Setup. Our experimental setup follows that of Wang and Pan (2020).

We conduct experiments on benchmark datasets with customer reviews from three different do-

mains: restaurant, laptop and digital devices. The restaurant domain combines reviews from Se-

mEval 2014 (Pontiki et al., 2014) and SemEval 2015 (Pontiki et al., 2015). The laptop domain

contains laptop reviews from SemEval 2014. Opinion term labels for these domains are ob-
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Domain # Sentences Train Dev. Test

(R)estaurant 5,841 4,381 1,460 1,460
(L)aptop 3,845 2,884 961 961
(D)evice 3,836 2,877 959 959

Table 2.1: Sentence statistics for each domain.

R → L R → D L → R L → D D → R D → L
Model AS OP AS OP AS OP AS OP AS OP AS OP

CrossCRF∗ 19.72 59.2 21.07 52.05 28.19 65.52 29.96 56.17 6.59 39.38 24.22 46.67
(1.82 ) (1.34) (0.44) (1.67) (0.58) (0.89) (1.69) (1.49) (0.49) (3.06) (2.54) (2.43)

Hier-Joint∗ 33.66 - 33.20 - 48.10 - 31.25 - 47.97 - 34.74 -
(1.47) - (0.52) - (1.45) - (0.49) - (0.46) - (2.27) -

RNCRF∗ 24.26 60.86 24.31 51.28 40.88 66.50 31.52 55.85 34.59 63.89 40.59 60.17
(3.97) (3.35) (2.57) (1.78) (2.09) (1.48) (1.40) (1.09) (1.34) (1.59) (0.80) (1.20)

ARNN-GRU∗ 40.43 65.85 35.10 60.17 52.91 72.51 40.42 61.15 48.36 73.75 51.14 71.18
(0.96) (1.50) (0.62) (0.75) (1.82) (1.03) (0.70) (0.60) (1.14) (1.76) (1.68) (1.58)

TRNN-GRU∗ 40.15 65.63 37.33 60.32 53.78 73.40 41.19 60.20 51.17 74.37 51.66 68.79
(0.77) (1.01) (0.90) (0.66) (0.91) (0.45) (1.06) (1.56) (0.99) (1.03) (1.27) (1.63)

EXAL 44.03 75.01 38.17 63.59 48.23 79.57 41.60 60.71 53.75 70.03 45.75 62.65
(2.11) (1.13) (0.79) (3.53) (2.87) (0.53) (0.54) (5.49) (1.24) (2.46) (1.54) (2.51)

SA-EXAL 47.59 75.79 40.50 63.33 54.67 80.05 42.19 60.19 54.54 71.57 47.72 63.98
(1.88) (1.02) (1.05) (2.63) (2.02) (0.48) (0.54) (3.79) (1.90) (2.86) (2.79) (3.37)

Table 2.2: Comparison across different baselines in terms of average F1 scores (and standard variations in paren-
theses). ∗Results for non pre-trained baselines reported by (Wang and Pan, 2020). The best result for each dataset
is highlighted in bold and the best result between EXAL and SA-EXAL is underlined.

tained from Wang et al. (2016). For the device domain, we use reviews from Hu and Liu (2004a)

pertaining to five different digital products. Each token in each sentence is labeled as described

in section 2.2. In order to make robust comparisons and to be comparable with previous work,

for each domain we create three random splits of the data with a train/development/test ratio of

3:1:1 (see Table 2.1).

Since results may vary across random seeds (Dodge et al., 2020), we repeat each experiment

using three different seeds and the final result is reported as the mean F1 score (and standard

deviation) calculated over the three splits and the three seeds.

We adopt the HuggingFace (Wolf et al., 2019) implementation2 of BERT-base (uncased) model

as the basis for all experiments, and open-source our code.3 We fine-tune the model with a

learning rate of 5e−5, a batch size of 16 and a maximum sequence length of 64 tokens, for 10

epochs with an early stopping mechanism according to the development set. The dependency

relations obtained by the Biaffine parser (Dozat and Manning, 2017) are generated in advance

2https://github.com/huggingface/transformers
3https://github.com/NervanaSystems/nlp-architect/tree/libert/nlp_

architect/models/libert

12

https://github.com/huggingface/transformers
https://github.com/NervanaSystems/nlp-architect/tree/libert/nlp_architect/models/libert
https://github.com/NervanaSystems/nlp-architect/tree/libert/nlp_architect/models/libert


and are introduced to the model during the fine-tuning as well as during the development/test

stages. Following prior work, only exact matches between the predicted aspect and opinion

terms and the gold labels are counted as correct.

Results. Table 2.2 shows a comparison of our proposed model (SA-EXAL) with notable base-

line models, across different domain transfers. The baselines include:

• CrossCRF (Jakob and Gurevych, 2010): A linear-chain CRF with hand-engineered fea-
tures (e.g. POS tags and dependencies).

• Hier-Joint (Ding et al., 2017): An RNN with auxiliary labels derived from manually de-
signed rules that are based on frequently observed syntactic relations between aspect and
opinion terms.

• RNCRF (Wang et al., 2016): A joint recursive neural network and CRF for in-domain
aspect and opinion terms extraction.

• ARNN-GRU (Wang and Pan, 2020): A dependency-tree-based recursive neural network
with GRU which uses an auto-encoder in the auxiliary task to reduce label noise.

• TRNN-GRU (Wang and Pan, 2020): An extension of ARNN-GRU which integrates a
conditional domain-adversarial network that takes both word features and syntactic head
relations as input.

• EXAL: A baseline model that shares the same size and structure as the proposed model
SA-EXAL (Section 2.3) but does not incorporate syntactic information.

Our proposed model (SA-EXAL) shows an advantage over EXAL which demonstrate that al-

though it was shown that the pre-trained BERT model captures significant linguistic knowledge,

informing it with explicit external dependency relations is effective for transferring knowledge

across domains. Specifically, SA-EXAL outperforms EXAL in 10 out of 12 cases (underlined

in the table), including 6.44%, 3.56% and 2.33% improvements for L → R (AS), R → L (AS)

and R → D (AS), respectively. We also note that SA-EXAL outperforms the non pre-trained

model baselines in 8 out of 12 cases.

2.5 Conclusion

We propose a method for incorporating external linguistic information into a self-attention

mechanism coupled with the BERT model. We demonstrate that this model leverages both
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the intrinsic knowledge existing within the pre-trained model and the externally introduced

syntactic information, to bridge the gap across domains.
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Chapter 3

Few-Shot Aspect Term Extraction with
Pattern-Exploiting Training1

3.1 Introduction

Our goal in this chapter is to mitigate the data scarcity challenge by reformulating the ATE task

as a masked language modeling (MLM) task, which pre-trained language models are typically

trained on, and excel in. We build upon a recent advancement in few-shot sequence classifi-

cation titled pattern-exploiting training (PET) (Schick and Schütze, 2021a,b). PET represents

input examples as cloze-style questions, which are then completed using language model pre-

dictions.

Our work is similar to PET in the sense that it employs pre-defined cloze patterns for MLM

training, but it differs in the type of task; PET is designed for sequence classification, whereas

our model is designed for token classification. This necessitates a new framework for mapping

cloze phrase labels to token level annotations.

The contribution in this chapter is twofold. First, we propose a method for using pattern-

exploiting training as cloze questions to address the task of aspect term extraction. Second,

we show that this method significantly outperforms the standard PLM fine-tuning approach in

few-shot scenarios.

1Submitted as a short paper to COLING 2022: Daniel Korat, Oren Pereg, Moshe Wasserblat, and Kfir Bar.
2022. Few-shot aspect term extraction with pattern-exploiting training. Submitted to the 29th International Con-
ference on Computational Linguistics
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Figure 3.1: PET-ATE training: First, aspect candidates are extracted and are associated with labels according to
the training set, then, yes/no cloze questions are concatenated and a PLM is trained to minimize the cross entropy
loss (LCE) from the correct answer.

3.2 PET-ATE

Figure 3.1 is an illustration of the PET-ATE method. First, aspect candidates are extracted from

the input sentence. The candidates are associated with labels according to the training set. Next,

yes/no cloze questions and their answers, aimed to qualify or disqualify the aspect candidates,

are generated. Each cloze question is then concatenated to the input instance and finally, a PLM

is fine-tuned to minimize the loss between the predicted answer and the correct answer.

3.2.1 Aspect Candidate Extraction

Cloze question patterns were shown to be effective in few-shot sequence classification (Schick

and Schütze, 2021a; Tam et al., 2021; Zheng et al., 2022). However, token classification goal is

more fine-grained. Our approach for exploiting cloze questions in ATE is based on introducing

a pre-process mechanism that extracts aspect candidates. The aspect candidates are represented

as text spans, that are of higher probability to function as aspects based on the context in which

they appear. For this purpose we implement two aspect candidate extraction (ACE) methods.

The first ACE method follows previous work that use noun and noun phrase detection for aspect

candidate extraction (Hu and Liu, 2004b; Tulkens and van Cranenburgh, 2020). Along this

line, we use a simple rule-based noun phrase extractor, based on patterns of part-of-speech
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tags (Subhashini and Kumar, 2010; Chakraborty et al., 2016) for extracting aspect candidates.

Formally, the output is denoted by T nn = {xi, asp
nn
i } where xi is a sentence and aspnni is a

noun phrase that constitutes an aspect candidate in the context of xi. At training time, the final

output of the ACE step is TC = T nn.

In order to complement the first ACE method with non-noun aspect candidates, we introduce a

second ACE method, which operates at inference time. This method, based on a neural network,

employs a PLM that is fine-tuned using the available labeled data for the ATE task, in a similar

fashion to the baseline implementation (see Section 3.3). Then, this PLM is used to extract

aspect candidates, generating T neu = {xi, asp
neu
i } where xi is a sentence and aspneui is an

aspect candidate. At inference time, the final output of the ACE step is produced by unifying

both ACE methods, denoting TC = T nn ∪ T neu = {xi, asp
c
i}.

3.2.2 Training Set Generation

Given a small set of labeled examples TG = {xi, asp
g
i } where xi is a sentence and aspgi is a

gold aspect in the context of xi, and a set of examples containing aspect candidates TC , we

generate a training set T by unifying the examples from TG and TC such that T = TG ∪ TC =

{xi, aspi, yi} where xi is a sentence, aspi is a span of text within xi, and yi ∈ (−1, 1) indicates

whether aspi is an aspect (yi = +1) or a non aspect (yi = −1). We set yi to be +1 for all the

examples in TG and set yi to be −1 for all the examples that are not in the gold training set.

Formally:

yi =


+1 aspi ∈ TG

−1 aspi ∈ (TC − (TC ∩ TG))

3.2.3 Pattern Generation for Aspect Candidate Qualification

Given an input sentence x and a span of text asp in x, our goal is to predict whether asp is

an aspect (y = +1) or not (y = −1) in the context of x. For this purpose we modify the

PET (Schick and Schütze, 2021a,b) objective and define a function P that inputs a sentence

x and a span of text asp and outputs a sentence P (x, asp) that contains a yes/no question

and exactly one mask token. We then define a verbalizer v that maps between the label y of
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(x, asp) and a word in the PLM vocabulary, namely we set v = "Yes" if (y = +1) which indi-

cates that asp is indeed an aspect, and set v = "No" if (y = −1) which indicates non aspect.

For example, given the following input pair: (x, asp) = (The dessert was amazing, dessert),

The task is redefined as concatenating to x a question asking whether the most likely

choice in the masked position regarding asp (dessert) is "Yes" or "No", denoting:

P (x, asp) = The dessert was amazing. Does the review focus on dessert? __

3.2.4 Training and Inference

For each triplet (x, asp, y) in training set T , we generate a pair (p, v) where p = P (x, asp), and

v is the label verbalizer. We adapt the score for label y given input x generated by a PLM for a

masked token defined by Schick and Schütze (2021a,b) to incorporate asp, denoting:

Sp(y|(x, asp)) = PLM(v(y)|P (x, asp)) (3.1)

We then use the cross entropy between the softmaxed probability distribution of Sp(y|(x, asp))

and the true distribution of the training example summed over all the training examples

{xi, aspi, yi} in T to fine-tune the PLM. Similarly, at inference time, Equation 3.1 is used

to classify candidates as aspects/non-aspects by calculating their yes/no verbalizer scores. Fol-

lowing studies that show benefits of continued pretraining (CPT) of PLMs in general (Howard

and Ruder, 2018; Gururangan et al., 2020) and in few-shot setups (Schick and Schütze, 2021a),

we use unlabeled examples from the domain of the labeled data to train the PLM with an MLM

objective, prior to fine-tuning.

3.3 Experiments

Datasets. Following previous ATE work, we conduct experiments on datasets of customer

reviews from three different domains: Restaurant (R), Laptop (L) and Device (D). R includes

restaurant reviews from SemEval 2014 (Pontiki et al., 2014) and SemEval 2015 (Pontiki et al.,

2015). L includes laptop reviews from SemEval2014, and D is provided by Hu and Liu (2004a)

and contains reviews of five different digital products.
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Experimental Setup. Systematically evaluating few-shot performance can be challenging, as

fine-tuning using small datasets may incur instability (Dodge et al., 2020; Zhang et al., 2021),

and results may change dramatically given different random data selections. Thus, we adopt

a rigorous framework for training and evaluating few-shot methods, proposed by Zheng et al.

(2022). Each dataset is first split into Dtest (1/3) and Dtrain (2/3). To tune the model for N

labeled training examples, we select N examples from Dtrain, denoted DN . Then, we apply a

multi-split strategy, wherein DN is randomly divided into equally sized Dk
train and Dk

dev. This

division process is repeated K = 5 times. Given a hyper-parameter space H , for each h ∈ H

and k ∈ 1...5, we train PET-ATE on Dk
train using h and evaluate it on Dk

dev. Let h∗ be the

hyper-parameter set that achieves the best mean F1-score across all k splits. To test the model

performance, we train it using h∗ on DN , and evaluate on Dtest. Finally, we report the mean

F1-score for this test over 3 random seeds. The selected h∗ per dataset appear in Table A.4

in Appendix A.2. CPT always uses the full Dtrain (unlabeled), containing 2,565, 3,896 and

2,557 examples for L, R and D, respectively. We adopt the HuggingFace implementation2 of

RoBERTa-base (Liu et al., 2019), with a modified training objective (Section 3.2.4).

Baseline. Our standard supervised training baseline is based on the common approach of

formulating the ATE task as a token classification task (Poria et al., 2016; Xu et al., 2018) by

fine-tuning the same RoBERTa-base model with a token classification layer using the few-shot

labeled data. For fair comparison, we tune the baseline hyper-parameters in the same manner

performed for PET-ATE.
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Figure 3.2: F1 as a function of the training set size N of SA-EXAL and the baseline model on R, L and D

2https://github.com/huggingface/transformers
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3.4 Results

Figure 3.2 shows a comparison between PET-ATE and the baseline for different values of N ;

PET-ATE significantly outperforms the baseline in small N values. For example, for N = 8,

PET-ATE outperforms the baseline by 16.6, 30.5, and 13.3 average F1 on R, L and D, respec-

tively. As N increases, the performance gains decrease, however PET-ATE outperforms the

baseline for N ≤ 1000 in R and for N ≤ 200 in L. Detailed results are shown in Tables A.1-

A.3 in Appendix A.1. These results highlight the model’s ability to better leverage the inherent

knowledge of the PLM, by using cloze-style patterns during training.

N P0 P1 P2 P3

8 54.6 ± 2.7 53.3 ± 6.4 53.6 ± 2.6 51.3 ± 6.2
16 60.2 ± 1.1 62.2 ± 0.8 62.8 ± 1.4 61.4 ± 0.5
32 65.8 ± 1.1 64.4 ± 0.9 64.4 ± 0.9 62.7 ± 1.3
64 69.9 ± 1.2 68.7 ± 0.5 69.4 ± 1.1 70.0 ± 0.5
100 72.0 ± 0.3 70.2 ± 1.3 70.8 ± 1.2 70.7 ± 1.9
200 74.1 ± 0.7 73.2 ± 0.9 74.1 ± 0.5 74.1 ± 1.1

1000 78.0 ± 0.5 78.2 ± 0.5 78.0 ± 0.4 78.2 ± 0.8

Table 3.1: Average F1 and standard deviation for PET-ATE on Laptops dataset using different cloze-patterns, for
various training set sizes N

N Method L R

16
Baseline 40.0 ± 7.3 51.9 ± 0.9
PET-ATE w/o n-ACE∗ 56.1 ± 3.7 55.1 ± 5.2
PET-ATE w/o CPT∗∗ 51.7 ± 4.4 56.5 ± 4.7
PET-ATE 60.2 ± 1.1 62.0 ± 1.2

64
Baseline 62.2 ± 1.6 65.9 ± 1.1
PET-ATE w/o n-ACE∗ 64.2 ± 0.9 64.2 ± 1.3
PET-ATE w/o CPT∗∗ 65.5 ± 3.6 65.6 ± 1.1
PET-ATE 69.9 ± 1.1 69.3 ± 1.6

128
Baseline 68.0 ± 2.2 69.6 ± 0.4
PET-ATE w/o n-ACE∗ 65.3 ± 0.1 66.7 ± 0.3
PET-ATE w/o CPT∗∗ 71.5 ± 1.1 68.4 ± 1.7
PET-ATE 72.4 ± 0.4 69.7 ± 1.9

Table 3.2: PET-ATE ablation test showing average F1 and standard deviation for the Laptop and Restaurant datasets
across three training set sizes N . ∗PET-ATE excluding the neural ACE step. ∗∗PET-ATE excluding the continued
pre-training step (Section 3.2.4).

We evaluated PET-ATE using four different cloze patterns (see details in Appendix A.3). The

results in Table 3.1 show that pattern selection has a very small effect on the performance and

there was no single prominent pattern. In fact, using the null-pattern P3, composed only of the

candidate aspect followed by a masked Yes/No token, yielded F1 comparable to other patterns.
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This demonstrates the robustness of PET-ATE for pattern selection.

To study the effect of the neural ACE and CPT on the model’s performance, we conducted

ablation experiments across three values of N . The results, in Table 3.2, show that both steps

hold a significant contribution, especially for N ≤ 64. CPT is most valuable at N = 16, and

its contribution decreases as N increases. The gains from neural ACE are significant across all

tested values for N .

3.5 Conclusion

We propose a method for using pattern-exploiting training in the form of cloze questions for

few-shot aspect term extraction. We demonstrate that this method leverages the inherent masked

token prediction trait of PLMs and outperforms the standard supervised training baseline in few-

shot setups. This enables easy adaptation to new domains where labeled data is scarce.
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Chapter 4

Conclusion

The main obstacle in aspect based sentiment analysis is the high cost of token-level labeling.

This study proposes two paths to tackle this data deficiency problem. Both paths combine novel

techniques with intrinsic knowledge present in pre-trained language models (implicit syntactic

knowledge or native word completion capability).

The first path relies on existing out-of-domain labels. We point out that syntactic relations are

important in aspect and opinion term extraction, and that pre-trained language models exhibit

this syntactic knowledge. Our main contribution is a method for incorporating external syntactic

information into a pre-trained language model, to bridge the gap across domains.

The second path uses a few-shot strategy; leveraging few labels from the target domain. We

design a method to reformulate aspect term extraction as a cloze question task, which is where

pre-trained language model excel. Second, we demonstrate that this method significantly out-

performs the standard language model fine-tuning approach in few-shot scenarios. This enables

easy adaptation to new domains where labeled data is scarce.

Syntactic features are still used in state-of-the-art methods, strengthening our initial hypothe-

sis. For example, Chen and Qian (2021), which cite our method in Chapter 2, encode syntactic

information (part-of-speech tags and dependency relation types) into a single trainable vector.

However, we believe that future work should focus on assessing the confidence of predictions,

partly due to syntactic errors. Moreover, both strategies in this work can be improved by re-

ducing their model size, and extending them to other token-level tasks such as aspect polarity

classification and named entity recognition.
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Appendix A

Chapter 3 Appendix

A.1 Full results

We provide average precision, recall and F1 scores (and their standard deviations), per dataset,

in Tables A.1-A.3. The overall relative advantage in recall can be attributed in part to the ACE

step, due to its two different strategies for discovering aspect candidates (POS features and

token classification) which may complement each other.

N Method P R F1

8 Baseline 53.1 ± 8.8 31.1 ± 9.3 37.6 ± 7.1
8 PET-ATE 53.6 ± 5.9 56.7 ± 8.1 54.3 ± 0.3

16 Baseline 47.6 ± 1.6 57.2 ± 4.0 51.9 ± 0.9
16 PET-ATE 54.7 ± 3.9 72.2 ± 5.0 62.0 ± 1.2

32 Baseline 57.4 ± 5.3 61.5 ± 9.3 58.6 ± 3.8
32 PET-ATE 61.1 ± 5.7 70.2 ± 8.7 64.7 ± 2.3

48 Baseline 59.5 ± 4.2 68.6 ± 1.0 63.6 ± 2.1
48 PET-ATE 64.2 ± 2.0 73.0 ± 2.8 68.3 ± 1.9

64 Baseline 62.0 ± 1.4 70.4 ± 2.0 65.9 ± 1.1
64 PET-ATE 67.1 ± 1.5 71.7 ± 1.4 69.3 ± 0.2

80 Baseline 64.7 ± 2.7 69.0 ± 3.1 66.7 ± 0.5
80 PET-ATE 68.1 ± 0.7 70.7 ± 3.1 69.3 ± 1.5

100 Baseline 63.6 ± 2.2 72.4 ± 1.3 67.7 ± 0.7
100 PET-ATE 67.0 ± 1.9 71.7 ± 1.1 69.2 ± 1.4

200 Baseline 68.8 ± 0.7 74.4 ± 0.4 71.5 ± 0.5
200 PET-ATE 70.7 ± 1.5 75.1 ± 1.6 72.8 ± 0.8

1000 Baseline 74.7 ± 1.0 76.5 ± 0.8 75.6 ± 0.2
1000 PET-ATE 74.4 ± 0.5 77.8 ± 0.3 76.1 ± 0.3

Table A.1: Average Precision (P), Recall (R), F1 and standard deviation for the baseline and PET-ATE on Restau-
rant dataset for various training set sizes N .
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N Method P R F1

8 Baseline 34.7 ± 6.4 19.5 ± 5.2 24.1 ± 3.5
8 PET-ATE 55.9 ± 9.7 55.7 ± 8.0 54.6 ± 2.7

16 Baseline 38.3 ± 8.4 42.6 ± 7.5 40.0 ± 7.3
16 PET-ATE 59.4 ± 5.5 62.5 ± 7.8 60.2 ± 1.1

32 Baseline 51.1 ± 0.6 54.8 ± 3.0 52.8 ± 1.7
32 PET-ATE 63.4 ± 2.3 68.4 ± 1.8 65.8 ± 1.1

48 Baseline 54.2 ± 0.9 64.0 ± 1.9 58.7 ± 1.0
48 PET-ATE 65.8 ± 1.5 71.6 ± 3.5 68.5 ± 1.5

64 Baseline 60.4 ± 2.5 64.2 ± 1.5 62.2 ± 1.6
64 PET-ATE 67.7 ± 3.7 72.7 ± 3.6 69.9 ± 1.2

80 Baseline 64.0 ± 0.6 65.4 ± 2.9 64.6 ± 1.3
80 PET-ATE 68.7 ± 2.1 72.4 ± 3.1 70.4 ± 0.9

100 Baseline 64.8 ± 1.8 67.3 ± 3.7 65.9 ± 1.0
100 PET-ATE 70.0 ± 1.5 74.1 ± 1.6 72.0 ± 0.3

200 Baseline 71.2 ± 0.6 72.8 ± 2.2 72.0 ± 1.4
200 PET-ATE 72.8 ± 1.2 75.4 ± 0.2 74.1 ± 0.7

1000 Baseline 76.6 ± 0.6 81.3 ± 0.3 78.9 ± 0.2
1000 PET-ATE 76.0 ± 0.6 80.1 ± 1.6 78.0 ± 0.5

Table A.2: Average Precision (P), Recall (R), F1 and
standard deviation for the baseline and PET-ATE on Lap-
top dataset for various training set sizes N .

N Method P R F1

8 Baseline 26.8 ± 24.8 4.2 ± 3.8 7.2 ± 6.7
8 PET-ATE 31.7 ± 6.8 16.2 ± 4.5 20.5 ± 3.4

16 Baseline 38.6 ± 11.1 17.3 ± 6.3 23.1 ± 6.1
16 PET-ATE 38.0 ± 11.3 23.1 ± 2.7 27.9 ± 4.2

32 Baseline 35.1 ± 8.5 28.8 ± 10.4 31.1 ± 8.8
32 PET-ATE 41.4 ± 4.5 26.8 ± 8.3 32.0 ± 7.2

48 Baseline 41.1 ± 8.7 30.7 ± 3.9 34.9 ± 5.0
48 PET-ATE 41.6 ± 2.5 32.4 ± 6.7 36.2 ± 5.1

64 Baseline 45.9 ± 3.2 33.3 ± 0.5 38.5 ± 0.9
64 PET-ATE 45.3 ± 0.1 35.0 ± 4.8 39.3 ± 3.1

80 Baseline 47.0 ± 3.0 36.8 ± 6.1 40.8 ± 3.0
80 PET-ATE 50.7 ± 1.4 40.7 ± 4.5 45.0 ± 3.3

100 Baseline 47.9 ± 1.4 41.5 ± 4.2 44.3 ± 1.7
100 PET-ATE 48.7 ± 2.8 40.8 ± 1.7 44.3 ± 0.9

200 Baseline 55.5 ± 5.1 45.7 ± 3.2 50.1 ± 3.8
200 PET-ATE 52.2 ± 4.5 53.3 ± 1.6 52.6 ± 1.6

1000 Baseline 56.0 ± 1.2 60.2 ± 1.6 58.0 ± 1.3
1000 PET-ATE 53.5 ± 1.7 60.4 ± 1.8 56.7 ± 0.6

Table A.3: Average Precision (P), Recall (R), F1 and
standard deviation for the baseline and PET-ATE on De-
vice dataset for various training set sizes N .

A.2 Hyper-parameters

Hyper-parameter tuning was performed as described in Section 3.3. For the baseline, we try

values in the range [1e−5, 3e−5] for the learning_rate, [400, 2000] for the number of

training steps (max_steps) and [8, 16] for the batch size. For PET-ATE, the search values are:

max_steps ∈ {700, 1000},

learning_rate ∈ {2e−5, 3e−5},

Baseline PET-ATE
Parameter L R D L R D

adam_epsilon 1e-8 1e-8 1e-8 1e-8 1e-8 1e-8
max_seq_length 128 128 128 128 128 128
mlm_probability – – – 0.15 0.15 0.15
learning_rate 3e-5 3e-5 3e-5 2e-5 3e-5 2e-5
per_device_train_batch_size 16 16 16 8 8 8
max_steps 600 800 1000 700 1000 1000
neural_ace_max_steps – – – 500 1000 500
neural_ace_learning_rate – – – 2e-5 2e-5 2e-5
CPT_max_steps – – – 1000 2000 2000
CPT_learning_rate – – – 2e-5 3e-5 2e-5

Table A.4: Hyperparameters for baseline and PET-ATE per dataset
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neu_ace_max_steps ∈ {500, 1000},

neu_ace_learning_rate ∈ {2e−5, 3e−5},

CPT_max_steps ∈ {1000, 2000},

CPT_learning_rate∈{1e−5, 2e−5, 3e−5}.

We provide the selected parameters for each setup, in Table A.4. Note that the batch size is

always 8 where not specified.

A.3 Patterns

We tested cloze patterns with varying content words, word order and length. Table 3.1 shows

results for P0 – the pattern used for the primary tests – as well as 3 additional patterns P1, P2, P3.

P3 is a null-pattern, that is, it does not contain any tokens other than the candidate aspect fol-

lowed by a masked Yes/No token. Given an input sentence xi and a span of text aspi in xi, these

are the patterns:

P0(x, asp
c) = x. So, does the review in the previous sentence focus on aspc? __

P1(x, asp
c) = x. Is aspc an aspect? __

P2(x, asp
c) = x. So, is the review about aspc? __

P3(x, asp
c) = x aspc __
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 ריצקת

 

 תושיג .העד יחנומו טביה יחנומ ץוליח איה טביה ססובמ טנמיטנס חותינב רתויב תיסיסבה המישמה

 תודורי תואצות תוגישמ ןה ,תאז םע ;וז המישמב תובוט תואצות ומיגדה תיחנומ הדימלב תוטקונה

 וחכוה ינוציח ינושל עדי תובלשמה תוטיש .גיותמ עדימב רוסחמ שי םהב יתימאה םלועהמ םישיחרתב

 לע תוססובמ ןניא ולא תוטיש ,םלוא .תיחנומ יתלב םיניימוד תייצטפדא לש םישיחרתב תוליעיכ

 םימלגמ רבכ RoBERTa-ו BERT תמגודכ שארמ םינמואמ הפש ילדומ .שארמ םינמואמ םילדומ

 דמצומה attention ןונגנמב ינוציח ינושל עדימ בולישל הטיש םיעיצמ ונא .ישממ יריבחת עדימ םכותב

 לע רשגל ידכ ,ץוחבמ יריבחת עדימ םע ףוריצב BERT-ב עמטומה עדיה תא ףנמל ןתינ ,ךכ .BERT-ל

 השיג .עדימ ירגאמ השולש יבג לע וז הטיש םע תורפושמ תואצות םימיגדמ ונא .םיניימוד ןיב רעפה

 הליעיכ החכוה תוינבת תססובמ הדימל .תואמגוד טועיממ הדימל איה םיבאשמ ילד םישיחרתב תפסונ

 תבוטל תוינבת תססובמ הדימלב שומישל הטיש םיגיצמ ונא .תואמגוד טועימ םע םילימ יפצר גוויסב

 הלוע וז הטיש ,עדימ ירגאמ 3 יבג לע הקידבב .טביה יחנומ ץוליח – תודדוב םילימ גוויס תמישמ

 .תואמגוד יטועמ םישיחרתב תיטרדנטסה סיסבה תטיש לע היעוציבב



 .ןמכייר תטיסרבינוא ,בשחמה יעדמל יזרא יפא ס"יבמ רב ריפכ ר״ד לש ותכרדהב העצוב וז הדובע
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