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Abstract

We consider distance queries in vertex labeled planar graphs. For any fixed 0 < ε ≤ 1/2
we show how to preprocess a planar graph with vertex labels and edge lengths into a data
structure that answers queries of the following form. Given a vertex u and a label λ return
a (1 + O(ε))-approximation of the distance between u and its closest vertex with label λ.
For an undirected n-vertex planar graph the preprocessing time is O(ε−2n lg3 n), the size
isO(ε−1n lg n), and the query time isO(lg lg n+ε−1). For a directed planar graph with arc
lengths bounded by N , the preprocessing time is O(ε−2n lg3 n lg(nN)), the data structure
size is O(ε−1n lg n lg(nN)), and the query time is O(lg lg n lg lg (nN) + ε−1).
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1. INTRODUCTION

1 Introduction

Imagine you are driving your car and suddenly see you are about to run out of gas. What
should you do? Obviously, you should find the closest gas station. This is the vertex-to-
label distance query problem. Various software applications like Waze and Google maps
attempt to provide such a functionality. The idea is to preprocess the locations of service
providers, such as gas stations, hospitals, pubs and metro stations in advance, so that when
a user, whose location is not known a priori, asks for the distance to the closest service
provider, the information can be retrieved as quickly as possible.

We study this problem from a theoretical point of view. We model the network as
a planar graph with labeled vertices (e.g., a vertex labeled as a gas station). We study
distance oracles for such graphs. A vertex-label distance oracle is a data structure that
represents the input graph and can be queried for the distance between any vertex and the
closest vertex with a desired label. We consider approximate distance oracles, which, for
any given fixed parameter ε > 0, return a distance estimate that is at least the true distance
queried, and at most (1+ε) times the true distance (this is known as a (1+ε)-stretch). One
would like an oracle with the following properties; queries should be answered quickly,
the oracle should consume little space, and the construction of the oracle should take as
little time as possible. We use the notation 〈O(S(n))space , O(T (n))time〉 to express the
space requirement and query time of a distance oracle.

A dual situation is, for example, when a taxi company wants to dispatch a taxi from
the station closest to the location where the taxi is required. Clearly, this problem can be
solved using a vertex-label distance oracle by inverting the original graph.

Our results and approach We give a (1 + ε)-stretch 〈O(ε−1n lg n)space , O(lg lg n +
ε−1)time〉 vertex-label distance oracle for undirected planar graphs that can be con-
structed in O(ε−2n lg3 n) time. For directed planar graphs we give a (1 + ε)-stretch
〈O(ε−1n lg n lg(nN))space , O(lg lg n lg lg (nN) + ε−1)time〉 vertex-label distance oracle
whose construction time is O(ε−2n lg3 n lg(nN)). To the best of our knowledge, no non-
trivial directed vertex-label distance oracles where proposed prior to the current work.

Consider a vertex-to-vertex distance oracle for a grpah with label set L. If the oracle
works for general directed graphs then the vertex-to-label problem can be solved easily;
add a distinct apex vλ for each label λ ∈ L, and connect every λ-labeled vertex to vλ
with a zero length arc. Finding the distance from a vertex u to label λ is now equivalent
to finding the distance between u and vλ. This approach presents two main difficulties
when designing efficient oracles for planar graphs. First, adding apices breaks planarity.
In particular, it affects the separability of the graph. Thus, the reduction does not work
with oracles that depend on planarity or on the existence of separators, which are more
efficient than oracles for general graphs. Second, the reduction uses directed arcs, so it is
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1. INTRODUCTION

unsuitable for oracles for undirected graphs. Using arcs in the reduction is crucial since
connecting an apex with undirected zero length edges changes the distances in the graph.
This is because the apex can be used to teleport between vertices with the same label.1.1

We nonetheless use this approach, and show how to overcome these obstacles. We
augment a directed and an undirected variants of a distance oracle of Thorup [Tho04]
for planar graphs. These oracles rely on the existence of fundamental cycle separators in
planar graphs, a property that breaks when apices are added to the graph. However, we
observe that once the graph is separated, Thorup’s oracle does not depend on planarity.
We therefore postpone the addition of the apices till a later stage in the construction of the
distance oracle, when the graph has already been separated. We show that, nonetheless,
approximate distances from any vertex to any label in the entire graph can be approx-
imated. Moreover, we observe that Thorup’s undirected oracle internally uses the same
directed structures as in his directed oracle. It only depends on the undirectedness in mak-
ing the number and sizes of these structures smaller than in the directed case. We extend
this argument to handle vertex labels.

1.1 Teleporting between vertices might be desirable in some applications. For example, calculating the walking distance
between two locations without accounting traveling between train stations.

2



2. RELATED WORK

2 Related Work

We summarize related work on approximate and exact vertex-vertex distance oracles.
For general graphs, no efficient (2)-stretch approximate vertex-vertex distance oracles are
known to date. For any integer k ≥ 2, Thorup and Zwick [TZ05] presented a (2k − 1)-
stretch 〈O(kn1+1/k)space , O(k)time〉 undirected distance oracle which is constructed in
O(kmn1/k) time. Wulff-Nilsen [Wul12] achieved the same result with preprocessing of
O(kn1+

c
k ) for universal constant c. Several more improvements of [TZ05] have been found

for unweighted or sparse graphs ([BGSU08], [BK06], [BS06]).
In contrast, vertex-vertex oracles for planar graphs with stretch less then 2 have been

constructed. Thorup [Tho04] gave a 〈O(ε−1n lg n lg(nN))space , O(lg lg (nN) + ε−1)time〉
(1 + ε)-stretch directed distance oracle, and a 〈O(ε−1n lg n)space , O(ε−1)time〉 undi-
rected (simplified) distance oracle. Our results is based on Thorup’s oracles, which are
described in Section 4. Klein [Kle02] independently gave an undirected distance or-
acle with same bounds. Kawarabayashi, Klein and Sommer [KKS11] have shown a
〈O(n)space , O(ε−2 lg−2(n))time〉 undirected (1 + ε)-stretch distance oracle constructed
in O(n lg2 n) time, inspired by [Tho04]. [KKS11] give a trade-off of 〈O( ε

−1n lgn√
r

)space
, O(r +

√
rε−1 lg n)time〉|∀r≤n oracle algorithms. Sommer et al. [KST13] have shown

better tradeoffs for undirected oracles. For the case where N ∈ poly(n), they achieve
〈O∗(n lg n)space , O∗(ε−1)time〉 oracle, where O∗ hides lg(ε−1) and lg∗(n) factors.

The vertex-to-label distance query problem was introduced by Hermelin, Levy, Weimann
and Yuster [HLWY11]. For any integer k ≥ 2, they gave a (4k−5)-stretch 〈O(kn1+1/k)space
, O(k)time〉 vertex-label distance oracle (expected space) for undirected general (i.e., non-
planar) graphs. This is not efficient when the number l of distinct labels is o(n1/k). They
also presented a (2k − 1)-stretch 〈O(knl1/k)space , O(k)time〉 undirected oracle. Chechik
[Che12] improved the latter result; Second, she presents a (4k−5)-stretch 〈O(knl1/k)space
, O(k)time〉 (expected space) undirected oracle.

For planar graphs, the only vertex-label distance oracle we are aware of was described
by Li, Ma and Ning [LMN13]. They construct a (1+ε)-stretch oracle with 〈O(ε−1n lg n)space
, O(ε−1 lg n lg ρ)time〉 bounds for undirected graphs. Here, ρ is the radius of the graph,
which can be θ(n). It is also shown in [LMN13] how to avoid the lg ρ factor when
ρ = O(lg n). The construction time of their oracle is O(ε−1n log2 n).

As for exact distance oracles, no non-trivial oracles exist for general graphs. Efficient
exact oracles for planar graphs rely on small balanced separators.

Djidjev [Dji96] has given a 〈O(S)space , O(n2/S)time〉|∀S∈[n,n2] and a 〈O(S)space ,
Õ( n√

S
)time〉|∀S∈[n4/3,n3/2] vertex-vertex distance oracle for directed planar graphs, where Õ

hides poly-logarithmic factor. Chen and Xu [CX00] have extended the later result range to
〈O(S)space , Õ( n√

S
)time〉|∀S∈[n4/3,n2]. Cabello [Cab12] had given the same result but with a
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better preprocessing time. Wulff-Nilsen [Wul13] has given a 〈o(n2)space , O(1)time〉 result
for unweighted planar graphs. Fakcharoenphol and Rao [FR06] presented a 〈Õ(n)space
, Õ(
√
n)time〉 result, which has the best space-query trade-off as for today. Later results

([MW10,Kle05]) implicitly improved [FR06] result by a logarithmic factor both in prepro-
cessing and space. Mozes and Sommer [MS12] have extended [CX00] range to 〈O(S)space
, Õ( n√

S
)time〉|∀S∈[n lg lgn,n2]. Their result is achieved by paying another O(

√
lg n) factor in

query time. Nussbaum [Nus11] independently gave a similar result. [MS12] also give a
〈O(n)space , O(n1/2+ε)time〉|∀ε>0 and a 〈Õ(n)space , Õ(min {l,

√
n})time〉 results where l is

the distance between the queried vertices, for positive edge lengths.
Tao, Papadopoulos, Sheng and Stefanidis [TPSS11] achieved a 〈O(n)space ,O(lg n)time〉

exact distance oracle over XML trees.
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3. PRELIMINARIES

3 Preliminaries

A graph G is a tuple consisting of V (G), a finite set of objects called vertices and A(G),
a set of arcs, where an arc is an ordered pair of vertices. An undirected graph is similar,
but instead of A(G) it consists a set of edges E(G), where an edge is an unordered pair
of vertices. Throughout this work, all graphs are directed unless stated otherwise. We
introduce several definitions for directed graphs, which should be inferred to undirected
graphs as well.

Given an arc uv, we say that u and v are the endpoints of uv. A vertex is incident to
an arc if it is one of the endpoints of that arc. A u-to-v path is an ordered set of vertices
which starts with u, ends with v, and for each consecutive vertices there is an arc from the
former to the later, which are the arcs of the path. The concatenation of two paths P1 and
P2, where last vertex of P1 is the first vertex of P2, is denoted P1 ◦ P2.

For a path Q and a vertex set U ⊆ V (Q), we define Q̄, the reduction of Q to U as
follows. Repeatedly applying the following procedure to Q. Let v be a vertex of Q such
that v /∈ U . Delete v from Q. If Q doesn’t start with v, introduce a new arc to A(G)
between the other endpoints of the arcs v was incident to in Q. Also, if there are arcs
lengths, add the length of the discarded arc wv to the length of the other arc of Q incident
to w. Note that |Q̄| = O(|U |).

A cycle is a path that begins and ends in the same vertex. A cycle is called simple cycle
if it contains no other cycle which is not itself. A tree is a set of several paths such that
the union of the path’s arcs in the tree, viewed as (undirected) edges, does not contain an
undirected cycle, and is connected (e.g. it contains a path from each vertex to any other
vertex). A tree is called rooted if all its paths has common starting vertex called the root.
A rooted spanning tree is a rooted tree such that each vertex in V (G) participates in one
of the tree’s paths.

Let T be a rooted spanning tree of an undirected graph G. For u ∈ V (G), let T [u]
denote the unique root-to-u path in T . The fundamental cycle of e /∈ E(T ) is the undirected
cycle composed of e = u1u2, E(T [u1]) and E(T [u2]).

Let G be a graph with arc lengths. For u, v ∈ V (G), the distance between u and v,
denoted δG(u, v), is the total minimal sum of arcs lengths among all u-to-v paths. We
denote by N the maximum length of an arc in G. 3.1

Given a planar graph, a face is a minimal region of the plane bounded by arcs. Euler’s
formula asserts that for a planar graph with n vertices, m arcs, and f faces, it holds that
n−m+ f = 2. By triangulating a planar graph (e.g. adding arcs so that each face consists
of at least 3 arcs) using Euler’s formula shows that |A(G)| = O(|V (G)|). It therefore
makes sense to define |G|, the size of a planar graph as |V (G)|.
3.1 O(nN) is an upper bound on δG(·, ·).
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3. PRELIMINARIES

A simple cycle separates a planar graph G into an interior and exterior parts. Let G
be a planar graph and T be a rooted spanning tree of G. It was shown by (Lipton and
Tarjan [LT79]) how a fundamental cycle C of T can be found so that the strict interior and
exterior of the graph with respect to C are roughly the same size. This graph property is
strongly used in our result.

Let L = {λi}li=1 be a set of l labels. A vertex-labeled graph is a graphG equipped with
a function f : V (G) → L. We define Vλ = {v ∈ V (G)|f(v) = λ} to be set of vertices
with label λ. For a vertex-labeled G and λ ∈ L, we define δG(u, λ) = min

w∈Vλ
δG(u,w) to be

the distance in G from u to the closest λ-labeled vertex.
A vertex-label distance oracle is a data structure that, given a vertex v ∈ V and a label

λ ∈ L, outputs an (approximation) of δG(v, λ). We note that this problem is a generaliza-
tion of the basic distance oracle problem (in which each vertex is given a unique label).
Constructing an O(nl)-space vertex-label distance oracle is trivial, by precomputing and
storing the distance between each vertex and each possible label. The goal is, therefore,
to devise an oracle which requires substantially less than nl space, while allowing for fast
queries.

6



4. THORUP’S APPROXIMATE DISTANCE ORACLE

4 Thorup’s Approximate Distance Oracle

In this section we outline the distance oracle of Thorup [Tho04]. This description is not
new, but is necessary for understanding our results. Our description does not go into all the
details of Thorup’s oracle, but rather focuses on those that are not used by as black box.

Thorup shows that the problem of constructing a distance oracle for a directed graph
can be reduced to constructing a distance oracle for a restricted kind of graph, defined in
the following.

Definition 4.1. A set T of arcs in a graph H is a (t, α)-layered spanning tree if it satisfies
the following properties:

– Disoriented - it can be oriented to form a spanning tree of H .
– Each branch (a path from the root of T ) is a concatenation of at most t shortest paths

in H .
– Each shortest path in a branch of T is of length at most α

Definition 4.2. A graph H is called (t, α)-layered if it has a (t, α)-layered spanning tree.

Definition 4.3. A scale-(α, ε) distance oracle for a (t, α)-layered graphH is a data struc-
ture that, when queried for δH(v, w) returns

d(v, w) =

{
d ∈ [δH(v, w), δH(v, w) + εα] δH(v, w) ≤ α

∞ otherwise

The reduction is summarized in the following lemma. See Appendix A for details.

Lemma 4.1. ([Tho04, Sections 3.1,3.2,3.3]) Given a scale-(α, ε′) 〈O(s(n, ε′))space ,
O(t(ε′))time〉 algorithm, a (1 + ε)-stretch 〈O(s(n, ε) lg(nN))space , O(t(1

4
) lg lg (nN) +

t( ε
4
))time〉 algorithm can be constructed to any input graph.

Thorup shows each graph can be decomposed to a (3, α)-layered graphs, of total lin-
ear size (with α the distance bound of the graph). Therefore its suffices to show how to
construct a scale-(α, ε) distance oracle.

The remainder of the section describes Thorup’s scale-(α, ε) oracle.

4.1 The frame structure

The construction is recursive, using shortest path separators.

7



4. THORUP’S APPROXIMATE DISTANCE ORACLE

Lemma 4.2. (Fundamental Cycle Separator [LT79]) LetH be an undirected planar graph
with a rooted spanning tree T and function w assigning non-negative weights to edges.
One can find an edge e /∈ T such that neither the weight strictly enclosed by the funda-
mental cycle of e nor the weight not enclosed by the fundamental cycle of e exceeds 2

3
the

weight of H .

A planar graphG can be decomposed by computing a shortest path tree for an arbitrary
vertex, and applying lemma 4.2 recursively. Choosing the spanning tree in lemma 4.2 to be
a shortest path tree guarantees that each fundamental cycle separator found consists of two
shortest paths. The decomposition can be represented by a binary tree T in the following
manner. 4.1 See fig. 4.1 in for an illustration.

– Each node r of T is associated with a subgraph Gr of G. The subgraph associated with
the root of T is all of G.

– Each non-leaf node r of T is associated with the fundamental cycle separator Sr found
by invoking lemma 4.2 on Gr.

– Each non-leaf node r has two children, whose associated subgraphs are the interior and
exterior of Sr. The vertices and edges of the separator belong to both subgraphs.

Fig. 4.1: An illustration of the de-
composition tree T . The root r̃ is as-
sociated with Gr̃ = G. The children
of r̃, r̃0 and r̃1, are associated with
the interior and exterior of the sepa-
rator Sr̃ of Gr̃.

r̃

r̃0

r̃00

...

r̃01

...

r̃1

...

Let r be a node of T . The frame Fr of Gr is the set of (shortest) paths in
⋃
r′(Sr′ ∩Gr),

where the union is over strict ancestors r′ of r in T . Each non-leaf node r stores its frame
Fr. A standard argument shows that, by alternating the separation criteria between number
of edges in the graph and number of paths in the frame, one can get frames consisting of a
constant number of paths (Appendix B).

4.1 We refer to the vertices of T as nodes to distinguish them from the vertices of the graph G.

8



4. THORUP’S APPROXIMATE DISTANCE ORACLE

For r ∈ T , let G◦r denote the subgraph of Gr \ Fr. That is, G◦r is the graph obtained
from Gr by removing the arcs of the frame Fr as well as any vertices of Fr that become
isolated as a result of the removal. The sizes of the G◦r’s decrease by a constant factor
along T , while the sizes of the Gr’s need not because there is no bound on the size of the
fundamental cycle in lemma 4.2. This may pose a problem, since the frame Fr is stored by
every node r. To overcome this, the algorithm stores the reduction of Fr to G◦r instead of
Fr itself.

4.2 Thorup’s scale-(α, ε) algorithm [Tho04]

The main idea is to store just a subset of the pairwise distances in the graph, from which
all distances can be approximately computed efficiently. Given a (3, α)-layered graph H
and a shortest path Q ∈ H , Thorup shows that for every vertex v ∈ H , there exists a set
C(v,Q) (C(Q, v)) of O(ε−1) vertices on Q, called connections, such that the distances
(called connection lengths) from (to) every vertex of H to (from) its connections on Q
can be used to approximate, in O(ε−1) time, the length of any shortest path from/to v in
H that intersects Q. Thorup essentially proves the following lemma whose proof is in
Appendix C, lemma C.1:

Lemma 4.3. Let Q be a shortest path in a (3, α)-layered graph G. Assume a shortest u-
to-w path P in G intersects a shortest path Q. There exists connections sets C(u,Q) and
C(Q,w) s.t.

δGuwQ (u,w) ≤ δG(u,w) + 2εα (4.1)

where Guw
Q is a graph with vertices u,w, the vertices of the reduction of Q to the connec-

tions of u and w, and with u-to-Q and Q-to-v arcs whose lengths are the corresponding
connection lengths of C(u,Q) and C(Q,w).

For efficiency reasons, instead of storing exact connection lengths δ(·, ·), the algorithm
will compute approximate connection lengths.

A Lowest Common Ancestor (LCA) data structure for a tree T is a data structure that,
given any two nodes x, y of T , returns the node furthest from the root that is a parent of
both x and y. There exist LCA data structures of linear size and constant query time by
Harel and Tarjan [HT84].

Let u,w be vertices ofG. Let ru, rw be the leaves of T such that u ∈ Gru andw ∈ Grw .
Let r be the LCA of ru and rv in T . Observe that u and w are separated by Sr. Hence,
every u-to-w path inGmust intersect Sr. However, a u-to-w path may or may not intersect
Fr. See fig. 4.2.

9



4. THORUP’S APPROXIMATE DISTANCE ORACLE

Fig. 4.2: The solid lines (thin and
thick) indicate F̄r, the reduced
frame of Gr. The bold lines (solid
and dashed) indicate Sr, the separa-
tor of Gr. Vertices u and w are ver-
tices of G◦r separated by Sr. Every
u-to-w path must intersect Sr. The
dashed line shows a possible short-
est u-to-w path in G.

u

w

F̄r

Sr

Suppose first that a shortest u-to-w path P (in G) does intersect Fr. We write P =
P0 ◦ P1. Path P0 is a maximal prefix of P whose internal vertices belong to G◦r . We call
this kind of paths type-0 paths. Note that type-0 paths start at a vertex ofG◦r , end at a vertex
of Fr and are confined to G◦r . Path P1 consists of the remainder of P , and is referred to as
a type-1 path. Note that type-1 paths start at a vertex of Fr ∩G◦r , end at a vertex of G◦r , but
are not confined to G◦r . It is not difficult to convince oneself that, to be able to approximate
δG(u,w), it suffices to keep, for every Q ∈ Fr, connections C(u,Q) of type-0 (i.e. the
connection lengths are relative to G◦r , not the entire G) and connections C(Q,w) of type-1
(i.e. the connection lengths are relative to the entire graphG). For details, see Appendix C,
lemma C.3.

Now suppose that no shortest u-to-w path P (in G) intersects Fr. Then every u-to-w
path P (in G) intersects Sr and is confined to G◦r . Then, to approximate P it suffices to
keep, for every Q ∈ Sr, type-0 connections C(u,Q) and C(Q,w).

The distance oracle therefore keeps, for each r ∈ T , for each vertex u ∈ G◦r:

1. connections C(u,Q) of type-0 for all Q ∈ Fr.
2. connections C(Q, u) of type-1 for all Q ∈ Fr.
3. connections C(u,Q) and C(Q, u) of type-0 for all Q ∈ Sr.

These connections, over all u ∈ Gr and all paths in Sr∪Fr are called the (type-0 or type-1)
connections of r. In addition, the data structure stores:

– A mapping of each vertex v ∈ G to a leaf node rv ∈ T s.t. v ∈ Grv .
– A least common ancestor data structure over T .

The space bottleneck is the size of the sets maintained. Each vertex v belongs to G◦r
for O(lg n) nodes r of T . For each of the O(1) paths in the frame and separator of each

10



4. THORUP’S APPROXIMATE DISTANCE ORACLE

such node r, v has a set ofO(ε−1) connections. Hence the total space required by Thorup’s
oracle is O(ε−1n lg n).

We next describe how a query is performed. Given a u-to-w distance query, let r be
the least common ancestor of ru and rw in T . The algorithm computes, for each path Q of
Sr∪Fr the length of a shortest u-to-w path that intersectsQ using the connectionsC(u,Q)
and C(Q,w) (of both type 0 and type 1). By construction of T , the number of such paths
Q is constant. It is easy to see that computing the distance estimate for each Q can be done
in O(ε−1) time. Thus, an (1 + ε)-approximate distance is produced in O(ε−1) time.

The Construction Algorithm We now mention some, but not all the details of Thorup’s
O(ε−2n lg3 n)-time construction algorithm. Refer to the appendices and to [Tho04, sub-
section 3.6] for the full details.

The computation of the connections and connection lengths is done top-down the de-
composition tree T . Appendix C describes a divide-and-conquer procedure of Thorup that
constructs the connections C(u,Q) for all vertices u in a graph H , and a single shortest
path Q. A symmetric procedure computes C(Q, u). We summarize the procedure in the
following lemma.

Let H be a graph. Let Q be a shortest path in H . Let sssp(Q,H) be the smallest
number s.t. for any subgraph H0 of H , and any vertex q ∈ Q0, where Q0 is the reduction
of Q to H0, we can compute single source shortest paths from q in the graph Q0 ∪ H0 in
O(sssp(Q,H)|E(H0)|) time. It is easy to see that a standard implementation of Dijkstra’s
algorithm with priority queues implies sssp(Q,H) = O(lg |E(H)|). If H is planar, then
sssp(Q,H) = O(1) by Henzinger et al. [HKRS97].

Lemma 4.4. Let Q be a shortest path in a directed graph H . For every u ∈ H , there
exists a set of O(ε−1) connections such that by only recording the connection lengths
C(u,Q), C(Q, u) between every vertex in H and its connections, one can approximate,
for every two vertices w, u ∈ H , the length of a shortest u-to-w path that intersects Q
with additive 2εα error in O(ε−1) time. All connections and connection lengths can be
computed in O(ε−1sssp(Q,H)|E(H)| lg |V (Q)|) total time.

Naively using lemma 4.4 on G◦r for all r ∈ T is efficient, but only generates type-0
connections on Sr. Using lemma 4.4 on Gr would produce type-0 connections on Fr, but
is not efficient since |Fr| can be much larger than |G◦r|. Instead, For each pathQ in Sr∪Fr,
the algorithm uses the reduction Q̄ of Q to the vertices of Q that belong to G◦r . Let GQ

r be
the graph composed of G◦r and Q̄. Note that |GQ

r | = O(|G◦r|). The type-0 connections on
Sr ∪ Fr can now be computed by applying lemma 4.4 to GQ

r .
It remains to compute type-1 connections. Recall that these connection lengths reflect

distances in the entire graph, not just in Gr. Clearly, applying lemma 4.4 on G for every r

11



4. THORUP’S APPROXIMATE DISTANCE ORACLE

is inefficient. Instead, the computation is done top-down T , augmenting G◦r with the con-
nection lengths of ancestors of r in T , which have already been computed, and represent
distances outside Gr. This is done as follows.

Lemma 4.5. Let r ∈ T . Type-1 connections for r can be computed using just Gr and all
type-0 connections of strict ancestors of r.

Proof. Let Q be a path in Fr. Let XQ
r be the graph composed of:

– The vertices of G◦r
– The vertices and arcs of Q̄, the reduction of Q to the vertices of Q which belong to G◦r .
– For each strict ancestor r′ of r, for each path Q′ ∈ Sr′ , the vertices and arcs of Q̄′, the

reduction of Q′ to vertices of Q′ with (type-0) connections to vertices of G◦r or with
(type-0) connections from vertices of Q̄, along with arcs representing the correspond-
ing connection lengths of r′.

Fig. 4.3: The figure illustrates a part of XQ
r .

In this exampleQ is a path in the separator of
the parent of r (in general Q is a path in Fr,
so it may belong to the separator of an ances-
tor of r). The vertices of G◦r are enclosed in
Fr, which is represented by the dashed lines
and by Q̄. Paths from Q̄ to λ-labeled vertices
such as u1 and u2 are represented in XQ

r by
arcs between Q̄ and λ. These arcs correspond
to the type-0 connections of λ on Q̄ in the
parent of r. All solid arcs are part of XQ

r . A
shortest path from q1 ∈ Q̄ to u ∈ G◦r might
be enclosed in G◦parent[r] (type-0 C(Q̄, u)) or
approximated through a path which crosses a
separator of an ancestor of r (in the figure, it
is composed of arcs from C(q1, Q

′), Q′ and
C(Q′, u)).

q1

Q̄
∈ Sp

ar
en
t[r

]

Q′ ∈ Sr′

Q′′ ∈ Sr′′

...

u
G◦r

Since each vertex of G◦r has O(ε−1) connections to each path in the frame of each of
r’s O(lg n) ancestors, the size of XQ

r is O(ε−1 lg n|V (G◦r)|).
We now describe why XQ

r yields the desired type-1 connections. We explain that for
r ∈ T , XQ

r 2εα-approximates the distance in G from vertices of Fr to vertices of G◦r .
Hence applying lemma 4.4 on XQ

r approximates distances in G with additive error 3εα.

12



4. THORUP’S APPROXIMATE DISTANCE ORACLE

The crucial point is to show that the additive error does not accumulate along the
recursion. We prove that for any Q ∈ Fr, and any q ∈ Q and u ∈ G◦r , δXQ

r
(q, u) ≤

δG(q, u) + 2εα.
Let r be a node of T . If r is the root of T , Fr is empty, so the lemma holds vacuously

since no type-1 connections are computed. Otherwise, let Q be a path in Fr, q ∈ Q, and
u ∈ G◦r . Consider a shortest q-to-u path P . Let r′ be the rootmost ancestor of r such that
P intersects Sr′ . Let Q̃ be a path of Sr′ intersected by P . Consider the type-0 connection
lengths from q to Q̃ in r′ and the connections from Q̃ to u. These connection lengths were
calculated with respect to exact distances in G◦r′ . Since Q̃, C(q, Q̃) and C(Q̃, u) are all
present in XQ

r , it follows from lemma 4.3 that δXQ
r

(q, u) ≤ δG◦
r′

(q, u) + 2εα. Since P is
confined to G◦r′ , δG◦r′ (q, u) = δG(q, u), and the lemma follows.

Lemma 4.6. For a node r ∈ T , the computation of lemma 4.5 requiresO(ε−2|V (G◦r)| lg2 n)
total time.

Proof. One can implement a simple shortest paths algorithm in XQ
r with sssp(Q̄,XQ

r ) =
O(1); first, relax all outgoing arcs of Q̄. Second, for each reduced path Q̄′ of a frame of an
ancestor of r, relax the arcs of Q̄′ by their order along Q̄′. Third, relax Q̄′-to-G◦r arcs for
any former Q̄′.

XQ
r has O(ε−1|V (G◦r)| lg n) arcs and vertices because all ancestral separator paths

are in reduced form. Hence, applying lemma 4.4 to XQ
r for any Q ∈ Fr requires

O(ε−2|V (G◦r)| lg2 n) time. Since there are constant number of paths in Fr, it is the total
runtime.

Lemma 4.7. Given a (3, α)-layered graph, the construction algorithm runtime is
O(ε−2n lg3 n).

Proof. Type-0 connections are computed by applying lemma 4.4, for any Q ∈ Sr ∪ Fr,
to GQ

r using standard dijkstra algorithm. 4.2 Since |E(GQ
r )| = O(|E(G◦r)|), this takes

O(ε−1|E(G◦r)| lg2 n) time. Type-1 connections are computed by applying lemma 4.5 to
XQ
r , which takes O(ε−2|V (G◦r)| lg2 n) by lemma 4.6.

Hence, computing all connections for a single r ∈ T takes O(ε−2|V (G◦r)| lg2 n). Sum-
ming over all r ∈ T , the total preprocessing time is O(ε−2n lg3 n).

By lemma 4.1 and lemma 4.7, we obtain the following theorem:

Theorem 4.1. A (1 + ε)-stretch 〈O(ε−1n lg n lg(nN))space , O(lg lg (nN) + ε−1)time〉 dis-
tance oracle can be constructed in O(ε−2n lg3 n lg(nN)) time.
4.2 Since Gr is planar, one may use [HKRS97] instead to achieve O(ε−1|E(GQr )| lgn) complexity. However this is not

the bottleneck.

13



4. THORUP’S APPROXIMATE DISTANCE ORACLE

For the undirected case, [Tho04] states a version of lemma 4.4 that can be used without
the reduction to (3, α)-layered graphs. The statement of the lemma differs from lemma 4.4
in the error term of the approximation.

Lemma 4.8. Let Q be a shortest path in an undirected graph H . For every u ∈ H , there
exists a set of O(ε−1) connections such that by only recording the connection lengths
C(u,Q) between every vertex in H and its connections, one can approximate, for every
two vertices w, u ∈ H , the length δH(u,w) of a shortest u-to-w path that intersectsQ with
additive εδH(u,w) error in O(ε−1) time. All connections and connection lengths can be
computed in O(ε−1sssp(Q,H)|E(H)| lg |V (Q)|) total time.

In Appendix D we discuss how the directed case lemmas (described in Appendix C) are
altered as to establish lemma 4.8 for the undirected case. The discussion of the undirected
case in Thorup’s paper [Tho04] is sketchy at places since many parts of the undirected case
are essentially identical to the directed case. Indeed, one deduction step seems to fail for
the undirected case. We show in Appendix D how to correct this flaw, so that lemma 4.8 is
correct. Lemma 4.8 implies better bounds for undirected graphs.

Theorem 4.2. A (1 + ε)-stretch 〈O(ε−1n lg n)space , O(ε−1)time〉 distance oracle for an
undirected planar graph can be constructed in O(ε−2n lg3 n) time.

14
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5 Efficient Directed Approximate Vertex-Label Distance Oracle

The idea is to adapt Thorup’s oracle (section 4) to the vertex-label case. The reduction
introduced in section 4 to reduce the problem to (3, α)-layered graphs applies to the vertex-
labeled case as well. Given a labeled graph, for each label λ we add an apex, along with
zero length arcs from all λ-labeled vertices to λ’s apex. Since the reduction holds for any
graph, it holds for the described auxiliary graph, and hence to the vertex-labeled case.
Therefore, it suffices to construct a scale-(α, ε) oracle as in the vertex-vertex case.

Thorup’s oracle supports one-to-one (vertex-to-vertex) distance queries, whereas here
we need one-to-many distance queries. Given two vertices u, v, Thorup’s oracle finds the
lowest common ancestor (LCA) of ru and rv in T , and uses its connections to produce the
answer. In a one-to-many query, there is no analogue for v. We do know, however, that a
shortest u-to-λ path must intersect the separator of the leafmost node r in T that contains
u and some λ-labeled vertex. The node r takes the role of the LCA of ru and rv. In order to
be able to use r’s connections in a distance query one must make sure that r’s connections
represent approximate distances to λ-labeled vertices in the entire graph, not just in G◦r .

We define a set L of new (artificial) vertices, one per label. For every r ∈ T , let Lr be
the restriction of L to labels in G◦r . Namely, Lr = {λ ∈ L|G◦r ∩ Vλ 6= ∅}. Let Ĝ◦r be the
graph with vertex set V (Ĝ◦r) = V (G◦r) ∪ Lr whose arcs are the arcs of G◦r along with a
zero-length arc from each λ-labeled vertex of G◦r to the corresponding vertex in Lr. Note
that the number of vertices and arcs is increased by no more than a constant factor.

For every r ∈ T and λ ∈ Lr, the oracle stores connections w.r.t. λ of both type-0 and
type-1. For a path Q ∈ Sr ∪ Fr, the type-0 connections C(Q, λ) are connections in the
graph obtained from G◦r by adding an artificial vertex λ, along with zero length arcs from
all λ-labeled vertices in G◦r to λ. The type-1 connections C(Q, λ) are connections in the
graph obtained from G by adding an artificial vertex λ, along with zero length arcs from
all λ-labeled vertices in G to λ. Before explaining how to compute these connections we
discuss how a distance query is performed.

Obtaining the distance from u to λ is done by finding the lowest ancestor r of ru
with λ ∈ Lr. A shortest u-to-λ path must cross Sr, and perhaps also Fr. The algorithm
estimates, for each path Q of Sr ∪ Fr, the length of a shortest u-to-λ path that intersects
Q, using the connections C(u,Q) and C(Q, λ) stored for r (Since λ ∈ Lr, r does store
Q-to-λ connections).

Finding r can be done by binary search on the path from ru to the root of T . The
number of steps of the binary search is O(lg lg n). Finding whether a node r′ has a vertex
with label λ can be done, e.g., by storing all unique labels in G◦r′ in a binary search tree,
or by hashing. In the former case finding r takes O(lg lg n lg |L|) time, and in the latter
O(lg lg n), assuming the more restrictive word-RAM model of computation.
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The Construction Algorithm It remains to show how the connections are computed. We
begin with the type-0 connections. For every r ∈ T , for every Q ∈ Sr ∪ Fr, the algorithm
computes connections on Q w.r.t. each vertex of Ĝ◦r by invoking lemma 4.4 to Ĝ◦r .

As for the quality of approximation, we must show that the connection lengths to the
artificial vertices are useful for approximate distance queries. For the type-0 connections,
the εα-approximation is immediate because the desired distances are in Ĝ◦r .

We now show how to compute the type-1 connections without invoking lemma 4.8
to the entire input graph G at every call. The crucial point is that the connections to the
artificial vertex λ from separators of ancestors of r represent distances to vertices with
label λ that are not necessarily in G◦r .

Lemma 5.1. Let r ∈ T . Type-1 connections of r to label λ ∈ Lr can be computed using
just the (type-0) connections of strict ancestors of r. Computing all type-1 connections to
Lr for all r ∈ T can be done in O(ε−2n lg3 n).

Proof. LetQ be a path in Fr. Let
−→
XQ
r be the graph composed of the following: (see fig. 5.1

for an illustration)

– The vertices Lr
– The vertices and arcs of Q̄, the reduction of Q to the vertices of Q which belong to G◦r .
– For each strict ancestor r′ of r, for each path Q′ ∈ Sr′ , the vertices and arcs of Q̄′, the

reduction of Q′ to vertices that are (type-0) connections (in G◦r′) of Q′ w.r.t. vertices in
Q ∪ Lr , along with arcs representing the corresponding connection lengths.

Let r be a node of T , Q be a path in Fr, q ∈ Q̄ and λ ∈ Lr. We show that
−→
XQ
r

approximates the distance from every q to its closest λ-labeled vertex with an additive
error of 2εα, namely:

δ−→
XQ
r

(q, λ) ≤ δG(q, λ) + 2εα (5.1)

If r is the root of T , Fr is empty, so the lemma holds vacuously since no type-1 con-
nections are computed. Otherwise, let uλ be a closest λ-labeled vertex to q. Consider a
shortest q-to-λ path P with an endpoint uλ. Let r′ be the rootmost ancestor of r such
that P intersects Sr′ . Let Q̃ be the first path of Sr′ that intersects P . Consider the type-
0 connection lengths from q to Q̃ and from Q̃ to λ in r′. These lengths were calculated
with respect to exact distances in Ĝ◦r′ . Since Q̃, C(q, Q̃) and C(Q̃, λ) are all present

in
−→
XQ
r , it follows that δ−→

XQ
r

(q, λ) ≤
lemma 4.3

δĜ◦
r′

(q, λ) + 2εα. Since P is confined to G◦r′ ,

δĜ◦
r′

(q, λ) = δG◦
r′

(q, uλ) = δG(q, λ), and the lemma follows.
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Fig. 5.1: The figure illustrates a part of
XQ
r for the labels case, similarly to

fig. 4.3. The vertices u1 and u2 are λ-
labeled vertices of G◦r , and are not part of
XQ
r . Paths from Q̄ to λ-labeled vertices

such as u1 and u2 are represented in XQ
r

by arcs between Q̄ and λ. These arcs cor-
respond to the type-0 connections of λ on
Q̄ in the parent of r. All solid arcs are part
of XQ

r . A shortest path from q1 ∈ Q̄ to
λ ∈ Lr is approximated by connections
from q1 to a separator of an ancestor of
r and from there to λ. Note that C(Q′, λ)
represent distances from Q′ to a λ-labeled
vertex which is not necessarily in G◦r .

q1

Q̄
∈ Sp

ar
en
t[r

]

Q′ ∈ Sr′

Q′′ ∈ Sr′′

...

u1

u2G◦r

λ

The construction algorithm differs from the one in subsection 4.2 in the existence of
the artificial vertices. Since |Lr| = O(G◦r) for any r ∈ T , the total running time and space
requirements remains as in subsection 4.2.

By the reduction and the modified construction and query, the following theorem fol-
lows:

Theorem 5.1. A (1+ε)-stretch 〈O(ε−1n lg n lg(nN))space ,O(lg lg n lg lg (nN)+ε−1)time〉
Vertex-Label Distance Oracle can be constructed in O(ε−2n lg3 n lg(nN)) time w.h.p. 5.1

for a directed planar graph with n vertices and maximum arc length N .

5.1 The probability in the construction time is only due to the use of perfect hashing.
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6 Efficient Undirected Approximate Vertex-Label Distance Oracle

As mentioned at the end of section 4, one can get a more efficient distance oracle for
undirected planar graphs by using lemma 4.8 and avoiding the reduction to (3, α)-layered
graphs. We show that the same applies to vertex-labeled distance oracles.

In the directed case, the algorithm in section 5 adds artificial vertices to G◦r (for each
r) in order to represent connections to labels.

However, in the undirected case, doing so is bound to fail. To see why, suppose vertices
u and v both have label λ. Adding an artificial vertex λ and zero-length undirected edges
vλ and uλ creates a zero-length path between u and v that does not exist in the original
graph. While this does not change the distance between any vertex and its closest λ-labeled
vertex, it may change distances between a vertex and its closest λ′-labeled vertex (λ′ 6= λ).
Therefore, we would have liked to add, for each label λ separately, a single artificial vertex
λ, and compute the connection sets C(Q, λ). Doing so would result in correct distance
estimates, but is not efficient. We show how to compute the connections C(Q, λ) without
actually performing this inefficient procedure. Instead of having a single artificial vertex
per label, it is split into many artificial vertices (one for each incident edge). The problem
with this approach is that the number of connections becomes too large (each split vertex
has its own set of O(ε−1) connections). We employ a procedure of Thorup, originally used
by him to achieve efficient construction, to select a small subset of these connections and
still get the desired approximation.

6.1 Connections sets for undirected graphs

In order to explain the algorithm for the undirected case, we need to elaborate on the
properties of the sets of connections used to obtain the approximation. We did not go into
these details in the description of the directed case since there we could use the lemmas of
Thorup as black boxes.

We use the notation `(·, ·) to represent connection lengths. The connections sets gener-
ated by lemma 4.4 and lemma 4.8 are ε-covering sets. C(Q, v) is an ε-covering set of
Q with respect to vertex v (in the undirected case) if for each q ∈ Q there is some
q∗ ∈ C(Q, v) such that δ(q, q∗) + `(q∗, v) ≤ (1 + ε)δ(q, v). We say that the vertex q∗

ε-covers q (with respect to v).
We present lemmas which are adaptations of Thorup’s lemmas for the directed case.

These lemmas are implicit in [Tho04]. We also present their extensions to the labeled case.
The first lemma establishes the query approximation bound for the undirected ε-cover
definition (stated less precisely in lemma 4.3 for the directed case). The second is a variant
of Thorup’s thinning procedure, and lemma 6.3 is its extension to the vertex-labeled case.
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Lemma 6.1. ([Kle02, lemma 4.1]) Let u,w be vertices in an undirected graph G. Let Q
be a shortest path inG such that a u-to-w shortest path intersectsQ. LetGuw

Q be the graph
composed of u,w,Q and edges induced by ε-covering sets C(u,Q) and C(Q,w).

δGuwQ (u,w) ≤ (1 + ε)δG(u,w) (6.1)

The proof of lemma 6.1 is similar to the directed case and illustrated in fig. 6.1. See Ap-
pendix C, lemma C.1.

Fig. 6.1: P (dotted in the figure) is a u-
to-w shortest path which intersects Q
at q∗. The edges from u,w to Q con-
nect them to their connections on Q
which ε-cover q∗. All solid edges are
part of Guw

Q . The u-to-w solid edges
path in the image approximates the dis-
tance of P in Guw

Q .

u wq∗

Q

P

Let Gλ be the graph obtained from G by adding an artificial vertex λ, along with zero
length edges from all λ-labeled vertices in G to λ. Let C(Q, λ) be an ε-cover of Q with
respect to λ in Gλ. Note that lemma 6.1 claim is also true with respect to Gλ with λ as one
of the vertices.

An ε-cover is called clean if it is inclusion-wise minimal, see Appendix C for details.
Let Q = (q0, . . . , qk−1) be a path. Keeping δQ(q0, qi) for i = 0 . . . k−1 enables computing
δQ(qi, qj) for i ≤ j in constant time. For a vertex u, a path Q and connection q ∈ C(Q, u),
we denote `(q, u) the connection length of q w.r.t. vertex u. Next, we describe the thinning
lemma which, given a large ε-cover, computes a small ε′-cover. Since the set of distances
between a vertex u and all vertices of Q is a trivial ε-cover (even for ε = 0), the lemma
implies a small ε-cover always exists.

Lemma 6.2. Let Q be a path in an undirected graph G, and let v be a vertex. Let D(Q, v)
be an ordered ε0-cover. For any ε1 ≤ 1, a clean and ordered (2ε0 + ε1)-cover C(Q, v) ⊆
D(Q, v) of size O(ε−11 ) can be constructed in O(|D(Q, v)|) time.

Proof. The proof is constructive. Let (q̄, v) be a connection with minimal connection
length in D(Q, v). The vertex q̄ splits Q into two subpaths, Q0 and Q1 . For each Q′ ∈
{Q0, Q1}, the algorithm operates as follows. First, it adds (q̄, v) to C(Q

′
, v). The algo-

rithm will now progress towards the other endpoint of Q′ . We say q̃ semi ε-covers q∗
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if δQ(q∗, q̃) + `(q̃, v) ≤ (1 + ε)`(q∗, v). 6.1 Let (q̃, v) be the last connection added to
C(Q

′
, v). Let (q∗, v) be the next connection of D(Q, v) that has not been considered yet.

The algorithm adds (q∗, v) unless q̃ already semi ε1-covers (q∗, v). The algorithm returns
C(Q, v) = C(Q0, v) ∪ C(Q1, v).

We first prove that C(Q, v) is a (2ε0 + ε1)-cover. Let q be a vertex in Q. Let d be
the connection in D(Q, v) which ε0-covers q. Let c be a connection of C(Q, v) that semi
ε1-covers d (it might be that c = d). We know that

δ(q, c) ≤ δ(q, d) + δQ(d, c) (triangle inequality) (6.2)

δQ(d, c) + `(c, v) ≤ (1 + ε1)`(d, v) (c semi ε1-covers d) (6.3)

δ(q, d) + `(d, v) ≤ (1 + ε0)δ(q, v) (d ε0-covers q) (6.4)

We have that: δ(q, c) + `(c, v) ≤
(6.2)

δ(q, d) + δQ(d, c) + `(c, v) ≤
(6.3)

δ(q, d) + (1 +

ε1)`(d, v) ≤ (1 + ε1)(δ(q, d) + `(d, v)) ≤
(6.4)

(1 + ε1)(1 + ε0)δ(q, v) = (1 + ε0 + ε1 +

ε0ε1)δ(q, v) ≤
ε1≤1

(1 + (2ε0 + ε1))δ(q, v), and the approximation bound follows.

We now turn to show the generated cover is of O(ε−11 ) size. For Q′ ∈ {Q0, Q1}, we
show it is of size O(ε−11 ). Let {ci}i≥1, of size k, be the chosen connections along Q

′ ,
numbered by their order along Q′ toward the other endpoint t of Q′ , starting with c1 = q̄.
We examine the function f(ci) = δQ(t, ci) + `(ci, v). We observe that f(ci) − f(ci+1) =
(δQ(t, ci) + `(ci, v)) − (δQ(t, ci+1) + `(ci+1, v)) = `(ci, v) + δQ(ci, ci+1) − `(ci+1, v) ≥
ε1`(ci+1, v) ≥ ε1`(q̄, v) ≥ ε1δ(q̄, v). Thereby, f(ci+1) ≤ f(c1)− iε1δ(q̄, v), hence f(ck) ≤
f(c1) − (k − 1)ε1δ(q̄, v). Note that f(ck) = δQ(t, ck) + `(ck, v) ≥ δ(t, v) ≥ δQ(t, q̄) −
δQ(q̄, v). Using the lower and upper bounds over f(ck), we have that δQ(t, q̄)− δ(q̄, v) ≤
f(ck) ≤ f(c1) − (k − 1)ε1δ(q̄, v) = δQ(t, q̄) + `(q̄, v) − (k − 1)ε1δ(q̄, v) ≤ δQ(t, q̄) +
(1 + ε0)δ(q̄, v) − (k − 1)ε1δ(q̄, v). Hence (k − 1)ε1 − (1 + ε0)δ(q̄, v) ≤ δQ(q̄, v) and so
k ≤ 1+ 2+ε0

ε1
. Therefore the size of the connections obtained over both {Q0, Q1} isO(ε−11 ).

To obtain an ε-cover for a label we need the following extended thinning procedure,
which converts a set of ε-covers, one for each λ-labeled vertex, into a single small ε-cover
of label λ.

Lemma 6.3. Let {ui} be vertices and Q be a shortest path in an undirected graph G.
Given ordered ε-covering sets {D(Q, ui)} it is possible to compute in linear time a clean
and ordered 3ε-covering connections set C of size O(ε−1) which represent approximated
distances from any q ∈ Q to its closest vertex among {ui}.
6.1 The semi ε-cover definition is similar to ε-cover definition. The only difference is that δ(q∗, v) was replaced by
`(q∗, v) for fast computation purposes.
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Proof. We first convert every connection length `(q, ui) to reflect an approximated length
from q to its closest vertex u∗ ∈ {uj}, rather than to ui. We obtain these lengths using the
fact that q is ε-covered with respect to u∗ by some connection in D(Q, u∗). Let Zu be the
graph composed of the following. See fig. 6.2 for an illustration.

1. Q̄, the reduced form of Q to connections of all {D(Q, ui)}.
2. vertices {ui}, along with edges between each ui to its connections, with lengths equal

to the corresponding connection lengths.
3. vertex u, connected with zero-length edges to all {ui}.

Fig. 6.2: Illustration of the situation in
the proof of the extended thinning lemma
(lemma 6.3). Each vertex in {ui} has dif-
ferent connections on Q. The distance
from u1 to any connection of u2 is ap-
proximated using the connections of u1.

u

u2u1 u3

Q

0
0

0

By the ε-covering property, the distances between every q ∈ Q̄ and u in Zu represent
approximate distances between q and its closest vertex u∗ ∈ {uj} inG. To see this, assume
q is a connection of u1, closest to u∗. Let q∗ be a connection of u∗ which ε-covers q w.r.t.
u∗. Then δZu(q, u∗) ≤ δQ(q, q∗) + `(q∗, u∗) = δG(q, q∗) + `(q∗, u∗) ≤ (1 + ε)δG(q, u∗).

It is possible to compute all shortest paths from u in Zu in linear time; first, relax all
edges incident to u and {ui}. Then, relax the edges of Q̄ by going first in one direction
along Q and then relaxing the same edges again in the other direction. For connection p
on Q̄, a u-to-p shortest path first reaches Q along one of {ui} edges and then walks along
Q toward p. Hence the relaxation was done in the correct order. We update the connection
lengths to the distances thus computed.

Let D̃(Q, u) denote the ordered union of all connections, along with the updated con-
nection lengths. Since all {D(Q, ui)} were ordered, it is possible to order their union in
linear time. Let Gu be the graph obtained from G by adding an apex u connected with
zero length edges to all {ui}. We stress that Gu is not constructed by the algorithm, but
only used in the proof. D̃(Q, u) is an ε-cover of Q with respect to u in Gu. Now apply
lemma 6.2 to D̃(Q, v) with ε0 = ε1 = ε to obtain a 3ε-cover of Q with respect to u in Gu

of size O(ε−1).
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6.2 Oracle for undirected graphs

As in the directed case, let Lr denote the set of labels in G◦r . The data structure kept and
query algorithm remain as in the directed case. It remains to show how the connections are
computed. We begin with the type-0 connections. For every r ∈ T , for every Q ∈ Sr∪Fr,
the algorithm computes ordered ε-covering sets of connections on Q w.r.t. each vertex of
G◦r by invoking lemma 4.8 to G◦r . This takes O(ε−1|V (G◦r)| lg n) time (using [HKRS97]
for shortest path computation). For each λ ∈ Lr, let nλ denote the number of λ-labeled
vertices in G◦r . The total number of connections to λ-labeled vertices in G◦r is O(ε−1nλ).
The algorithm next applies the extended thinning lemma (lemma 6.3) to get a connections
set C(Q, λ) of size O(ε−1) in O(ε−1nλ) time. Since

∑
λ nλ = O(|V (G◦r)|), the runtime

for a single r and Q is O(ε−1|V (G◦r)|).
We now show how to compute the type-1 connections without invoking lemma 4.8 to

the entire input graph G at every call.

Lemma 6.4. Let r ∈ T . Type-1 connections of r to label λ ∈ Lr can be computed using
just the (type-0) connections of strict ancestors of r. Computing all type-1 connections to
Lr for all r ∈ T can be done in O(ε−2n lg3 n).

Proof. Recall the definition of the graph
−→
XQ
r in lemma 5.1. In

−→
XQ
r , every artificial vertex

λ ∈ Lr has arcs representing connections from paths on separators of ancestors of r.

Let
←→
XQ
r be the graph identical to

−→
XQ
r , except its edges are undirected. The algorithm

breaks every artificial vertex λ in
←→
XQ
r into many copies {λe}, one per incident edge of

λ. We stress that the artificial vertices λe are not directly connected to each other in
←→
XQ
r .

Hence, the problem of shortcuts mentioned earlier is avoided. See fig. 6.3 for an illustra-
tion.

Note that splitting vertices in this way does not increase the number of edges in the
←→
XQ
r .

The algorithm applies lemma 4.8 to
←→
XQ
r and Q, obtaining a small sized ε-cover C(Q, λe)

for every λe.
Let q be any vertex of Q̄, and let λ be a label in G◦r . Let P be a shortest q-to-λ path in

G. Let r′ be the rootmost strict ancestor of r such that Sr′ is intersected by P . Note that r′

must exist since q ∈ Fr, so q belongs to the separator of some strict ancestor of r. Thus
P is entirely contained in G◦r′ . Let Q′ be a path in Sr′ intersected by P . By construction

of
←→
XQ
r , it contains an ε-covering set of connections of Q′ with respect to q in G◦r′ , as well

as the edges of Q̄′ and an ε-covering set of connections of Q′ with respect to λ in G◦r′ .
Hence, by lemma 6.1, there exists a shortest q-to-λe path (for some artificial vertex λe) in
←→
XQ
r whose length is at most (1 + ε) times the length of P . On the other hand, because the
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Q̄
∈ Sp

ar
en
t[r

]

...

λ

Q̄
∈ Sp

ar
en
t[r

]

...

Fig. 6.3: Illustration of the utility of splitting an artificial vertex λ. On the left undesired

shortcuts (teleportation) might occur. On the right (
←→
XQ
r ) teleportation does not occur.

vertices λe (for any λ ∈ Lr) are not directly connected to each other in
←→
XQ
r , every path in

←→
XQ
r corresponds to some path in G, so shortest paths in

←→
XQ
r are at least as long as those in

G. This proves that
←→
XQ
r correctly represents all desired type-1 connection lengths.

We proceed with describing the construction of the connection sets of the appropriate
sizes. To bound the size of the connections {C(Q, λe)}, we count the number of edges
incident to λ inXQ

r (i.e., before it is split). There is an edge for each of theO(ε−1) connec-
tions of λ on each of the O(lg n) paths of separators of ancestors of r. For each such edge
there is a vertex λe with an ε-covering set of Q̄ of size O(ε−1). Thus, the total number of
connections of Q̄ for all λe vertices is O(ε−2 lg n). The algorithm applies lemma 6.3, the
extended thinning procedure, to {C(Q, λe)}e to get C(Q, λ) of size O(ε−1). Doing so for
all labels in G◦r requires O(ε−2 lg n+ ε−1|Lr|) space.

We now bound the running time. Since splitting vertices does not increase the number

of edges, applying lemma 4.8 to
←→
XQ
r takes O(ε−2|V (G◦r)| lg2 n) time. Applying lemma 6.3

is done within the same time bound. To conclude, the total runtime over all nodes of T is
O(ε−2n lg3 n).

We have thus established:
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6. EFFICIENT UNDIRECTED APPROXIMATE VERTEX-LABEL DISTANCE ORACLE

Theorem 6.1. A (1 + ε)-stretch 〈O(ε−1n lg n)space , O(lg lg n + ε−1)time〉 Vertex-Label
Distance Oracle can be constructed within O(ε−2n lg3 n) time w.h.p. 6.2 in an undirected
planar graph with n vertices.

6.3 Faster constructions

In order to achieve faster construction, one may avoid computing type-1 connections.
When queried for a u-to-λ distance, one may now examine each ancestor r′ of ru to figure
the u-to-λ distance in G◦r′ . Since a shortest path is confined to G◦r′ for some ancestor r′

of ru (and crosses its separator Sr′), this procedure results in the correct distance approx-
imation. Avoiding the construction of type-1 connections decreases the construction time
by a factor of O(ε−1 lg n) in both the directed and undirected cases (using [HKRS97] for
shortest path computations). We thus obtain the following:

Theorem 6.2. A (1 + ε)-stretch 〈O(ε−1n lg n lg(nN))space , O(ε−1 lg n lg lg (nN))time〉
Vertex-Label Distance Oracle can be constructed withinO(ε−1n lg2 n lg (nN)) time w.h.p. 6.3

Theorem 6.3. A (1+ε)-stretch 〈O(ε−1n lg n)space ,O(ε−1 lg n)time〉 Vertex-Label Distance
Oracle can be constructed within O(ε−2n lg3 n) time w.h.p.

Comparison to [LMN13] We note that the oracle of Li, Ma, and Ning [LMN13] is similar
to the one in Theorem 6.3. One difference is that they use an algorithm of Klein [Kle05] to
construct the covering sets. Klein’s algorithm only works for planar graphs, and therefore
cannot be used to compute type-1 connections using the non-planarXQ

r , as we do. Another
difference is that [LMN13] compute a small set of connections for each λ-labeled vertex,
whereas we further combine these sets into a single small set for the label λ using the
thinning procedure (lemma 6.3). This affects the query time; [LMN13] need to perform a
predecessor search in the set of connections that may be as large as n, whereas we only
work with a set of connections of size O(ε−1). In [LMN13] a O(log n)-time predecessor
search was used, resulting in a 〈O(ε−1n lg n)space , O(ε−1 lg2 n)time〉 vertex-label oracle.

6.2 The probability in the construction time is only due to the use of perfect hashing.
6.3 The construction described in the directed case cannot use [HKRS97] linear time shortest path algorithm. This is

because we deal with non-planar graphs. However, using the similar splitting technic as in the undirected case, such
algorithm can be formed.
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7 Reporting Approximate Shortest Path

Thorup describes how to augment his oracle to report a u-to-v path of length (1+ε)δ(u, v)
in time linear in the number of edges reported. We provide here a brief description (cf.
[Tho04, Sections 2.7, 2.8, 3.7]) for the undirected case (the directed case is similar).

The algorithm now stores additional information. The ε-cover construction algorithm
(lemma 4.4) computes shortest path trees rooted at each connection. In the original de-
scription these trees are discarded once the connection lengths have been recorded. To
report shortest paths, the algorithm stores these trees for all type-0 connections. Let r be a
node of T . For each v ∈ G◦r , Q ∈ Sr ∪ Fr and type-1 connection q ∈ C(Q, v), (i.e., con-
nections computed by invoking the ε-cover construction algorithm on XQ

r ), the algorithm
records the rootmost node r′ ∈ T whose separator is intersected by the q-to-v shortest
path in XQ

r .
The query algorithm for the distance between u and v uses some type-1 connection.

Let r′ be the node of T recorded for that connection. By choice of r′ there exists a (1 + ε)-
approximate shortest path P between u and v in G◦r′ . The algorithm now uses the type-0
connections of r′ to find P and uses the shortest path trees stored for those connections to
report the edges of P .

Storing all shortest path trees does not change the preprocessing time but increases the
required space by O(ε−1n log2 n). This is because each vertex participates in O(ε−1 log n)
connections shortest path trees (see lemma C.4) in O(log n) nodes of T . Let d̄ be the
number of edges of the reported path. The resulting query time is O(ε−1 + log log n+ d̄).

We extend this technique to the vertex label case. As in the vertex-vertex case, the
query algorithm finds a node r′ such that there exists in G◦r′ a path P that (1 + ε)-
approximates the shortest path between u and a λ-labeled vertex in G. It then finds P
using the type-0 connections of r′. The main difference is that at this point the algorithm
knows the distance to the artificial vertex λ, but not the identity of the λ-labeled vertex
realizing this distance. However, this information can be stored along with the shortest
path trees for type-0 connections. In the directed case this is done by storing the vertices
preceding the artificial vertices in the shortest path trees computed during the ε-cover con-
struction algorithm. In the undirected case this can be done during the extended thinning
procedure, which converts distances to labeled vertices into distances to artificial vertices.
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8 Concluding Remarks

This work presents an extension of Thorup’s vertex-to-vertex oracle to enable vertex-to-
label queries in planar graphs. Although our focus is on planar graphs, the algorithm works
for any class of graphs which are both minor-closed and tree-path separable (replacing
[HKRS97] shortest paths algorithm with a simple dijkstra algorithm). In the directed case,
the extension can be done by "injecting" apices to the graph, thereby augmenting the data-
structure for that purpose. However, as argued, this technic does not work in the undirected
case. In the undirected case, we have shown how to “manually” generate the missing data
in order to enable vertex-label queries. The query time of our data structure is nearly
constant, and faster by a factor of ε−1 lgn lg ρ

ε−1+lg lgn
compared to the previous best result [LMN13],

using the same space and nearly the same preprocessing time.

Related problems In this work we dealt with labeled-graphs where each vertex has exactly
one label. However, there is no obstacle to deal with labeled-graphs in which each vertex
has several labels. Let κ be the bound on the maximal number of labels a vertex is labeled
by. The preprocessing time and space of the oracles in this work are multiplied by κ.

We note that similar technics to the ones presented in this work enable constructing
oracles for apex graphs (i.e., planar graphs with additional apices). This is because our
technics are based on computing an ε-cover set for an apex which represents a label. The
apices can be thought of as inducing labels on the planar part of the graph. Note, however,
that when apices are real vertices in the graph (as opposed to artificial vertices), type-
0 ε-covering sets for apices can be computed directly using lemma 4.4 or lemma 4.8.
Type-1 ε-covering sets are produced in the same manner as presented in this work. The
preprocessing time and space bounds increase according to the value of κ induced by the
apices.

A possible direction for future work is to devise efficient label-to-label distance queries.
This seems significantly more difficult. In the vertex-to-label query, when queried for a
u-to-λ distance the algorithm used the leafmost node r in T that contains u and some
λ-labeled vertex to quickly answer the query. In a λ1-to-λ2 query, we do not know which
node r ∈ T necessarily has its separator intersected by the desired shortest path. This is
because λ1 and λ2 labeled vertices might be scattered in any of the leaves of T . Construct-
ing a label-to-label distance oracle whose query time does not depend on the number of
vertices with the queried labels remains as an interesting open problem.
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A. THORUP’S REDUCTIONS [THO04]

Appendix

A Thorup’s Reductions [Tho04]

We present two main reductions [Tho04] uses. The first reduction (reduction 1) enables
keeping linear space so that we may:

– Assume a threshold O(α) over the diameter of a reduced form of G
– Obtain a (t, α)-layered spanning tree of a reduced form of G

The second reduction enables to compose the final approximate distance oracle given a
scale-(α, ε) distance oracle. Since it assumes a constant α, it encapsulates reduction 1. We
will get into more details in reduction 2.

Reduction 1 (Length reduction) Let G be a graph and α ∈ R+. We can construct a set of
graphs {Gα

i }i=0...k−1 in linear time, which has the following properties:

1.
∑
|Gα

i | = O(|G|), where |G| = |V |+ |E|.
2. Each v ∈ V has an index ι(v) s.t. any w ∈ V has
d = δG(v, w) ≤ α iff d = δGα

ι(v)−2
(v, w) = δGα

ι(v)−1
(v, w) = δGα

ι(v)
(v, w)

3. Each Gα
i is a (3, α)-layered graph.

4. Each Gα
i is a minor of G. Meaning it can be achieved by contraction and deletion of

arcs and vertices. Note that when G is planar, so does Gα
i .

The reader is referred to [Tho04, lemma 2.2, 3.1] for full proof.
We present the scale reduction. A.1

Reduction 2 (Scale reduction) Let A(α,ε′)(·) be an algorithm that outputs a scale-(α, ε′)
〈O(s(n, ε′))space , O(t(ε′))time〉 distance oracle. Then there is an algorithm which outputs
(1 + ε)-stretch 〈O(s(n, ε) lg(nN))space , O(t(1

4
) lg lg (nN) + t( ε

4
))time〉 distance oracle.

The final distance oracle is constructed out of scale-(α, ε′) distance oracles for (α, ε′) ∈
{2i}i∈[dlg(nN)e] ×

{
1
4
, ε
4

}
. Denote δ̃(α,ε′) the query result of scale-(α, ε′) algorithm. Given

(u,w) the algorithm first finds quickly a value of α s.t. α
2
≤ δ̃(α,

1
4
)(u,w) ≤ α using binary

search over α. For that α we know that α
4
≤ δ(u,w). Hence δ̃(α,

ε
4
)(u,w) is the wanted

result, since δ̃
(α,

ε
4
)
(u,w)

δ(u,w)
≤ δ(u,w)+ε

α
4

δ(u,w)
≤ 1 + ε.

We mention that the original proof can be found in [Tho04, lemma 3.8].

A.1 It appears to us as inaccurate, concerning constants, as presented in [Tho04].
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B Thorup’s Recursion [Tho04]

Given a frame F and a subgraph H , we describe our goals in the recursion obtaining the
recursive graph decomposition T ; first, keep minimal number of relevant frame paths in
each recursion step (which lowers the query time). Second, keep |F | of O(|H|) size in all
recursive calls (which lowers the preprocessing time).

Maintaining Few Frame paths To do so the algorithm applies lemma 4.2 twice:

1. Giving all arcs of H unit weights, and zero to all others.
2. Giving all F ’s leaves arcs unit weights, and zero to all others.

The number of paths in F is constant since the first increases the number of F branches
by 2, while the second divides the number of F ’s branches by half in each preceding step.

Maintaining Small Subgraph Size In order to ensure |F | = O(|H|), the algorithm reduces
F into F ’s vertices which belong to H , or are branching points of F . Note that since there
are constant number of frames, there are only a constant number of branching points. This
can be done in O(|F |+ |H|) time. See [Tho04, section 2.5.2] for full details.
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C Thorup’s ε-covering Sets [Tho04]

[Tho04] shows how to achieve connections from/to a shortest path efficiently. We outline
the process which achieve these connections and their lengths. For the following notations
we leave out specific definitions for C(Q, v) as they are inferred. We consider a shortest
path Q in a (3, α)-layered graph G. We denote the connection length of a pair q w.r.t.
vertex v by `(v, q).

– A connection q ε-covers q∗ w.r.t. vertex v if q precedes q∗ on Q and

`(v, q) + δ(q, q∗) ≤ δ(v, q∗) + εα (C.1)

– A connections set C ⊆ V (Q) is called ε-covering w.r.t. vertex v if for every q ∈ Q
there is a connection q∗ in C that ε-covers it w.r.t. v.

– We denote ε-covering sets {C(v,Q)}v∈G by C(H,Q).

The following is a refinement of the statement of lemma 4.3.

Lemma C.1. Assume a shortest u-to-w path P in G crosses a shortest path Q. Let
C(u,Q), C(Q,w) be ε-covering sets. Let Guw

Q be the graph with vertices u,w, the ver-
tices of the reduction of Q to C(u,Q)∪C(Q,w), and with u-to-Q and Q-to-v arcs whose
lengths are the corresponding connections lengths of C(u,Q) and C(w,Q).

δGuwQ (u,w) ≤ δG(u,w) + 2εα (C.2)

Proof. Assume q∗ is the first vertex of Q that P crosses. Let q0, q1 denote the connections
which ε-cover q∗ inC(u,Q),C(Q,w) w.r.t. u,w respectively. The path u q0  q1  w
in Guw

Q is of length `(u, q0) + δQ(q0, q1) + `(q1, w) = `(u, q0) + δG(q0, q
∗) + δG(q∗, q1) +

`(q1, w) ≤ δG(u, q∗) + εα+ δG(q∗, w) + εα = δG(u,w) + 2εα. C.1 The original proof can
be found in [Tho04, lemma 3.5].

We now outline how C(H,Q) ∪ C(Q,H) can be used to perform a quick distance
queries.

Definition C.1. C(v,Q) is called ordered if it is sorted by the distances of the connections
along Q from Q’s beginning.

C.1 AssumeG is a subgraph andQ a part of it’s infinite face. Note that in order to approximate the u-to-w distance in the
entire graph, it suffices to keep connection lengths of C(u,Q) which respect distances strictly in G and connection
lengths C(Q, v) in the entire graph.
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Definition C.2. An ε-covering C(v,Q) is called clean if it has no strict subset which is
also ε-covering. In other words, the connections are spread along Q as much as pos-
sible and there is no connection redundancy. Formally, ∀v ∈ H ∀a ∈ C(v,Q)@b ∈
C(v,Q). `(v, a) + δQ(a, b) ≤ `(v, b).

We can now present [Tho04, lemma 3.11] which later on will be used to thin covers
sizes:

Lemma C.2. Let D(Q, v) be an ordered ε0-covering set. A clean and ordered (ε0 + ε1)-
covering set C(Q, v) ⊆ D(Q, v) of size O(ε−11 ) can be constructed in O(|D(Q, v)|) time.

Proof. This is done by simply enumerating D(Q, v) and discarding unnecessary connec-
tions. Again, the reader is referred to the original lemma for full details.

Lemma C.3. Given clean and ordered C(u,Q) and C(Q,w), the distance from u to w
through Q can be approximated in O(|C(u,Q)|+ |C(Q,w)|) time.

Proof. The correctness follows from lemma C.1. The approximation is done by first merg-
ing the two sets by their connection’s order. The merge is done in linear time because the
sets are already ordered. Second, both sets are clean and hence u’s and w’s connections
which achieve minimal length (see lemma C.1) must be consecutive in the merged list.
This is done in linear time, as claimed in [Tho04, lemma 3.6].

We now outline how C(Q,H) sets can be achieved efficiently for a given shortest
path Q ⊂ H . Like [Tho04], we will leave out the details concerning C(H,Q) throughout
[Tho04] outline explanation. These details can be induced by changing the direction of the
arcs and applying the same technic.

We outline the proof of [Tho04, lemma 3.12] which is among the core lemmas.

Lemma C.4. Let H be a (3, α)-layered graph and Q a shortest path. ε-covering sets
C(Q,H) can be constructed in O(ε−1sssp(Q,H)|E(H)| lg |V (Q)|) time, each of size
O(ε−1 lg n).

Proof. The algorithm starts by first letting Q0 = Q and H0 = H . Denote a (c) the start
(end) of Q0. The algorithm assumes that:

1. Q0 is reduced to vertices belong to H0 - for otherwise this can be done in O(|V (Q0)|)
time.

2. It has shortest paths distances from the end points of Q0 to H0 - for otherwise it is
computed them in O(sssp(H,Q)|E(H0)|) time.

3. It already inserted δH0(a, v) and δH0(c, v) as connections - for otherwise the algorithm
do so in O(|E(H0)|).
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The algorithm now takes the unweighted middle vertex b of Q and calculates another
shortest paths from it. Denote Q1 (Q2) the part of Q that is before (after) b. For Q′ ∈
{Q1, Q2}, let s (t) be the start (end) ofQ′ . We present a new definition, (q, v) semi-ε-covers
(q∗, v) if q precedes q∗ on Q′ and δ(q, q∗) + `(q∗, v) ≤ `(q, v) + εα. Denote U = {v| (s, v)
semi-ε-covers (t, v)}, or it’s distance from s is larger then 2α. The algorithm may now
recurse over (Q

′
, H0 \ U).

Thorup shows that when the algorithm reaches a recursion level where all intervals of
Q are of length ≤ εα, each v ∈ H must be covered in each of them. For full details of
correctness and efficiency the reader is referred to [Tho04, lemma 3.12].

We mention that C(Q,H) obtained by lemma C.4 are ordered. These sets are thinned
in linear time as to enable small space and query time.

We capture these results by the following lemma:

Lemma C.5. Given a graph (3, α)-layered graph H and shortest path Q, C(Q,H) ∪
C(H,Q) sets of size O(ε−1) can be constructed in O(ε−1sssp(Q,H)|E(H)| lg |V (Q)|)
time.

Proof. Denote ε′ = ε/2. The algorithm uses lemma C.4 to compute ordered C(Q,H) ∪
C(H,Q) where each ε-covering set is of size O(ε

′−1
lg n). The algorithm thins the size

of each set using lemma C.2 with ε0 = ε1 = ε
′

= ε/2. By lemma C.3 a query can be
performed in O(ε−1) time.

Combining lemma C.3 and lemma C.5, lemma 4.4 follows.
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D Thorup’s treatment of the undirected case [Tho04]

For the undirected case, q∗ ε-covers q w.r.t. vertex v if δ(q, q∗) + `(q∗, v) ≤ (1 + ε)δ(q, v).
We would have liked to convert the directed ε-cover construction procedure (lemma C.4)

to the undirected case. However, the proof does not carry over. To deal with this diffi-
culty we use an alternative definition of ε-cover [Tho04]: q∗ quasi ε-covers q if δ(q, q∗) +
`(q∗, v) ≤ δ(q, v)+ε`(q∗, v). In the undirected case, a connections set C ⊆ V (Q) is called
quasi ε-covering if for every q ∈ Q there is a connection q∗ in C that quasi ε-covers it.

For the quasi ε-cover definition, the proof of the analogue of lemma C.4 (ε-covers
construction) carries over to undirected graphs and produces quasi ε-covers each of size
O(ε−1 lg n).

Lemma D.1. Given an undirected graph H and a shortest path Q, ε-covering sets of Q
with respect to all vertices of H , each of size O(ε−1 lg n), can be constructed in
O(ε−1sssp(Q,H)|E(H)| lg(|V (Q)|)) time.

We show in proposition 1 below that quasi ε-cover is a 2ε-cover for any ε < 1/2.
Therefore, the quasi ε-cover produced by lemma D.1 can be thinned into a O(ε)-cover of
sizeO(ε−1) using the thinning lemma for the undirected case (lemma 6.2). ThisO(ε)-cover
can be used to answer distance queries, as shown in lemma 6.1.

Proposition 1. Let C(v,Q) be a quasi ε-covering set. For any 0 < ε ≤ 1/2, C(v,Q) is a
2ε-covering set.

Proof. If q∗ quasi ε-covers q then `(q∗, v) ≤ 1
1−εδ(q, v) ≤ 2δ(q, v). Hence δ(q, q∗) +

`(q∗, v) ≤ δ(q, v)+ ε`(q∗, v) ≤ (1+2ε)δ(q, v). Therefore, if C(v,Q) is a quasi ε-covering
set, it is a 2ε-covering set.

A flaw in Thorup’s treatment of the undirected case

There is another notion of covering, apart from ε-covering and quasi ε-covering [Tho04].

Definition D.1. q∗ strictly ε-covers q w.r.t. v if δ(q, q∗) + `(q∗, v) ≤ δ(q, v) + εδ(v,Q).

In [Tho04], Thorup uses quasi ε-covers and strict ε-covers, but does not use (plain)
ε-covers.D.1 Most of the discussion in [Tho04] is devoted to the directed case, in which
the term εδ(v,Q) in the strict ε-cover definition is replaced by εα for some constant α.
When treating the undirected case, Thorup claims that all lemmas, except for the efficient
construction procedure, carry over from the directed case to the undirected case when
the directed definition of ε-covering is replaced with strict ε-covering. The treatment of
D.1 Thorup did not use the terms strict and quasi.
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the efficient construction for the undirected case is more detailed, where a procedure for
efficiently constructing quasi ε-covering sets is given (lemma D.1, [Tho04, Lemma 3.18]).

We believe that the treatment of the undirected case in [Tho04] suffers from two flaws.
First, the proof of the ε-covers thinning does not seem to carry over from the directed
case to the undirected case when using quasi ε-covers; recalling our thinning lemma proof
lemma 6.2, using the quasi ε-cover definition instead, a bound to ensure quasi ε-covering
cannot be established as it depends on a term that cannot be bounded. D.2 Second, since the
construction is of quasi ε-covers, whereas all other parts of the undirected oracle in [Tho04]
assume strict ε-covers, the correctness of the entire oracle is not established.

Our algorithm does not use strict ε-covers at all. We use Thorup’s efficient construction
of quasi ε-covers, which, by proposition 1 is also a O(ε)-cover, and prove that the thinning
procedure and query algorithm work for ε-covers.

D.2 More specifically, δ(q, c) + `(c, v) of lemma 6.2 can be bounded by a term that contains `(d, v). In that case, the
term `(d, v)/`(c, v) is not universally bounded. Therefore, the bound cannot be used to justify the thinning.
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תקציר
(דוגמת שירות ספק עבר אל מפה על ממיקום מרחק במציאת עוסקים אנו

זו לבעיה יעיל אלגוריתם להגדיר היא מטרתנו וכו'). חולים בית רכבת, תחנת
קודקוד וכל מישורי) גרף ידי על לייצוג (ניתנת "רדודה" היא והמפה במקרה
אנו קבוע, ε > 0 לכל הרלוונטי). השירות ספק את (המייצגת תווית עם מזוהה
תוויות בעל ממושקל מישורי גרף עבור מרחקים אוב לחשב ניתן כיצד מראים
בין המינימלי המרחק את מחזיר ,λ ותווית u קודקוד שבהינתן כך קודקודים,
עבור המרחק. (1 + ε) של בקירוב ביותר, אליו הקרוב λ תווית בעל לקודקוד u
דרישת בעל ,O(ε−2n lg3 n) הוא העיבוד זמן לא־מכוון, מישורי n־קודקודי גרף
בו המכוון למקרה .O(lg lg n+ ε−1) של תשאול וזמן O(ε−1n lg n) של מקום
המקום ,O(ε−2n lg3 n lg(nN)) הוא העיבוד זמן ,N ידי על חסום קשת משקל
.O(lg lg n lg lg (nN) + ε−1) הוא התשאול וזמן O(ε−1n lg n lg(nN)) הוא
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