
The Interdisciplinary Center, Herzliya
Efi Arazi School of Computer Science

Constant RMR Group Mutual

Exclusion for Arbitrarily Many

Processes and Sessions

by

Liat Maor

M.Sc. dissertation, submitted in partial fulfillment of the requirements

for the Master’s degree, School of Computer Science

The Interdisciplinary Center, Herzliya

September 8, 2021

This work was carried out under the supervision of Prof. Gadi Taubenfeld as

part of the M.Sc. program of Efi Arazi School of Computer Science, The Interdis

ciplinary Center, Herzliya.

1

Acknowledgments

I would like to thank my supervisor, Prof. Gadi Taubenfeld, for his invaluable

advice, continuous support, and patience during my master study. His immense

knowledge and plentiful experience have encouraged me in all the time of my

academic research.

My appreciation also goes out to my family and friends for their encourage

ment and support all through my studies.

2

Thesis summary

In this work, a group mutual exclusion (GME) algorithm is presented. The al

gorithm consists of entry code and exit code. The entry code is executed before

accessing the critical section, and the exit code is executed right after completing

the critical section. Together, the entry code and the exit code assemble a GME

lock, such that processes that request the same session may enter their critical sec

tions concurrently while processes that request different sessions may not enter

their critical sections simultaneously.

The algorithm that is presented in this work, is the first to achieve a constant

Remote Memory Reference (RMR) complexity for both cache coherent (CC) and

distributed shared memory (DSM) machines, and is the first that can be accessed

by arbitrarily many dynamically allocated processes with arbitrarily many session

names. The algorithm satisfies the following properties:

1. Mutual exclusion: Two processes can be in their CS at the same time, only

if they request the same session.

2. Starvation freedom: If a process is trying to enter its CS, then this process

must eventually enter its CS.

3. Group concurrent entering (GCE): If a process p requests a session s while

no process requesting a conflicting session, then (1) some process with ses

sion s can complete its entry section within a bounded number of its own

steps, and (2) p eventually completes its entry section, even if other pro

cesses do not leave their CS. (The algorithm also satisfies strongGCE)

4. Group bounded exit (GBE): If a process p is in its exit section, then (1) some

3

process can complete its exit section within a bounded number of its own

steps, and (2) p eventually completes its exit section.

5. Firstcomefirstserved (FCFS): If a process p completes its doorway be

fore a process q enters its doorway and the two processes request different

sessions, then q does not enter its CS before p enters its CS.

6. Firstinfirstenabled (FIFE): If a process p completes its doorway before

a process q enters its doorway, the two processes request the same session,

and q enters its CS before p, then p enters its CS in a bounded number of its

own steps.

7. Suitability for dynamic systems: The algorithm can be accessed by an ar

bitrarily number of processes, that is, processes may appear or disappear

intermittently; and the number and names of the sessions are not limited in

any way.

8. O(1) RMR complexity: An operation that a process performs on a mem

ory location is considered a remote memory reference (RMR) if the process

cannot perform the operation locally on its cache or memory and must trans

act over the multiprocessor’s interconnection network in order to complete

the operation. This algorithm achieve the ideal RMR complexity of O(1)

for both Cache Coherent (CC) and Distributed Shared Memory (DSM) ma

chines.

9. O(1) space per process: A small constant number of memory locations are

allocated for each process.

4

10. Atomic instruction set: read, write, FetchAndStore (FAS), CompareAnd

Swap (CAS)

The properties GCE (also strongGCE) and GBE are first introduced in this

work to circumvent the lower bound from [9].

5

Abstract

Group mutual exclusion (GME), introduced by Joung in 1998, is a natural syn

chronization problem that generalizes the classical mutual exclusion and readers

and writers problems. In GME a process requests a session before entering its crit

ical section; processes are allowed to be in their critical sections simultaneously

provided they have requested the same session.

We present a GME algorithm that (1) is the first to achieve a constant Re

mote Memory Reference (RMR) complexity for both cache coherent and dis

tributed shared memory machines; and (2) is the first that can be accessed by

arbitrarily many dynamically allocated processes and with arbitrarily many ses

sion names. Neither of the existing GME algorithms satisfies either of these two

important properties. In addition, our algorithm has constant space complexity

per process and satisfies the two strong fairness properties, firstcomefirstserved

and firstinfirstenabled. Our algorithm uses an atomic instruction set supported

by most modern processor architectures, namely: read, write, fetchandstore and

compareandswap.

Contents

1 Introduction 8

1.1 Motivation and results . 8

1.2 The GME problem . 11

1.3 Further explanations . 13

1.4 Related work . 16

2 Preliminaries 19

2.1 Computational model . 19

2.2 The CC and DSM machine architectures 21

2.3 RMR complexity: counting remote memory references 22

3 The GME Algorithm 23

3.1 An informal description . 23

3.2 The algorithm . 27

3.3 Further explanations . 31

4 Correctness proof 40

5 Discussion 73

7

1 Introduction

1.1 Motivation and results

In the group mutual exclusion (GME) problem n processes repeatedly attend m

sessions. Processes that have requested to attend the same session may do it con

currently. However, processes that have requested to attend different sessions

may not attend their sessions simultaneously. The GME problem is a natural gen

eralization of the classical mutual exclusion (ME) and readers/writers problems

[7, 10]. To see this, observe that given a GME algorithm, ME can be solved by

having each process use its unique identifier as a session number. Readers/writers

can be solved by having each writer request a different session, and having all

readers request the same special session. This allows readers to attend the ses

sion concurrently while ensuring that each writer attends in isolation. The GME

problem has been studied extensively since it was introduced by YuhJzer Joung

in 1998 [19, 20].

A simple usage example has to do with the design of a concurrent queue or

stack [5]. Using a GME algorithm, we can guarantee that no two users will ever

simultaneously be in the enqueue.session or dequeue.session, so the enqueue and

dequeue operations will never be interleaved. However, it will allow any number

of users to be in either the enqueue or dequeue session simultaneously. Doing so

simplifies the design of a concurrent queue as our only concern now is to imple

ment concurrent enqueue operations and concurrent dequeue operations.

In this work, we present a GME algorithm that is the first to satisfy several

desired properties (the first two properties are satisfied only by our algorithm).

1. Suitability for dynamic systems: All the existing GME algorithms are de

8

signed with the assumption that either the number of processes or the num

ber of sessions is a priori known. Our algorithm is the first that does not

make such an assumption:

• it can be accessed by an arbitrary number of processes; that is, pro

cesses may appear or disappear intermittently, and

• the number and names of the sessions are not limited in any way.

2. O(1) RMR complexity: An operation that a process performs on a mem

ory location is considered a remote memory reference (RMR) if the process

cannot perform the operation locally on its cache or memory and must trans

act over the multiprocessor’s interconnection network in order to complete

the operation. RMRs are undesirable because they take long to execute and

increase the interconnection traffic. Our algorithm

• achieves the optimal RMR complexity of O(1) for Cache Coherent

(CC) machines; and

• is the first to achieve the optimal RMR complexity of O(1) for Dis

tributed Shared Memory (DSM) machines. (In Subsection 1.3, we ex

plain why this result does not contradict the lower bound from [9].)

This means that a process incurs only a constant number of RMRs to satisfy

a request (i.e, to enter and exit the critical section once), regardless of how

many other processes execute the algorithm concurrently.

3. O(1) space per process: A small constant number of memory locations are

allocated for each process. On DSM machines, these memory locations

9

reside in the process local memory; on CC machines, these locations reside

in the shared memory.

4. Strong fairness: Requests are satisfied in the order of their arrival. That is,

our algorithm satisfies the firstcomefirstserved and firstinfirstenabled

properties, defined later.

5. Hardware support: Atomic instruction set that is supported by most mod

ern processor architectures is used, namely: read, write, fetchandstore and

compareandswap.

We point out that when using a GME as a ME algorithm, the number of pro

cesses is the same as the number of sessions (each process uses its identifier as its

session number). Thus, in GME algorithms, in which the number of sessions is

a priori known also the number of processes must be known, at least when these

GME algorithms are used as ME algorithms or readers and writers locks.

Our GME algorithm is inspired by J. M. MellorCrummey and M. L. Scott

MCS queuebased ME algorithm [25]. The idea of our GME algorithm is to em

ploy a queue, where processes insert their requests for attending a session. The

condition when a process p may attend its session depends on whether p’s session

is the same as that of all its predecessors. Otherwise, p waits until p is notified (by

one of its predecessors) that all its predecessors which have requested different

sessions completed attending their sessions.

A drawback of theMCSME algorithm is that releasing a lock requires spinning

– a process p releasing the lock may need to wait for a process that is trying to

acquire the lock (and hence is behind p in the queue) to take a step before p can

proceed. The ME algorithms in [11] overcome this drawback while preserving

10

the simplicity, elegance, and properties of the MCS algorithm. We use a key idea

inspired by [11] in our GME algorithm to ensure that a process releasing the GME

lock will never have to wait for a process that has not attended its session yet.

Another key idea of our algorithm is to count down completed requests for

attending a session by moving a pointer by one node (in the queue) for each such

request and to ensure the integrity of this scheme by gating the processes that have

completed attending a session (and are now trying to move the pointer) through a

mutual exclusion lock.

1.2 The GME problem

Formally, the GME problem is defined as follows: it is assumed that each process

executes a sequence of instructions in an infinite loop. The instructions are divided

into four continuous sections of code: the remainder, entry, critical section (CS),

and exit.

A process starts by executing its remainder section. At some point, it might

need to attend some session, say s. To attend session s, a process has to go through

an entry code that guarantees that while it is attending this session, no other pro

cess is allowed to attend another session. In addition, once a process completes

attending a session, the process executes its exit section in which it notifies other

processes that it is no longer attending the session. After executing its exit section,

the process returns to its remainder.

The group mutual exclusion problem is to write the code for the entry section

and the exit section so that the following requirements are satisfied.

• Mutual exclusion: Two processes can be in their CS at the same time, only

if they request the same session.

11

• Starvationfreedom: If a process is trying to enter its CS, then this process

must eventually enter its CS.

• Group concurrent entering (GCE): If a process p requests a session s while

no process is requesting a conflicting session, then (1) some process with

session s can complete its entry section within a bounded number of its

own steps, and (2) p eventually completes its entry section, even if other

processes do not leave their CS.

• Group bounded exit (GBE): If a process p is in its exit section, then (1) some

process can complete its exit section within a bounded number of its own

steps, and (2) p eventually completes its exit section.

GCE precludes using a given mutual exclusion algorithm as a solution for the

GME problem since GCE enables processes to attend the same session concur

rently.

Our algorithm also satisfies the following strong fairness requirements. To

formalize this, we assume that the entry code starts with a bounded section of

code (i.e., one that contains no unbounded loops), called the doorway; the rest of

the entry code is called the waiting room. The fairness requirements, satisfied by

our algorithm, can now be stated as follows:

• Firstcomefirstserved (FCFS): If a process p completes its doorway be

fore a process q enters its doorway and the two processes request different

sessions, then q does not enter its CS before p enters its CS [14, 24].

• Firstinfirstenabled (FIFE): If a process p completes its doorway before

a process q enters its doorway, the two processes request the same session,

12

and q enters its CS before p, then p enters its CS in a bounded number of its

own steps [18].

We notice that FCFS and FIFE do not imply starvationfreedom or group concur

rent entering.

1.3 Further explanations

To illustrate the variousGME requirements, imagine the critical section as a lecture

hall that different professors can share for their lectures. Furthermore, assume that

the lecture hall has one entrance door and one exit door. When solving the GME

problem, the property of mutual exclusion guarantees that two different lectures

cannot be arranged in the lecture hall simultaneously, while starvationfreedom

guarantees that the lecture hall will eventually be reserved for every scheduled

lecture.

Assuming that only one lecture is scheduled, group concurrent entering ensures

that all the students whowant to attend this lecture can enter the lecture hall through

the entrance door, possibly one after the other, and attend the lecture. Furthermore,

at any given time, when there are students who want to attend the lecture, at least

one of them can always enter the lecture hall without any delay. Similarly, group

bounded exit ensures that all the students who want to leave a lecture can do so

through the exit door, possibly one after the other. Furthermore, at any given time,

at least one of them can exit the lecture hall without delay.

Group concurrent entering and group bounded exit are first introduced and

formally defined in this work. They are slightly weakened versions of two known

requirements (formally defined below) called concurrent entering and bounded

exit. Using the lecture hall metaphor, assuming that only one lecture is scheduled,

13

concurrent entering ensures that all the students who want to attend this lecture can

enter the lecture hall together. Similarly, bounded exit ensures that all the students

who want to leave a lecture can do so together. So, why have we not used these

two stronger requirements?

Danek andHadzilacos lower bound. Letn denotes the total number of processes.

In [9], it is proven that Ω(n) RMRs are required for any GME algorithm that satis

fies mutual exclusion, starvationfreedom, concurrent entering, and bounded exit,

in the DSM model, using basic primitives of any strength. This result holds even

when the number of sessions is only two. (Concurrent entering and bounded exit

are as defined below [14].) Since we are aiming at finding a solution that hasO(1)

RMR complexity, we had to weaken either concurrent entering, bounded exit, or

both. (GMEwould not be interesting if themutual exclusion or starvationfreedom

properties are weakened.)

Group concurrent entering. To avoid an inefficient solution to the GME problem

using a traditional ME algorithm and forcing processes to be in their CS oneat

atime, even if all processes are requesting the same session, Joung required that

a GME algorithm satisfies the following property (which he called concurrent en

tering):

• If some processes request a session and no process requests a different ses

sion, then the processes can concurrently enter the CS [19].

The phrase “can concurrently enter,” although suggestive, is not precise. In [22,

23], Keane and Moir were the first to give a precise definition that captures their

interpretation of Joung’s requirement (which they also called concurrent entering):

14

• Concurrent occupancy: If a process p requests a session and no process

requests a different session, then p eventually enters its CS, even if other

processes do not leave their CS. (The name “concurrent occupancy” is from

[14].)

In [14], Hadzilacos gave the following interpretation, which is stronger than that

of Keane and Moir.

• Concurrent entering: If some process, say p, is trying to attend a session

s while no process is requesting a conflicting session, then p completes its

entry section in a bounded number of its own steps.

To circumvent the Danek and Hadzilacos Ω(n) lower bound, we looked for a

slightly weaker version of concurrent entering that would still capture the prop

erty that Joung intended to specify. We believe that group concurrent entering,

which is strictly stronger than concurrent occupancy, is such a property. We point

out that our algorithm actually satisfies the following stronger version of group

concurrent entering,

• Strong group concurrent entering: If a process p requests a session s, and

p completes its doorway before any conflicting process starts its doorway,

then (1) some process with session s can complete its entry section within a

bounded number of its own steps, and (2) p eventually completes its entry

section, even if other processes do not leave their CS.

Strong group concurrent entering (SGCE) is a slightly weakened version of a

known property called strong concurrent entering [18].

15

Group bounded exit. Our group bounded exit property is replaced by the fol

lowing two (weaker and stronger) properties in previously published papers.

• Terminating exit: If a process p enters its exit section, then p eventually

completes it [22].

• Bounded exit: If a process p enters its exit section, then p eventually com

pletes it within a bounded number of its own steps [14].

Again, to circumvent the Danek and Hadzilacos Ω(n) lower bound, we have de

fined group bounded exit, which is slightly weaker than bounded exit and is strictly

stronger than terminating exit.

Open question. We have modified both concurrent entering and bounded exit.

Is this necessary? With minor modifications to the Danek and Hadzilacos lower

bound proof, it is possible to prove that their lower bound still holds when replac

ing only bounded exit with group bounded exit. Thus, to circumvent the lower

bound, the weakening of concurrent entering is necessary. However, the question

of whether it is possible to circumvent the lower bound by replacing only concur

rent entering with group concurrent entering, and leaving bounded exit as is, is

open.

1.4 Related work

Table 1 summarizes some of the (more relevant) GME algorithms mentioned be

low and their properties. The group mutual exclusion problem was first stated and

solved by YuhJzer Joung in [19, 20], using atomic read/write registers. The prob

lem is a generalization of the mutual exclusion problem [10] and the readers and

16

writers problem [7] and can be seen as a special case of the drinking philosophers

problem [6].

Group mutual exclusion is similar to the room synchronization problem [5].

The room synchronization problem involves supporting a set of m mutually ex

clusive “rooms” where any number of users can execute code simultaneously in

any one of the rooms, but no two users can simultaneously execute code in sepa

rate rooms. In [5], room synchronization is defined using a set of properties that

is different than that in [19], a solution is presented, and it is shown how it can be

used to efficiently implement concurrent queues and stacks.

In [22, 23], a technique of converting any solution for the mutual exclusion

problem to solve the group mutual exclusion problem was introduced. The algo

rithms from [22, 23] do not satisfy group concurrent entering and group bounded

exit and have O(n) RMR complexity, where n is the number of processes. (By

mistake, in some of the tables in [22, 23], smaller RMR complexity measures

are mentioned.) In [14], a simple formulation of concurrent entering is proposed

which is stronger than the one from [22], and an algorithm is presented that satis

fies this property.

In [18], the first FCFSGMEalgorithm is presented that uses onlyO(n) bounded

shared registers, while satisfying concurrent entering and bounded exit. Also, it is

demonstrated that the FCFS property does not fully capture the intuitive notion of

fairness, and additional fairness property, called firstinfirstenabled (FIFE) was

presented. Finally, the authors presented a reduction that transforms any abortable

FCFS mutual exclusion algorithm, into a GME algorithm, and used it to obtained

GME algorithm satisfying both FCFS and FIFE.

A GME algorithm is presented in [9] with O(n) RMR complexity in the DSM

17

model, and it is proved that this is asymptotically optimal. Another algorithm in

[9] requires onlyO(logn) RMR complexity in the CC model, but can be used just

for two sessions.

Our algorithm satisfies FCFS fairness. That is, if the requests in the queue

are for sessions 1, 2, 1, 2, 1, 2 and so on, those requests would be granted in that

order. Yet, for practical considerations, one may want to batch all requests for ses

sion 1 (and, separately, for session 2) and run them concurrently. Our algorithm

does not support “batching” of pending requests for the same session, as FCFS

fairness and “batching” of pending requests for the same session are contradicting

(incompatible) requirements. This idea was explored in [4], where a GME algo

rithm is presented that satisfies two “batching” requirements called pulling and

relaxedFCFS, and requiring only O(logn) RMR complexity in the CC model.

ReaderWriter Locks were studied in [?], which trade fairness between readers

and writers for higher concurrency among readers and better backtoback batch

ing of writers.

An algorithm is presented in [12] inwhich a process can enter its critical section

within a constant number of its own steps in the absence of any other requests

(which is typically referred to as contentionfree step complexity). In the presence

of contention, the RMR complexity of the algorithm is O(min(k, n)), where k

denotes the interval contention. The algorithm requires O(n2) space and does not

satisfy fairness property like FCFS or FIFE.

In [1], a GME algorithm with a constant RMR complexity in the CC model

is presented. This algorithm does not satisfy group concurrent entering (or even

concurrent occupancy) and FCFS. However, it satisfies two other interesting prop

erties (defined by the authors) called simultaneous acceptance and forumFCFS.

18

In [15], the first GME algorithm with both linear RMR complexity (in the

CC model) and linear space was presented, which satisfies concurrent entering

and bounded exit, and uses only read/write registers. A combined problem of ℓ

exclusion and group mutual exclusion, called the group ℓexclusion problem, is

considered in [26, 28].

Besides the algorithms mentioned above, for the sharedmemory model, there

are algorithms that solve the GME problem under the messagepassing model.

Several types of the network’s structure were considered, for example, tree net

works [3], ring networks [29], and fully connected networks [2]. In [2, 21, 27],

quorumbased messagepassing algorithms are suggested in which a process that

is interested in entering its CS has to ask permission from a predefined quorum.

2 Preliminaries

2.1 Computational model

Our model of computation consists of an asynchronous collection of n determin

istic processes that communicate via shared registers (i.e., shared memory loca

tions). Asynchrony means that there is no assumption on the relative speeds of

the processes. Access to a register is done by applying operations to the register.

Each operation is defined as a function that gets as arguments one or more values

and registers names (shared and local), updates the value of the registers, and may

return a value. Only one of the arguments may be a name of a shared register. The

execution of the function is assumed to be atomic. Call by reference is used when

passing registers as arguments. The operations used by our algorithm are:

19

GME Group Group Fairness Unknown Shared RMR RMR Hardware
Algorithms bounded concurrent number of space in CC in DSM used

exit entering FCFS/ processes for all
BE/GBE CE/GCE FIFE & sessions processes

Joung BE CE 7 7 O(n) ∞ ∞ read/write
1988
Keane & 7 7 7 7 O(n) O(n) O(n) read/write
Moir 1999
Hadzilacos BE CE FCFS 7 O(n2) O(n2) ∞ read/write
2001
Jayanti et.al. BE CE FCFS 7 O(n) O(n2) ∞ read/write
2003 FIFE
Danek&Had BE CE FCFS 7 O(n2) O(n) O(n) CAS
zilacos 2004 FIFE fetch&add
Bhatt & BE CE 7 7 O(mn) O(min(∞ LL/SC
Huang 2010 k, logn))
He et. al. BE CE FCFS 7 O(n) O(n) ∞ read/write
2018
Aravid&He BE 7 7 O(L) O(1) ∞ fetch&inc
sselink 2019 FIFE
Gokhale & BE CE 7 7 O(n2) O(min(O(n) CAS
Mittal 2019 c, n)) fetch&add
Our GBE GCE FCFS 3 O(n) O(1) O(1) CAS
algorithm FIFE fetch&store

3 satisfies the property k point contention BE bounded exit
7 does not satisfy the property c interval contention GBE group bounded exit
n number of processes L a constant number CE concurrent entring
m number of sessions s.t. L > min(n,m) GCE group concurrent entring

Table 1: Comparing the properties of our algorithm with those of several GME
algorithms.

• Read: takes a shared register r and simply returns its value.

• Write: takes a shared register r and a value val. The value val is assigned to

r.

• Fetchandstore (FAS): takes a shared register r and a local register ℓ, and

atomically assigns the value of ℓ to r and returns the previous value of r.

(The fetchandstore operation is also called swap in the literature.)

20

. . .

M

. . .

M M

(a)

C

. . .

M

(b)

C

(c)

P P P P P P

Figure 1: Shared memory models. (a) Central shared memory. (b) Cache Coher
ent (CC). (c) Distributed Shared Memory (DSM). P denotes processor, C denotes
cache, M denotes shared memory.

• Compareandswap (CAS): takes a shared register r, and two values: new

and old. If the current value of the register r is equal to old, then the value of

r is set to new and the value true is returned; otherwise, r is left unchanged

and the value false is returned.

Most modern processor architectures support the above operations.

2.2 The CC and DSM machine architectures

We consider two machine architecture models: (1) Cache coherent (CC) systems,

where each process (or processor) has its own private cache. When a process ac

cesses a shared memory location, a copy of it migrates to a local cache line and

becomes locally accessible until some other process updates this shared memory

location and the local copy is invalidated; (2) Distributed shared memory (DSM)

systems, where instead of having the “shared memory” in one central location,

each process “owns” part of the shared memory and keeps it in its own local mem

ory. These different shared memory models are illustrated in Figure 1.

A shared memory location is locally accessible to some process if it is in the

part of the shared memory that physically resides on that process’ local memory.

21

Spinning on a remote memory location while its value does not change, is counted

only as one remote operation that causes communication in the CC model, while

it is counted asmany operations that cause communication in the DSMmodel. An

algorithm satisfies local spinning (in the CC or DSM models) if the only type of

spinning required is local spinning.

2.3 RMR complexity: counting remote memory references

We define a remote reference by process p as an attempt to reference (access) a

memory location that does not physically reside in p’s local memory or cache.

The remote memory location can either reside in a central shared memory or in

some other process’ memory.

Next, we define when remote reference causes communication. (1) In the DSM

model, any remote reference causes communication; (2) in the CCmodel, a remote

reference to register r causes communication if (the value of) r is not (the same

as the value) in the cache. That is, communication is caused only by a remote

write access that overwrites a different value or by the first remote read access by

a process that detects a value written by a different process.

Finally, we define time complexity when counting only remote memory refer

ences. This complexity measure, called RMR complexity, is defined with respect

to either the DSM model or the CC model, and whenever it is used, we will say

explicitly which model is assumed.

• The RMR complexity in the CC model (resp. DSM model) is the maximum

number of remote memory references which cause communication in the

CC model (resp. DSM model) that a process, say p, may need to perform in

22

its entry and exit sections in order to enter and exit its critical section since

the last time p started executing the code of its entry section.

3 The GME Algorithm

Our algorithm has the following properties: (1) it has constant RMR complexity in

both the CC and the DSMmodels, (2) it does not require to assume that the number

of participating processes or the number of sessions is a priori known, (3) it uses

constant space per process, (4) it satisfies FCFS and FIFE fairness, (5) it satisfies

the properties: mutual exclusion, starvationfreedom, SGCE, and GBE, (6) it uses

an atomic instruction set supported by most modern processor architectures (i.e.,

read, write, FAS and CAS).

3.1 An informal description

The algorithm maintains a queue of nodes which is implemented as a linked list

with two shared objects, Head and Tail, that point to the first and the last nodes,

respectively. Each node represents a request of a process to attend a specific ses

sion. A node is an object with a pointer field called next, a boolean field called

go, an integer field called session, and two status fields called status and active.

Each process p has its own two nodes, calledNodesp[0] andNodesp[1], which can

be assumed to be stored in the process p’s local memory in a DSM machine, and

in the shared memory in a CC machine. Each time p wants to enter its CS section,

p uses alternately one of its two nodes. We say that a process p is enabled if p can

enter its CS in a bounded number of its own steps.

In its doorway, process p initializes the fields of its node as follows:

23

• session is set to the session p wants to attend, letting other processes know

the session p is requesting (line 2).

• next is a pointer to the successor’s node and is initially set to null. This field

is being updated later by p’s successor (line 11).

• go is set to false. Later, if p is not enabled, pwould spin on its go bit until the

value is changed to true. The go bit is the only memory location a process

may spin on.

• status is set to WAIT. This field is being used to determine if a process is

enabled. When a process becomes enabled, it sets this field to ENABLED

(line 26). When process p sees that its predecessor is not enabled (line 13),

p spins on its go bit (line 14). Otherwise, p informs its predecessor that p

has seen that the predecessor is enabled (and hence p does not need help),

by setting its predecessor’s status field to NO_HELP . When a process

p sees that its status is ENABLED (line 30), p tries to help its successor

to become enabled and notifies the successor by setting p’s own status to

TRY _HELP .

• active is set to YES. This field is being used to determine whether p’s node

is active or not. A node is active if there is a process p that is currently using

the node in an attempt to enter p’s critical section.

At the end of its doorway, process p threads its node to the end of the queue (line

7). Afterward, p checks what its state is. The state can be one of the following:

1. its node is the first in the queue,

2. its predecessor requests the same session, or

24

3. its predecessor requests a different session.

In the first case, p can safely become enabled and enters its CS. In the second

case, p becomes enabled only if its predecessor is enabled. In the third case, p

eventually becomes enabled, once all the processes it follows completed their CSs.

We observe that in the exit section, each process causes Head to be advanced by

exactly one step. So, if p’s predecessor’s node is inactive, it implies that all the

processes that p follows completed their CSs, and thus, p can become enabled and

enters its CS.

In the last two cases, once p is enabled, p checks whether it should help its

predecessor advance Head, by checking if p’s predecessor’s node is inactive. If

the predecessor’s node is inactive, then Head should point to the node after this

inactive node, which is p’s node. Therefore, in such a case, p advances Head to

point to its node.

Once p is enabled to enter its CS, p notifies its successor by setting p’s status to

ENABLED. Next, p checks if it has a successor that requests the same session and

needs help also to become enabled. If so, p tries to help its successor to become

enabled. Only then p enters its CS. The processes that may enter their CS simul

taneously are: the process, say p, that Head points to its node, and every process

q that (1) requests the same session as p, and (2) no conflicting process entered its

node between p’s node and q’s node.

Most of the exit code is wrapped by a mutual exclusion lock. This ensures that

each process can cause Head to be advanced by a single step every time a process

completes its CS. A process p that completes its CS and succeeds in acquiring the

ME lock tries to advanceHead. If p succeeds in advancingHead, thenHead value

is either null or points to the next node in the queue. If Head is not null, p changes

25

the go bit to true in the node that Head points to. By doing so, p lets the next

process become enabled.

If p fails to advance Head, this means that some other process either,

1. enters the queue after p sets Tail to null (line 38),

2. enters the queue but has not notified its predecessor yet (line 11), or

3. has not entered the queue yet (line 7).

In the first case, the process, say q, in its entry section overrides Head to point to

q’s node (line 9) because q’s predecessor is null, and so q “advances” Head for p.

In the latter cases, q in its entry section overrides Head to point to q’s own node

because it sees q’s predecessor’s node is inactive, and so q “advances” Head for p.

Afterward, p releases the ME lock, changes the index of its current node (for the

next attempt to enter p’s critical section), and completes its exit section.

To guarantee that our GME algorithm satisfies group bounded exit, the mutual

exclusion used in the exit section (lines 36 and 49) must satisfy three properties,

(1) starvationfreedom, (2) bounded exit, and (3) a property that we call bounded

entry. Bounded entry is defined as follows: If a process p is in its entry section,

while no other process is in its critical section or exit section, some process can

complete its entry section within a bounded number of its own steps.1 While the

important and highly influentialMCS lock [25] does not satisfy bounded exit, there

are variants of it, like the mutual exclusion algorithms from [8, 11, 17], that satisfy

all the above three properties.
1It is interesting to notice that the bounded entry property cannot be satisfied by aME algorithm

that uses only read/write atomic registers [?], [?] (page 119).

26

We will use one of the mutual exclusion algorithms from [11, 17], since (in

addition to satisfying the above three properties) each of these algorithms satis

fies the following properties which match those of our GME algorithm: (1) it has

constant RMR complexity in both the CC and the DSM models, (2) it does not

require to assume that the number of participating processes is a priori known, (3)

it uses constant space per process, (4) it satisfies FCFS, (5) it uses the same atomic

instruction set as our algorithm, (6) it makes no assumptions on what and how

memory is allocated (in [8] it is assumed that all allocated pointers must point to

even addresses).

3.2 The algorithm

Two memory records (nodes) are allocated for each process. On DSM machines,

these two records reside in the process local memory; on CC machines, these two

records reside in the shared memory. In the algorithm, the following symbols are

used:

& – this symbol is used to obtain an object’s memory location address (and

not the value in this address). For example, &var is the memory location

address of variable var.

→ – this symbol is used to indicate a pointer to data of a field in a specific

memory location. For example, assume var is a variable that is a struct

with a field called number. We now define another variable loc := &var

s.t. loc points to var. Using loc → number we would get the value of

var.number.

Q – the queue in the algorithm is denoted by Q. Q is only used for explanations

27

and does not appear in the algorithm’s code.

Algorithm 1 The GME algorithm: Code for process p

Type: QNode: { session: int, go: bool, next: QNode*,

active: ∈ {YES, NO, HELP}

status: ∈ {ENABLED, WAIT, TRY_HELP, NO_HELP} }

Shared: Head: type QNode*, initially null ▷ pointer to the first node in Q

Tail: type QNode*, initially null ▷ pointer to the last node in Q

Lock: type ME lock ▷ mutual exclusion lock

Nodesp[0, 1]: each of type QNode, initial value immaterial ▷ nodes local to p

in DSM

Local: s: int ▷ the session of p

nodep: type QNode*, initial value immaterial ▷ pointer to p’s currently used

node

predp: type QNode*, initial value immaterial ▷ pointer to p’s predecessor node

nextp: type QNode*, initial value immaterial ▷ pointer to p’s successor node

temp_headp: type QNode*, initial value immaterial ▷ temporarily save the

head

currentp: ∈ {0, 1}, initial value immaterial ▷ the index for p’s current node

procedure Thread(s: int) ▷ s is the session p wants to attend

▷ Begin Doorway

1: nodep := &Nodesp[currentp] ▷ pointer to current node for this attempt to enter

p’s CS

2: nodep → session := s ▷ p’s current session

3: nodep → go := false ▷ may spin locally on it later

4: nodep → next := null ▷ pointer to successor

28

5: nodep → status := WAIT ▷ p isn’t enabled

6: nodep → active := YES ▷ p’s node is active

7: predp := FAS(Tail, nodep) ▷ p enters its current node to Q

▷ End Doorway

8: if predp = null then ▷ was Q empty before p entered?

9: Head := nodep ▷ nodep is the first in Q

10: else ▷ p has pred

11: predp → next := nodep ▷ notify pred

12: if predp → session = s then ▷ do we have the same session?

13: if not CAS(predp → status, ENABLED, NO_HELP) then

▷ should wait for help from pred?

14: await nodep → go = true ▷ wait until released by pred with the same

session

15: else if not CAS(predp → active, YES, HELP) then ▷ should help

advance Head?

16: Head := nodep ▷ help advance Head

17: end if

18: else ▷ we have different sessions

19: if CAS(predp → active, YES, HELP) then ▷ pred’s node is still active?

20: await nodep → go = true

▷ wait until release by a process with a different session

21: else ▷ pred’s node is inactive in Q thus p is enabled

22: Head := nodep

23: end if

24: end if

25: end if

29

26: nodep → status := ENABLED ▷ can enter the CS

▷ Try helping the successor

27: nextp := nodep → next ▷ save next pointer locally

28: if nextp ̸= null then ▷ has successor?

29: if nextp → session = s then ▷ we have the same session

30: if CAS(nodep → status, ENABLED, TRY_HELP) then

31: nextp → go := true ▷ make your successor enabled

32: end if

33: end if

34: end if

35: critical section

36: Acquire(Lock) ▷ Mutual exclusion entry section

37: temp_headp := Head ▷ save current head locally

38: if CAS(Tail, temp_headp, null) then ▷ remove node from tail if it is the only

node in Q

39: CAS(Head, temp_headp, null) ▷ try removing it from the head

40: else if temp_headp → next ̸= null then ▷ head has successor

41: temp_headp := temp_headp → next ▷ advance the temp head

42: Head := temp_headp ▷ advance the head

43: temp_headp → go := true ▷ enable the new head

44: else if not CAS(temp_headp → active, YES, NO) then

▷ someone in Tail but hasn’t notify to its predecessor in time

45: temp_headp := temp_headp → next ▷ advance the temp head

30

46: Head := temp_headp ▷ advance the head

47: temp_headp → go := true ▷ enable the new head

48: end if

49: Release(Lock) ▷ Mutual exclusion exit section

50: currentp := 1− currentp ▷ toggle for further use

end procedure

3.3 Further explanations

To better understand the algorithm, we explain below several delicate design issues

which are crucial for the correctness of the algorithm.

1. Why does each process p need two nodes Nodesp[0] and Nodesp[1]? This

is done to avoid a deadlock. Assume each process has a single node instead

of two, and consider the following execution. Suppose p is in its CS, and q

completed its doorway. p resumes and executes its exit section. p completes

its exit section while q is in the queue but has not notified p that q is p’s

successor (line 11). p leaves its status field as ENABLED and changes its

active field to NO (line 44), so q should be able to enter its CS, no matter

what session q requests. p starts another attempt to enter its CS, before q

resumes and executes either line 13 or line 19 (depends on which session p

requests). p uses its single node and sets status toWAIT and active to YES

in its doorway (lines 5 and 6, respectively). Notice, in that execution, q’s

predecessor’s node is p’s node while p’s predecessor’s node is q’s node, see

figure 2.

31

Figure 2: Deadlock scenario while using only one node for each process. (a)
process p completes its iteration while q hasn’t executed line 11 yet. (b) process p
starts the algorithm again with the same node.

Now, q continues and (by executing either line 13 or line 19) sees that p

is not enabled and p’s node is active, so q spins on its go bit. Also, p (by

executing either line 13 or line 19) sees that q is not enabled and its node is

active, so p also spins on its go bit. No process will release q, and a deadlock

occurs. This problem is resolved by having each process owns two nodes.

2. Why dowe need the CAS operations at lines 13 and 30? The CAS operations

at these lines prevent a potential race condition that may violate the mutual

exclusion property.

Assume we replace the CAS operations at lines 13 and 30, as follows: (see

figure 3)

• At line 13, p checks if predp → status ̸= ENABLED. If so, p

32

...

13: if predp → status ̸= ENABLED then
14: await nodep → go = true

else
14.5: predp → status := NO_HELP
15: if not CAS(predp → active, YES, HELP) then
16: Head := nodep
17: end if
18: end if

...

27: nextp := nodep → next
28: if nextp ̸= null then
29: if nextp → session = s then
30: if nodep → status = ENABLED then
30.5: nodep → status := TRY_HELP
31: nextp → go := true
32: end if
33: end if
34: end if

...

Figure 3: The GME algorithm without CAS operation on status field

waits at line 14. Otherwise, at line 14.5, p executes predp → status =

NO_HELP .

• At line 30, p checks if nodep → status = ENABLED. If so, at line

30.5, p executesnodep → status = TRY _HELP and then continues

to line 31 and helps p’s successor.

Suppose p is the predecessor of q, and they both request the same session s.

p executes line 30, sees that its own status is still ENABLED, and continues

33

Figure 4: GME violation scenario while not using CAS operation on status. (a)
process q enters again with a different node. (b) process q enters again with its
first node.

to line 30.5 but does not execute this statement yet. Then, q executes line 13,

sees that p’s status is ENABLED, executes line 14.5, changes p’s status to

NO_HELP and continues to q’s CS. q completes its CS, executes q’s exit

section, and starts the algorithm again using q’s second node. q requests the

same session as before, s, and continues to q’s CS since q’s predecessor is

enabled. q completes its exit code and enters the entry code again using q’s

first node, but now q requests a different session s′ ̸= s. Notice, q’s first node

is the same node that p has seen as its successor (see figure 4). q continues

to line 20 (because it does not request the same session as its predecessor).

And so, q waits until its go bit is set to true. Now, p executes line 30.5

that changes p’s status to TRY _HELP , continues to line 31 that sets q’s

first node’s go bit to true and enters its CS. q sees that its go bit is true and

also enters its CS. Therefore, both p and q, which request different sessions,

are in their CSs at the same time. This problem is resolved by using the

34

CAS operations, so a process atomically sees status is ENABLED and

changes the value of status. That way, we guarantee that only one process

could see that status is ENABLED. If the process sees it at line 13, then

its predecessor won’t continue to line 31. If the process sees it at line 30,

then its successor won’t continue to the critical section before getting the

help.

We use four different values for the status field (WAIT , ENABLED,

TRY _HELP , NO_HELP) to make the code more clear. Although, we

only need two values and we can use a simple boolean variable. If we use

a simple boolean variable, assume it is called enabled, then at line 26, the

process sets its own enabled to true, while at lines 13 and 30, the process

may set this enabled to false while the process is still enabled.

3. Why do we need the CAS operations at lines 15, 19, and 44? The CAS op

erations at these lines are used to prevent a potential race condition that may

cause a deadlock.

Assume we replace the CAS operations are at lines 15, 19, and 44, as fol

lows: (see figure 5)

• At line 15, p checks if predp → active ̸= Y ES. If so, p sets Head

to its node at line 16. Otherwise, at line 16.5, p executes predp →

active = HELP .

• At line 19, p checks if predp → active = Y ES. If so, at line 19.5, p

executes predp → active = HELP .

• At line 44, p checks if temp_headp → active = Y ES. If so, p exe

cutes lines 4547 and advances Head. Otherwise, p continues to line

35

...

12: if predp → session = s then
13: if not CAS(predp → status, ENABLED, NO_HELP) then
14: await nodep → go = true
15: else if predp → active ̸= YES then
16: Head := nodep

else
16.5: predp → active := HELP
17: end if
18: else
19: if predp → active = YES then
19.5: predp → active := HELP
20: await nodep → go = true
21: else
22: Head := nodep
23: end if
24: end if

...

44: else if temp_headp → active = YES
45: temp_headp := temp_headp → next
46: Head := temp_headp
47: temp_headp → go := true

else
47.5: temp_headp → active := NO
48: end if

...

Figure 5: The GME algorithm without CAS operation on active field

47.5 and executes temp_headp → active = NO.

Suppose p is at line 44 while its successor q is at line 15. q executes line

15 and sees its predecessor’s node’s active equals to YES. So q continues

36

to line 16.5 but does not execute it yet. Now, p continues and sees that the

active field of the first node in the queue is YES, so p continues to line 47.5.

Then, p sets this node’s active field to NO, while q sets it to HELP. Next,

p completes its exit section and q enters its CS. Since no process advanced

Head, Head still points to the same node. Assume another process, r, wants

to enter its CS and requests a different session than q. r starts the algorithm

and gets q’s node as its predecessor’s node (at line 7). r continues to line

19, as r requests a different session than its predecessor q, and sees that

its predecessor’s node’s active field is set to YES. Then, r continues to line

19.5, notifying that it did not help to advance Head, and waits at line 20 for

the go bit to be set to true. q completes its CS, advances Head at line 42,

sets the new first node’s go bit to true (line 43), and completes its exit code.

But the new first node is q’s node, since no process advanced Head when p

completed its CS. All the new processes will wait until r becomes enabled,

but no process can help r becoming enabled and a deadlock occurs. This

problem is resolved by using the CAS operations at lines 15, 19, and 44, so a

process atomically sees active as Y ES and changes its value. That way, we

guarantee that only one process could see that active is Y ES, while another

process would see a different value and would advance Head.

We use three different values for the active field (Y ES, NO, HELP) to

make the code more clear. Although, we only need two values and we can

use a simple boolean variable. If we use a simple boolean variable, assume it

is called active, then at line 6, each process sets its active field to true, and

at lines 15, 19 and 44, we use the CAS operations to change active from

true to false. While it’s true that the node is not active when a process

37

executes line 44, the node is still active when a process executes either line

15 or 19 but the active’s value is changed to false.

4. Why don’t we use a dummy node? The head is being set for the first time at

line 9 by the first process that executes the algorithm. The head can be set in

line 9 only by one process, the first process, because of the use of the FAS

operation at line 7. Only the first process returns null from this operation.

The other times that a process may set the head at line 9 is when another

process, say q, sets the tail to null in q’s exit section, and then q should set

the head to null and clear the queue. That means the algorithm is returned

to its initial state.

5. Why do we need line 39, although the algorithm is correct without line 39?

We can remove line 39, and the algorithmwould still be correct, as wewould

override Head at line 9 with the next process that executes the algorithm. We

have added this line for semantics reasons, as we do not want to get into a

situation where Head points to a node that is no longer active while there are

no processes that want to execute the algorithm. That is, when no processes

are executing the algorithm, Head and Tail should be null.

6. Is it essential to include lines 43 and 47 within the ME critical section?

We can move lines 43 and 47 outside the ME critical section (CS), and the

algorithm would still be correct. At these lines, we use a local variable

temp_head, which no other process can change. We placed these lines in

side the ME CS for better readability. If we move these lines outside the

ME CS, we would need to check if we executed line 38, line 40, or line 44,

and only if we executed lines 40 or 44, we then should set go.

38

7. Who can set process p’s go bit to truewhen pwaits at line 20? By inspecting

the code, we can see that p’s go bit can be changed to true either in the entry

section (line 31) or in the exit section (lines 43 and 47). Assume p spins on

its go bit at line 20. p would stop spinning when its go bit changed to true

by another process. Since p is at line 20, p has already tested the condition

at line 12 and got false. This means that p has requested a different session

than its predecessor. Thus, p’s predecessor will not reach line 31 because the

predecessor will see (line 29) that its successor requests a different session.

Each process that acquires the ME lock causes Head to be advanced by

exactly one step. Therefore, the process that will change p’s go bit to true is

the last process that acquires the ME lock and requests the same session as

p’s predecessor.

8. The algorithm might become simpler if one can obviate the use of Head. Is

the use of Head necessary? We have tried to simplify the algorithm by not

using Head, as done for mutual exclusion in the implementation of the MCS

lock [25]. Solving the GME problem is more complex than solving ME.

There are more possible race conditions that should be avoided, and using

Head helped us in the design of the algorithm. In particular, in the exit code,

in lines 43 & 47 the new process at the head of the queue is enabled, by a

process that is exiting. We do not see how to implement this in constant time

without using Head.

39

4 Correctness proof

We prove that our algorithm satisfies the following properties: mutual exclusion,

starvation freedom, group bounded exit, strong group concurrent entering, FCFS

and FIFE. Also, we prove our algorithm uses onlyO(n) shared memory locations

(that is, constant space complexity per process) and its RMR complexity is O(1)

in both the CC and the DSM models. To prove all of these properties we will also

show that the algorithm satisfies the following properties:

• Deadlock freedom: If a process is trying to enter its critical section, then

some process, not necessarily the same one, eventually enters its critical

section. (Notice that deadlock freedom is a weaker property than starvation

freedom.)

• StrongFCFS: If a process p completes its doorway before a process q (enters

or) completes its doorway and the two processes request different sessions,

then q does not enter its critical section before p does.

Consider an execution e. The notions, notations, definitions, lemmas and theorems

in this proof are with respect to e. The following notions and notations are used in

this proof:

1. Doorway: A process p is considered to be in its doorway while running

statements 17.

2. The ith iteration: A process p during its ith iteration (i.e., its ith attempt

to enter its critical section) is denoted by pi.

3. Enabled: A process pi is enabled if it can enters its critical section within a

bounded number of its own steps.

40

4. Follows: A process qj follows a process pi if and only if pi completes its

doorway before qj .

5. Predecessor: A process pi is the predecessor of a process qj if and only if

qj follows pi, and each process that follows pi also follows qj .

6. Successor: A process qj is the successor of a process pi if and only if pi is

the predecessor of qj .

7. Passed over: A pointer x passed over pi’s node if and only if x points to

qj’s node and qj follows pi.

8. Q: A pi’s node is considered to be in Q if and only if nodep passed over Tail

and Head didn’t pass over pi’s node.

Lemma 1. For every process p at iteration i and process q at iteration j,

• Each adds exactly one node to Q.

• Each has at most one predecessor and at most one successor.

• pi and qj have different predecessors and different successors.

Proof. The fact that a process in a specific iteration adds exactly one node to Q,

may only have a single predecessor, and pi and qj have different predecessors

follows from the fact that the last step of the doorway at line 7 is an atomic Fetch

AndSet (FAS) operation, which updates pred with the last pointer that was in

Tail and atomically updates Tail with the process’ node, and so add it to Q. Each

process has at most one predecessor initialized at line 7 into pred variable. At line

11, each process updates its predecessor’s successor with its own node. Then, each

41

process has at most one successor. Assume on the contrary that pi and qj have the

same successor, say rt, that means either rt has two predecessors in contradiction

to this lemma, or rt runs the algorithm twice, but each process runs an iteration

only once. Therefore, pi and qj have different successors.

Remark. Assume Head points to pi’s node and qj follows pi and x− 1 processes

that follow pi. In the sequel, when we write ”a process causes Head to be advanced

by x steps”, we mean it either (1) sets Head to point to qj’s node, or (2) lets another

process know it should advance Head to qj’s node. Also, when we write ”Head’s

node” we refer to the node that Head points to.

Lemma 2. Each process pi that completes its exit section, causes Head to be ad

vanced by exactly one step.

Proof. Assume on the contrary that pi completes its exit section but does not cause

Head to be advanced by exactly one step.

pi completed its CS and started its exit section. We assumed that pi has already

completed its exit section, so it had to acquire themutual exclusion (ME) lockLock

at line 36, execute the ME CS (lines 3748), and release Lock at line 49. At the

beginning of the ME CS, pi saved the current value of Head in its local variable

temp_head. The ME CS includes three lines that can change Head, lines 39, 42,

and 46. Any process that enters its exit section can execute at most one of these

lines as a result of the ifelse statement. There are three options:

1. pi got true at line 40 or line 44. Then, it continued to line 41 or 45 respec

tively and saved in its local variable temp_head the successor of the node

that Head pointed to. It continued to line 42 or 46 respectively and set Head

to its temp_head which advanced Head by one step.

42

2. pi got true at line 38, so at that point, Tail was equal to Head, which means

that there was only one node in Q. Then, no process changed Tail. That

means no process has executed line 7 yet. Thus, both Tail and Head didn’t

have a successor at this moment. pi got true at line 38, so it continued to

line 39. Here we have two more options:

• pi successfully executed the CAS operation at line 39, so no other pro

cess changed Head at this point, and pi atomically changed Head to

be null. Notice that the successor of Head was null, so pi advanced

Head to be its successor, which means pi advanced Head by exactly

one step.

• pi executed line 39 and the CAS operation at this line failed, so another

process changed Head after pi executed line 37 but before it executed

line 39. These lines are being executed inside the ME CS along with

the other lines that change Head in the exit code (lines 42 and 46). So

while pi was about to execute line 39, no other process could change

Head in its exit section. Therefore, there must be another process in its

entry section that changed Head. pi reached line 39, so it successfully

executed the CAS operation at line 38 and set Tail with null. Also, it

means that while pi executed line 38, no other process changed Tail.

Therefore, no other process executed line 7 before pi successfully ex

ecuted line 38. Let qj be the process that executed line 7 immediately

after pi successfully executed line 38 and before pi executed line 39.

So qj got null to its pred at line 7 and atomically set Tail to point to its

node. If qj got null to its pred at line 7 then it is the first process that

completed its doorway after the process that Head points to its node

43

completed its doorway (by using the FAS operation). Thus, qj is the

successor of the process that Head points to its node. qj continued to

line 9 because it saw at line 8 that its pred is null. At line 9, qj set

Head to its node and so it advanced the previous Head to its successor.

pi failed to execute the CAS operation at line 39.

3. pi got false in all the conditions (lines 38, 40, and 44). So at the time pi tried

to execute the CAS operation at line 38, Tail and Head pointed to different

nodes, which means Head’s node had a successor other than null. At the

time pi tried to execute line 40, the Head’s node’s successor hasn’t executed

line 11 yet to set Head’s node’s next to point to its successor’s node and

let the other processes know it is its successor. And if pi got false at line

44, then the CAS operation at this line succeeded and changed the active

of the Head’s node to NO. At the time pi executed line 44, no other process

executed lines 15 and 19 that could have changed the active of the Head’s

node. pi completed its exit section without changing Head, but the successor

of the Head’s node would get to line 15 or 19, depends if it requests the same

session as its predecessor or not, and the CAS operation at these lines would

fail because pi has already changed the active of the Head’s node to NO. If

it would get to line 15, then it would succeed with the condition at this line

and continue to line 16. If it would get to line 19, then it would fail with

the condition at this line and continue to line 22. At these lines (16 and

22), it would set Head to point to its own node which is the Head’s node’s

successor. Therefore, it would advance Head by exactly one step for pi as a

result of pi successfully executed the CAS operation at line 44.

In all the cases above, pi completes its exit section and either advances Head or

44

lets another process know it should advance Head by exactly one step. We proved

that there is no valid scenario that pi completed its exit section without causing

Head to be advanced by exactly one step.

Lemma 3. Assume there are only two processes, p and q. pi is the predecessor

of qj , and they request different sessions. Then, pi causes Head to be advanced

before qj is enabled.

Proof. Assume on the contrary that qj becomes enabled before pi causes Head to

be advanced. pi is the predecessor of qj , so qj gets pi’s node as its pred at line 7

and it must continue to line 12. pi and qj request different sessions, then qj must

execute line 19. There are two cases:

1. qj successfully executes the CAS operation at line 19. Therefore, it contin

ues to line 20 and spins on its go until another process sets true to qj’s go.

But we assumed there are only two processes, p and q, so p must change

qj’s go to true to let qj becomes enabled. pi and qj request different sessions

which means pi cannot change qj’s go to true at line 31 (because of line 29),

so it must change qj’s go to true in its exit section. But to be able to change

qj’s go to true, Head must point to qj’s node. According to lemma 2 and as

suming we have only two processes, Head must point to pi’s node. pi must

change qj’s go to true in the exit section, so pi must advance Head by one

step to let qj know it can be enabled, which contradicts the assumption that

qj becomes enabled before pi advances Head.

2. qj executes line 19 but the CAS operation at this line fails. Therefore, qj

continues to line 22 and becomes enabled. But if the CAS operation at line

19 fails, then pi’s active is not YES at this time. pi sets its active to YES

45

in its doorway. This can be changed either by its successor qj at line 19 (or

15 if they request the same session) if the CAS operation succeeds, but qj

fails with the CAS operation at this line, or by a process in its exit section at

line 44. According to lemma 2 and the assumption that there are only two

processes, pi must reach the exit section and change Head’s node’s active,

that is pi’s node’s active in this case, to be NO at line 44. But by doing so,

pi lets another process (qj in this case) know that it should advance Head by

one step for pi, in contradiction to the assumption that qj becomes enabled

before pi causes Head to be advanced.

We see that under the lemma’s assumptions, there is no case that qj can become

enabled before pi causes Head to be advanced.

Convention. For simplicity, for the rest of this proof, we would consider the same

process p that appears in two different iterations, pi and pj where i ̸= j, as two

different processes. Such that whenever we write ”process” we mean a process in

a specific iteration.

The following notions are used in the following definition:

• A group is closed if it is the maximal group s.t. it includes exactly one

process that does not have a predecessor in this group. (Thus, every other

process has a predecessor in this group.)

• Sx is the maximal set of groups s.t. each group is a closed group of processes

that request session x.

• Let G1 and G2 be disjoint groups of processes. G2 follows G1 if a process

in G2 follows a process in G1.

46

Definition 1. Sk
x is a group in Sx that follows k− 1 other groups in Sx. A process

is the first in Sk
x if and only if its predecessor requests session y ̸= x. A process is

the last in Sk
x if and only if its successor requests session z ̸= x. Then:

1. hth process in group: A process pi is the hth process in a group Sk
x if and

only if pi follows h − 1 processes that are in Sk
x . For simplicity, we would

consider pi’s node as the hth node in Sk
x .

2. Group follows: A group St
y follows a group Sk

x if and only if a process

qj ∈ St
y follows a process pi ∈ Sk

x .

3. Group predecessor: A groupSk
x is the predecessor of a groupSt

y (s.t. x ̸= y)

if and only if the last process pi ∈ Sk
x is the predecessor of the first process

qj ∈ St
y.

4. Group successor: A group St
y is the successor of a group Sk

x (s.t. x ̸= y)

if and only if the first process qj ∈ St
y is the successor of the last process

pi ∈ Sk
x .

5. Group enters CS: A group Sk
x enters its critical section if and only if at least

one of its processes is enabled.

6. Group waits: A group Sk
x waits if and only if all its processes are not en

abled.

7. Group completes CS: A group Sk
x completes its critical section if and only

if all its processes complete their critical sections.

Lemma 4. Assume pi ∈ Sk
x and qj ∈ St

y. If Sk
x is the predecessor of St

y, then pi

and qj request different sessions.

47

Proof. Assume by contradiction that Sk
x is the predecessor of St

y but pi and qj

request the same session, s. Let a be the last process in Sk
x and b be the first

process in St
y. Then, by definition, a is the predecessor of b. a is in the same group

as pi so it requests the same session as pi, which is s. b is in the same group as qj so

it requests the same session as qj , which is also s. That means a and b request the

same session s. According to definition 1, a and b are in the same group, which

means that Sk
x = St

y. Therefore, Sk
x is not the predecessor of St

y in contradiction

to the assumption.

Lemma 5. Assume Head points to qj’s node. Then, if pi causes Head to be ad

vanced, pi and qj are in the same group.

Proof. We prove it by induction on the number of processes that run the algorithm.

We look at two base cases n = 1 and n = 2. In the base case that n = 1 there

is only one process, so pi = qj , that means qj’s node is pi’s node and so they are

in the same group. In the other base case, we assume pi ̸= qj . Assume on the

contrary that pi and qj are not in the same group, which means that they request

different sessions. There are two options:

1. pi is the predecessor of qj . According to lemma 3, pi causes Head to be

advanced before qj enters its CS. By lemma 2, we know that pi can cause

Head to be advanced by exactly one step, so pi can only cause Head to be

advanced from pi’s node and can’t cause Head to be advanced from qj’s

node, which contradicts the lemma assumption.

2. pi is the successor of qj . According to lemma 3, qj causes Head to be ad

vanced before pi enters its CS. By lemma 2, we know that qj can cause Head

to be advanced by exactly one step, so qj causes Head to be advanced from

48

qj’s node. Therefore, pi can’t cause Head to be advanced from qj’s node,

which contradicts the lemma assumption.

Next, we assume that the lemma holds for n processes and prove that it also

holds for n+ 1 processes. Let p1, p2, ..., pn be the processes that the lemma holds

for, which means that if those processes cause Head to be advanced from another

process’ node, then they request the same session and are in the same group. Let

pn+1 be the (n+ 1)th process that we want to prove the lemma also holds for.

Note, in this lemma’s proof, from now on, for readability, any time we say a

process advances Head, it means that the process causes Head to be advanced.

We define S as a function that gets a process as an input and returns the group

that this process belongs to, s.t. S(pi) is the group that contains process pi.

Assume pn+1 advanced Head from pk’s node, 1 ≤ k ≤ n+ 1. Then, we want

to show that pn+1 is in the same group as pk. If k = n + 1 then it immediately

follows that the lemma holds, so we assume k ̸= n + 1 ⇒ 1 ≤ k ≤ n. We have

two options:

1. pk advances Head from a node of a process that pk follows, say without loss

of generality that it is p1. So by the induction assumption pk and p1 are in

the same group, S(pk) = S(p1). Now, again without loss of generality, we

assume p1 advances Head from p2’s node, p2 advances Head from p3’s node

and so on until pk−2 advances Head from pk−1’s node. By the induction as

sumption, all of these processes are in the same group, S(p1) = S(p2) =

S(p3) = ... = S(pk−2) = S(pk−1). Then, pk−1 must advance some process

that follows pk. Assume, without loss of generality, pk−1 advances Head

from pk+1’s node and pk+1 advances Head from pk+2’s node, pk+2 advances

Head from pk+3’s node and so on until pn−1 advances Head from pn’s node

49

and we have only left pn that advances Head from pn+1’s node. By the in

duction assumption, all of these processes are in the same group, S(pk−1) =

S(pk+1) = S(pk+2) = S(pk+3) = ... = S(pn−1) = S(pn) = S(pn+1).

Therefore, we get S(pk) = S(p1) = S(p2) = S(p3) = ... = S(pk−2) =

S(pk−1) = S(pk+1) = S(pk+2) = S(pk+3) = ... = S(pn−1) = S(pn) =

S(pn+1) ⇒ S(pk) = S(pn+1) and pn+1 and pk are in the same group.

2. pk advances Head from a process’ node that follows pk, say pi, s.t. pi fol

lows pk and pn+1 follows pi. So by the induction assumption pk and pi are

in the same group, S(pk) = S(pi). Now, without loss of generality, we as

sume pi advances Head from p1’s node, p1 advances Head from p2’s node,

p2 advances Head from p3’s node and so on until pk−2 advances Head from

pk−1’s node. By the induction assumption, all of these processes are in the

same group, S(pi) = S(p1) = S(p2) = S(p3) = ... = S(pk−2) = S(pk−1).

Then, pk−1 must advance other process that follows pk. Assume, without

loss of generality, pk−1 advances Head from pk+1’s node and pk+1 advances

Head from pk+2’s node, pk+2 advances Head from pk+3’s node and so on un

til pi−2 advances Head from pi−1’s node. By the induction assumption, all

of these processes are in the same group, S(pk−1) = S(pk+1) = S(pk+2) =

S(pk+3) = ... = S(pi−2) = S(pi−1). Then, pi−1 must advance other process

that follows pi. Again, assume without loss of generality that pi−1 advances

Head from pi+1’s node and pi+1 advances Head from pi+2’s node, pi+2 ad

vances Head from pi+3’s node and so on until pn−1 advances Head from

pn’s node, and we only have pn left that advances Head from pn+1’s node.

By the induction assumption, all of these processes are in the same group,

S(pi−1) = S(pi+1) = S(pi+2) = S(pi+3) = ... = S(pn−1) = S(pn) =

50

S(pn+1). Therefore, we get S(pk) = S(pi) = S(p1) = S(p2) = S(p3) =

... = S(pk−2) = S(pk−1) = S(pk+1) = S(pk+2) = S(pk+3) = ... =

S(pi−2) = S(pi−1) = S(pi+1) = S(pi+2) = S(pi+3) = ... = S(pn−1) =

S(pn) = S(pn+1) ⇒ S(pk) = S(pn+1) and pn+1 and pk are in the same

group.

Lemma 6. For every process that executes line 9, either its node is the first node

that has been added to Q, or there is another process that has already successfully

executed line 38.

Proof. Let pi be the process that executes line 9, so pi gets true in the condition at

line 8. That means predp is null. predp is being set at line 7 by atomically Fetch

AndSet (FAS) operation that sets predp with the last value of Tail. If pi’s node is

the first node that has been added to Q, then Tail is null (Tail is initialized to null

at the very beginning of the algorithm) and the lemma holds.

Now, assume pi’s node is not the first node that has been added to Q. Therefore,

some process changed Tail and set its value with null. Tail can be set at line 7 in

the entry code and at line 38 in the exit code. Each process that starts the algorithm

executes line 7 in its doorway, but at this line, the process sets Tail with its node

which can’t be null. So the only line Tail could be changed back to null is line 38

in the exit code if the CAS operation at this line succeeds. That means there must

be another process in its exit section to execute line 38 successfully and the lemma

holds.

Lemma 7. For every process that executes line 16 or line 22, there is another

process that has already successfully executed the CAS operation at line 44.

51

Proof. Assume on the contrary that process pi executes line 16 or line 22 but no

process completes its CS and could execute line 44 in its exit section. If pi executes

line 16 or line 22, then it also executes line 15 or line 19 respectively. But to get to

lines 16 or 22, pi must fail with the CAS operation at lines 15 or 19 respectively.

That means pi’s pred’s active is not YES. Each process sets its active to YES in

its doorway and does not change it in its entry section anymore. This active can

be changed by its successor at lines 15 and 19 if the CAS operation succeeds or

by some process in its exit section at line 44 if the CAS operation succeeds. pi

fails to execute the CAS operation at line 15 or 19, so there is another process that

changed pi’s predecessor’s active at line 44 in its exit section. contradiction.

Lemma 8. Let pi’s node be the hth node in group Sk
x . If Head passes over pi’s

node, then at least h processes in Sk
x completed their critical sections.

Proof. Assume Head passed over pi’s node, so Head should be advanced by at

least h steps. Let g be the number of processes in Sk
x that have already caused

Head to be advanced. According to lemma 2, those g processes caused Head to

be advanced in a total of g steps. A process causes Head to be advanced by either

advance Head in its exit section or let another process know it should advance

Head in its entry section. Let g1 be the number of processes from the g processes

that advanced Head in their exit sections, and g2 be the number of processes from

the g processes that let other processes know that they should advance Head in

their entry sections, s.t. g = g1 + g2.

Head was advanced by g1 steps in the exit code. Head should be advanced by

additional h − g1 steps to pass over pi’s node. We denoted g1 as the number of

processes in Sk
x that completed their CSs and advanced Head in their exit sections,

so no other process from Sk
x can advance Head in its exit section other than those

52

g1 processes. According to lemma 5, no other process from any group can cause

Head to be advanced other than the g processes from Sk
x . That means Head must

be advanced by h− g1 steps in the entry code.

Head can be changed in the entry code at lines 9, 16 and 22. Let f = f1 + f2

be the number of processes that execute lines 9, 16 and 22, s.t. f1 is the number of

processes that execute line 9 and f2 is the number of processes that execute either

line 16 or line 22.

• Line 9 If a process qj changes Head at line 9, then by lemma 6, qj’s node

is either the first node that has been added to Q or there is another process

that successfully executed line 38, which means it also completed its CS. If

qj’s node is the first node that has been added to Q, then it didn’t advance

Head because Head has not pointed to any node yet. So assume all nodes of

all the f1 processes that executed this line are not the first nodes that have

been added to Q. By lemma 1, each process has a different predecessor.

Therefore, for each process that executes line 38 and sets Tail with null,

there is at most one process that can see Tail as null, and according to lemma

6, there must be f1 processes that completed their CS and executed line 38.

• Lines 16 and 22 If Head was changed at line 16 or line 22 by f2 processes,

then by lemmas 7 and 1, there must be f2 processes that successfully exe

cuted the CAS operation at line 44 and so they also completed their CS.

We get that Head was advanced by exactly f steps in the entry code, as a result

of exactly f processes that completed their CSs and have already executed the

line that asks another process to advance Head in its entry section. Therefore,

f = g2 = h − g1 ⇔ f + g1 = g2 + g1 = h ⇒ h = g1 + g2 = g ⇒ h = g. g is

53

the number of processes in Sk
x that caused Head to be advanced. Therefore, it also

indicates that at least g processes completed their CSs, which means that at least

h processes in Sk
x completed their CSs if Head passed over pi’s node and it is the

hth node in Sk
x .

Lemma 9. If Head passes over the last node in Sk
x , then all the processes in Sk

x

completed their critical sections.

Proof. Let h be the number of processes in Sk
x . Then, the node of the last process

in Sk
x , say pi, is the hth node in Sk

x . According to lemma 8, if Head passes over

pi’s node, then h processes in Sk
x completed their CSs. Thus, all the processes in

Sk
x completed their CSs.

Lemma 10. Assume Sk
x is the predecessor of St

y. Then, if St
y completed its critical

section, Sk
x also completed its critical section.

Proof. Suppose St
y completed its CS. Sk

x is the predecessor of St
y. Then, the last

process in Sk
x , say pi, is the predecessor of the first process in St

y, say qj . Assume

by contradiction that Sk
x hasn’t completed its CS yet. That means there is at least

one process in Sk
x that hasn’t completed its CS yet. According to lemma 9, Head

hasn’t passed over the last node in Sk
x yet, which is pi’s node.

By inspecting the algorithm’s code, pi sets its node’s active to YES in its door

way and doesn’t change its active in its entry section anymore. We know Head

hasn’t passed over pi’s node yet, so pi’s node’s active couldn’t be changed to NO

(line 44).

St
y completed its CS so all the processes in this group completed their CSs,

including qj . qj has already entered its CS. Head hasn’t passed over pi’s node

yet, so qj’s pred, which is pi’s node, is not null. Thus, qj executed line 12 and

54

continued to line 19, because pi and qj request different sessions by corollary 4.

We have two options:

• qj gets true for the condition at line 19. Then, it continues to line 20 andwaits

on its go, which can be changed only in the exit code (lines 43 and 47) when

Head points to qj’s node. But if Head points to qj’s node then Head passed

over qj’s predecessor’s node, which is pi’s node, but we already proved that

Head hasn’t passed over pi’s node.

• qj gets false for the condition at line 19. Then, it continues to line 22, sets

Head to its node, and continues to its CS. But to get false at line 19, the

active of qj’s predecessor’s node, pi’s node, had to be different than YES.

We’ve already proved that pi’s node’s active couldn’t be changed in the exit

code, so it should have changed in the entry code. By lemma 1, each process

has a different predecessor, which means pi is the predecessor only for qj .

So the only process that can change pi’s node’s active in its entry section is

qj . In the entry code, the active of the predecessor’s node can be changed at

line 15, if they request the same session, or at line 19 if they request different

sessions. Therefore, the active of pi’s node couldn’t change at all.

Then, in both cases, qj waits at line 20 at least until all the processes inSk
x complete

their CSs according to lemma 9. Therefore, qj can’t complete its CS as long as Sk
x

hasn’t completed its CS yet. Therefore, St
y hasn’t completed its CS yet and we get

a contradiction.

Lemma 11. Assume St
y follows Sk

x . If St
y completed its critical section, then Sk

x

also completed its critical section.

55

Proof. Let S be a set of all the groups that St
y follows. We prove this lemma by

induction on the number of groups that St
y follows, say |S| = A. If |S| = A = 0,

then St
y doesn’t follow any group and the lemma is vacuously true. In the base

case A = 1, St
y follows only one group, Sk

x . That means Sk
x is the predecessor of

St
y and according to lemma 10, Sk

x completed its CS too, and so the lemma holds.

Next, assume the lemma holds for A groups and we show that it also holds for

|S| = A + 1 groups. Let’s assume on the contrary that it doesn’t hold for A + 1

groups, which means there is a group in S that hasn’t completed its CS yet, say Sk
x .

This group must have a successor group from S or be the predecessor group of St
y.

If it has a successor group from S, then its successor group has already completed

its CS by the induction assumption and according to lemma 10, Sk
x also completed

its CS. If Sk
x is the predecessor of St

y then again according to lemma 10, Sk
x also

completed the CS. contradiction.

Lemma 12. Assume qj follows pi and qj executes line 19. Then, if the CAS oper

ation fails, it must be that pi has already completed its critical section.

Proof. qj executes line 19. If it gets to line 19, then it requests a different session

than its predecessor. Assume by contradiction that qj gets false at line 19 while pi

hasn’t completed its CS yet. If qj gets false at line 19, then it fails to execute the

CAS operation at this line, so the active for its predecessor’s node is not YES. In

its doorway, each process sets its active to YES and doesn’t change it in its entry

section (by code inspection). By lemma 1 and inspecting the algorithm’s code, the

only process that can change the active of qj’s predecessor in its entry section is

its successor, qj . qj can change its predecessor’s active at lines 15 and 19 if the

CAS operation succeeds, but it can succeed only if active is not YES. So another

process has to change qj’s predecessor’s active in its exit section at line 44. It

56

can be changed at line 44 if the CAS operation at this line succeeds. If a process

executes line 44 on qj’s predecessor’s node, then it also makes Head pass over

this node. qj requests a different session than its predecessor, which means that its

node is the first node in its group and its predecessor’s node is the last node in a

different group, say Sk
x . According to lemma 9, all the processes in Sk

x completed

their CSs. Therefore, by lemma 11, all the groups that Sk
x follows also completed

their CSs. We get that all the groups that qj follows completed their CSs, so all

the processes that qj follows completed their CSs, including pi, in contradiction to

the assumption.

Lemma 13. If pi is at line 26, then it is enabled.

Proof. By definition, a process pi is enabled if it can enter its CS within a bounded

number of its own steps. If pi is at line 26, then it changes its status to ENABLED

and continues to line 27. At this line, pi sets a local variable nextp with the value

in nodep → next and continues to line 28 to check if its next is null or it already

has a successor. If nextp is null, then pi continues to its CS. Otherwise, nextp is

not null and pi has a successor. pi continues to line 29 and checks if it requests

the same session as its successor. If pi and its successor request different sessions,

then pi continues to its CS. If they request the same session, pi continues to line 30

and checks using the CAS operation if its successor needs help to become enabled.

pi tries to execute the CAS operation and change its status to TRY_HELP to let

its successor know that it is trying to help. If pi fails to execute the CAS operation,

then it does not need to help its successor and so pi continues to its CS. And if

pi succeeds to execute the CAS operation, then it continues to line 31, sets its

successor’s go to true, and continues to its CS. We can see that no matter how pi

57

continues from line 26, no other process can prevent pi from entering its CS and

pi can enter its CS within a bounded number of its own steps.

Lemma 14. Assume qj follows pi. If pi is not enabled then qj is not enabled.

Proof. Let P be a set of all the processes that follow pi. We prove the lemma by

induction on the number of processes that follow pi, say |P | = k. If k = 0, then

no process follows pi and the lemma is vacuously true, so we assume k > 0. In

the base case, k = 1, only one process follows pi, say qj . pi is not enabled, then by

lemma 13, it can’t reach line 26 and set its status to ENABLED. Also, pi sets its

active to YES in its doorway and doesn’t change it in its entry section anymore.

qj reaches line 12 as its pred is not null (pi’s node). If qj requests the same session

as pi, then it continues to line 13, sees its predecessor is not enabled, and spins

on its go at line 14. Otherwise, qj continues to line 19, sees that its predecessor’s

node’s active is still YES, and spins on its go at line 20. qj spins on its go until

another process changes its value to true. According to the base case, pi and qj are

the only active processes. Therefore, pi is the only process that can release qj and

the lemma holds.

We assume the lemma holds for k processes and prove that it also holds for

|P | = k+1 processes. Assume by contradiction that the lemma does not hold for

|P | = k+1 processes, then there is a process in P , say qj , that is enabled to enter

its CS while pi is not enabled.

Suppose pi’s node is the hth node in its group and qj has not entered its CS yet.

According to lemma 8, at least h processes completed their CSs. But if pi’s node

is the hth node in its group, then pi is the hth process in its group. That means, pi

follows h− 1 processes from its group. Even if all these processes complete their

exit sections, according to lemma 2, they cause Head to be advance by exactly

58

h− 1 steps, which leads Head to point to pi’s node. By the induction assumption,

pi and all the processes that follow pi (except for qj which has not entered its CS

yet) are not enabled, so they can’t complete their exit sections. Therefore, Head

can’t pass over pi’s node at this moment.

By inspecting the algorithm, there are four options:

1. qj’s pred is null. This case is invalid because qj ∈ P which means it follows

pi, then it must have a predecessor.

2. qj’s predecessor’s status is ENABLED. qj’s predecessor is either pi or an

other process from P , which means qj’s predecessor is not enabled (by the

induction assumption). Each process sets its status to WAIT in its doorway

(line 5) and to ENABLED later in its entry section at line 26. According to

lemma 13, qj’s predecessor can’t set its status to ENABLED and qj must

continue to line 14 and spin on its go.

3. qj’s go is true. qj sets its go value to false in its doorway at line 3. A process

can set true in qj’s go at line 31 if it is qj’s predecessor or at lines 43 or 47 in

the exit code. qj’s predecessor is not enabled by the induction assumption,

so it can’t reach line 31. Therefore, another processmust be in its exit section

and execute either line 43 or line 47 on qj’s node, which means Head points

to qj’s node at this moment. But we proved that Head can’t pass over pi’s

node, then it can’t reach qj’s node. Therefore, no process can set qj’s go to

true.

4. qj’s predecessor’s active is not YES. Each process sets its active to YES

in its doorway (line 6) and does not change this value in its entry section

anymore. The lines that can change a process’ active from YES are lines

59

15 and 19 in the entry code that are being executed by its successor, or line

44 in the exit code. We assume qj’s predecessor’s active is not YES, then

the CAS operations at lines 15 and 19 fail. Then, there is another process

that changes qj’s predecessor’s active in its exit section at line 44. To do so,

Head must point to qj’s predecessor’s node. qj’s predecessor is either pi or

another process in P that follows pi. Either way, we proved Head can’t pass

over pi’s node so it also can’t pass over qj’s predecessor’s node. Therefore,

no process can change qj’s predecessor’s active from YES.

We get that as long as pi and t processes that follow pi are not enabled, qj that also

follows pi is not enabled in contradiction to the assumption that qj is enabled.

Theorem 1 (StrongFCFS). If process pi completes its doorway before process qj

(enters or) completes its doorway and the two processes request different sessions,

then qj does not enter its critical section before pi does.

Proof. Suppose pi ∈ Sk
x . pi completes its doorway before qj completes its door

way, which means qj follows pi and so qj’s group follows Sk
x . If pi is not enabled

then by lemma 14 qj is not enabled too. Therefore, we assume pi is enabled but

has not entered its CS yet.

Denote the successor of Sk
x as St

y s.t. x ̸= y (by lemma 4) but y may be equal

to qj’s session, which means qj’s group may follow St
y or be equal to this group.

Let rα1 be the last process in Sk
x and rβ2 be the first process in St

y, then rα1 is the

predecessor of rβ2 . If rα1 is not enabled then by lemma 14 qj is not enabled too. So

suppose rα1 is enabled.

According to lemma 4, rα1 and rβ2 request different sessions, then rβ2 cannot

reach line 13 (as a result of line 12), see that its predecessor’s status is ENABLED

60

and become enabled. Also, rβ2 ’s predecessor, which is rα1 , can’t reach line 31 (as

a result of line 29), set rβ2 ’s go to true and help rβ2 become enabled. Then, by

inspecting the algorithm’s code, rβ2 ’s go can be set to true only by another process

in its exit section (lines 43 and 47). Therefore, rβ2 can become enabled in two

options:

1. rβ2 sees its go is true at line 20.

2. rβ2 sees its predecessor’s node is not active.

rα1 ’s node is the last node in Sk
x and pi has not entered its CS yet, then according

to lemma 9, Head cannot pass over rα1 ’s node. Therefore, rα1 ’s active can’t be

changed to NO and Head can’t reach rβ2 ’s node, so rβ2 ’s go can’t be changed to

true. Then, the only option for rβ2 to become enabled is to see its predecessor’s

active, rα1 ’s active, is not YES (at line 19). But we’ve already proved that rα1 ’s

active can’t be changed in the exit code to NO as long as pi hasn’t entered its CS.

Each process sets its active to YES in its doorway (line 6) and doesn’t change it in

its doorway anymore. Therefore, rα1 ’s active can be changed only by its successor,

rβ2 , at lines 15 and 19. But r
β
2 requests a different session than its predecessor so it

can’t reach line 15 (by line 12). At line 19, rβ2 can set its predecessor’s active to

Y ES if the CAS operation at this line succeeds, but then it must continue to line

20 and spin on its go. We get that if pi has not entered its CS yet, rβ2 can’t become

enabled. According to lemma 14, qj , that follows (or equals to) rβ2 , can’t become

enabled too. Therefore, qj cannot enter its CS before pi does.

Corollary 1.1 (FCFS). The algorithm satisfies FCFS.

Proof. This follows immediately from the fact that the algorithm satisfies strong

FCFS according to theorem 1.

61

Theorem 2 (FIFE). If process pi completes its doorway before process qj enters

its doorway, the two processes request the same session, and qj enters its critical

section before pi does, then pi enters its critical section within a bounded number

of its own steps.

Proof. Assume by contradiction that qj is in its CS but pi is not enabled. pi com

pletes its doorway before qj enters its doorway, so qj follows pi. According to

lemma 14, if pi is not enabled then qj is not enabled which contradicts the as

sumption that qj is in its CS.

Theorem 3 (Mutual exclusion). If two processes are in their critical sections at

the same time, then they request the same session.

Proof. Let pi and qj request different sessions and assume by contradiction that

they are in their CSs at the same time. Assume, without loss of generality, that

pi enters its CS before qj does. According to theorem 1, the algorithm satisfies

StrongFCFS, then pi completes its doorway before qj does, so pi executes line 7

before qj does. There are two cases:

1. qj is the successor of pi.

2. qj follows pi but it is not pi’s successor.

According to lemma 14, once we prove that qj must wait until pi completes its

CS in case 1, it would immediately follow that qj must wait until pi completes its

CS in case 2. So let’s prove case 1. We assume that qj is in its CS while pi is

in its CS and both request different sessions. Therefore, qj must execute line 8.

According to lemma 9, as long as pi is in its CS, Head can’t pass over pi’s node,

which means Head can’t reach qj’s node. Then, qj gets pi’s node at line 7 as its

62

predwhich is not null and continues from line 8 all the way to line 12. We assume

that qj and pi request different sessions, so qj continues to line 19. qj follows pi

and pi is still in its CS, so by lemma 12, qj gets true at line 19 and continues to

line 20. Then, it waits at line 20 until another process changes its go from false to

true. The successor of qj is pi. pi couldn’t change qj’s go at line 31, because they

request different sessions and so it gets false at line 29. The other lines that can

change qj’s go are lines 43 and 47 in the exit code. These lines are being executed

on Head, so to execute these lines on qj’s node, Head must reach qj’s node. But

as we proved before, Head can’t reach qj’s node as long as pi is in its CS. Thus, qj

must wait as long as pi is in its CS. Therefore, it also must wait in case 2. We get

that as long as pi is in its CS, qj must wait in contradiction to the assumption that

it is in its CS while pi is in its CS.

Definition 2 (Bounded entry). If a process pi is in its entry section, while no other

process is in its critical section or exit section, then some process can complete its

entry section within a bounded number of its own steps.

Theorem 4 (Group bounded exit). If a process pi is in its exit section, then (1)

some process can complete its exit section within a bounded number of its own

steps, and (2) pi eventually completes its exit section.

Proof. Let P be the set of all the active processes that are in their exit sections,

then

1. some process in P can complete its exit section within a bounded number

of its own steps, and

2. all the other processes in P eventually complete their exit sections.

63

Notice that the exit code contains a mutual exclusion (ME) algorithm, other than

that it contains one more line (line 50) that each process can execute without de

pending on another process. The lines within the ME CS are waitfree, without

any loops or await operations, and can be executed by the process without de

pending on another process. Then, to guarantee that our GME algorithm satisfies

bounded exit, the mutual exclusion used in the exit code (lines 36 and 49) must

satisfy three properties, (1) starvationfreedom, (2) bounded exit, and (3) bounded

entry. While the famous MCS lock [25] does not satisfy the bounded exit prop

erty, there are variants of it, like the mutual exclusion algorithms in [11, 17], that

satisfy all the above three properties.

Let’s use, for example, one of the algorithms that are described in [11, 17]. Let

PA be the set of all the active processes in this ME algorithm, s.t. PA ⊆ P . Then,

1. Suppose a process pi ∈ PA is in its ME exit section, then according to the

property bounded exit which this ME algorithm satisfies, pi can complete

the ME algorithm within a bounded number of its own steps.

2. Assume all the processes in PA are in their entry sections, then according to

the bounded entry property, which thisME algorithm satisfies, some process

in PA, say pi, can complete its ME entry section within a bounded number

of its own steps and enters its ME CS. We have already proved at the begin

ning of this theorem’s proof, that a process can complete the ME CS within

a bounded number of its own steps, so pi can complete its ME CS and con

tinues to its ME exit section. Then, according to the previous section, pi can

complete the ME algorithm within a bounded number of its own steps.

Therefore, there is always a process that can complete the ME algorithm within a

64

bounded number of its own steps. And according to the starvation freedom prop

erty which this ME algorithm also satisfies, all the other processes in PA even

tually enter their ME CSs and complete the ME algorithm and so the theorem is

correct.

Theorem 5 (Deadlock freedom). If a process is trying to enter its critical section,

then some process, not necessarily the same one, eventually enters its critical sec

tion.

Proof. Assume by contradiction that some set of processes P are in their entry

sections and none of them can ever access its CS, which means all of them are

not enabled and never will be. Let qj be the first process in P that completed

its doorway. Thus, all the other processes in P follow qj . The fact that qj is not

enabled and never will be, means that qj must spin either at line 14 or line 20

since all the other lines in the entry code do not contain any loop, are waitfree,

and can be executed in a constant number of qj’s steps. Any other execution path

would lead qj to its CS and contradicts the assumption. From here it follows that

Tail was not null when qj completed its doorway. Therefore, there exists another

process, say pi, s.t. pi /∈ P and pi is the predecessor of qj . Let P ′ be a set of

all the processes that qj follows, including pi. That means all the processes in

P ′ completed their doorway sections before qj did. We denoted qj as the first

process in P that completed its doorway, s.t. qj is the first process that completed

its doorway and would never enter its CS, so all the processes in P ′ eventually are

enabled and enter their CSs. Now, the processes inP ′ complete their CSs and enter

their exit sections. According to theorem 4, the algorithm satisfies group bounded

exit. Therefore, each process in P ′ eventually completes its exit section, and by

lemma 2, causes Head to be advanced by exactly one step. Suppose one process

65

in P ′ has not yet completed its exit section and caused Head to be advanced, say

pi without loss of generality. Then, all the other processes in P ′ caused Head to

be advanced by exactly |P ′| − 1 steps, which caused Head to point to pi’s node.

Therefore, when pi completes its exit section, it causes Head to be advanced from

pi’s node to qj’s node. Here we have three options:

1. pi executes line 38 before qj executes line 7. Therefore, pi successfully

executes line 38 and sets Tail to null. Then, qj executes line 7 and sets its

pred to null, so it gets true at line 8 and becomes enabled.

2. pi executes line 38 after qj executes line 7, but also pi executes line 40 after

qj executes line 11. Therefore, pi continues from line 38 to line 40 without

changing Tail. At line 40, pi sees that the Head’s next is not null, so pi

advances Head to its next, which is qj’s node, and sets qj’s node’s go to

true. Therefore, qj can’t spin on its go and becomes enabled.

3. pi executes line 38 after qj executes line 7, but also pi executes line 40 before

qj executes line 11. Therefore, pi continues from line 38 to line 40 without

changing Tail. At line 40, pi sees that the Head’s node’s next has not been

set yet, so it continues to line 44. If qj executes line 19 after pi executes line

44, then qj becomes enabled because the CAS operation at line 44 would

end successfully and qj’s node is not active anymore. So we assume that qj

executes line 19 before pi executes line 44, then qj waits on its go at line 20,

and pi fails to executes the CAS operation at line 44. Thus, pi gets true in

the condition at line 44 and advances Head to its next, which is qj’s node,

and sets qj’s node’s go to true. Therefore, qj stops spinning on its go and

becomes enabled.

66

We get that there is no case in which qj never becomes enabled to enter its CS

which contradicts the assumption.

Corollary 5.1 (Starvation freedom). The algorithm satisfies starvation freedom.

Proof. This follows from the fact that the algorithm satisfies both FCFS (corollary

1.1) and deadlock freedom (theorem 5).

Lemma 15. When no process is active, then Q is empty.

Proof. Assume by contradiction that Q is not empty s.t. Q includes a node, say a,

when no process is active. That means, either Tail points to a or Head points to a or

both of them. At the very beginning of the algorithm, Tail and Head are initialized

with null. Therefore, at least one process has already executed the algorithm and

completed the algorithm because there is no active process. Let P be the set of

all the processes that completed their iterations. All the processes in P completed

their exit sections, and according to lemma 2, each of them caused Head to be

advanced by exactly one step. Let’s check the execution path of the last process

in P that acquired the ME lock, say pi, in its exit section. At this time, all the

processes in P except for pi have already caused Head to be advanced by exactly

|P |− 1 steps. Therefore, at this time, Head pointed to a. a is the last node that has

been entered to Q at line 7. Therefore, at the time pi acquired the ME lock, Tail

pointed to a. pi acquired the lock at line 36 and continued to line 37 in which it

saved Head’s current value in its own local variable, which was a pointer to a. pi

continued to line 38 and using the CAS operation, it atomically saw both Tail and

its local variable pointed to a and set Tail with null. Then, pi continued to line 39,

as the CAS operation at line 38 succeeded, and using another CAS operation, it

atomically saw both Head and its local variable pointed to a and set Head with null.

67

pi released the ME lock and completed its iteration. Then, after all the processes

completed their iterations and while no more active processes, Head and Tail are

null. contradiction.

Theorem 6 (Strong group concurrent entering). If a process pi requests a session

x, and pi completes its doorway before any conflicting process starts its door

way, then (1) some process with session x can complete its entry section within a

bounded number of its own steps, and (2) pi eventually completes its entry section,

even if other processes do not leave their critical sections.

Proof. According to theorem 1, the algorithm satisfies strongFCFS, so pi enters

its CS before any conflicting process does. Assume pi ∈ Sk
x . Let P be a set of all

the active processes in Sk
x , s.t. all the processes in P request session x. Denote

p1, p2, p3, ..., pt ∈ P s.t. p1 is the predecessor of p2, p2 is the predecessor of p3,

and so on. Note, pi is also active and in Sk
x then pi is one of these processes.

We prove the theorem by induction on the number of processes in P , |P | = t.

In the base case, t = 1: There is only one active process p1 = pi ∈ P . if pi

executes line 7 and gets null as its pred, then pi is immediately enabled and the

theorem holds. Otherwise, there is a node that is still in Q. Then, this node was in

Q before pi completes its doorway. By the theorem assumption, pi completes its

doorway before any conflicting process enters its doorway, so the node was in Q

while there were no active processes, and by lemma 15, it cannot be that a node is

in Q before pi has added its node.

Next, we assume the theorem holds for t processes and shows it also holds for

|P | = t+ 1 processes. We have two cases:

1. The theorem holds for these t processes p2, p3, ..., pt+1 ∈ P and we prove

68

it also holds for p1. p1 is the first active process because pi is in P and no

conflicting process enters its doorway before pi completes its doorway. So

according to lemma 15, p1 gets null to its pred at line 7. Then, it continues

to line 9 as it sees its pred is null (line 8), sets Head to its own node and

becomes enabled, and the theorem holds for all the t+ 1 processes in P .

2. The theorem holds for t processes in P including p1. Assume, without loss

of generality, that the theorem holds for p1, p2, p3, ..., pt and we prove it also

holds for pt+1 ∈ P . According to the induction assumption, pt is either

enabled or eventually be enabled. Here we also have two options:

• pt is enabled, then if pt+1 executes line 13 after pt executes line 26,

pt+1 sees pt is enabled and pt+1 becomes enabled too and the theorem

holds. Otherwise, pt+1 spins on its go at line 14 until pt sets it to true.

pt is enabled so it reaches line 31 as its successor has already executed

line 11, they both requested the same session, and pt+1 couldn’t change

pt’s status at line 13. Therefore, pt sets pt+1’s go to true at line 31 and

pt+1 becomes enabled and the lemma holds.

• pt is not enabled but by the induction assumption it eventually becomes

enabled. Then, pt+1 sees pt is not enabled and spins on its go at line

14 until its successor, pt, becomes enabled. pt eventually becomes

enabled and sets pt+1’s go to true at line 31 and so pt+1 eventually

becomes enabled too.

Theorem 7 (Constant RMR complexity). The RMR complexity of the algorithm

is O(1) in both the CC and the DSM models.

69

Proof. By inspecting the algorithm, it is easy to count steps and see that except

the busywaiting loops at lines 14 and 20 in the entry code and the use of a Mutual

Exclusion (ME) lock in the exit code, it takes a constant number of steps for a

process to enter its CS and complete its exit section. By using anME algorithm that

also has a constant RMR complexity in both the CC and the DSMmodels, such as

in [11, 17], the RMR complexity of the algorithm’s exit code isO(1). Therefore, it

is sufficient to prove that for every process pi, pi performsO(1)RMRs at both lines

14 and 20, because these lines are the only busywaiting loops in the algorithm.

pi checks at line 12 if it requests the same session as its predecessor. If so, it can

only spin at line 14. Otherwise, it can only spin at line 20. pi spins on nodep → go

no matter if it spins at line 14 or line 20. We will prove that while the process is

executing line 14 or line 20, it performs only a constant number of RMRs in both

models:

• DSM model: pi spins on nodep → go. nodep points to either Nodesp[0]

or Nodesp[1] as follows from line 1 in the algorithm. Both of them were

initialized as local to process pi’s memory. Thus, the algorithm performs

O(1) RMRs in the DSM model.

• CC model: We prove that in one iteration of a process, there is at most one

cache invalidation. Before pi spins on nodep → go either at line 14 or line

20, its value migrates to pi’s local cache, since pi sets the value to false at

line 3. Except for line 3, the value can be updated at lines 31, 43, and 47.

All these lines update the value to true. Then, no matter which line is being

executed first or being executed at all, the value of pi’s nodep → go can be

changed from false to true only once. Therefore, when a process executes

one of the lines above, pi that spins at line 14 or line 20, would have a

70

cache invalidation and perform one RMR to read the new value of nodep →

go. Since the new value is necessarily equal to true, pi stops spinning on

nodep → go and proceeds to its CS. Therefore, there is only one RMR

during the loop execution, and the algorithm has O(1) RMR complexity in

the CC model.

Theorem 8. The algorithm uses constant space per process and totalO(n) shared

memory locations.

Proof. By inspecting the algorithm’s code, the algorithm uses two shared memory

locations Head and Tail, and each process that runs the algorithm uses two nodes.

The algorithm also uses an ME lock, so when we use an ME algorithm that also

uses constant space per process and total ofO(n) shared memory locations such as

in [11, 17], our algorithm usesO(2+n+n) = O(n) shared memory locations.

Theorem 9. The algorithm satisfies (1) mutual exclusion, (2) starvation freedom,

(3) group concurrent entering, (4) group bounded exit, (5) FCFS (even strong

FCFS), and (6) FIFE. Furthermore, the algorithm has constant RMR complexity

in both the CC and the DSM models, it uses constant space per process and a

total of O(n) shared memory locations, and it does not require to assume that the

number of processes or the number of sessions are prior known.

Proof. The properties mutual exclusion, starvation freedom, group concurrent en

tering, group bounded exit, FCFS (strongFCFS), and FIFE, follow from theorem

3, corollary 5.1, theorem 6, theorem 4, corollary 1.1 (theorem 1), and theorem

2 respectively. According to theorem 7, the algorithm has constant RMR com

plexity in both the CC and the DSM models, and according to theorem 8, it uses

71

constant space per process and a total ofO(n) shared memory locations. The other

properties are easily verified by inspecting the code of the algorithm.

72

5 Discussion

With the wide availability of multicore systems, synchronization algorithms like

GME are becoming more important for programming such systems. In concur

rent programming, processes (or threads) are often sharing data structures and

databases. The GME problem deals with coordinating access to such shared data

structures and shared databases.

We have presented a new GME algorithm that is the first to satisfy several

desired properties. Based on our algorithm, it would be interesting to design other

GME algorithms, such as abortable GME [16] and recoverable GME [13], which

will preserve the properties of our algorithm.

73

References

[1] A. Aravind and W.H. Hesselink. Group mutual exclusion by fetchand

increment. ACM Trans. Parallel Comput., 5(4), 2019.

[2] R. Atreya, N.Mittal, and S. Peri. A quorumbased groupmutual exclusion al

gorithm for a distributed system with dynamic group set. IEEE Transactions

on Parallel and Distributed Systems, 18(10), 2007.

[3] J. Beauquier, S. Cantarell, A. K. Datta, and F. Petit. Group mutual exclusion

in tree networks. In Proc. of the 9th International Conference on Parallel

and Distributed Systems, pages 111–116, 2002.

[4] V. Bhatt and C.C. Huang. Group mutual exclusion in O(log n) RMR. In

Proc. 29th ACM Symp. on Principles of Distributed Computing, pages 45–

54, 2010.

[5] G. E. Blelloch, P. Cheng, and P. B. Gibbons. Room synchronization. In Proc.

of the 13th Annual Symposium on Parallel Algorithms and Architectures,

pages 122–133, 2001.

[6] K.M. Chandy and J.Misra. The drinking philosophers problem. ACMTrans

actions on Programming Languages and Systems, 6:632–646, 1984.

[7] P.L. Courtois, F. Heyman, and D.L Parnas. Concurrent control with Readers

and Writers. Communications of the ACM, 14(10):667–668, 1971.

[8] T.S. Craig. Building FIFO and priorityqueuing spin locks from atomic swap.

Technical Report TR930202, Dept. of Computer Science, Univ. of Wash

ington, February 1993.

74

[9] R. Danek and V. Hadzilacos. Localspin group mutual exclusion algorithms.

In 18th international symposium on distributed computing, October 2004.

LNCS 3274 Springer Verlag 2004, 71–85.

[10] E. W. Dijkstra. Solution of a problem in concurrent programming control.

Communications of the ACM, 8(9):569, 1965.

[11] R. Dvir and G. Taubenfeld. Mutual exclusion algorithms with constant rmr

complexity and waitfree exit code. In Proc. of the 21st international con

ference on principles of distributed systems (OPODIS 2017), October 2017.

[12] S. Gokhale and N. Mittal. Fast and scalable group mutual exclusion, 2019.

arXiv:1805.04819.

[13] W. Golab and A. Ramaraju. Recoverable mutual exclusion. In Proc. 2016

ACM Symposium on Principles of Distributed Computing, pages 65–74,

2016.

[14] V. Hadzilacos. A note on group mutual exclusion. In Proc. 20th symp. on

Principles of distributed computing, pages 100–106, 2001.

[15] Y. He, K. Gopalakrishnan, and E. Gafni. Group mutual exclusion in linear

time and space. Theoretical Computer Science, 709:31–47, 2018.

[16] P. Jayanti. Adaptive and efficient abortable mutual exclusion. In Proc. 22nd

ACM Symp. on Principles of Distributed Computing, pages 295–304, July

2003.

[17] P. Jayanti, S. Jayanti, and S. Jayanti. Towards an ideal queue lock. In Proc.

75

http://arxiv.org/abs/1805.04819

21st International Conference on Distributed Computing and Networking,

ICDCN 2020, pages 1–10, 2020.

[18] P. Jayanti, S. Petrovic, and K. Tan. Fair group mutual exclusion. In Proc.

22th ACM Symp. on Principles of Distributed Computing, pages 275–284,

July 2003.

[19] YuhJzer Joung. Asynchronous group mutual exclusion. In Proc. 17th ACM

Symp. on Principles of Distributed Computing, pages 51–60, August 1998.

[20] YuhJzer Joung. Asynchronous group mutual exclusion. Distributed Com

puting, 13(4):189–206, 2000.

[21] H. Kakugawa, S. Kamei, and T. Masuzawa. A tokenbased distributed group

mutual exclusion algorithm with quorums. IEEE Transactions on Parallel

and Distributed Systems, 19(9):1153–1166, 2008.

[22] P. Keane andM.Moir. A simple localspin groupmutual exclusion algorithm.

In Proc. 18th ACM Symp. on Principles of Distributed Computing, pages 23–

32, 1999.

[23] P. Keane andM.Moir. A simple localspin groupmutual exclusion algorithm.

IEEE Transactions on Parallel and Distributed Systems, 12(7), 2001.

[24] L. Lamport. A new solution of Dijkstra’s concurrent programming problem.

Communications of the ACM, 17(8):453–455, August 1974.

[25] J.M. MellorCrummey and M.L. Scott. Algorithms for scalable synchro

nization on sharedmemory multiprocessors. ACM Trans. Comput. Syst.,

9(1):21–65, 1991.

76

[26] M. Takamura, T. Altman, and Y. Igarashi. Speedup of Vidyasankar’s algo

rithm for the group kexclusion problem. Inf. Process. Lett., 91(2):85–91,

2004.

[27] M. Toyomura, S. Kamei, and H. Kakugawa. A quorumbased distributed

algorithm for group mutual exclusion. In Proc. of the 4th International Con

ference on Parallel and Distributed Computing, Applications and Technolo

gies, pages 742–746, 2003.

[28] K. Vidyasankar. A simple group mutual ℓexclusion algorithm. Inf. Process.

Lett., 85(2):79–85, 2003.

[29] KuenPin Wu and YuhJzer Joung. Asynchronous group mutual exclusion in

ring networks. In Proc. 13th Inter. Parallel Processing Symposium and 10th

Symp. on Parallel and Distributed Processing, pages 539–543, 1999.

77

בהרצליה הבינתחומי המרכז
המחשב למדעי ארזי אפי ספר בית

מחקרי מסלול - (M.Sc.) שני לתואר התכנית

סיבוכיות עם לקבוצות הדדית מניעה אלגוריתם

מספר כל עבור מרוחק לזיכרון גישות של קבועה

וקבוצות תהליכים של

מאת

מאור ליאת

מוסמך תואר קבלת לשם מהדרישות כחלק המוגשת תזה עבודת

הרצליה הבינתחומי המרכז המחשב, למדעי ארזי אפי ספר בבית המחקרי במסלול

2021 יולי

המחשב, למדעי ארזי אפי מבי"ס טאובנפלד גדי פרופ' של בהדרכתו בוצעה זו עבודה

הרצליה. הבינתחומי, המרכז

התזה סיכום

מורכב האלגוריתם לקבוצות. ההדדית המניעה בעיית לפתרון אלגוריתם מוצג זו בעבודה

הגישה לאחר המבוצע יציאה, וקוד הקריטי, לקטע הגישה לפני המבוצע כניסה, מקוד

שכל כך קבוצתי", "מנעול מרכיבים היציאה, וקוד הכניסה קוד יחדיו, הקריטי. לקטע

ואילו במקביל שלהם הקריטי לקטע לגשת רשאים הקבוצה לאותה השייכים התהליכים

באותו יחד שלהם הקריטי לקטע לגשת רשאים לא שונות לקבוצות השייכים תהליכים

הזמן.

המניעה בעיית לפתרון הראשון האלגוריתם הוא זו בעבודה המוצג האלגוריתם

זיכרון במודל גם רחוק לזיכרון גישות של קבועה סיבוכיות בעל לקבוצות ההדדית

הראשון האלגוריתם גם הוא בנוסף, מבוזר. משותף זיכרון במודל וגם מטמון הכולל

קבוצות. של שרירותית כמות עם ודינמית שרירותית תהליכים כמות של ריצה שמאפשר

הבאות: התכונות את מספק האלגוריתם

רק במקביל שלהם הקריטי בקטע להימצא יכולים תהליכים שני הדדית: מניעה .1

הסשן. אותו את מבקשים שניהם אם

יוכל בהכרח הוא אז שלו, הקריטי לקטע לגשת מבקש תהליך אם הרעבה: מניעת .2

דבר. של בסופו אליו לגשת

סשן שמבקש תהליך ואין s סשן מבקש p תהליך אם קבוצה: של מקבילית כניסה .3

הכניסה קוד את להשלים יכול s סשן המבקש כלשהו תהליך (1) אז במקביל, אחר

את ישלים דבר של בסופו p תהליך ו-(2) שלו, פעולות של חסום במספר שלו

שלהם. הקריטי בקטע נמצאים עדיין אחרים תהליכים אם גם שלו, הכניסה קוד

קבוצה) של מקבילית כניסה של יותר חזקה תכונה גם מספק (האלגוריתם

תהליך (1) אז שלו, היציאה בקוד נמצא p תהליך אם קבוצה: של חסומה יציאה .4

ו-(2) שלו, פעולות של חסום במספר שלו היציאה קוד את להשלים יכול כלשהו

שלו. היציאה קוד את ישלים דבר של בסופו p תהליך

שלו doorway-ה את משלים p תהליך אם שנכנס": הראשון הוא שבא "הראשון .5

שונים סשנים מבקשים התהליכים ושני שלו doorway-ל נכנס q אחר שתהליך לפני

נכנס p שתהליך לפני שלו הקריטי לקטע להיכנס יכול לא q תהליך אז מזה, זה

שלו. הקריטי לקטע

doorway-ה את משלים p תהליך אם להיכנס": שרשאי הראשון הוא שבא "הראשון .6

אותו את מבקשים התהליכים שני שלו, doorway-ל נכנס q שתהליך לפני שלו

נכנס p תהליך אז ,p תהליך לפני שלו הקריטי לקטע נכנס q ותהליך הסשן,

שלו. פעולות של חסום במספר שלו הקריטי לקטע

שרירותית תהליכים כמות של ריצה מאפשר האלגוריתם דינמיות: למערכות מתאים .7

ולהיעלם להופיע יכולים תהליכים כלומר, סשנים, של שרירותית כמות עם ודינמית

חסומה. אינה הסשנים וכמות שרירותי באופן

בזיכרון מקום על מבצע שתהליך פעולה מרוחק: לזיכרון גישות של קבועה סיבוכיות .8

הפעולה את לבצע יכול לא התהליך אם (RMR) מרוחק לזיכרון גישה נחשבת

סיבוכיות משיג זו בעבודה האלגוריתם שלו. בזיכרון או שלו במטמון לוקאלית

מודל ועבור מטמון הכולל זיכרון מודל עבור מרוחק לזיכרון גישות של קבועה

מבוזר. משותף זיכרון

מקומות מעט מוקצים תהליך כל עבור בודד: תהליך עבור קבועה מקום סיבוכיות .9

בזיכרון.

היום הנתמכות אטומיות בפעולות שימוש עושה האלגוריתם אטומיות: פעולות .10

השוואה-והחלפה. קריאה-כתיבה, כתיבה, קריאה, והן: המודרנים, המעבדים ברוב

מקבילית "כניסה של יותר החזקה התכונה (גם קבוצה" של מקבילית "כניסה התכונות

מנת על וזאת זו בעבודה לראשונה מוצגים קבוצה" של חסומה ו"יציאה קבוצה") של

משותף זיכרון במודל מרוחק לזיכרון גישות של לסיבוכיות התחתון החסם על להתגבר

ב-[9]. המוכח מבוזר

תקציר

בעיית היא ,1998 בשנת יאנג ידי על לראשונה שהוצגה לקבוצות, הדדית מניעה בעיית

והכותבים. הקוראים בעיית ואת הקלאסית ההדדית המניעה בעיית את המכלילה סנכרון

הקריטי; לקטע נכנס שהוא לפני סשן מבקש תהליך לקבוצות, הדדית מניעה בבעיית

את מבקשים שהם בתנאי הזמן באותו שלהם הקריטי בקטע להימצא רשאים תהליכים

הסשן. אותו

הוא (1) אשר לקבוצות ההדדית המניעה בעיית לפתרון אלגוריתם מוצג זו בעבודה

מטמון הכולל זיכרון מודל עבור מרוחק לזיכרון גישות של קבועה סיבוכיות בעל הראשון

של ריצה שמאפשר הראשון הוא ו-(2) (DSM) מבוזר משותף זיכרון מודל עבור וגם (CC)

האלגוריתמים כל סשנים. של שרירותית כמות עם ודינמית שרירותית תהליכים כמות

משתי תכונה אף מקיימים לא לקבוצות ההדדית המניעה בעיית לפתרון היום הקיימים

האלגוריתם של בודד תהליך עבור המקום סיבוכיות בנוסף, הללו. החשובות התכונות

חזקות תכונות שתי מספק האלגוריתם כן, על יתר קבועה. היא זו בעבודה המוצג

הראשונה הקבוצה היא הקריטי לקטע להיכנס שמבקשת הראשון הקבוצה הגינות, של

בקבוצה הקריטי לקטע להיכנס שמבקש הראשון והתהליך הקריטי לקטע שתיכנס

הקריטי. לקטע להיכנס רשאי שיהיה מהקבוצה הראשון התהליך הוא מסוימת

המודרניים המעבדים ברוב היום הנתמכים אטומיים ברגיסטרים משתמש האלגוריתם

השוואה-והחלפה. קריאה-וכתיבה, כתיבה, קריאה, והם:

	Introduction
	Motivation and results
	The GME problem
	Further explanations
	Related work

	Preliminaries
	Computational model
	The CC and DSM machine architectures
	RMR complexity: counting remote memory references

	The GME Algorithm
	An informal description
	The algorithm
	Further explanations

	Correctness proof
	Discussion

