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Abstract

We present an approach that takes multiple videos captured by social cameras—cameras

that are carried or worn by members of the group involved in an activity—and produces a

coherent “cut” video of the activity. Footage from social cameras contains an intimate,

personalized view that reflects the part of an event that was of importance to the camera

operator (or wearer). We leverage the insight that social cameras share the focus of

attention of the people carrying them. We use this insight to determine where the important

“content” in a scene is taking place, and use it in conjunction with cinematographic

guidelines to select which cameras to cut to and to determine the timing of those cuts. A

trellis graph representation is used to optimize an objective function that maximizes

coverage of the important content in the scene, while respecting cinematographic guidelines

such as the 180-degree rule and avoiding jump cuts. We demonstrate cuts of the videos in

various styles and lengths for a number of scenarios, including sports games, street

performances, family activities, and social get-togethers. We evaluate our results through an

in-depth analysis of the cuts in the resulting videos and through comparison with videos

produced by a professional editor and existing commercial solutions.
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Chapter 1

Introduction

Cameras are now ubiquitous in our lives—we are rarely without our smart phones and

pocket-size camcorders. Recently, even wearable cameras have become quite common.

These social cameras are used to record our daily activities: time with family and friends,

participation in hobbies and games, and group activities such as concerts, sporting events,

and parties. A given activity is often captured by multiple people from different viewpoints

resulting in a sizable collection of social camera footage even for a single event. With

millions of hours of video captured in this way each year, algorithms to effectively

summarize and understand such contentare urgently needed.

Social cameras create a new form of media as they are always available, generally handheld,

and reflect the personal viewpoint of the camera operator. The footage from social cameras

is quite different from what has traditionally been created by professional cameramen.

Professionals use tripods or stabilized rigs and carefully compose and light their shots. In

contrast, social camera footage contains an intimate view of the proceedings, often from a

first person viewpoint. Large portions of social camera footage are rough and unstable.

These differences present a challenge for editing such videos into a coherent “cut”, and this

challenge is amplified when large numbers of input video streams of a single event are

available. In an experiment that we conducted with a professional editor, the editing of just

a few minutes of video from multiple social cameras required about 20 hours of effort.

This paper describes an algorithm that automatically creates a video “cut” of an activity

(Figure 1.1) from multiple video feeds captured by a set of social cameras. To create this

cut, we leverage and extend existing cinematographic guidelines that were designed to

guide the editing of traditional footage into a narrative by human editors. Our key insight is

to take the center of attention of the cameras (and therefore of the viewers) as a strong
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Figure 1.1: A visualization of three shots from a coherent video cut of a social event
created by our algorithm. In this case, eight social cameras record a basketball game. Their
views are shown at three different times. The 3D top-view shows the 3D camera poses, the
3D joint attention estimate (blue dots), and the line-of-action (green line). Using
cinematographic guidelines, quality of the footage, and joint attention estimation, our
algorithm chooses times to cut from one camera to another (from the blue camera to purple
and then to green).

indicator of what was important at that moment in time. While this indicator does not

describe a complex narrative flow as a human editor might (through editing tricks such as

replays, close-ups, and flashbacks), it does provide the information needed to create a cut

of the video that condenses the video footage a hundredfold or more while retaining the

important action that occurred during theevent.

The joint attention of a group is a powerful indicator of content because people engaged in a

social activity naturally arrange themselves to ensure that everyone gets a good view of the

activity. Individually, their orientation signals what they consider most interesting and

worth attending to. When a member of such a social group records the activity via a camera,

the camera inherits this social signal. When multiple social cameras observe the same

activity, this signal can be consolidated to obtain what is called gaze concurrence or 3D

joint attention: a consensus measurement of the spatial and temporal location of the

important “content” of an activity [Kim et al. 2010;Fathi et al. 2012;Park et al. 2012].

We use a graph-theoretic method to optimize an objective function encoding the

traditional cinematographic guidelines with some modifications to deal with the unique
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properties of the new media created by social cameras. First, a graph is built, whose nodes

represent the joint attention in the frames of each camera, and whose edges represent

transitions between cameras. Then, an optimal path in this graph is found automatically

using a modified dynamic programming algorithm. This path represents the final movie that

is rendered by combining the footage from the cameras on the path. We show results on a

number of activities, including playing sports, attending a party, and watching street

performances, and produce coherent video cuts in various lengths and styles (e.g.,

including first person views or not).

Minimal human input to the system is optional – either just the desired length of the output

or a threshold for “level-of-interest” for the creation of summarization video, or other

parameters such as who is an “important character” for the creation of a personalized video.

We evaluate our results by dissecting the cuts chosen by our algorithm in various examples

and through comparison with edits created by commercially available software, a random

selection process, and a professional editor.

Contributions: We present a method for automatic editing of multiple social camera

feeds. Although our automatic method does not have the superb story telling capabilities

of professional editors, it creates a coherent video of a user-specified length from a large

number of feeds that include intimate, first person views and a significant percentage of bad

footage. Our contributions are threefold: (1) A demonstration that the center of attention of

hand-held cameras can serve as an effective measure of what is important in a scene. (2)

Establishing that the long-standing cinematographic guidelines can be adapted to footage

produced from social cameras despite the significant differences between this new media

and traditional video footage. (3) An optimization algorithm and objective function for

finding a path in a trellis graph structure to produce cuts of social camera footage in a

variety of lengths and styles.
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Chapter 2

Related Work

Our approach is most closely related to work that selects from among multiple input videos

based on content. A number of approaches attempt to recognize the activity of people in the

scene and interpret these activities to determine the most appropriate camera view. Hata

and colleagues [2000] presented a method to summarize multiple video feeds from

surveillance cameras based on the activity of people in a each view. He and colleagues

[1996] used finite state machines to decide when to select cameras in a virtual party

scenario. This approach was applied to real data in a lecture setting [Rui et al. 2001]. Dale

and colleagues [2012] used frame similarity to align multiple videos and a similar dynamic

programming algorithm to ours to choose parts and created a summarization. However,

they do not handle social cameras nor use cinematographic guidelines in their summary.

With his Virtual Director system for webcasts of lectures, Machniki [2002] used audio  cues

and an automation specification language to allow a user to automate when to cut between

audience and speaker cameras. Heck and colleagues [2007] presented a system to

automatically produce an edited video of a classroom lecture from a single camera feed,

selecting from different virtual cameras created by 2D zooms and pans in image space. The

selection was done by analyzing the content on the board. In a series of papers, Takemae

and colleagues [2004] used head orientation to determine camera selection in meetings.

These systems work well but only in controlled settings such as classrooms or meeting

rooms where the variety of content is limited.

Other efforts focus only on assessing the quality of the available footage or leverage user

input. [Bao and Choudhury 2010] present a method to select a representative video

based on footage attributes but do not use cinematographic guidelines. Sumec [2006]

collated multiple video feeds of a meeting based on rules for the quality of each feed.

Shrestha and colleagues [2010] create a “mashup” of multiple video feeds by optimizing a

cost function composed of several low-level video measures and user-defined scores.
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Zsombori and colleagues [2011] presented “MyVideos”, a semi-automatic system to align

and select videos using Narrative Structure Language (NSL) for multi-media items. A

number of commercial products exist today that combine footage from multiple cameras to

produce a coherent video (Vyclone1 or Switch- cam2). Their solutions appear to be limited

to choosing the most stable or best lit view and periodically switching between views.

Because these algorithms do not know the spatial relationship of the cameras to the action,

they cannot take into consideration higher level cinematographic guidelines such as jump

cuts and the 180- degree rule.

Our approach is also related to video summarization as we condense multiple videos to

produce an edited version. However, summarization is usually performed on just a single

video stream. Many techniques for summarization have been proposed [Ponto et al.

2012;Lee et al. 2012;Kumar et al. 2010;Money and Agius 2008;Truong and Venkatesh

2007;Taskiran and Delp 2005; Barbieri et al. 2003]. Most approaches are based on some

level of video understanding such as human detection, visual saliency, or video quality

analysis. Some methods handle specific types of video such as interview videos

[Berthouzoz et al. 2012] or egocentric footage [Lu and Grauman 2013]. The first presents a

tool that links text to video, allowing the video to be edited simply by editing the text

transcript. The second presents a nice advance towards higher level story-driven

summarization by segmenting the continuous video into sub-shots and building chains of

sub-events that “lead to” each other.

The idea of using joint attention to identify socially salient locations has been investigated

in a number of papers. Kim and colleagues [2010] present an approach to use the

convergent motion of soccer players to identify areas of importance on the field. Fathi and

colleagues [2012] use convergence of attention to identify and analyze social interactions in

first person cameras. Jain and colleagues [2013] recognizes shared content in videos and

joint attention by finding the number of the overlapping 3D static points. In this paper, we

_____________________________
1http://www.vyclone.com
2http://make.switchcam.com
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leverage the approach of Park and colleagues [2012], that presents a method to find

spatiotemporal points of social saliency in a scene by analyzing the convergence in the

fields of view of multiple first person cameras. We explore the use of such 3D joint

attention points to select and time the transitions between multiple feeds.
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Chapter 3

Overview

The inputs to our algorithm are k synchronized video feeds of the same event or scene, and

the output is a single edited video that is created from the k videos and best represents the

event or scene captured according to the objective function. The algorithm pipeline is

illustrated in Figure 3.1. First, at each time instant, we reconstruct the 3D camera poses and

estimate the 3D joint attention of the group [Park et al. 2012] (Chapter 5). Over time, this

provides the 3D camera trajectories and joint attention for all the footage. Next, we

construct a trellis graph and calculate the weights for all nodes and edges based on

cinematographic guidelines and style parameters (Chapter 6). If summarization or

personalization style parameters are given, we apply contraction operations to the graph

(i.e., remove some of its nodes and edges - Chapter 9). Next, we use dynamic programming

to find the best route in the trellis graph from the first slice to the last (Chapter 7). Such a

path defines a single output video containing appropriate cuts between cameras.

Figure 3.1: Our method’s pipeline: from multiple camera feeds to a single output “cut”.
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Chapter 4

Adapting Cinematographic Guidelines

Edward Dmytryk, a pioneer of Hollywood film directing and editing, wrote: “If the film is well

shot and well cut, the viewer will perceive it ... to flow in continuous, unbroken movement on a

single strip of film” [Dmytryk 1984]. Raw footage from multiple cameras rarely produces such

continuous flow and must therefore be heavily edited. As we start from handheld or body-worn

social cameras footage created by non-professionals, we must filter out much of it because of low

quality, and we must choose and cut between cameras following cinematographic editing

guidelines to achieve a single coherent and smooth viewing experience. Below we describe how

these guidelines are applied and adapted to our settings.

Content, then form. Dmytryk’s first rule is content, then form. This rule demands a semantic

understanding of the video footage, however acquiring a high-level understanding of activities

using automatic video processing remains a challenge. We leverage the fact that the collective

ego-motion of multiple social cameras encodes the judgment of the social group about which

areas in the scene are significant. We posit that areas that attract greater attention have greater

salient content. Thus, we use the joint attention of social cameras, as estimated by concurrences

in 3D camera gaze vectors, to determine significant content and guide our basic editing choices

(Chapter 5). Furthermore, as described in Chapter 6, we use the graph node costs to represent

the quality of the footage to direct the algorithm to choose higher quality frames.

Jump Cuts. A core guideline in video editing is to avoid jump cuts. These are transitions

between two cameras that shoot the same scene from almost the same angle (e.g., below 30

degrees difference), or have a noticeable portion of overlap in their frames. When choosing to cut

from one camera to another, our algorithm favors a significant difference in frame content and

angle.
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(a) 3D camera pose and joint attention (b) Current shot (camera 2)

(c) Valid shot (camera 4) (c) Invalid shot (camera 1)

Figure 4.1: The 180-degree rule is defined by an imaginary line in the scene. A cut from one
camera to another should not cross this line as it will confuse the viewer by reversing directions.
If we use the green line in (a) for the shot of camera 2 (seen in b), then camera 4 (seen in c) and
camera 3 are valid to cut to, while cutting to camera 1 (seen in d) will violate the rule - note how
the snow ball moves from left to right instead of right to left.

180-degree rule. Another fundamental guideline of editing is the 180-degree rule. In its strict

form, this guideline keeps the subject of the scene on one side of an imaginary line-of-action, as

shown in Figure 4.1. Shooting the same subject from opposite sides creates an abrupt reversal of

the action and can confuse the viewer. This guideline is important in our setting as social

cameras can often be found on both sides of this line. For highly dynamic events, we also explore

the use of a relaxed version of this guideline. We allow the camera to move from one side of the

scene to the other in small steps across multiple cuts. Viewers are able to adjust to the gradually

changing viewpoint without confusion. Note that applying the 180-degree rule and avoiding

jump cuts both necessitate a 3D understanding of the configuration of thecameras.

(a) (b) (c) (d)

Figure 4.2: Shot sizes: (a) wide shot, (b) long shot, (c) medium shot, and (d) close-up shot.

1

3

4 2
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Time: 00:04 Time: 00:22 Time: 00:39 Time: 00:56

Figure 4.3: 3D reconstruction of the camera position and orientation allows our algorithm to
track the joint attention through the basketball game. The blue dot in the top view of the
reconstructions is the joint attention point. One can see how most players are watching the same
position in the scene (usually the ball position), which is the focus of joint attention during the
game. The green line is the 180-line according to the current camera (see also Figure 1.1).

Shot Selection. Selecting the correct camera view and the time to cut to it is critical in

maintaining the perception of continuity. We determine cut timing and select cameras based on

the following guidelines.

Shot Size Diversity: Controlling shot size transitions promotes both smoothness and interest in a

video. Shot size is defined as the size of the frame with respect to the main subject - the subject

can be seen from afar or closer up. There are five major types: wide shot, long shot, medium

shot, close-up, and extreme close-up (Figure 4.2). We determine shot size by measuring the

distance to the 3D joint attention. Using a single shot size throughout the movie is boring, while

jumping too often or in steps that are too large is distracting. We create two shot size alternatives

from each original frame by cropping, and promote choosing a diverse set of sizes during movie

creation (Figure 9.5).

Shot Duration: Varying shot duration also affects smoothness and interest. Very short-duration

shots can be disturbing, while long-duration shots can be boring. We set a minimum and

maximum shot duration. Our algorithm then prevents cuts before the minimum duration has
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elapsed and promotes a cut when the maximum duration is reached (Chapter 7).

Shot Quality: Each individual camera feed should also be weighted for smoothness and aesthetics.

In this work, we concentrate on choosing stabilized shots and create better compositions using

cropping (see Chapter 6.2). Other characteristics such as focus and lighting could be included in

the node costs of each frame to allow the algorithm to pick better shots.

Cut-on-Action. Using characters’ actions/movements, editors match between two shots to help

hide cuts. By cutting exactly at the height of action (when the door is shut or the ball hits the bat

etc.), the action itself distracts the audience from the actual cut. Although our algorithm does not

have an exact understanding of the action in the scene, we use an approximate measure to mimic

these types of cuts. We track the movement of the 3D joint attention: whenever there is a large

acceleration of this movement, we take this to mean that some action has happened that changed

the center of attention abruptly, and the algorithm tries to cut to a different camera. This

guideline is more appropriate for some types of footage than others and the user can

enable/disable this guideline.



12

Chapter 5
Content from 3D Joint Attention
To identify which views best capture the content of the activity, we need a semantic

representation of the activity in the scene. However, algorithms capable of interpreting social

activity from cameras remain an active area of research. As a proxy for a semantic

understanding, we use the 3D location of joint attention of the cameras. A feature of social

cameras is that they inherit the gaze behavior of their users: people tend to point their cameras

at what they find interesting in a scene. We leverage this phenomenon by explicitly computing

the 3D motion of the k cameras and analyzing their collective motion to identify where they focus

their attention. We use a standard structure-from-motion algorithm [Snavely et al. 2006] to

simultaneously reconstruct the 3D structure of the scene and the motion of the cameras using a

subsampled set of the camera frames. Using the reconstructed 3D structure, we estimate the pose

of each camera using a perspective-n-point algorithm [Lepetit et al. 2009]. However, because of

imaging artifacts, such as motion blur, rolling shutter, and pixel saturation, there are a

significant number of frames for which we cannot recover the camera pose directly.

To handle these missing frames, we employ data-driven camera motion interpolation. Between

any two cameras that have been posed, which we refer to as anchor cameras, the interpolation is

performed by estimating the frame-to-frame fundamental matrix at each consecutive frame,

which gives us the relative orientation and translation up to scale. This relative information

corresponds to differential constraints on the camera motion. Our approach then interpolates

the camera translation and orientation using a Discrete Cosine Transform basis, with gradient

constraints defined by the relative orientations and translations. This computation provides the

3D pose of each video camera through time (Figure 4.3). Once we have the 3D trajectory of each

camera, we use the gaze clustering algorithm of Park et al. [2012] to extract 3D points of joint

attention (JA-point) in the scene at each time instant. We calculate all gaze concurrences g in

the scene through time, and rank their importance rank(g) by counting the number of camera

gazes that intersect at that point. Thus, this process produces multiple 3D locations of joint

interest and our algorithm uses them all during its reasoning about producing the cut.
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Chapter 6

Trellis Graph Construction

To represent the elements in our optimization, we use a trellis graph = { , }, where the node

set contains time-slices: = ⋃ { |1 ≤ ≤ }. Every slice contains a set of nodes, where

each node is defined by pair ( , ), associating a camera and a 3D JA-point (e.g., a point of 3D

joint attention as estimated via gaze concurrences). The edges in the graph connect all nodes

in slice to nodes in slice for all times 1 ≤ ≤ − 1. Figure 6.2 illustrates a graph with

three synchronized camera sources and three JA-points. Each JA-point defines a different

narrative allowing us to create various video “stories”. To allow different zoom or cropping

options for a cut we clone each node for each available size. To create a crop, we define the

cropping center to be the node’s point of interest (the 2D projection of the 3D joint attention

point). To retain enough resolution, we use only two possible crops: the original size and a zoom-

in (e.g., long shot cropped to medium or medium shot cropped to close-up). This process enables

smoother and more interesting cuts [Heck et al. 2007], as the algorithm can choose the zoom as

part of the main path calculation, avoiding large changes in zoom but adding interest by

changing shot sizes.

We now describe the different node and edge weights we use in the graph. The weights are

defined as cost functions in which the cost is higher as the given input parameter deviates from a

predefined optimum value. To normalize them to the same range of values and to define the

desired shape of a cost function, we use a piecewise quadratic function:

( , , , ) = ⎝⎜
⎛ ≤ <≤ ≤∞ ℎ . (1)

This function has a minimum at the optimum input value , and maps any [ , ] range of

values to [0,1].
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Figure 6.1: Normalization function - the red curve shows the normalization function and the
grey dotted line shows the rest of the half-functions used to produce the normalizing functions.
The three operating limits are highlighted by red dots, where in this example = 0.5, = 1,
and = 2.

Figure 6.2: The trellis structure used in our algorithm; the frames are nodes , for time ,
camera and 3D joint attention with two types of edges: continuous (bold) and transition
edges. In this example, at each time there are three synchronized camera sources , , and
and there are three joint attention points , , and . Assume that and project onto

and and on , for = 1 and 2. Further, assume that the third point of 3D joint
attention ceases to exist as a point of interest at = 3, and camera views instead. The
graph contains a set of five nodes for every slice as follows:= {( , ), ( , ), ( , ), ( , ), ( , )} for the first two time instances, and ={( , ), ( , ), ( , ), ( , ), ( , )} for = 3.
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6.1 Node Costs

The node cost ( ): → [0,1] combines various parameters of the node’s camera frame. It is

defined as:

( ) = ⋅ ( ) ⋅ ( ) ⋅ ( ) ⋅ ( ), (2)

where , , , are the weighting factors for the different terms which are based on

Stabilizing, Roll, Joint Attention, and global Vector constraints. We use = 1, = 1, = 3,

and = 1, if the global 180-degree rule vector is enabled, or = 0 otherwise.

Stabilization Cost. To limit shaky camera movement, we constrain the camera movement

frequency in ( ); lower frequency motion gives a lower cost. Unlike conventional methods to

measure video frequency based on image processing (e.g., optical flow), we use the estimated 3D

motion of the camera (Chapter 5) to ensure that scene motion does not disturb the stability

measure. We use a measure of the rotation frequency of each camera coordinate system along

with a measure of camera movements. For instance, if we have a head-mounted camera and the

head is undulating at a high frequency, the camera’s forward and up vector, as well as the

camera’s position will present a high frequency change, yielding a jerky video. We measure the

frequency of these geometric values for each node in a window of ten consecutive frames and

refrain from cutting to a camera if its frequency is too high in this duration. The stabilization

cost is then:

( ) = 0, , 0, ( , ) , (3)

where ( , ) measures the average frequency of the forward, right, and up vector and

camera movements of node in a window of consecutive frames.

Camera Roll Cost. Extreme viewing angles are difficult to interpret and therefore we constrain
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the camera roll using our normalization function:

( ) = 0,90,0, ( ) , (4)

where ( ) is the roll angle of node’s camera. When the camera is perfectly aligned to the

horizon then ( ) = 0.

Joint Attention Cost. We use three parameters to define the cost of a 3D JA-point: its

ranking, the 2D location of its projection in the frame, and its 3D distance from the camera:

( ) = ( ) ⋅ ( ( , ) + ( , )), (5)

where is the 3D joint attention point of node , ( ) is the ranking of according to

how many members of the social group are participating in the JA-attention. ( , ) is a

“validity” check to ensure the 2D projection of the JA-point lies within the usable field of view of

the camera of . If this projection lies outside the 10% margin of the frame (or if there is no

projection of this JA-point in node ), then ( , ) = 1, otherwise we set ( , ) = 0. We

limit the position of the projection not to lie in the margins of the frame as we usually crop

around this position: to center the frame around the main point of interest of the narrative, to

stabilize shaky footage, to reduce distortion in wide FOV cameras, or to create more aesthetic

compositions.

( , ) is the cost of the 3D distance between the JA-point and node’s camera center:

( , ) = , , , ( , ) , (6)

where ( , ) is the normalized distance between the location of the JA-point and the

camera of , and , , are the normalized minimum, maximum, and optimum

distances in 3D respectively. We use = 0 feet, = 100 feet, which gives us wide

shots, and = 20 feet which is a medium shot size. These constraints eliminate cameras

that are too far or too close. also controls the use of first-person view-point in the movie. For



17

example, increasing will eliminate such view-points from the resulting movie altogether.

Global Vector Cost. This cost is defined by a global vector ⃗, favoring cameras from a certain

direction. For instance, in a basketball game, if a global 180-degree rule is desired, the user can

set ⃗ to a line passing through the center of the court. If a story from the point of view of the

attackers in the game is desired, the user can set ⃗ to be a static vector from the center of the

field to one of the baskets. Our algorithm can also handle a dynamically changing vector by

checking the current direction of the camera or averaging the movement direction of the players.

This cost is computed by measuring the angle ( , ⃗) between any node camera’s

forward vector and the vector ⃗. We use our normalization function where the optimal angle is

0:

( ) = −180,180,0, ( , ⃗) . (7)

6.2 Edge Weights

The edge weight , : → ℝ depicts the cost of transition from node to node . We

distinguish between two types of edges: continuous edges and transition edges. A continuous

edge is defined as an edge between two nodes that represent the same camera, point of interest,

and zoom level (see bold edges in Figure 6.2), while all other edges are transition edges. Each

type of edge carries a different weight definition.

Continuous Edge Weight. Because following a continuous edge does not produce a real cut,

the cost of following this edge comes only from the camera movement: , = , .

High-rate camera movement is confusing and we want to avoid it. Hence, we constrain the

absolute angle difference , between the two front vectors of adjacent frames in

and of the same video feed:

, = 0,180,0, , . (8)

Transition Edge Weight. Transition edges produce real cuts in the output video and hence

should follow cinematographic guidelines. We use a weighted combination of three parameters
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to score the likelihood of a transition:

, = ⋅ , + ⋅ , +(1 − − ) ⋅ , − , (9)

where 0 ≤ , ≤ 1 are the weighting factors between angle weight , position weight , and

shot size weight . is a cut-on-action transition factor, explained below.

To avoid jump cuts when shooting the same JA-point from two different cameras and to follow

the 180-degree rule, we constrain both the transition angle , and the distance, between the two cameras. The first ensures small overlap between their frames and

different background arrangements, and the second ensures small angle change between the

transition frames. We use our normalization function to define the cost of , and, :

, = 0, , , , ,, = 0, , , , , (10)

where we use transition angle parameters = 180, = 30. We empirically found the

best distance for social events is = 20 feet, while distance greater than = 100 feet

prevents the viewer from perceiving the social scene details. This threshold depends on the

camera specifications to some extent.

For , we identify the size of each shot as wide, long, medium, close-up or extreme

close-up (Figure 4.2). This is done according to the distance from the JA-point. Transitions

between shots whose sizes are more than two levels apart can be confusing for the viewer.

Hence, we set , = 1 for transitions differing in more than two levels and , = 0
otherwise.

Lastly, we want to promote cut-on-action transitions. Because our center of action is the “joint
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attention” point of social cameras, we use the acceleration (rate of change of speed) of the 3D

JA-point as a measure for action change. We normalize this value to be between 0 and 1, and

track each JA-point through time. For each, we find the local maximum in regions where the

speed is above a certain threshold (0.7). We set the value of in all transition edges between

nodes of the respective JA-point at this specific time to the value of the normalized speed value.

For all other edges is set to zero.
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Chapter 7

Path Computation

A path in the trellis graph starting at the first slice and ending at the last defines an

output movie whose length matches the length of the original footage (Figure 9.2).

Following continuous edges in the path continues the same shot in the movie, while

following transition edges creates a cut. The cost of a path is the sum of all edge weights and

node costs in the path. Once our graph is constructed, we can find the “best” movie by

choosing the lowest cost path. Although there are an exponential number of paths,

Dijkstra’s algorithm could provide a feasible solution. However, there are other constraints

we would like to impose on the output movie and its individual shots. One of them is the

duration of shots to avoid boring long-duration shots and jumpy short ones. Unfortunately,

the duration of the shot cannot be mapped to edge or node weights. We solve this by using a

dynamic programming algorithm that takes into account not only the path cost but also the

shot length.

The algorithm proceeds by filling a cost table , where each cell ( ) =< , > of node∈ for 1 ≤ ≤ is a pair containing the current shot duration and the accumulated

cost of the path up to that cell . The table is filled from left to right starting at the first

column representing slice and ending at the last representing . Then, we backtrack

from the cell containing the smallest cost to recover the full path.

Assume that and are the minimum and maximum constrained shot length

respectively. The first column ( = 1) just contains the node costs and a duration of 1:

( ) =< 1, ( ) >. (11)

For every cell ( ),1 < ≤ we first examine all cells in the previous column excluding

row , which have a duration larger than and find the one with the smallest cost:
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= argmin{ | ≥ }. (12)

Now, if the previous cell in the same row has lower cost than , and its duration is not

larger than (i.e., if < < ), then we continue with the same

shot as follows:

= + ( , ) + ( ) (13)

= + 1.
If not, then we introduce a cut (from row to row ) and a new shot is started:

= + ( , ) + ( ) (14)

= 1.
If the previous cell in the same row has a duration equal to but no other cell in the

previous column has a duration larger than then we still continue with the same shot

as in Equation 13. Finally, we fill this cell’s values =< , >, and continue to the next

cell in the same column or to the first cell in the next column.

Each cell in the table corresponds to one node in the graph, and for each cell, we examine all

cells in the previous column. If = max (| |) is the maximum number of nodes in each

slice, then the running time complexity of the algorithm is (| | ⋅ ). This computation is

linear in the number of nodes since ≪ | |. Note that because of the added constraint on

shot length, the algorithm does not guarantee a global minimum on the path. However, in

practice we found this approach provides satisfactory results.
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Chapter 8

Stylistic Control

Our algorithm allows significant stylistic control over the length and appearance of the

edited video.

Length Control. To accommodate a different audience or to filter uninteresting or

unwatchable parts, we define an importance measure that reflects how interesting or

important the action in an event is. The user can control the length (in time) of the cut in

two ways: either by choosing an importance threshold, resulting in the algorithm filtering

out any part that falls below the threshold, or by designating the approximate output length

desired.

There are many ways to define an importance measure. We utilize the JA-points ranking to

define the measure of interest. For each slice in our trellis graph, we define the

importance by averaging the square of the JA-points ranking of its nodes. We use the

square of the ranking to emphasize more important JA-points. Assume= {( , ), … , ( , )} are the nodes in slice where { , … , } are their JA-points,

then we define: ( ) = ∑ ( ) . To create a smoother version of the importance

function, we average the measure over time in a window of size 2 + 1 (we use = 7):

( ) = ∑ ( ). (15)

Next, we normalize the importance measure by dividing it by its maximum value for all

slices to arrive at a measure between 0 and 1. To create shorter versions of a video, the user

chooses an importance threshold , 0 ≤ ≤ 1, and the algorithm removes from the graph

all consecutive slices of length > , whose importance falls below the threshold . The

integer reflects the minimum number of consecutive slices we allow to be removed. This

minimum is required as removing very short segments from a video will often create jump
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cuts (we also allow trimming any number of slices at the beginning and end of the footage).

Before running the path computation algorithm, the two slices on both sides of a removed

portion are connected using only transition edges (there are no continuity edges between

these slices). To create output of a given length, the algorithm continues to raise and trim

the graph until it reaches the desired length. Then, the path computation algorithm is

executed as usual on the contracted graph. This operation will create a shorter output video,

where only important parts of the scene are included.

Multiple Sub-Scenes Control. In cases when there is more than one center of attention

in a scene, several clusters of JA-points that are far apart will be introduced. The user can

decide if the resulting cut should include all, or some, of these clusters. To remove

undesired sub-scenes from the movie, we simply remove their respective nodes from the

graph reducing the graph in breadth but maintaining the same length. We can create a

separate movie for each sub-scene by retaining only its relevant nodes in the graph. To

merge several sub-scenes together into one movie, we add a minimum scene length

constraint to the path computation algorithm that imposes a minimum number of seconds

for continuous shots taken from one sub-scene. This guideline prevents jumping from one

scene to another in the video, and allows the creation of a video that merges several scenes

happening simultaneously.

First Person Viewpoint Control. As mentioned earlier, hand-held or wearable cameras

often include first-person viewpoint shots. This type of viewpoint is very different from the

ones used in classic narrative photography, but creates a unique style (see [Wardrip-Fruin

and Harrigan 2004]). Therefore, we allow the user control over the use of such shots. We

measure the distance of the cameras from the current JA-point. When first-person

viewpoints are undesirable, we refrain from using cameras whose distance is too small,

otherwise we allow the use of all cameras, including first-person viewpoint shots in the cut.

Algorithm Parameters Control. Additional style control can be achieved by setting

different parameters of the algorithm. These include the use of the soft 180-degree rule.

Using, or not, the cut-on-action mechanism to bias the results towards cutting when there is
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a rapid change in the joint attention, as well as using, or not, cropping of the footage to

allow diversity in sizes of shots.
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Chapter 9

Results

We have tested our algorithm in various types of scenarios, including sports activities,

artistic performances, and social and family gatherings. These experiments involved both

hand-held and head-mounted cameras including GoPro HD Hero2, GoPro HD Hero3

(Black Edition), as well as cell phone cameras. In addition, we have applied our algorithm to

three previously published datasets [Ballanet al. 2010; Park et al. 2012] arriving at a total of

ten different scenes. The number of cameras used in the experiment varied between three to

eighteen. To find the positions and directions of cameras, we use a computer vision

algorithm that reconstructs the whole scene with computation time of several hours, after

which we can apply our algorithm. Figure 9.1 gives the list of results, along with the number

of cameras, graph statistics, and timing of the different parts of our editing algorithm.

Results are included (and best seen) in the companion video and supplementary material.

Surprise Fire
eating

Basketball Snowman Four-scene Juggling Bboy Rothman Park Croquet

Scene

Cameras
Frames
Output
Calc FPS

12
1901

64s
30

6
2150

72s
30

8
2081

70s
30

4
203
67s

3

11
751

150s
5

6
1501

60s
25

16
281
93s

3

3
2151

86s
25

6
471
47s
10

7
476

119s
4

Graph Const.
Path Comp.
Rendering

14.1s
53.3s
7.2m

8s
17s

4.3m

11s
16s
8m

4s
0.5s

7.5m

6s
4s

17m

9s
2s

6m

2s
1s

8m

9s
5s

7.6m

5s
1s

5.2m

12s
1s

13m

Figure 9.1: Statistics and timing results (s = seconds, m = minutes) on all the scenes used
in our experiments. Note that these are timings of our algorithm execution, after we have
the estimation of the 3D position and direction of the cameras.
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Figure 9.2: Visualization of the movie cut created by different methods for the Park
sequence where two distinct sub-scenes are taking place very close to each other in the same
area: a basketball game and a kid playing in a playground. Our trellis graph is portrayed
below the images and the path chosen is shown in red. The graph includes a node for each
point of 3D joint attention and each zoom level and expands when more points of joint
attention are found. For the other methods, the graph only includes nodes for each camera.
Note that the edited videos produced by Vyclone and the Random method look similar in
that the time between cuts is almost constant rather than changing to reflect the pace of the
action. Neither approach handles this scene well because the edited videos cut three or four
times from one sub-scene to the other, creating a confusing version of the event. In our
edited video and the hand-edited one, the cuts are much more varied in length and there is
one transition from the playground to the basketball game.

We evaluate our results by comparing them to two extreme alternatives: a baseline method

of cutting every three seconds to a randomly chosen camera, and movies created manually

by a professional movie editor. In addition, we compared some of our results to the output

of a commercial application (we chose Vyclone as the most popular social-video app).

To create a professionally edited version, we provided the raw input footage of cameras of

five of the scenes (Basketball, Birthday, Croquet, Snowman, Park) to an editor and asked

her to create a movie telling the story of the scene. The creation of a few minutes video took

more than twenty hours on average (27, 33, 20.5, 9, 14.5 hours respectively). A significant

amount of time was spent on just sorting, filtering and reviewing the videos due to the

quantity of footage and the low quality of some of it. The editor mentioned following classic

cinematographic guidelines like the 180-degree rule, avoiding jump cuts and cutting-on-

action. She also mentioned that she often avoided first-person viewpoints and chose the

most stable cameras.



27

Global Comparison. Figure 9.2 shows a global comparison revealing the nature of the

different methods. While random cuts and Vyclone output use fixed length shots and

arbitrary cuts between different sub-scenes, ours and the professional version use varied

shot lengths that reflect the pace of the action, and create a two-part video for a scene with

two points of interest.

Figure 9.3: Tracking motion

Following Content. To illustrate how our algorithm creates correct cuts that can follow

the story in the scene, we concentrate on a specific basketball move in Figure 9.3 (the full

example can be seen in the supplemental video at 2: 35). By using the 3D location of joint

attention of the cameras, the algorithm can follow the movement of the ball. This is

illustrated by the first shot from camera 3 that follows the player’s break. However, before

the long pass, the algorithm cuts to camera 7 to get a better view of the pass seen in the

middle shot. When camera 7 player moves towards the basket the view of the ball is lost and

the shot becomes unstable. At this point, the algorithm cuts to camera 6 which is on the

same side as camera 7 but has a wider angle and a better view to follow the attackers return

and the shot to the basket. Such high level editing decisions cannot be made simply by

assessing shot quality. They cannot be made by simply tracking the joint attention. They are

created by combining measures of shot quality, joint attention tracking, and

cinematographic guidelines in our optimization algorithm.
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Cut Decisions. We further illustrate the differences (and resemblance) between the

different methods by explaining specific cut decisions. For example, while Vyclone and

Random methods often violate the 180-degree rule, our results and the professionally

edited ones rarely do so (see example in supplemental video at 3: 10). Still, there are cases,

such as in the Basketball sequence, where a fixed global 180-line is hard to follow due to the

dynamic nature and relatively small number of cameras. In such cases, we use our soft

guideline, that is imposed locally on pairs of consecutive shots. As can be seen in the

supplementary video examples of the basketball, these types of transitions are also found in

the professionally edited cut of the game.

Figure 9.4: Examples of 180-line rule violation. Top (Vyclon): in three consecutive shots
the monster is moving from left to right, then right to left, then left to right. Bottom
(Random): in three consecutive shots the snowball is rolled from right to left, then left to
right, then right to lefts.

An additional virtue of our method is the support for shot selection diversity. We have

demonstrated (Figure 9.2) that our algorithm creates shot duration diversity similar to

professional editors and unlike Random or Vyclone methods. Similarly, Vyclone and

Random methods cannot support size diversity as they cannot crop any part of the frame.

In contrast, because our method follows the points of 3D joint attention on each frame, it

can use a variety shot sizes by cropping around the point of 3D joint attention. Figure 9.5

shows two frames from closer shots that were selected by the algorithm in our Croquet and

Snowman results (see example in supplemental video at 3: 25). These show better
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composition than the original frame, allow a closer view of the action and provide diversity

and interest in the movie.

Figure 9.5: Shot-size diversity is achieved by cropping around the point of 3D joint
attention. Examples from the Croquet sequence and the Snowman sequence are shown with
the original frame for comparison.

Random and Vyclone methods cannot create cut-on-action style transitions between shots

either. For sports activities these transitions were sought by the professional editor as they

follow the ball movement in the game. We demonstrate the cut-on-action style transition

that was generated by our algorithm in Figure 9.6 (see example in supplemental video at3: 17).

Camera 3 Cut-on-action Camera 6

Figure 9.6: Example of changing the camera according to cut-on-action: the player is
hitting the ball (here shown in first-person point of view) and the camera cuts to see the ball
rolling.
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Stylistic Control. To demonstrate the stylistic control of the user over the output duration

we created shorter cuts of the Basketball sequence (30 and 50 seconds). These can be seen

and compared in the supplemental materials. The full version contains four different

attacks, two for each team. During attacks all players tend to look directly at the ball

creating a single high rank point of joint attention, while during the formation of attacks

players run from one side of the court to the other and there is no clear point of 3D joint

attention. Using Equation 15 we are able to distinguish important from unimportant parts

of the play. Removing the less important parts creates a jump in time exactly between the

start of an attack and the height of the attack (Figure 9.7). This section is, indeed, the least

interesting part of the game, and removed in the fifty second version. Reducing the length

further removes two of the attacks entirely, leaving only a highlight video with one attack

per team (see supplemental video at 2: 50).

Time: 00:23 Jump in time Time: 00:32
Figure 9.7: Jumps in time are created when the length of video is reduced. In this case, the
deleted time occurs exactly when the attack starts forming (left frame) and continues until
the ball is near the basket (right frame). This deletion removes the least interesting part of
the game.

Another aspect of stylistic control is the use of first person point of view. In the croquet

sequence seen in Figure 9.6, we create a movie allowing first-person shots creating some

unique shots such as when the player looks at the ball from above and tries to aim it in the

right direction before hitting the ball. The full results can be viewed in the supplemental

materials, and an example in supplemental video at 3: 24.
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Results Diversity. In the supplemental materials of the paper, we provide an extensive

and diverse set of ten movie cuts created from ten social camera scenes. Some scenes, like

the Basketball scene, are highly challenging due to rapid motions and movements. Other

scenes such as the various performance sequences are more stable and taken from one side

of the action: six people filming a fire-eating act at night, and three and six shooting

juggling acts from Ballan et al. [2010]. Some scenes are captured using a small number of

cameras (the minimum we used was three), while others have many (eighteen cameras in a

360-degree arrangement in the B-boys dancing sequence). Two examples also include

multiple sub-scenes: the Park scene and Four-scene party. The graph of this last scene and

some example cuts from our results video can be seen in Figure 9.8, illustrating the

complexity of the problem of finding high quality shots and cuts.

Various social settings are also demonstrated including a surprise party where a birthday

boy is first surprised by a nerf-gun attack but then presented with a birthday cake and

winter scene where a girl and her parents build a snowman. In these two examples, our

automatically edited cut is similar in appearance to the professional cut as can be seen in

the supplemental videos at 4: 00.

Figure 9.8: The four-scene party footage graph expands and contracts because of the
dynamic nature of the party scene – people are moving around and the point of 3D joint
attention changes. Our algorithm can detect four sub-scenes by clustering the points of 3D
joint attention spatially (each color in the path denotes a sub-scene), and creates a coherent
story merging the four without jumping too much from one to another. At the top we
illustrate some cuts from one sub-scene to another.
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Chapter 10

Discussion

In this paper, we present an algorithm that takes, as input, multiple videos captured by

participants in a social activity and produces, as output, a single video of user-specified

length that cuts between the multiple feeds automatically. A graph-theoretic formulation is

used to select the appropriate timing of cuts between cameras by optimizing an objective

function created from cinematographic guidelines and shot quality. We demonstrate

different types of cuts on a variety of events, such as social gatherings, sports events, and

street performances. Comparing our results to those produced by a professional editor we

note that they are similar in spirit, although understandably, not identical.

Social cameras present significant new challenges as the capture is not coordinated by a

director and the videos are often poorly composed and highly redundant. The classic

cinematographic guidelines were not developed for such types of camera feeds; in order to

apply them we have had to modify some (the 180-degree rule), or create new interpretations

of others (the cut-on-action), to make them better suited to this new type of media. Our

adaptation of the cut-on-action was quite simple and a more complex implementation that

took into account the direction of the action (perhaps through a measure of optical flow on

the camera feeds) might provide stronger cuts. There is also the potential to apply more

advanced edits [Gleicher and Liu 2007], including split-screen when two or more

simultaneous points of 3D joint attention occur, and replays or slow motion for a fast-action

scene with strong 3D joint attention.

A limitation of our approach is that it requires computing the 3D position and orientation of

the cameras. However, this 3D understanding allows us to reason in 3D about

cinematographic guidelines such as the 180-degree rule, avoiding jump cuts, and the cut-

on-action as well as distinguish shot sizes. In our implementation, we rely on computer

vision algorithms that take a significant amount of time. Accelerated techniques are
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available ([Agarwal et al. 2011]) but they can still fail if not enough cameras are present, if

the scene is poorly textured, or if there are significant environmental artifacts (e.g., low-

light, significant motion blur, or heavy rain/snow). Our algorithm does not actually require

a full 3D scene reconstruction but requires only the position and orientation of cameras.

This information could be extracted, for instance, using a sensor-based analysis (see e.g.,

[Cricri et al. 2012]), albeit at substantially worse precision with current commodity

hardware. We also assume the camera feeds are synchronized, and we established

synchronization manually using the audio channel. However, more advanced

synchronization algorithms are available [Pundik and Moses 2010; Shrestha et al. 2010],

and videos from cameras with GPS (e.g. cellphones) are already time-stamped.

Our edits of ten different events provide significant evidence that 3D joint attention is a

powerful indication of what is important at a given moment in a scene. However, joint

attention only provides one or two points of interest and those points are approximate.

There may be cases where the main action will not be captured fully by focusing on the

point of joint attention and there may be cases where the semantics of the scene is too

complex to be so simply captured. Audio can also be a significant cue in determining the

location of content in the scene. As we know the time-varying 3D location of each camera, it

would be interesting to see if beam-forming approaches can be used to reconstruct the

motion profiles of the 3D audio sources and if that information can be fused with the 3D

joint attention to provide a more powerful indication of what is important in the scene.

Lastly, we note that our algorithm can also be used to assist professional editors in their

task of editing large amounts of footage by providing several possible different movies to

choose from. It would be interesting to build an interface for such a semi-automatic editing

tool.
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תקציר

לרוב אנחנו נמצאים עם מכשיר נייד , מצלמות היום הן חלק בלתי נפרדו מחיינו ונמצאות בכל מקום

אלו רתיותמצלמות חב.GoProגם מצלמות לבישות כגון שכיחות הנושא מצלמה מתקדמת ולאחרונה 

מדיה זו מובדלת מהמדיה . יוצרות מדיה חדשה מאחר וזמינות תמיד ומייצגות את מבט המצלם

, בעלת תמונה לא יציבהלרוב , שלא מצולמת על ידי צלמים מקצועייםבכך והמקצועיתהמסורתית

, יתאתגר אמיתי לערוך בצורה אוטומטעובדות אלו מייצרות .ובתאורה מזדמנתללא הכוונה של במאי

עבודה זו מתארת .ארוע חברתיהמצלמותשצולמה ממספר מצלמות מדיה רבה עקבית וברורה

שצולמה ממספר מצלמות חברתיות על ידי החלה של חוקי אלגוריתם שעורך בצורה אוטומטית מדיה 

חיתוך ואורך שוט, מעבר בין סצנות, חיתוך קופצניהמנעות מ, 180-חוק ה–כגון (בימוי קולנועי

.לצלםאת הסיפור שהצלמים ניסו עקבית וברורהשמטרתם לתאר בצורה )הבפעול

הצלם לרוב , המפתח לפתרון בעיה זו הינו חלק בלתי נפרד מהמדיה החדשה של המצלמות החברתיות

בצילום אירוע חברתי . את האירוע מנקודת מבטו האישיתוכן מצלםמצלם מידע שהינו חשוב בעיניו

אינדיקציה הינהבזמן נתוןלמותשל מספר רב של מצנקודת החיתוך, יותעל ידי מספר מצלמות חברת

וחשיבות לטובת קבלת הבנת תוכן העלילהבנקודות חיתוך אלוהשתמשנו , חזקה לאירוע חשוב

ת חיתוך ונקודוים יימשל פריםבנינו גרף אשר הצמתים הינם צמד.האירועים המתרחשים בה

משקלנו את הצמתים לפי איכות . בזמן עוקבלצמתיםמזמן נתון הצמתיםהקשתות הינן חיבור בין כל ו

) מרחק טובבבמקום והטיית המצלמה והאם מכיל אירוע חשוב, כגון יציבות הצילום(הצילום 

אילצנו אורך מיאדינעל ידי תכנון,לבסוף.השוניםהקולנועי ומשקלנו את הקשתות לפי חוקי הבימוי

משקולות , הצמתיםותמצאנו מסלול אופטימלי שמתחשב במשקולשוט בין טווח מקסימום למינימום ו

, מצלמותכיל בתוכו מידע על החיתוכים בין המסלול אופטימלי זה מ.עמידה באורך השוטוהקשתות 

.יישור הטיה וייצוב שיש לבצע על מנת ולקבל את הסרט הסופי, תקריבים

ות על ידי השוואת תוצאות חיזקנו את התוצאובמהלך המחקר ביצענו מספר רב של ניסויים

הראנו שהאלגוריתם . חיתוך רנדומליותוכנות קיימות בשוק , לתוצאות של עורך מקצועיהאלגוריתם

של נקודות חיתוךכאמור על ידי שמצויינים (שלא מפספס ארועים חשובים עקביסיפור מייצר

למות שמחד לא קצר מבצע מעבר בין מצ, )ולרוב לא מפר אותם(מוי עומד בחוקי הבי, )המצלמות

תמודד עם מספר סצנות בו זמנית מבלי לבלבל את מכן וידי ומבלבל ומנגד לא ארוך ומשעמם מ

.הצופה



המרכז הבינתחומי בהרצליה
המחשבלמדעיארזיאפיספר-בית

חברתיותממספר מצלמות מדיהעריכה אוטומטית של 

מחקרי גמרפרויקטשלמסכם ורכחיבמוגש
.M.Scמוסמךתוארלקראת

עידו ערבידי-על

שמיראריאל 'פרופ בהנחייתבוצעההעבודה

2015 נובמבר,

המרכז הבינתחומי בהרצליה
המחשבלמדעיארזיאפיספר-בית

חברתיותממספר מצלמות מדיהעריכה אוטומטית של 

מחקרי גמרפרויקטשלמסכם ורכחיבמוגש
.M.Scמוסמךתוארלקראת

עידו ערבידי-על

שמיראריאל 'פרופ בהנחייתבוצעההעבודה

2015 נובמבר,

המרכז הבינתחומי בהרצליה
המחשבלמדעיארזיאפיספר-בית

חברתיותממספר מצלמות מדיהעריכה אוטומטית של 

מחקרי גמרפרויקטשלמסכם ורכחיבמוגש
.M.Scמוסמךתוארלקראת

עידו ערבידי-על

שמיראריאל 'פרופ בהנחייתבוצעההעבודה

2015 נובמבר,


