
The Interdisciplinary Center, Herzliya

Efi Arazi School of Computer Science

M.Sc. program - Research Track

Load Balancing Memcached
Traffic Using SDN

By

Idan Moyal

M.Sc. dissertation, submitted in partial fulfillment of the requirements

for the M.Sc. degree, research track, School of Computer Science

The Interdisciplinary Center, Herzliya

December 2016

This work was carried out under the supervision of Prof. Anat Bremler-Barr

from the Efi Arazi School of Computer Science, The Interdisciplinary Center,

Herzliya.

Acknowledgements

This research was supported by the European Research Council under the

European Unions Seventh Framework Programme (FP7/2007 2013)/ERC

Grant agreement no 259085.

Abstract

Memcached is an in-memory key-value distributed caching solution, com-

monly used by web servers for fast content delivery. Keys with their values

are distributed between Memcached servers using a consistent hashing tech-

nique, resulting in an even distribution (of keys) among the servers. However,

as small number of keys are significantly more popular than others (a.k.a.,

hot keys), even distribution of keys may cause a significantly different re-

quest load on the Memcached servers, which, in turn, causes substantial

performance degradation.

Previous solutions to this problem require complex application level so-

lutions and extra servers. In this paper, we propose MBalancer–a simple L7

load balancing scheme for Memcached that can be seamlessly integrated into

Memcached architectures running over Software-Defined Networks (SDN). In

a nutshell, MBalancer runs as an SDN application and duplicates the hot

keys to many (or all) Memcached servers. The SDN controller updates the

SDN switches forwarding tables and uses SDN ready-made load balancing

capabilities. Thus, no change is required to Memcached clients or servers.

Our analysis shows that with minimal overhead for storing a few extra

keys, the number of requests per server is close to balanced (assuming re-

i

quests for keys follows a Zipf distribution). Moreover, we have implemented

MBalancer on a hardware-based OpenFlow switch. As MBalancer offloads

requests from bottleneck Memcached servers, our experiments show that it

achieves significant throughput boost and latency reduction.

ii

Contents

1 Introduction 1

2 Memcached Preliminaries 5

3 Evaluation of Hot Key Problem and Remedies 7

3.1 Comparing with Other Solutions 9

4 MBalancer, overview and design 12

4.1 MBalancer Design . 13

4.2 MBalancer Data Plane Configuration 14

4.3 MBalancer Application Tasks 16

4.4 MBalancer with More than One Group 16

5 Experimental Results 20

6 Conclusions 23

6.1 Limitations and Discussion . 25

6.2 Future Work . 26

iii

Chapter 1

Introduction

Memcached is a very popular general-purpose caching service that is often

used to boost the performance of dynamic database-driven websites. Nowa-

days, Memcached is used by many major web application companies, such

as Facebook, Netflix, Twitter and LinkedIn. In addition, it is offered either

as a Software-as-a-Service or as part of a Platform-as-a-Service by all ma-

jor cloud computing companies (e.g., Amazon ElastiCache [3], Google Cloud

Platform Memcache [10], Redis Labs Memcached Cloud [21]).

Memcached architecture is depicted in Figure 1.1. Popular data items

are stored in the RAM of Memcached servers, allowing orders of magnitude

faster query time than traditional disk-driven database queries. Data items

are stored in Memcached servers by their keys, where each key is linked to

a single Memcached server, using a consistent hashing algorithm. Therefore,

all Memchached clients are using the same Memcached server to retrieve a

specific data item. Consistent hashing algorithm ensures an even distribution

of keys, but it does not take into account the number of Memcached get

1

Figure 1.1: Memcached in a simple web server architecture.

requests to their corresponding data item (namely, the key load). It is well-

known that web-items in general, and data elements stored in Memcached

in particular, follow a Zipf distribution [2, 7, 9], implying that some data

items are much more popular than others (a.k.a. hot-keys). This results in

an imbalanced load on the Memchached servers, which, in turn, results in a

substantial overall performance degradation.

The hot-keys problem is well-known in Memcached deployments and sev-

eral tools to detect hot keys are available (e.g., Etsy’s mctop [17] and Tum-

blr’s memkeys [23]). Once the hot-keys (or the loaded servers) are detected,

common solutions include breaking down the popular data item to many

sub-items or to replicate the entire heavily-loaded Memcached server and

2

manage these replications using a proxy.

In this paper, we take an alternative approach and propose MBalancer ,

a simple L7 load-balancing scheme for Memcached. MBalancer can be

seamlessly integrated into existing Memcached deployments over Software-

Defined-Networks (SDN). Unlike previous solutions, it does not require either

a cooperation from the Memcached client (or developer) or additional servers.

In a nutshell, MBalancer identifies the hot keys, which are small in num-

ber. Then, MBalancer duplicates them to many Memcached servers. When

one of the SDN switches identifies a Memcached get request for a hot key,

the switch sends the packet to one of the servers using its readily-available

load balancing capabilities (namely, OpenFlow’s select groups [18, Section

5.10]).

SDN switches are based on a per-packet match-action paradigm, where

fixed bits of the packet header are matched against forwarding table rules

to decide which action to perform on the packet (e.g., forward to specific

port, rewrite header, or drop the packet). MBalancer uses specific locations

(namely, a fixed offset) in the packets’ Layer 7 header, in which Memcached’s

keys appear. While such a matching is not supported by OpenFlow 1.5

(which restricts the matching to L2-L4 header fields), many SDN switch

vendors today extend the matching capabilities to support matching in fixed

location in the payload 1. Moreover, P4 [6] recently proposed a method for

dynamically configuring the header parsing, allowing for even greater control

over how matching is performed and on which parts of the header. Thus,

1This is in contrast to the complex general task of Deep Packet Inspection, which
searches for a signature that may appear anywhere in the data.

3

MBalancer can also be implemented over P4 switches.

We have evaluated MBalancer both in simulations and in experiments,

and show that in practice about 10 key duplications suffice for gaining a

performance boost equivalent to adding 2-10 additional servers (the exact

number depends on the specific settings). Moreover, we have shown that

smartly duplicating the keys to half of the servers yields almost the same

results to duplicating the keys to all the servers. In contrast, we show that

moving keys between servers (without duplication) almost never helps.

We have implemented MBalancer and run it in a small SDN network, with

a NoviFlow switch that is capable of matching fixed bits in the payload. Our

experiments show balanced request load and overall throughput gain that

conforms to our analysis. Furthermore, MBalancer significantly reduces the

average latency of requests.

4

Chapter 2

Memcached Preliminaries

One of the main reasons Memcached is so popular is its simple, client-server–

based architecture (see illustration in Figure 1.1): Memcached servers are

used as a cache, storing in their memory the latest retrieved items. Mem-

cached clients are an integral part of the web server implementation, and

their basic operations are get key, which retrieves an object according to its

key; set key,value, which stores the pair 〈key, value〉 in one of the servers;

and delete key, which deletes a key and its corresponding value. Every

Memcached client is initialized with a list of n Memcached servers and a

consistent hashing function, hash; thus every Memcached request with key

k is sent to server number hash(k). If key k is not found in server hash(k), a

cache miss is encountered, and the Memcached client reads the data from the

database and performs a set request to store the 〈key, value〉 pair in that

server for future requests. When the Memcached server depletes its memory,

the least recently used data item is evicted. In this basic solution, each data

item is stored in exactly one server, and data items are evenly distributed

5

among the servers.

Memcached’s protocol is simple and ASCII based (it also supports a bi-

nary protocol). For instance, get requests are structured as follows: ”get

<key>\r\n”, where the key is always in a fixed location in the request struc-

ture, starting from the fifth byte, and thus can be easily identified, as in, for

example, ”get shopping-cart-91238\r\n”. We leverage this structure in our

solution. The keys in Memcached are determined by the developer who is

using the Memcached system, and its size is bound by 250 bytes. The value

contains up to 1MB of data.

6

Chapter 3

Evaluation of Hot Key Problem

and Remedies

Recall that keys are distributed over the Memcached servers using a consis-

tent hashing algorithm, which assigns a key to a server uniformly at random.

However, as the load on the keys follows a Zipf distribution, the overall load

on the Memcached server is not uniform.

Formally, let n be the number of servers and N be the number of keys.

The load on the i-th most popular key, denote by wi = Pr[data item has key i]

is 1/(iα · HN), where α is a parameter close to 1 (in the remainder of the

paper we set α = 1) and HN ≈ lnN is the N -th Harmonic number. As

before, let hash be the hash function that maps keys to servers. Thus, the

load on server j is load(j) =
∑

{i|hash(i)=j}wi.

We measure the expected imbalance factor between the servers, namely

the ratio between the average load and the maximum load. Note that the

imbalance factor is equivalent to the throughput when the most loaded server

7

Original
MBalancer (H=10)

1e+02 1e+03 1e+04 1e+05 1e+06

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of keys (log scale)

Im
ba

la
nc

e
fa

ct
or

Figure 3.1: The imbalance factor as a function of the number of keys (for 10
servers).

(say, server k) becomes saturated and the rest of the servers process requests

proportionally to server k’s load:

1

n

n∑
j=1

load(j)

load(k)
=

1

load(k)

∑n
j=1 load(j)

n
.

In Section 5, we show that the imbalance factor indeed corresponds to the

obtained throughput.

We have investigated the impact of the number of keys and the number of

servers on the imbalance factor through simulations.1 Figure 3.1 shows that

given a fixed number of servers (in this figure, 10 servers which are common

in websites deployments), the imbalance factor grows logarithmically in the

number of keys. As the imbalance factor runs between 40%−60%, it implies

1While the problem can be modelled as a weighted balls and bins problem [5], to the
best of our knowledge there are no tight bounds when the weights are distributed with
Zipf distribution.

8

Original
MBalancer (H=10)

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of servers

Im
ba

la
nc

e
fa

ct
or

Figure 3.2: The imbalance factor as a function of the number of servers (for
1000 keys).

that half of the system resources are idled due to this imbalance. The problem

becomes even more severe as the number of servers increases (see Figure 3.2).

Intuitively, this is due to the fact that even if the heaviest key was placed on

a server by itself, its weight is still significantly larger than the average load.

This also rules out solutions that move data items between servers without

duplications.

Notice that Figures 3.1 and 3.2 show also that MBalancer , whose specific

design will be explained in Section 4, achieves substantial improvement of

imbalance factor, where only the 10 most popular keys are being treated.

3.1 Comparing with Other Solutions

Facebook suggests to solve the hot key problem by replicating the busiest

servers [19]. The solution is implemented by placing Memcahced proxies

9

0 20 40 60 80 100

0
2

4
6

8
10

Number of servers

N
um

be
r

of
 a

dd
iti

on
al

 s
er

ve
rs

Figure 3.3: The number of additional servers (e.g., as suggested by Facebook
[19]) required to achieve the same imbalance factor of MBalancer with 10 hot
keys and 1000 keys.

between the clients to the servers, that distribute the load between the repli-

cated servers. Figure 3.3 shows the number of extra servers required, so that

this solution will achieve the same imbalance factor of MBalancer . Clearly,

this solution is more expensive in CAPEX and requires extra software.

In [15], an optimized distributed storage system is described, which han-

dles skewed workloads (zipf requests distribution) using requests monitoring,

scheduling and caching. It is described how the system outperforms a selec-

tive caching [4] (hot items replication) solution by performing load balancing

between shards/servers, caching hot items in memory and making sure data

is always retrieved from the fastest storage available. However, the system

is a general purpose data base which in most cases may not be suitable as

an alternative for Memcached. Moreover it does not specifically relate and

handle the network bottleneck as MBalancer does.

10

Other suggestions are to manually change the application logic [12, 17].

For instance, break down the data of a hot key into smaller pieces, each

assigned with its own key. This way each piece of data might be placed in

a different Memcached server (by hashing the new key), implying several

servers will participate in the retrieval of the original data, item. However,

this solution is complex, as it requires extra logic in the web server for split-

ting data items, and for writing and reading them correctly from Memcached.

MBalancer deals with improving the performance of Memcached traf-

fic and thus it differs from general key-value storage system designs that

aim at improving the storage system performance by adding cache nodes.

Specifically, recent system designs [16], which dealt with the general case of

key-value storage systems, use SDN techniques and the switch hardware to

enable efficient and balanced routing of UDP traffic between newly-added

cache nodes and existing resource-constrained backend nodes. Despite the

similarity in using the switch hardware for load balancing, these system de-

signs come to solve a different problem, the designs are not geared for Mem-

cached traffic and therefore involve packet header modifications, and their

analysis [8] is based on a general cache model with unknown request distri-

bution. MBalancer , on the other hand, does not require adding new nodes

to the system (and, in fact, no change to either the client and server sides),

no packet header modification (as it looks at Memcached header in L7), and

its analysis is based on the fact that request distribution is zipf.

11

Chapter 4

MBalancer, overview and

design

MBalancer partitions the Memcached servers to G groups of n/G servers

each. In order to load-balance requests for hot keys, MBalancer duplicates

each of the H most popular keys to all servers in one such group, where H

is a parameter of the algorithm. For brevity, we will assume G = 1, and

therefore, all hot keys are duplicated to all servers. This will be relaxed later

in Section 4.4.

Notice that the Zipf distribution implies that even if we choose H to be

small (e.g., 10 out of 1000 keys), we get a large portion of the requests (in

this case, H10

H1000
= 2.93

7.49
= 0.39). This implies that the memory required for

duplicating the keys to all Memcached servers is small. Using this method,

requests for hot keys are spread evenly over all Memcached servers, while

the less popular keys are treated as in the original memory implementation

(namely, they are mapped to a single server).

12

4.1 MBalancer Design

While MBalancer can be implemented using a proxy, we suggest an imple-

mentation using an SDN network that does not require any software mod-

ification and, in particular, leaves both Memcached clients and Memcached

servers unchanged. The source code can be found in [1].

The MBalancer architecture is illustrated in Figure 4.1. For simplicity

we first explain the solution where all the memcahced clients and servers are

connected to a single switch. Later we explain how to relax this assumption

to a general SDN network.

Figure 4.1: The MBalancer framework.

One of the advantages of SDN networks is a clear separation between their

control and data planes. Our architecture involves actions in both planes.

13

Specifically, in the control plane, we have devised an SDN application, named

MBalancer , that receives Memcahced traffic statistics from some monitoring

component solution (e.g., mctop or memkeys), selects the hot keys, duplicates

the keys to all servers, and configures the switches. In the data plane, the

SDN switch matches hot keys from Memcached traffic and performs L7 load-

balancing, as will be explained next. The rest of the keys are forwarded to

their original destination by the Memcached clients as before. We note that

our solution is only applicable for Memcached get requests over UDP. While

TCP is the default in Memcached, UDP is usually preferred when the goal

is better performance (cf. Facebook’s solution [19]).

4.2 MBalancer Data Plane Configuration

For simplicity, we begin by explaining the switch configuration assuming that

the H heaviest keys were already duplicated to all Memcached servers.

Figure 4.2 shows the switch configuration. Hot keys are identified by a

flow table rule with payload matching for the hot key. The rules added to

the switch rely on the fact that the key in a Memcached get request packet

is in a fixed location (specifically, offset of 12 bytes) and ends with \r\n.

Once a packet with a hot key is identified, it is forwarded to an OpenFlow

group of type select [20, Section 5.10]. Each such group contains a list of

action buckets (in our case, each action bucket is responsible of redirecting

packets to a different Memcached server). Each packet is processed by a

single bucket in the group, based on a switch-computed selection algorithm

that implements equal load sharing (e.g. hash on some user-configured tuple,

14

simple round robin, or basing on the bucket weight).

In order to redirect a packet, the action bucket rewrites the destination

MAC and IP addresses fields with the new addresses and forwards the packet

to its new destination. We note that, in this situation, when the Memcached

server responds to the client, the client receives a packet where the source

IP address is different from the address it expects. In UDP, this is not a

problem, as Memcached UDP clients are using unique identifiers (added to

their get requests) to correlate between Memcached requests and responses,

and are not validating the source IP address of the response packet.

Finally, an additional rule per hot key is added to the switch for capturing

set requests for hot keys (update). These rules action is set to duplicate the

packet and forward it to the MBalancer application in addition to the original

Memcached server; note that this rule contains the original Memcached server

destination (further explained in section 4.3). We note that, unlike get

operations, set operations typically use TCP, and therefore, their destination

addresses cannot be simply rewritten as before.

The total number of additional flow table entries is 2H + n: one rule

per hot key for get operation, one rule per hot key for set operation, and

additional group configuration that requires buckets as the number of servers.

Multi-Switch SDN Network: In order to apply hot keys redirection

rules in an SDN network that contains multiple switches, it is needed to place

the rewrite rule only once at each path between each client and Memcached

server. Then, the packet should be marked (with one bit) in order to avoid

loops. Several methods have been proposed to cope with such issues in multi-

switch SDN networks [13, 14] and can be also applied in our case.

15

4.3 MBalancer Application Tasks

MBalancer decides which are the H hot keys according to a monitoring in-

formation. It then decides if it should interfere with the regular Memcached

activity. If so, it performs hot keys duplication to the Memcached servers

and configures the flow table in the switch.

MBalancer application performs hot keys duplication using a Memcached

client running within the MBalancer application. This client is configured to

perform an explicit set operation to each of the relevant servers. The value

of the hot keys is taken from the original Memcached server the key is stored

in.1

As mentioned before MBalancer application is notified whenever a set

operation for a hot key occurs and gets a copy of the packet. Then, it initiates

a set operation to all relevant Memcached servers but the original one.2

4.4 MBalancer with More than One Group

As mentioned before, MBalancer partitions the Memcached servers to G

groups of n/G servers each. For G > 1, first a group is selected and then the

hot key is duplicated to all the servers in this group. Notice that the load

resulting from hot keys is the same for all servers within a group. Therefore,

upon adding a hot key, the selected group is naturally the one with the least

1In arbitrary web application architecture, the value of a key can be a database record,
or a computation result which might not be a database record. Thus, the value is taken
from the Memcached server and not directly from the database.

2As the hot key rule that matches the original set operation contains also the original
destination address, it will not be matched with the set operations initiated by MBalancer
application, and therefore, will not creates loops.

16

such load. MBalancer ’s data plane is changed to support G groups and

not one, and forwarding the hot key to the right group in its corresponding

rule. Because each Memcached server is in only one group, the total number

of rules (2H + n) is unchanged. On the other hand, the memory (in the

Memcached servers) used for duplicating hot keys is reduced by a factor of

G.

Figure 4.3 compares the imbalance factor when using more than one

group. Notice that the values for G = 1 and G = 2 are indistinguishable

in this setting, implying one can save half of the memory overhead for free.

For larger G, there is some imbalance factor penalty that decreases as the

number of servers (or, equivalently, the size of the groups) increases.

17

Figure 4.2: Load-balanced packet flow in SDN switch

18

Original
MBalancer − 1 group
MBalancer − 2 groups
MBalancer − 4 groups
MBalancer − 8 groups
MBalancer − 16 groups

0 20 40 60 80 100 120

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of servers

Im
ba

la
nc

e
fa

ct
or

Figure 4.3: The imbalance factor as a function of the number of servers, for
different number of MBalancer groups. All settings use H = 10 hot keys out
of 1000 keys.

19

Chapter 5

Experimental Results

In this section we present the results of an experiment we have conducted

over an SDN network. We have used 64 memcached clients, running on 2

servers that issued get requests for 1000 keys to two Memcached servers,

which stored values of 100KB size.1 The clients and the servers were con-

nected to a single switch using a 1GBit/s interface. We used a NoviKit 250

SDN switch with payload matching capabilities2. The prototype of the MBal-

ancer application was implemented in Python, as a Ryu [22] SDN controller

application.

The get requests were issued over UDP, with a timeout of 1 second.

In common web server implementations, get requests are blocking until a

response has been received; only then another request is made. Thus, in our

configuration if a web sever did not receive a response from Memcached it

waited for 1 second before issuing the second request.

1We have used only two Memcached servers due to a limitation of equipment in our
lab.

2We note that while Memcached’s maximum key size is 256 bytes long, NoviKit 250
switch payload matching capabilities supports only keys up to 80 bytes long.

20

We ran an experiment with over 100,000 get requests 100 times. Since

we had only two Memcached severs, we used a skewed hash function in order

to create settings with different imbalance factors (recall that as the number

of servers increases, the imbalance factor decreases). Figure 5.1 shows the

effect of the imbalance factor on the (normalized) throughput, while Figure

5.2 shows the effect on latency. All experiments run with H = 10 and G = 1

(which in our case is only 1MB extra RAM). Clearly, it shows a significant

boost in performance, matching the results of Section 3.

Moreover, as expected, the (normalized) throughput matches the imbal-

ance factor. This is because the clients do not continue to the next request

until a response for the previous request is received. Thus, the loaded servers

become the system bottleneck and have a high impact on the throughput.

Figure 5.1: The average (normalized) throughput with and without MBal-
ancer . The vertical line is the normalized throughput of the servers with
minimum and maximum load.

21

Figure 5.2: The average latency with and without MBalancer . The vertical
line is the values of the servers with minimum and maximum average latency.

22

Chapter 6

Conclusions

In this paper, we presented MBalancer : an efficient framework for solving

Memcached’s hot keys problem by efficiently load balancing its requests. The

framework also demonstrates the power of Software-Defined- Networking to

solve higher level application issues.

In this paper we present MBalancer , a solution for the memcached hot-

keys problem based on SDN. The goal of our solution is to show how SDN,

specifically the ability to match packets according to their payload, can be

used to solve higher level application issues. The key challenge of the re-

search, was to define and formalize the hot keys problem and in the technical

aspect, the deployment of OpenFlow rules for matching and redirecting mem-

cached packets, in order to perform L7 load balancing in the switch. Using

MBalancer , we demonstrate how it is possible to overcome the hot keys prob-

lem using SDN. We show that the problem is indeed solved when applying

our solution to a web application architecture with memcached, where the

problem occurs and we show that the overhead of our solution is minimal,

23

meaning it can be applied to memcached clusters containing hundreds of

servers and thousands of keys.

24

6.1 Limitations and Discussion

In this section we discuss a few limitations in our work:

1. Memcached get operations over UDP are used for achieving better per-

formance, over TCP, with respect to the known limitations of UDP. In

our research we demonstrate a UDP based solution, but the majority of

memcached deployments in the world operate over TCP. We describe

the challenge of implementing a TCP based solution in section 6.2.

2. Payload matching is not yet a part of the OpenFlow specification.

MBalancer relies on a specific switch model, which features the abil-

ity to perform matching based on packet payload, using OpenFlow’s

experimenter API. We believe that payload matching will be added to

next versions of the OpenFlow specification.

3. The memcached key length is limited by the switch’s maximum table

size. While memcached’s maximum key size is 256 bytes, MBalancer ,

using the NoviKit 250 switch, can only support keys up to 80 bytes

long. As switches improve, we believe new switches will support larger

tables.

4. MBalancer does not support memcached multi-get operations, where

a request contains several keys to retrieve in a single request. This

is because memcached packets payload for such operations, are in the

following format: ”get <key-1> <key-2> <key-3>\r\n” Supporting

multi-get operations in MBalancer , requires more advanced payload

matching capabilities and possibly changes to the memcached protocol.

25

6.2 Future Work

In this section we list a few points we believe would be both beneficial and

challenging to research:

1. MBalancer and TCP: Most memcached deployments in the indus-

try are operating over TCP. We believe it would be a great benefit to

make MBalancer support memcached over TCP. The challenge for sup-

porting this capability, is the need to perform TCP splicing in order

to hand-off a TCP connection from one server, the original destina-

tion, and the load balanced destination. TCP connection splicing as

described in [11] is not enough, as after the first TCP connection hand-

off, it is a problem to perform additional hand-offs because of the need

to compensate the sequence and acknowledgement numbers and there’s

no way to keep a state for every connection in the switch.

2. MBalancer Implementation Using P4 [6]: P4, is a high-level lan-

guage for programming protocol-independent packet processors. Using

P4, it is possible to decoratively express how packets should be pro-

cessed by the SDN switch. One of the required parts of a P4 program

is a parser which parses incoming packets into user defined data struc-

tures. It is possible to include packets payload as a part of the parsing

process and then match according to it. Using P4, it should poten-

tially be possible to implement MBalancer in a generic way, which will

work with every switch. We believe that P4 will turn to be the stan-

dard packet programming language and therefore would like to make

MBalancer work using P4.

26

Bibliography

[1] Mbalancer source code: https://github.com/idanmo/mbalancer.

[2] V. Almeida, A. Bestavros, M. Crovella, and A. de Oliveira. Charac-
terizing reference locality in the WWW. In Int’l Conf. on Parallel and
Distributed Information Systems, pages 92–103, Dec 1996.

[3] Amazon. Amazon elasticache.

[4] G. Ananthanarayanan, S. Agarwal, S. Kandula, A. Greenberg, I. Stoica,
D. Harlan, and E. Harris. Scarlett: coping with skewed content popu-
larity in mapreduce clusters. In Proceedings of the sixth conference on
Computer systems, pages 287–300. ACM, 2011.

[5] P. Berenbrink, T. Friedetzky, Z. Hu, and R. Martin. On weighted balls-
into-bins games. Theor. Comput. Sci., 409(3):511–520, Dec. 2008.

[6] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker.
P4: Programming protocol-independent packet processors. SIGCOMM
Comput. Commun. Rev., 44(3):87–95, July 2014.

[7] B. Fan, D. G. Andersen, and M. Kaminsky. MemC3: compact and
concurrent memcache with dumber caching and smarter hashing. In
USENIX NSDI, pages 373–385, 2013.

[8] B. Fan, H. Lim, D. G. Andersen, and M. Kaminsky. Small cache, big
effect: Provable load balancing for randomly partitioned cluster ser-
vices. In Proceedings of the 2nd ACM Symposium on Cloud Computing,
page 23. ACM, 2011.

[9] E. S. Fukuda, H. Inoue, T. Takenaka, D. Kim, T. Sadahisa, T. Asai, and
M. Motomura. Caching memcached at reconfigurable network interface.
In IEEE FPL, pages 1–6, 2014.

[10] Google. Google cloud platoform memcache.

27

[11] M. Hesham, H. Fang, and M. Sarit. Application-aware data plane pro-
cessing in sdn. 2014.

[12] InterWorx. Locating Performance-Degrading Hot Keys
In Memcached. http://www.interworx.com/community/

locating-performance-degrading-hot-keys-in-memcached/.

[13] N. Kang, Z. Liu, J. Rexford, and D. Walker. Optimizing the one big
switch abstraction in software-defined networks. In ACM CoNEXT,
pages 13–24, 2013.

[14] Y. Kanizo, D. Hay, and I. Keslassy. Palette: Distributing tables in
software-defined networks. In IEEE INFOCOM, pages 545–549, 2013.

[15] A. Khandelwal, R. Agarwal, and I. Stoica. Blowfish: Dynamic storage-
performance tradeoff in data stores. In Proceedings of the USENIX
Symposium on Networked Systems Design and Implementation (NSDI),
volume 60, 2016.

[16] X. Li, R. Sethi, M. Kaminsky, D. G. Andersen, and M. J. Freedman. Be
fast, cheap and in control with switchkv. In 13th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 16), Santa
Clara, CA, 2016.

[17] Marcus Barczak. mctop—a tool for analyzing memcache get traffic.
Code As A Craft, December 2012. https://codeascraft.com/2012/

12/13/mctop-a-tool-for-analyzing-memcache-get-traffic.

[18] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner. Openflow: enabling innovation
in campus networks. SIGCOMM Comput. Commun. Rev., 38(2):69–74,
2008.

[19] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski, H. Lee, H. C. Li,
R. McElroy, M. Paleczny, D. Peek, P. Saab, D. Stafford, T. Tung, and
V. Venkataramani. Scaling memcache at facebook. In USENIX NSDI,
pages 385–398, 2013.

[20] Open Networking Foundation. Openflow switch specification - version
1.5.0, December 2014.

[21] RedisLabs. Redislabs memcached cloud.

[22] Ryu. Ryu SDN framework, 2015. http://osrg.github.io/ryu.

[23] Tumblr. Tumblr memkeys. https://github.com/tumblr/memkeys.

28

תקציר

Memcached השימוש בו מאוד. י מפתח וערכו"הוא פתרון זיכרון מטמון מבוזר השומר מידע בזיכרון ע

המפתחות והערכים מפוזרים מעל מספר. נפוץ בשרתי תוכן באינטרנט על מנת להחזיר תוכן באופן מהיר

גיבוב עקבית"ע Memcachedשרתי המבטיחה פיזור אחיד של המפתחות בין, י שימוש בפונקציית

מפתחות-ידועים כ(לרוב ישנם מפתחות שהם פופולריים יותר מאחרים בצורה ניכרת , מאידך. השרתים

,פיזור הבקשות בין השרתים אינו אחיד, ולמרות הפיזור האחיד של המפתחות בין השרתים), חמים

על שרתים מסוימים עומס להיווצרות בעיות, וגורם כדי עד באופן משמעותי פוגע בתפקודם אשר

.ביצועים

נוספים זו. פתרונות קודמים לבעיה הצריכו פתרונות אפליקטיביים מסובכים ושרתים אנו, בעבודה

אשר Memcachedפתרון איזון עומסים פשוט מעל השכבה השביעית עבור - MBalancerמציעים את

בארכיטקטורות בקלות להטמיע תוכנה Memcachedניתן מונחות רשתות מעל (שרצות ,SDN(

Software Defined Networking .בקצרה ,MBalancer רץ כאפליקצייתSDN ומשכפל מפתחות חמים

(Memcachedלמספר שרתי ה). או כולם SDN-מעדכן את טבלאות החוקים במתגי ה SDN-בקר

אין צורך לשנות דבר בקליינטי, ולפיכך. לביצוע איזון עומסים SDN-ומשתמש ביכולות הקיימות ב

.Memcached- ושרתי ה

אנו מראים שעם תקורה מינימלית עבור שמירת מספר מצומצם של מפתחות, פ האנליזה שביצענו"ע

עבור המפתחות היא(מספר הבקשות לכל שרת קרוב למאוזן , נוספים בהנחה שהתפלגות הבקשות

את , בנוסף). Zipfהתפלגות חומרה OpenFlowבמתג MBalancerממשנו ש. מבוסס -בהינתן

MBalancer מוריד את הצוואר בקבוק משרתיMemcached הניסוי שביצענו מראה שיפור, עמוסים

.משמעותי בתפוקה ובזמן תגובה מהשרתים

המרכז המחשב, למדעי ארזי אפי מבי"ס בר ברמלר ענת פרופ' של בהדרכתה בוצעה זו עבודה

 הבינתחומי, הרצליה.

המרכז הבינתחומי בהרצליה

ספר אפי ארזי למדעי המחשב-בית

מסלול מחקרי -)M.Sc.התכנית לתואר שני (

Memcachedאיזון עומסים לבקשות

ברשתות מונחות תוכנה

מאת

עידן מויאל

במסלול המחקרי בבית ספר M.Sc.עבודת תיזה המוגשת כחלק מהדרישות לשם קבלת תואר מוסמך

המרכז הבינתחומי הרצליה, אפי ארזי למדעי המחשב

2016דצמבר

