+*«

*
* IDC Efi Arazi School
HERZLIYA | of Computer Science

*...

The Interdisciplinary Center Herzliya
Efi Arazi School of Computer Science

Online Classification of VoD and Live Video
Streaming Applications

M.Sc. Dissertation
Submitted in Partial Fulfillment of the Requirements for the
Degree of Master of Science (M.Sc.) Research Track
in Computer Science

Submitted by Shuval Polacheck
Under the supervision of Dr. Ronit Nossenson

June 2013



Acknowledgements

I would like to express my gratitude to a number of people who made crucial contributions to
this work. First of all, 1 would like to thank my advisor, Dr. Ronit Nossenson, whose expert
guidance and constant encouragement made possible the pursuit and completion of this work. |
would also like to thank Prof. Tami Tamir, who supervised my work on behalf of the IDC and
provided important and helpful comments. Finally, I would like to thank Elad Hefetz from Bezeq
International, for providing us with the data set we relied on in this work.



Abstract

Streaming media services deliver audio and video without making the viewer wait to download
the file. As the user plays the media file, the service continues to download and buffer additional
content from the streaming server. Multimedia streaming can be divided into two categories:
Video on Demand (VoD), where all frames are available at all times; and Live, where only the
last frames are available. Different solutions have been proposed to optimize both Live streaming
(e.g., multicast) and VoD (e.g., Cache, Streaming Peer-to-Peer). Implementation of these
solutions in an Internet Service Provider (ISP) network requires an online classification
capability between Live and VoD streams. In this work, we propose and evaluate two approaches
for the online classification problem: a statistical approach based on packet length; and a flow
comparison approach based on information offset of two different streaming flows. We defined
information offset as the difference between the arrival times of identical packets in two different
flows. To evaluate our classifiers, we used a dataset collected for this research by the Israeli ISP
Bezeq International. We use 20% of the pre-tagged dataset for offline learning and the other 80%
to evaluate our classifiers. Our statistical classifier tags 96% of the streams correctly, while our
comparative classifier successfully tags 96.5% of streams. We also demonstrate a more complex
multi-streaming comparing function that improves the success rate of our algorithm to 97.53%.
We note that while the comparative classifier clearly achieves better classification results, the
statistical classifier, is easier to implement, as it does not require an additional stream to compare
with.
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l. Introduction

According to Cisco Visual Networking Index (VNI) 2011-2016 [1], internet video will drive most
consumer Internet traffic through 2016. The sum of all forms of IP video (Internet video, IP VoD,
video files exchanged through file sharing, video streamed gaming, and videoconferencing) will
ultimately reach 86% of total IP traffic. Taking a more narrow definition of Internet video that
excludes file sharing and gaming, Internet video will account for 55% of consumer Internet traffic
in 2016 (see Figure 1). Internet video officially reached the halfway mark of consumer Internet
traffic by the end of 2012.

The implications of video growth are difficult to overstate. With video growth, Internet traffic is
evolving from a relatively steady stream of traffic to a more dynamic traffic pattern. Because
video has a higher peak-to-average ratio than data or file sharing, and because video is gaining
traffic share, peak Internet traffic will grow faster than average traffic. With video, the Internet
now has a much busier busy hour. The growing gap between peak and average traffic is amplified
further by the changing composition of Internet video. As shown in Figure 2 and Table 1, real-
time video such as live video, ambient video, and video calling, are taking an ever greater share of
video traffic [1]. Real-time video has a peak-to-average ratio that is higher than on-demand video.

Streaming media services (e.g., Live video streaming and Video on Demand, or VoD, streaming)
deliver audio and video without making the viewer wait to download files. As the user plays the
media file, the service continues to download and buffer additional content from the streaming
server. Playing and downloading happen at the same time. Delivering video streaming services
over a best-effort packet network, such as the Internet, is complicated by a number of factors,
including unknown and time-varying bandwidth, delay, and losses, as well as many additional
issues, such as how to fairly share the network resources amongst many flows, and how to
efficiently perform one-to-many communications for popular content. Thus, streaming video
over the Internet has received tremendous attention from academia and industry. Different
solutions have been proposed for Live video streaming (e.g., multicast technologies) and for
VoD streaming (e.g., Video Cache technologies, Streaming Peer-to-Peer technologies).
However, to implement these solutions in an Internet service provider (ISP) network, an online
classification of video streaming flows (or video streaming sources) into a Live streaming class
and a VoD streaming class is required. This classification should be performed as soon as
possible to allow proper flow optimization.

Commonly deployed IP traffic classification techniques have been based on direct inspection of
each packet’s contents at some point on the network. Successive IP packets having the same 5-
tuple of protocol type, source address, source port, destination address, and destination port are
considered to belong to a flow whose controlling application we wish to determine. Simple
classification infers the controlling application’s identity by assuming that most applications
consistently use ‘well known’ TCP or UDP port numbers (visible in the TCP or UDP headers).
However, many applications are increasingly using unpredictable (or at least obscure) port
numbers [2]. Consequently, more sophisticated classification techniques infer application type by
looking for application-specific data (or well-known protocol behavior) within the TCP or UDP
payloads [2, 3].
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Video

Usage in 2011 Definition
Category

User-generated video and other video

Short form 12% clips generally less than 7 minutes in
length

Video calling 3.5% Video messages/calling

Long form 61% V!deo content generally greater than 7
minutes in length

Internet video to 8% Video delivered through the Internet to a

TV 0 TV screen

Peer-to-peer TV (excluding P2P video
Live internet TV 9% downloads) and live television streaming
over the Internet

Internet PVR 1% Recording live TV content

Nannycams, petcams, home security

. . 0
Ambient video 2.5% cams, and other persistent video streams

All video that travels over a 2G, 3G, or

o 0
Mobile video 3% 4G network

Table 1. Global consumer Internet video traffic, 2011-2016 [1]

The research community has responded by investigating classification schemes capable of
inferring application-level usage patterns without deep packet inspection (DPI). Newer
approaches classify traffic by recognizing statistical patterns in externally observable attributes of
the traffic (such as typical packet lengths and inter-packet arrival times). Their ultimate goal is
either clustering IP traffic flows into groups that have similar traffic patterns, or classifying one or
more applications of interest, as discussed below. However, none of the previous research has
solved the problem of statistical streaming application classification into live streaming type and
VoD streaming type. Since these two applications use the same streaming protocols, DPI
technologies are practically useless in solving this problem.

In our work we examined and evaluated two types of online streaming application classifiers.
First, we reviewed and developed a statistical approach for a streaming application classifier. This
statistical online streaming classifier entails the classification of traffic according to statistical
patterns in externally observable attributes of the traffic; in particular, it analyzes the measured
statistical differences between packet length distribution of VoD streaming applications and Live
video streaming applications. We then took a different approach, developing a comparative
classifier based on the simple observation that live streaming flows from the same video
streaming source transfer the same information almost at the same time, while VoD flows from
the same video streaming source have larger information offset. In light of this, the second
classifier analyzes and compares the data content of different flows from the same video
streaming source during a small time interval. This analysis allows us to distinguish whether these
flows are live video streaming flows or VoD streaming flows. Clearly, this online classifier

7



requires more than one flow from the same video streaming source, as it cannot classify a single
flow. It is important to mention that both classifiers are unable to analyze encrypted flows since
they are based on the packet’s raw data and packet length, which are unpredictable under
encryption.

Evaluation of the classifiers’ performance is based on real trace collected for this research by
Bezeq International, a large Israeli Internet service provider [4]. The trace includes captures of
one hour of streaming flows of live and VoD servers located at Bezeq International’s datacenter.
In the performance analysis, the flows are pre-tagged as live or VoD, but these tags are not
provided for the online classifiers. To evaluate the classifiers’ accuracy, the results of the online
classifier tags and the actual tags are compared. We used 20% of the trace data to optimize the
algorithm parameters (i.e, to build the classification off-line models) and the other 80% of the
trace was used to evaluate the algorithms’ performance. The statistical classifier correctly tagged
96% of the trace video streaming flows, while the comparative classifier correctly tagged 96.5%
of the trace video streaming flows. We demonstrated that adding more flow pairs to the algorithm
input can increase the tagging accuracy but it clearly decreases the algorithm scalability.

This work is structured as follows: In Chapter II, we list related work in internet application
classification. In Chapter Ill, we address the main contributions of this work to academia and
industry. Chapter 1V describes the data collected for this work. In Chapter V, we review the
statistical characterization of our dataset. We then describe our two classification algorithms in
Chapter VI and their performances in Chapter VII. Finally, Chapter VIII reports our conclusions
and suggests possible directions for future research.



1. Related Work

Classifying traffic into specific network applications is essential for application-aware network
management. While port number-based classifiers work only for some well-known applications,
and signature-based classifiers are not applicable to encrypted packet payloads, researchers have
suggested classifying network traffic based on statistical behaviors observed in network
applications. Such methods assume that the statistical properties of traffic are unique for different
applications and can be used to distinguish between applications. Below we describe the state-of-
the-art of the statistical-based application classification.

The commonly used statistical features in statistical-based application classification are flow
duration, packet inter-arrival time, packet size, bytes transferred, number of packets, etc. Earlier
work just focused on the characteristics of network traffic classes or applications. Paxson [5]
studied the relationship between statistical properties of flows and applications that generate
them based on Internet traffic characterization. Paxson [5] and Paxson and Floyd [6] modeled
and analyzed the individual connection characteristics, such as bytes transferred, duration, inter-
arrival times and periodicity for different applications. Paxson and Floyd [6] found that arrivals
of user-initiated events, in applications such as TELNET or FTP control commands, can be
described by a Poisson process, whereas other applications arrivals deviate considerably from
Poisson. These works showed that it is possible to identify network traffic based on statistical
features.

Hereafter, more work endeavored to classify exclusively network traffic based on statistical
features. They generally consist of two parts: model building and classification. A model is first
built using statistical attributes of flows by learning the inherent structural patterns of datasets,
and the model is then used to classify other new unseen network traffic. Dewes et al. [7]
analyzed and classified different Internet chat traffic using multiple flow characteristics, such as
flow duration, packet inter-arrival time, packet size and bytes transferred. Roughan et al. [8] used
nearest neighbor (NN) and linear discriminate analysis (LDA) to map applications to a different
quality of service classes using features such as average packet size, flow duration, bytes per
flow, packet per flow and root mean square (RMS) packet size. Divakaran et al. [9] identified
different classes of applications by observing packet length and packet size of flow of a flow of
packets between two hosts in a network. Their approach is effective to classify short UDP flows,
such as DNS traffic. However, when applied to long-lasting flows or TCP flows, this approach
often makes incorrect decisions. Bernaille et al. [10] identified applications based on packet sizes
and directions of packets. Application behavior is clustered by characteristics observed in the
very first five packets of TCP connections. Subsequently, a flow is classified into an application
by measuring the minimum similarity distance. Ying-Dar et al. [11] used packet size distribution
(PSD) and packet size change cycle of a flow to model and classify application flows.

A few works analyze traffic at a level other than flow level. Kannan et al. [12] used a
connection-level trace to derive abstract descriptions of the session-structure for different
applications present in the trace. Based on the flows’ statistical information, Kannan’s approach
discovers and characterizes flow/session causality relationship. This approach can further infer
applications’ internal session structures. However, it may be not able to handle modern
sophisticated applications, since it identifies applications by using only port numbers.

Blind classification (BLINC), proposed by Karagiannis et al. [13], introduces another type of
approach for traffic classification based on the analysis of host behavior. It associates Internet
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host behavior patterns with one or more applications, and refines the association by heuristics
and behavior stratification. It is able to accurately associate hosts with the service they provide or
use by inspecting all the flows generated by specific hosts.

Cellular backhaul networks carry user traffic within encrypted tunnels. With tunneled traffic, the
application classifier cannot identify the underlying TCP/UDP connections and cannot use any
IP packet header information. However, some statistical properties can be considered in this
case too, such as volume per tunnel, tunnel durations, inter-packets delays (however, sequential
packets might belong to different TCP connections), packet sizes and packet direction. In [14], a
blind online classification of the dominated application of user tunneled traffic is suggested and
evaluated. This classifier is based on average packet size information only.

None of these works attempts to classify types of video streaming applications. We used similar
concept to [10] in our statistical classifier, which is based on classification according to
distribution of packet sizes. However, our comparative classifier takes a different approach
tailored to the unique behavior of a Live streaming application.
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1. Main Contributions of this Work

In this work, we first define the need and importance of distinguishing between video streaming
sub-classes: Live and VoD. Based on VNI 2011-2016 [1], we present the high incidence of Live
streaming applications and review suggested improvements in the network level (e.g., multicast
technologies). We indicate that such solutions are based on the assumption that they are applied
only when using Live video streaming. However, we have not encountered any online classifier
on which these solutions can in fact be based.

We present two online classifiers to distinguish between Live and VoD video streaming
applications: a statistical approach based on packet length; and a flow comparison approach
based on information offset of two different streaming flows. Our statistical classifier tags 96%
of the streams correctly (with 0.01 false positive and 0.24 false negative), while our comparative
classifier successfully tags 96.5% of streams (with less than 0.01 false positive and 0.2 false
negative). We also demonstrate options to improve these results using a multi-flow comparative
classifier which is a modification to our comparative algorithm.

To test our classifiers, we used real trace that includes over 65,000 pre-tagged Live and VoD
multimedia streams. As this is a pioneer data collection that includes both applications, we
included statistical analysis. Our analysis introduces interesting findings regarding the statistical
differences between streaming applications. Our statistical classifier is based mainly on these
findings.
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V. Dataset Collection

The classifier performance evaluation is based on real trace collected for this research by Bezeq
International [4], which provides broadband access via ADSL lines. None of the available
datasets from previous classification researches were appropriate for our needs, since they have a
uniform tag for both of the streaming applications. We used the first part of the data collected to
construct the off-line model of the streaming applications. The second part of the collected data
was used to evaluate the classifier decisions. The trace includes captures of one hour of
streaming flows of Live and VoD servers located at the Bezeq International datacenter. In the
performance analysis, the flows are pre-tagged as Live or VoD, but these tags are not provided to
the online classifier.

To evaluate the classifier accuracy, the results of the online classifier tags and the actual tags are
compared. Data was collected over a 1GB line filtered to measure specific video streaming
traffic from two designated known Live and VoD web servers located at the Bezeq International
server farm. For Live streaming service, we selected the www.mako.co.il, an Israeli news
website broadcasting a daily online news edition. For video-on-demand we used
www.youtube.com which is the main VoD service online. Table 2 summarizes the dataset
properties. We noticed a significant amount of packet drops by sniffer caused by the high
transfer rate of the link. We later estimated these missing packets according to TCP sequence
number in each flow.

Live VoD
Size 39.1 GB 54.9 GB
Second 2019 sec 1312 sec
E;CT&? of 94770374 76380599
Number of flows 33850 33501

Table 2. Dataset Description
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V. Statistical Characterization

In this chapter, a statistical characterization of VoD streaming traffic vs. Live streaming traffic is
presented. The characterization is based on trace collected for this research by Bezeq
International. For each streaming application, we describe the packet length distributions, inter-
arrival distributions and flow length distributions.

(1) Statistical Characterization of Live Video Streaming Traffic
We start by describing the empirical statistics of Live video streaming applications.

Figure 3 plots the packet size distribution in the uplink direction. The values include Ethernet
header and up. It can be seen that most of the packets are shorter than 100 bytes, and about 15%
are between 300-600 bytes. The average packet size in the uplink direction is 168 bytes and the
std is 344. Figure 4 plots the packet size distribution in the downlink direction. It can be seen that
about 64% of the packets are longer than 1400 bytes and 47% are longer than 1500 bytes. The
average packet size in the downlink direction is 1293 bytes and the std is 442.

We observe that average packets inter-arrival time is 2.3 msec. The average number of new
flows per minute is 1755. Figure 5 plots the distribution of flow duration. More than 71% of the
flows last less than 10 seconds.

(2) Statistical Characterization of VoD Streaming Traffic
Next, we describe the empirical statistics of VoD streaming application.

Figure 6 plots the packet size distribution in the uplink direction. Similar to the Live streaming
statistics, it can be seen that most of the packets are shorter than 100B, but 12.5% of the packets
in the uplink direction are longer than 1000B. The average packet size in the uplink direction of
VoD streaming traffic is 248 bytes which is slightly longer than the Live average packet size in
the uplink direction. The std of the packet size in the uplink direction in VoD streaming traffic is
483. Figure 7 plots the packet size distribution in the downlink direction. It can be seen that
about 96% of the packets are longer than 1400 bytes and 72% are longer than 1500 bytes. The
average packet size in the downlink direction is 1452 bytes and the std is 233. That is, in the
downlink direction, VoD packets tend to be larger than Live streaming packets.

We observe that the average packet inter-arrival time is 2.6 milliseconds. The average number of
new flows per minute is 2344. Figure 8 plots the distribution of flow duration. Similar to the
Live streaming traffic, more than 76% of the flows last less than 10 seconds.
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Figure 3. Packet size distribution of uplink Live streaming traffic
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Figure 4. Packet size distribution of downlink Live streaming traffic
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Figure 5. Flow duration distribution of Live streaming traffic

14



Uplink Packet Size Distribution of VoD Streaming Traffic
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Figure 6. Packet size distribution of uplink VoD streaming traffic
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Figure 7. Packet size distribution of downlink VoD streaming traffic
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Figure 8. Flow duration distribution of VoD streaming traffic
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VI.  Video Streaming Application Classifiers

In the streaming application classification process, we assume that only streaming flows are
directed to the classifier. Namely, a pre-classification is performed using either DPI or statistical
techniques to verify that the input flows belong to a streaming application. Since video
streaming servers provide either Live video content or VoD content, the classifier has two
possible labels, ‘Live’ or ‘VoD’. Thus, while tagging video streaming flows from the same
source, we can have exactly two types of possible errors: tagging VoD flows as ‘Live’ flows
(false positive) or tagging Live flows as ‘VoD’ flows (false negative).

The streaming application classification process is performed in two phases (see Figure 9). First,
an off-line model construction phase is performed (also called a training phase). In this phase,
the first part of the traces is analyzed and statistical parameters are collected. Using this
statistical information, a model is built and application labels are calculated. Second, the online
classification method is defined. It used the off-line model to tag the flow application online on
real-time traffic.

In performing our evaluations, we split the dataset between the two phases. In the first phase, we
analyzed 20% of the collected data set to evaluate the optimal primary setting of the classifier
(training set). The other 80% (test set) was used to evaluate the potential classifier accuracy.

Off-line model On-line classifier
construction

Traffic traces Real-time traffic
Statistic .
behavior Application Labeling
Iy model
identification

Application tag

Figure 9. Off-line application classification model and online labeling
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(1) Statistical Classifier

We studied two statistical online streaming application classifiers, which are based on average
packet size information only. One analyzes average packet size in the uplink direction and the
other analyzes average packet size in the downlink direction. Formally, given a streaming flow f
during a specific time window, the online classifiers’ procedure is:

Online Streaming Classifier (Window (flow f))
Begin
AVG = AVG Pkt Size(f);//DL or UL
Tag(f) = off line model (AVG) ;

End

To calculate the off-line models that map packet-size average to “Live” or “VoD” tags, we used
the well-known Maximum A Posteriori (MAP) detection method [15]. In the case of making a
decision regarding the tag of a flow pair between two hypotheses, “Live” or “VVoD”, in the event
of a particular observation of packet size average, d (uplink, downlink, or both), the MAP
classical approach is to choose “Live” when Pr(Live|d) > Pr(VoD|d) and “VoD” otherwise. In
the event that the two a posteriori probabilities are equal, one typically defaults to a single
choice, say “VoD”, or choose one option at random.

The calculation of the probabilities Pr(Live|d) and Pr(\VVoD|d) for every packet size average, d, is
done according to the following equations:

pr(d|Live)«Pr(Live)
Pr(d)

Pr(d|VOD)+pr(vop)
Pr(d)

(1) Pr(Liveld) =

@ Pr(voD|d) =

where Pr(d) is the probability that the packet size average is d,

(3) Pr(d) = Pr(d|Live) = Pr(Live) +
Pr(d|VOD) * Pr(VOD)

Thus, in the event of a particular observation of packet size average, d, we will choose “Live”
when
pr(d|Live)«Pr(Live) Pr(d|VOD)«Pr(voD)

“) pr(d|Live)«Pr(Live)+ Pr(d|V OD)«Pr(voD) = pr(d|Live)«Pr(Live)+ Pr(d|V OD)«Pr(voD)

. pr(d|Live) Pr(VOD)
pr(d|VOD) = Pr(Live)

The conditional probabilities, Pr(d|Live) and Pr(d|VoD) can be calculated empirically from the
training dataset (the calculation is described in the paragraphs below). Regarding the a priori
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probabilities Pr(Live) and Pr(VoD), we used the streaming application frequency distribution
reported by the participants in the Cisco VNI Usage program [1], as can be inferred from Table
1. Excluding the Video calling category (not streaming protocols) and the Mobile video category
(cannot identify if VoD or Live), we have Pr(Live) = 0.13 categories: Live internet TV, Internet
PVR and Ambient video) and Pr(VoD) = 0.87.

The calculation of the conditional probabilities, Pr(d|Live) and Pr(d|\VVoD) is done empirically on
the training set. We use equations (1)-(4), the a priori probabilities Pr(Live)=0.13 and
Pr(VoD)=0.87, and the conditional probabilities, Pr(d|Live) and Pr(d|VoD) to construct the off-
line models of the classifiers (presented in Figures 10-11). That is, the tag of a packet size
average, d, is set to “Live” when the likelihood ratio L(d),

_pr(d]Live)
®) Ld) = Tawop)
is larger than the ratio Tmar,
_ Pr(voD)
6) TMAP " Pr(Live)

which satisfy Equation (4); otherwise, it is set to “VVoD”. According to the off-line model of the
uplink average packet size (see Figure 8), in the event of observation of uplink packet size
average between 80 bytes to 200 bytes, the classifiers will tag it as “Live”, otherwise, this
classifiers will tag it as “VoD”. According to the off-line model of the downlink average packet
size (see Figure 9), in the event of observation of downlink packet size average between 120
bytes to 160 bytes or between 800 bytes to 1320 bytes, this classifiers will tag the stream as
“Live”; otherwise, the classifiers will tag it as “VoD”. According to Van Trees [15], this MAP
approach minimizes the expected number of errors.

The a priori probability is calculated according to the byte length usage of Live and VoD
streams. Therefore, the cost we give for each error is the flow length (in bytes) normalized by the
total length of all flows in our dataset. This means that longer streams will have more influence
than shorter streams.
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Off-line model of the uplink average
packet size classifier

W live
B VoD

a 200 400 600 800 1000 1200 1400

Figure 10. Off-line classification model for uplink average packet-size only

Off-line model of the downlink average
packet size classifier

M Live
B VoD

Q 200 400 600 800 1000 1200 1400

Figure 11. Off-line classification model for downlink average packet-size only
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(2) Comparative Classifier

The classifier is based on a simple observation that Live streaming flows from the same video
streaming source transfer very similar media information during each short time interval, while
VoD flows from the same video streaming source have larger information offset. As a result,
analyzing and comparing the content of different flows from the same video streaming source
during a small time interval (decision window) can help in the online flow labeling process.

Formally, given two streaming flows f1 and f2 during a specific time window, the online single
pair classifier procedure is:

Single pair Streaming Classifier (Window(flow £f1, flow £2))

Begin
If (information offset (fl,f2) < delta)
Tag(fl, f2) = ‘Live’
Else
Tag(fl, f2) = ‘VoD’
End

Note that this algorithm can tag VoD flows as ‘Live’ flows (false positive) in case the
information offset between the flows is relatively short — for example, when two users are
watching the same video and their VoD requests are simultaneous. It can also tag live flows as
‘VoD’ flows (false negative) in case the information offset is larger than the maximum allowed
value, or in case the information matching percentage observed in the decision window between
the flows is below the threshold (for example, due to per flow adaptive video transfer
mechanism, significant information loss, etc.).

Figure 12 presents an example of video streaming pair f1 and f2. In this example, the decision
window is 13 time units long (between time=4 and time=17), the information offset is 3 time
units and within the decision window we can identify a matching of ~1.5 video frames out of
~2.5 frames. If the maximum allowed information offset is set to 2 time units, the classifier will
tag these flows as “VoD”. If the maximum allowed information offset is set to 4 time units, then
the classifier will tag these flows as “Live”.

In the suggested streaming application classifier, the off-line model construction phase includes
the maximum allowed information offset value, delta. Due to practical limitations of processing
online information matching, we assume that the decision window size is shorter than four
seconds.

The application tag of a possible value of offset, d, is calculated according to MAP detection
method [15]. The MAP classical approach is to choose “Live” when Pr(Live|d) > Pr(VoD|d) in
deciding how to tag a flow pair between two hypotheses, “Live” or “VoD”, in the event of a
particular observation of information offset, d; and to choose “VoD” in the reverse case. In the
event that the two a posteriori probabilities are equal, one typically defaults to a single choice,
say “VoD”. In this case as well, we set the cost of an error to be the size of the compared flows
normalized by the size of all flows in our database.
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Figure 13. Information offset distribution histograms of pairs of live streaming flows (red)
and pairs of VoD streaming flows (blue) (calculated on the training dataset)
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Offset Pr(d|VOD) Pr(dlLive) Pr(d) Pr(vOD|d) Pr(Liveld) Tag

0.0-05 0.03 0.53 0.09 0.27 0.73 Live
05-10 0.05 0.06 0.05 0.83 0.17 VOD
1.0-15 0.05 0.04 0.05 0.91 0.09 VOD
15-20 0.02 0.02 0.02 0.87 0.13 VOD
20-25 0.01 0.01 0.01 0.86 0.14 VOD
25-30 0.01 0.01 0.01 0.92 0.08 VOD
3.0-35 0.01 0.01 0.01 0.85 0.15 VOD
35-40 0.00 0.01 0.00 0.82 0.18 VOD
40 < 0.82 0.32 0.76 0.95 0.05 VOD

Table 3. MAP off-line model calculation

The empirical distributions of the average information offset (in seconds) in pairs of Live and
VoD streaming flows of the training dataset are plotted in Figure 13. As can be seen from this
figure, most of the live streaming pairs have relatively short information offset. In fact, in more
than 60% of the live pairs, the information offset was shorter than one second. On the other
hand, in most of the VoD streaming flows pair, the information offset was much longer. More
than 82% of the VoD pairs have information offset longer than four seconds.

Regarding the allowed information offset, it is demonstrated in Figure 14 that as we allow larger
information offset, we will increase the number of flows with “Live” label. As a result, both the
probability that the classifier tags a flow pair with “Live” label, given that it is a Live video
streaming flow pair, Pr(“Live”|Live) (red line), and the probability that the classifier tags a flow
pair with “Live” label, given that it is a VoD streaming flow pair (false positive),
Pr(“Live”|VoD) (blue line), are increased.

Figure 15 plots the probabilities of false positives and false negatives as functions of the allowed
information offset. The optimal value of the allowed information offset parameter maximizes the
classifier accuracy by minimizing its errors.

The calculation of the conditional probabilities, Pr(d|Live) and Pr(d|\VoD) is based on the
statistics of Figure 13, as presented in Table 3. The calculation of the other columns in this table
is done using equations (1)-(3) and the a priori probabilities Pr(Live)=0.13 and Pr(VoD)=0.87,
as discussed before. The tag of an information offset is set to “Live” when the likelihood ratio
L(d), as described in Equation 5, is larger than the ratio Tmap, as described in Equation 6, which
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satisfies Equation 4; otherwise, it is set to “VoD”. According to this off-line model, in the event
of observation of information offset shorter than 0.5 second between a pair of streaming flows, the
classifier will tag them as “Live”, otherwise, it will tag them as “VVoD”. As mentioned above in
regard to the statistical classifier, according to Van Trees [15], using this MAP approach will
minimize the expected number of errors.
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Figure 4. The probability of ""Live" tagging as a function of the allowed information offset
(calculated on the training dataset)
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on the training dataset)
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VII. Performance Evaluation

Performance evaluation of the classifiers is based on real trace collected for this research by
Bezeq International, as described in Chapter IV above. In the performance analysis, the servers’
IPs are pre-tagged as Live or VoD, but these tags are not provided to the online classifier. To
evaluate the classifiers’ accuracy, the results of the online classifiers’ tags and the actual tags are
compared using the 80% testing dataset. The classifiers’ accuracy is given by the following
formula:

P = Pr(Live) * Pr(Live|Live) + Pr(VOD) * Pr(VOD|VOD)
= 0.13 * Pr(Live|Live) + 0.87 « Pr(VOD|VOD)

(1) Statistical Classifiers Performance

Table 4 presents the results of the statistical classifiers: the uplink packet size average classifier
and the downlink packet size average classifier. The accuracy of the downlink packet size
classifier is calculated using the following formula:

P = Pr(Live) = Pr(Live|Live) + Pr(VOD) = Pr(VOD|VOD)
=0.13%0.76 + 0.87 * 0.99 = 0.96

The accuracy of the uplink packet size classifier is according to:

P = Pr(Live) = Pr(Live|Live) + Pr(VOD) = Pr(VOD|VOD)
=0.13%0.38+0.87 * 0.80 = 0.74
that is worse than the accuracy of the trivial classifier which answers “VoD” always (the trivial

classifier has 87% accuracy). Thus, the highest accuracy is achieved by the downlink packet size
average classifier.

Downlink average packet size classifier

Classifier/real Live VoD
Live Pr(Live| Live) =0.76 Pr(Live| VoD) =0.24
VoD Pr(VoD| Live) = 0.01 Pr(VoD| VoD) = 0.99

Uplink average packet size classifier

Classifier/real Live VoD
Live Pr(Live| Live) =0.38 Pr(Live| VoD) = 0.62
VoD Pr(VoD| Live) = 0.20 Pr(VoD| VoD) = 0.80

Table 4. The statistical classifiers results
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(2) Comparative Classifiers Performance

Classifier\Real Live VoD
Live Pr(Live |Live) = 0.8  Pr(Live[VoD)=0.2
VoD Pr(VoD] Live) =0.01 Pr(VoD| VoD) =0.99

Table 5. The single pair classifier results

Table 5 presents the single-pair classifier results on the 80% of the dataset that was not used to
evaluate the algorithm parameter (i.e. the testing dataset). According to the off-line model
described above, we allowed information offset shorter than 0.5 seconds and used a decision
window of 1.8 seconds. The classifier accuracy is determined by the following formula:

P = Pr(Live) = Pr(Live|Live) + Pr(VOD) = Pr(VOD|VOD)
=0.13x 0.8+ 0.87 * 0.99 = 0.965
To improve the classifier accuracy, we tested its results on inputs of more than one pair. We

defined several functions on the flow pairs as listed in Table 6. Figure 16 plots the accuracy of
the extended classifier function as a function of the number of input flow pairs.
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Figure 6. The performance of multi-pair classifiers as functions of the number of input flow
pairs (each function is described in Table 6)
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VoD (OR) Tag VoD’ if all compares return ‘VoD’, otherwise ‘Live’

Live (OR) Tag ‘Live’ if at least 1 compare returns ‘Live’, otherwise ‘VoD’

VoD (> 75% VoD) Tag ‘“VoD’ if at least 75% of compares return ‘VoD’, otherwise ‘Live’
Live (> 25% Live) Tag ‘Live’ if more than 25% of compares return ‘Live,” otherwise ‘VoD’
Live (> 50% Live) Tag ‘Live’ if more than 50% of compares return ‘Live,” otherwise ‘VoD’

Table 6. Description of multi-pair functions

Classifier\Real Live VoD
Live Pr(Live |Live) =0.867  Pr(Live[VoD)=0.133
VoD Pr(VoD| Live) =0.00 Pr(VoD| VoD) = 1.0

Table 7. (> 25% L.ive) classifier results with 4 pairs

Table 7 presents the multi-pair classifier of 4 pairs compare with 'Live' if at list one pair tagged
‘Live’. The test is on the 80% of the dataset that was not used to evaluate the algorithm
parameter. The classifier accuracy is determined by the following formula:

P = Pr(Live) = Pr(Live|Live) + Pr(VOD) = Pr(VOD|VOD)
=0.13*0.86 + 0.87 * 1.00 = 0.99

It can be seen that while adding more flow pairs to the classifier consideration, the accuracy
increases. However, adding more flow pairs decreases the classifier scalability due to the
additional matching operations that are required.
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VIIl. Conclusions

In this work, we emphasized the need for a classifier that distinguishes between the two video
streaming sub-classes: Live and VoD. Due to the massive use of video streaming in general and
Live video streaming in particular (as shown in [1]), Live streaming applications will require
special handling (e.g., by multicasting), which in turn will necessitate a reliable classifier.

We offered two such classifiers. We conducted a statistical analysis of our data collection and,
according to the results, we designed our statistical classifier. The performance evaluation of the
online statistical classifier showed that the highest accuracy achieved by such classifier is the
downlink packet size average classifier, with 96% accuracy. We also designed a comparative
classifier, which, while requiring at least one additional flow from the same source for
classification, yields superior results. The comparative classifier is based on the average time
difference between similar packets from two (or more) flows and shows accuracy between
96.5% and 97.53%, depending on the number of flows used for the comparison.

The comparative classifier presented a new approach which is different from the common
approach of DPI or any other statistical classification algorithms. While the perspective of other
classifiers was usually limited to a current packet or a single connection, our perspective in the
comparative classifier included multiple streams with common source. We examined several
options for multi-pair comparison which improved our results but decreased the solution
scalability.

The dataset collected for this research included Live and VoD streaming applications from one
streaming server each. To consolidate our solutions, there is room for testing them on more
traces from other streaming servers. These future traces should still be recorded in the ISP and
include many flows from each streaming server.

In Chapter VI, we showed that using multiple flows in our comparative classifier can enhance
the classifier results. However, this required many comparing operations and the solution became
cumbersome. Future work is needed in order to develop the multi-pair classifier to use many
flows at a decision window period without changing the solution scalability.

An additional option for enhancing the results is to combine the two classifiers (statistical and
comparative). As shown in Tables 4 and 5, the downlink statistical classifier achieved the best
results for Pr(Live |Live), while the comparative classifier achieved the best results for Pr(VoD| VoD).
As mentioned above, the statistical classifier required only a single flow while the comparative
classifier needed at least two flows for comparison. Therefore, a natural concept for future work
is to combine the two classifiers in a way that compares two flows and yet takes into account the
average packet size of each one.
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