‘;k
* IDC Efi Arazi School
HERZLIYA | of Computer Science

.‘-.

The Interdisciplinary Center, Herzliya

Efi Arazi School of Computer Science

Constant RMR Group Mutual
Exclusion for Arbitrarily Many
Processes and Sessions

by
Liat Maor

M.Sc. dissertation, submitted in partial fulfillment of the requirements
for the Master’s degree, School of Computer Science

The Interdisciplinary Center, Herzliya

September 8, 2021

This work was carried out under the supervision of Prof. Gadi Taubenfeld as
part of the M.Sc. program of Efi Arazi School of Computer Science, The Interdis-

ciplinary Center, Herzliya.

Acknowledgments

I would like to thank my supervisor, Prof. Gadi Taubenfeld, for his invaluable
advice, continuous support, and patience during my master study. His immense
knowledge and plentiful experience have encouraged me in all the time of my
academic research.

My appreciation also goes out to my family and friends for their encourage-

ment and support all through my studies.

Thesis summary

In this work, a group mutual exclusion (GME) algorithm is presented. The al-
gorithm consists of entry code and exit code. The entry code is executed before
accessing the critical section, and the exit code is executed right after completing
the critical section. Together, the entry code and the exit code assemble a GME
lock, such that processes that request the same session may enter their critical sec-
tions concurrently while processes that request different sessions may not enter
their critical sections simultaneously.

The algorithm that is presented in this work, is the first to achieve a constant
Remote Memory Reference (RMR) complexity for both cache coherent (CC) and
distributed shared memory (DSM) machines, and is the first that can be accessed
by arbitrarily many dynamically allocated processes with arbitrarily many session

names. The algorithm satisfies the following properties:

1. Mutual exclusion: Two processes can be in their CS at the same time, only

if they request the same session.

2. Starvation freedom: 1f a process is trying to enter its CS, then this process

must eventually enter its CS.

3. Group concurrent entering (GCE): If a process p requests a session s while
no process requesting a conflicting session, then (1) some process with ses-
sion s can complete its entry section within a bounded number of its own
steps, and (2) p eventually completes its entry section, even if other pro-

cesses do not leave their CS. (The algorithm also satisfies strong-GCE)

4. Group bounded exit (GBE): If a process p is in its exit section, then (1) some

process can complete its exit section within a bounded number of its own

steps, and (2) p eventually completes its exit section.

. First-come-first-served (FCFS): If a process p completes its doorway be-
fore a process q enters its doorway and the two processes request different

sessions, then q does not enter its CS before p enters its CS.

. First-in-first-enabled (FIFE): If a process p completes its doorway before
a process q enters its doorway, the two processes request the same session,
and q enters its CS before p, then p enters its CS in a bounded number of its

own steps.

. Suitability for dynamic systems: The algorithm can be accessed by an ar-
bitrarily number of processes, that is, processes may appear or disappear
intermittently; and the number and names of the sessions are not limited in

any way.

. O(1) RMR complexity: An operation that a process performs on a mem-
ory location is considered a remote memory reference (RMR) if the process
cannot perform the operation locally on its cache or memory and must trans-
act over the multiprocessor’s interconnection network in order to complete
the operation. This algorithm achieve the ideal RMR complexity of O(1)
for both Cache Coherent (CC) and Distributed Shared Memory (DSM) ma-

chines.

. O(1) space per process: A small constant number of memory locations are

allocated for each process.

10. Atomic instruction set: read, write, Fetch-And-Store (FAS), Compare-And-
Swap (CAS)

The properties GCE (also strong-GCE) and GBE are first introduced in this

work to circumvent the lower bound from [9].

Abstract

Group mutual exclusion (GME), introduced by Joung in 1998, is a natural syn-
chronization problem that generalizes the classical mutual exclusion and readers
and writers problems. In GME a process requests a session before entering its crit-
ical section; processes are allowed to be in their critical sections simultaneously
provided they have requested the same session.

We present a GME algorithm that (1) is the first to achieve a constant Re-
mote Memory Reference (RMR) complexity for both cache coherent and dis-
tributed shared memory machines; and (2) is the first that can be accessed by
arbitrarily many dynamically allocated processes and with arbitrarily many ses-
sion names. Neither of the existing GME algorithms satisfies either of these two
important properties. In addition, our algorithm has constant space complexity
per process and satisfies the two strong fairness properties, first-come-first-served
and first-in-first-enabled. Our algorithm uses an atomic instruction set supported
by most modern processor architectures, namely: read, write, fetch-and-store and

compare-and-swap.

Contents

1 Introduction 8
[[.1 Motivation and resulty 8
[[.2 The GME problem| 11
(1.3 Further explanationd 13
.4 Relatedworkl 16

2 Preliminaries 19
2.1 Computationalmodel 19
2.2 The CC and DSM machine architectures 21
2.3 RMR complexity: counting remote memory references 22

8 The GME Algorithm 23
B.1 Aninformal description 23
B.2 Thealgorithm 27
B.3 Further explanationd 31

4 Correctness proof 40

73

1 Introduction

1.1 Motivation and results

In the group mutual exclusion (GME) problem n processes repeatedly attend m
sessions. Processes that have requested to attend the same session may do it con-
currently. However, processes that have requested to attend different sessions
may not attend their sessions simultaneously. The GME problem is a natural gen-
eralization of the classical mutual exclusion (ME) and readers/writers problems
[7, 10]. To see this, observe that given a GME algorithm, ME can be solved by
having each process use its unique identifier as a session number. Readers/writers
can be solved by having each writer request a different session, and having all
readers request the same special session. This allows readers to attend the ses-
sion concurrently while ensuring that each writer attends in isolation. The GME
problem has been studied extensively since it was introduced by Yuh-Jzer Joung
in 1998 [119, 20].

A simple usage example has to do with the design of a concurrent queue or
stack [5]. Using a GME algorithm, we can guarantee that no two users will ever
simultaneously be in the enqueue.session or dequeue.session, so the enqueue and
dequeue operations will never be interleaved. However, it will allow any number
of users to be in either the enqueue or dequeue session simultaneously. Doing so
simplifies the design of a concurrent queue as our only concern now is to imple-
ment concurrent enqueue operations and concurrent dequeue operations.

In this work, we present a GME algorithm that is the first to satisfy several

desired properties (the first two properties are satisfied only by our algorithm).

1. Suitability for dynamic systems: All the existing GME algorithms are de-

signed with the assumption that either the number of processes or the num-
ber of sessions is a priori known. Our algorithm is the first that does not

make such an assumption:

* it can be accessed by an arbitrary number of processes; that is, pro-

cesses may appear or disappear intermittently, and

* the number and names of the sessions are not limited in any way.

. O(1) RMR complexity: An operation that a process performs on a mem-
ory location is considered a remote memory reference (RMR) if the process
cannot perform the operation locally on its cache or memory and must trans-
act over the multiprocessor’s interconnection network in order to complete
the operation. RMRs are undesirable because they take long to execute and

increase the interconnection traffic. Our algorithm

« achieves the optimal RMR complexity of O(1) for Cache Coherent
(CC) machines; and

* is the first to achieve the optimal RMR complexity of O(1) for Dis-
tributed Shared Memory (DSM) machines. (In Subsection [I.3], we ex-

plain why this result does not contradict the lower bound from [9].)

This means that a process incurs only a constant number of RMRs to satisfy
a request (i.e, to enter and exit the critical section once), regardless of how

many other processes execute the algorithm concurrently.

. O(1) space per process: A small constant number of memory locations are

allocated for each process. On DSM machines, these memory locations

reside in the process local memory; on CC machines, these locations reside

in the shared memory.

4. Strong fairness: Requests are satisfied in the order of their arrival. That is,
our algorithm satisfies the first-come-first-served and first-in-first-enabled

properties, defined later.

5. Hardware support: Atomic instruction set that is supported by most mod-
ern processor architectures is used, namely: read, write, fetch-and-store and

compare-and-swap.

We point out that when using a GME as a ME algorithm, the number of pro-
cesses is the same as the number of sessions (each process uses its identifier as its
session number). Thus, in GME algorithms, in which the number of sessions is
a priori known also the number of processes must be known, at least when these
GME algorithms are used as ME algorithms or readers and writers locks.

Our GME algorithm is inspired by J. M. Mellor-Crummey and M. L. Scott
MCS queue-based ME algorithm [25]. The idea of our GME algorithm is to em-
ploy a queue, where processes insert their requests for attending a session. The
condition when a process p may attend its session depends on whether p’s session
is the same as that of all its predecessors. Otherwise, p waits until p is notified (by
one of its predecessors) that all its predecessors which have requested different
sessions completed attending their sessions.

A drawback of the MCS ME algorithm is that releasing a lock requires spinning
— a process p releasing the lock may need to wait for a process that is trying to
acquire the lock (and hence is behind p in the queue) to take a step before p can

proceed. The ME algorithms in [11] overcome this drawback while preserving

10

the simplicity, elegance, and properties of the MCS algorithm. We use a key idea
inspired by [L1] in our GME algorithm to ensure that a process releasing the GME
lock will never have to wait for a process that has not attended its session yet.
Another key idea of our algorithm is to count down completed requests for
attending a session by moving a pointer by one node (in the queue) for each such
request and to ensure the integrity of this scheme by gating the processes that have
completed attending a session (and are now trying to move the pointer) through a

mutual exclusion lock.

1.2 The GME problem

Formally, the GME problem is defined as follows: it is assumed that each process
executes a sequence of instructions in an infinite loop. The instructions are divided
into four continuous sections of code: the remainder, entry, critical section (CS),
and exit.

A process starts by executing its remainder section. At some point, it might
need to attend some session, say s. To attend session s, a process has to go through
an entry code that guarantees that while it is attending this session, no other pro-
cess is allowed to attend another session. In addition, once a process completes
attending a session, the process executes its exit section in which it notifies other
processes that it is no longer attending the session. After executing its exit section,
the process returns to its remainder.

The group mutual exclusion problem is to write the code for the entry section

and the exit section so that the following requirements are satisfied.

* Mutual exclusion: Two processes can be in their CS at the same time, only

if they request the same session.

11

* Starvation-freedom: If a process is trying to enter its CS, then this process

must eventually enter its CS.

* Group concurrent entering (GCE): If a process p requests a session s while
no process is requesting a conflicting session, then (1) some process with
session s can complete its entry section within a bounded number of its
own steps, and (2) p eventually completes its entry section, even if other

processes do not leave their CS.

* Group bounded exit (GBE): If a process p is in its exit section, then (1) some
process can complete its exit section within a bounded number of its own

steps, and (2) p eventually completes its exit section.

GCE precludes using a given mutual exclusion algorithm as a solution for the
GME problem since GCE enables processes to attend the same session concur-
rently.

Our algorithm also satisfies the following strong fairness requirements. To
formalize this, we assume that the entry code starts with a bounded section of
code (i.e., one that contains no unbounded loops), called the doorway; the rest of
the entry code is called the waiting room. The fairness requirements, satisfied by

our algorithm, can now be stated as follows:

* First-come-first-served (FCFS): If a process p completes its doorway be-
fore a process ¢ enters its doorway and the two processes request different

sessions, then ¢ does not enter its CS before p enters its CS []14, 24].

* First-in-first-enabled (FIFE): If a process p completes its doorway before

a process ¢ enters its doorway, the two processes request the same session,

12

and q enters its CS before p, then p enters its CS in a bounded number of its

own steps [[18].

We notice that FCFS and FIFE do not imply starvation-freedom or group concur-

rent entering.

1.3 Further explanations

To illustrate the various GME requirements, imagine the critical section as a lecture
hall that different professors can share for their lectures. Furthermore, assume that
the lecture hall has one entrance door and one exit door. When solving the GME
problem, the property of mutual exclusion guarantees that two different lectures
cannot be arranged in the lecture hall simultaneously, while starvation-freedom
guarantees that the lecture hall will eventually be reserved for every scheduled
lecture.

Assuming that only one lecture is scheduled, group concurrent entering ensures
that all the students who want to attend this lecture can enter the lecture hall through
the entrance door, possibly one after the other, and attend the lecture. Furthermore,
at any given time, when there are students who want to attend the lecture, at least
one of them can always enter the lecture hall without any delay. Similarly, group
bounded exit ensures that all the students who want to leave a lecture can do so
through the exit door, possibly one after the other. Furthermore, at any given time,
at least one of them can exit the lecture hall without delay.

Group concurrent entering and group bounded exit are first introduced and
formally defined in this work. They are slightly weakened versions of two known
requirements (formally defined below) called concurrent entering and bounded

exit. Using the lecture hall metaphor, assuming that only one lecture is scheduled,

13

concurrent entering ensures that all the students who want to attend this lecture can
enter the lecture hall rogether. Similarly, bounded exit ensures that all the students
who want to leave a lecture can do so together. So, why have we not used these

two stronger requirements?

Danek and Hadzilacos lower bound. Letn denotes the total number of processes.
In [9], it is proven that ©2(n) RMRs are required for any GME algorithm that satis-
fies mutual exclusion, starvation-freedom, concurrent entering, and bounded exit,
in the DSM model, using basic primitives of any strength. This result holds even
when the number of sessions is only two. (Concurrent entering and bounded exit
are as defined below [[14].) Since we are aiming at finding a solution that has O(1)
RMR complexity, we had to weaken either concurrent entering, bounded exit, or
both. (GME would not be interesting if the mutual exclusion or starvation-freedom

properties are weakened.)

Group concurrent entering. To avoid an inefficient solution to the GME problem
using a traditional ME algorithm and forcing processes to be in their CS one-at-
a-time, even if all processes are requesting the same session, Joung required that
a GME algorithm satisfies the following property (which he called concurrent en-

tering):

+ If some processes request a session and no process requests a different ses-

sion, then the processes can concurrently enter the CS [[19].

The phrase “can concurrently enter,” although suggestive, is not precise. In [22,
23], Keane and Moir were the first to give a precise definition that captures their

interpretation of Joung’s requirement (which they also called concurrent entering):

14

* Concurrent occupancy: If a process p requests a session and no process
requests a different session, then p eventually enters its CS, even if other

processes do not leave their CS. (The name “concurrent occupancy” is from

(141,

In [[14], Hadzilacos gave the following interpretation, which is stronger than that

of Keane and Moir.

» Concurrent entering: If some process, say p, is trying to attend a session
s while no process is requesting a conflicting session, then p completes its

entry section in a bounded number of its own steps.

To circumvent the Danek and Hadzilacos 2(n) lower bound, we looked for a
slightly weaker version of concurrent entering that would still capture the prop-
erty that Joung intended to specify. We believe that group concurrent entering,
which is strictly stronger than concurrent occupancy, is such a property. We point
out that our algorithm actually satisfies the following stronger version of group

concurrent entering,

 Strong group concurrent entering: If a process p requests a session s, and
p completes its doorway before any conflicting process starts its doorway,
then (1) some process with session s can complete its entry section within a
bounded number of its own steps, and (2) p eventually completes its entry

section, even if other processes do not leave their CS.

Strong group concurrent entering (SGCE) is a slightly weakened version of a

known property called strong concurrent entering [|18].

15

Group bounded exit. Our group bounded exit property is replaced by the fol-

lowing two (weaker and stronger) properties in previously published papers.

» Terminating exit: If a process p enters its exit section, then p eventually

completes it [22].

* Bounded exit: If a process p enters its exit section, then p eventually com-

pletes it within a bounded number of its own steps [|14].

Again, to circumvent the Danek and Hadzilacos §2(n) lower bound, we have de-
fined group bounded exit, which is slightly weaker than bounded exit and is strictly

stronger than terminating exit.

Open question. We have modified both concurrent entering and bounded exit.
Is this necessary? With minor modifications to the Danek and Hadzilacos lower
bound proof, it is possible to prove that their lower bound still holds when replac-
ing only bounded exit with group bounded exit. Thus, to circumvent the lower
bound, the weakening of concurrent entering is necessary. However, the question
of whether it is possible to circumvent the lower bound by replacing only concur-
rent entering with group concurrent entering, and leaving bounded exit as is, is

open.

1.4 Related work

Table |l summarizes some of the (more relevant) GME algorithms mentioned be-
low and their properties. The group mutual exclusion problem was first stated and
solved by Yuh-Jzer Joung in [[19, 20], using atomic read/write registers. The prob-

lem is a generalization of the mutual exclusion problem [10] and the readers and

16

writers problem [[7] and can be seen as a special case of the drinking philosophers
problem [6].

Group mutual exclusion is similar to the room synchronization problem [5].
The room synchronization problem involves supporting a set of m mutually ex-
clusive “rooms” where any number of users can execute code simultaneously in
any one of the rooms, but no two users can simultaneously execute code in sepa-
rate rooms. In [5], room synchronization is defined using a set of properties that
is different than that in [[19], a solution is presented, and it is shown how it can be
used to efficiently implement concurrent queues and stacks.

In [22, 23], a technique of converting any solution for the mutual exclusion
problem to solve the group mutual exclusion problem was introduced. The algo-
rithms from [22, 23]] do not satisfy group concurrent entering and group bounded
exit and have O(n) RMR complexity, where n is the number of processes. (By
mistake, in some of the tables in [22, 23], smaller RMR complexity measures
are mentioned.) In [|14], a simple formulation of concurrent entering is proposed
which is stronger than the one from [22], and an algorithm is presented that satis-
fies this property.

In [[18], the first FCFS GME algorithm is presented that uses only O(n) bounded
shared registers, while satisfying concurrent entering and bounded exit. Also, it is
demonstrated that the FCFS property does not fully capture the intuitive notion of
fairness, and additional fairness property, called first-in-first-enabled (FIFE) was
presented. Finally, the authors presented a reduction that transforms any abortable
FCFS mutual exclusion algorithm, into a GME algorithm, and used it to obtained
GME algorithm satisfying both FCFS and FIFE.

A GME algorithm is presented in [9] with O(n) RMR complexity in the DSM

17

model, and it is proved that this is asymptotically optimal. Another algorithm in
[9] requires only O(logn) RMR complexity in the CC model, but can be used just
for two sessions.

Our algorithm satisfies FCFS fairness. That is, if the requests in the queue
are for sessions 1, 2, 1, 2, 1, 2 and so on, those requests would be granted in that
order. Yet, for practical considerations, one may want to batch all requests for ses-
sion 1 (and, separately, for session 2) and run them concurrently. Our algorithm
does not support “batching” of pending requests for the same session, as FCFS
fairness and “batching” of pending requests for the same session are contradicting
(incompatible) requirements. This idea was explored in [4], where a GME algo-
rithm is presented that satisfies two “batching” requirements called pulling and
relaxed-FCFS, and requiring only O(logn) RMR complexity in the CC model.
Reader-Writer Locks were studied in [?], which trade fairness between readers
and writers for higher concurrency among readers and better back-to-back batch-
ing of writers.

An algorithm is presented in [[12] in which a process can enter its critical section
within a constant number of its own steps in the absence of any other requests
(which is typically referred to as contention-free step complexity). In the presence
of contention, the RMR complexity of the algorithm is O(min(k,n)), where k
denotes the interval contention. The algorithm requires O(n?) space and does not
satisfy fairness property like FCFS or FIFE.

In [[], a GME algorithm with a constant RMR complexity in the CC model
is presented. This algorithm does not satisfy group concurrent entering (or even
concurrent occupancy) and FCFS. However, it satisfies two other interesting prop-

erties (defined by the authors) called simultaneous acceptance and forum-FCFS.

18

In [15], the first GME algorithm with both linear RMR complexity (in the
CC model) and linear space was presented, which satisfies concurrent entering
and bounded exit, and uses only read/write registers. A combined problem of /-
exclusion and group mutual exclusion, called the group ¢-exclusion problem, is
considered in [26, 28].

Besides the algorithms mentioned above, for the shared-memory model, there
are algorithms that solve the GME problem under the message-passing model.
Several types of the network’s structure were considered, for example, tree net-
works [3], ring networks [29], and fully connected networks [2]. In [2, 21, 27],
quorum-based message-passing algorithms are suggested in which a process that

is interested in entering its CS has to ask permission from a pre-defined quorum.

2 Preliminaries

2.1 Computational model

Our model of computation consists of an asynchronous collection of n determin-
istic processes that communicate via shared registers (i.e., shared memory loca-
tions). Asynchrony means that there is no assumption on the relative speeds of
the processes. Access to a register is done by applying operations to the register.
Each operation is defined as a function that gets as arguments one or more values
and registers names (shared and local), updates the value of the registers, and may
return a value. Only one of the arguments may be a name of a shared register. The
execution of the function is assumed to be atomic. Call by reference is used when

passing registers as arguments. The operations used by our algorithm are:

19

GME Group Group Fairness | Unknown Shared RMR RMR Hardware
Algorithms bounded | concurrent number of | space inCC | inDSM used
exit entering FCES/ | processes for all

BE/GBE | CE/GCE FIFE | & sessions | processes
Joung BE CE X X O(n) 00 00 read/write
1988
Keane & X X X X O(n) O(n) O(n) | read/write
Moir 1999
Hadzilacos BE CE FCFS X O(n?) O(n?)) read/write
2001
Jayanti et.al. BE CE FCFS X O(n) O(n?) 00 read/write
2003 FIFE
Danek&Had- BE CE FCFS X O(n?) O(n) O(n) CAS
zilacos 2004 FIFE fetch&add
Bhatt & BE CE X X O(mn) | O(min(00 LL/SC
Huang 2010 k,logn))
He et. al. BE CE FCFS X O(n) O(n) 00 read/write
2018
Aravid&He- BE X X O(L) 0(1) 00 fetch&inc
sselink 2019 FIFE
Gokhale & BE CE X X 0(n?) O(min(| O(n) CAS
Mittal 2019 c,n)) fetch&add
Our GBE GCE | FCFS v On) o1 | o) CAS
algorithm FIFE fetch&store
v - satisfies the property k - point contention BE - bounded exit
X - does not satisfy the property ¢ - interval contention GBE - group bounded exit
n - number of processes L - a constant number CE - concurrent entring
m - number of sessions s.t. L > min(n,m) GCE - group concurrent entring

Table 1: Comparing the properties of our algorithm with those of several GME
algorithms.

* Read: takes a shared register r and simply returns its value.

» Write: takes a shared register r and a value val. The value val is assigned to

r.

* Fetch-and-store (FAS): takes a shared register r and a local register ¢, and
atomically assigns the value of ¢ to r and returns the previous value of r.

(The fetch-and-store operation is also called swap in the literature.)

20

M

@ (b) (©

Figure 1: Shared memory models. (a) Central shared memory. (b) Cache Coher-
ent (CC). (c) Distributed Shared Memory (DSM). P denotes processor, C denotes

cache, M denotes shared memory.
* Compare-and-swap (CAS): takes a shared register r, and two values: new
and old. If the current value of the register r is equal to old, then the value of

r is set to new and the value frue is returned; otherwise, r is left unchanged

and the value false is returned.

Most modern processor architectures support the above operations.

2.2 The CC and DSM machine architectures

We consider two machine architecture models: (1) Cache coherent (CC) systems,
where each process (or processor) has its own private cache. When a process ac-
cesses a shared memory location, a copy of it migrates to a local cache line and
becomes locally accessible until some other process updates this shared memory
location and the local copy is invalidated; (2) Distributed shared memory (DSM)
systems, where instead of having the “shared memory” in one central location,
each process “owns” part of the shared memory and keeps it in its own local mem-
ory. These different shared memory models are illustrated in Figure [I|

A shared memory location is locally accessible to some process if it is in the

part of the shared memory that physically resides on that process’ local memory.

21

Spinning on a remote memory location while its value does not change, is counted
only as one remote operation that causes communication in the CC model, while
it is counted as many operations that cause communication in the DSM model. An
algorithm satisfies local spinning (in the CC or DSM models) if the only type of

spinning required is local spinning.

2.3 RMR complexity: counting remote memory references

We define a remote reference by process p as an attempt to reference (access) a
memory location that does not physically reside in p’s local memory or cache.
The remote memory location can either reside in a central shared memory or in
some other process’ memory.

Next, we define when remote reference causes communication. (1) Inthe DSM
model, any remote reference causes communication; (2) in the CC model, a remote
reference to register r causes communication if (the value of) r is not (the same
as the value) in the cache. That is, communication is caused only by a remote
write access that overwrites a different value or by the first remote read access by
a process that detects a value written by a different process.

Finally, we define time complexity when counting only remote memory refer-
ences. This complexity measure, called RMR complexity, is defined with respect
to either the DSM model or the CC model, and whenever it is used, we will say

explicitly which model is assumed.

* The RMR complexity in the CC model (resp. DSM model) is the maximum
number of remote memory references which cause communication in the

CC model (resp. DSM model) that a process, say p, may need to perform in

22

its entry and exit sections in order to enter and exit its critical section since

the last time p started executing the code of its entry section.

3 The GME Algorithm

Our algorithm has the following properties: (1) it has constant RMR complexity in
both the CC and the DSM models, (2) it does not require to assume that the number
of participating processes or the number of sessions is a priori known, (3) it uses
constant space per process, (4) it satisfies FCFS and FIFE fairness, (5) it satisfies
the properties: mutual exclusion, starvation-freedom, SGCE, and GBE, (6) it uses
an atomic instruction set supported by most modern processor architectures (i.e.,

read, write, FAS and CAS).

3.1 An informal description

The algorithm maintains a queue of nodes which is implemented as a linked list
with two shared objects, Head and Tail, that point to the first and the last nodes,
respectively. Each node represents a request of a process to attend a specific ses-
sion. A node is an object with a pointer field called next, a boolean field called
go, an integer field called session, and two status fields called status and active.
Each process p has its own two nodes, called Nodes,[0] and Nodes,[1], which can
be assumed to be stored in the process p’s local memory in a DSM machine, and
in the shared memory in a CC machine. Each time p wants to enter its CS section,
p uses alternately one of its two nodes. We say that a process p is enabled if p can
enter its CS in a bounded number of its own steps.

In its doorway, process p initializes the fields of its node as follows:

23

* session is set to the session p wants to attend, letting other processes know

the session p is requesting (line 2).

* next is a pointer to the successor’s node and is initially set to null. This field

is being updated later by p’s successor (line 11).

* goissetto false. Later, if p is not enabled, p would spin on its go bit until the
value is changed to true. The go bit is the only memory location a process

may spin on.

* status 1s set to WAIT. This field is being used to determine if a process is
enabled. When a process becomes enabled, it sets this field to ENABLED
(line 26). When process p sees that its predecessor is not enabled (line 13),
p spins on its go bit (line 14). Otherwise, p informs its predecessor that p
has seen that the predecessor is enabled (and hence p does not need help),
by setting its predecessor’s status field to NO_HFELP. When a process
p sees that its status is ENABLED (line 30), p tries to help its successor
to become enabled and notifies the successor by setting p’s own status to

TRY HELP.

* active is set to YES. This field is being used to determine whether p’s node
is active or not. A node is active if there is a process p that is currently using

the node in an attempt to enter p’s critical section.

At the end of its doorway, process p threads its node to the end of the queue (line

7). Afterward, p checks what its state is. The state can be one of the following:

1. its node is the first in the queue,

2. its predecessor requests the same session, or

24

3. its predecessor requests a different session.

In the first case, p can safely become enabled and enters its CS. In the second
case, p becomes enabled only if its predecessor is enabled. In the third case, p
eventually becomes enabled, once all the processes it follows completed their CSs.
We observe that in the exit section, each process causes Head to be advanced by
exactly one step. So, if p’s predecessor’s node is inactive, it implies that all the
processes that p follows completed their CSs, and thus, p can become enabled and
enters its CS.

In the last two cases, once p is enabled, p checks whether it should help its
predecessor advance Head, by checking if p’s predecessor’s node is inactive. If
the predecessor’s node is inactive, then Head should point to the node after this
inactive node, which is p’s node. Therefore, in such a case, p advances Head to
point to its node.

Once p is enabled to enter its CS, p notifies its successor by setting p’s status to
ENABLED. Next, p checks if it has a successor that requests the same session and
needs help also to become enabled. If so, p tries to help its successor to become
enabled. Only then p enters its CS. The processes that may enter their CS simul-
taneously are: the process, say p, that Head points to its node, and every process
q that (1) requests the same session as p, and (2) no conflicting process entered its
node between p’s node and ¢’s node.

Most of the exit code is wrapped by a mutual exclusion lock. This ensures that
each process can cause Head to be advanced by a single step every time a process
completes its CS. A process p that completes its CS and succeeds in acquiring the
ME lock tries to advance Head. If p succeeds in advancing Head, then Head value

is either null or points to the next node in the queue. If Head is not null, p changes

25

the go bit to frue in the node that Head points to. By doing so, p lets the next
process become enabled.

If p fails to advance Head, this means that some other process either,
1. enters the queue after p sets Tail to null (line 38),

2. enters the queue but has not notified its predecessor yet (line 11), or
3. has not entered the queue yet (line 7).

In the first case, the process, say ¢, in its entry section overrides Head to point to
¢’s node (line 9) because ¢’s predecessor is null, and so q “advances” Head for p.
In the latter cases, ¢ in its entry section overrides Head to point to ¢’s own node
because it sees ¢’s predecessor’s node is inactive, and so ¢ “advances” Head for p.
Afterward, p releases the ME lock, changes the index of its current node (for the
next attempt to enter p’s critical section), and completes its exit section.

To guarantee that our GME algorithm satisfies group bounded exit, the mutual
exclusion used in the exit section (lines 36 and 49) must satisfy three properties,
(1) starvation-freedom, (2) bounded exit, and (3) a property that we call bounded
entry. Bounded entry is defined as follows: If a process p is in its entry section,
while no other process is in its critical section or exit section, some process can
complete its entry section within a bounded number of its own steps.] While the
important and highly influential MCS lock [25] does not satisfy bounded exit, there
are variants of it, like the mutual exclusion algorithms from [8, (11}, [17], that satisfy

all the above three properties.

't is interesting to notice that the bounded entry property cannot be satisfied by a ME algorithm

that uses only read/write atomic registers [?], [?] (page 119).

26

We will use one of the mutual exclusion algorithms from []11}, [17], since (in
addition to satisfying the above three properties) each of these algorithms satis-
fies the following properties which match those of our GME algorithm: (1) it has
constant RMR complexity in both the CC and the DSM models, (2) it does not
require to assume that the number of participating processes is a priori known, (3)
it uses constant space per process, (4) it satisfies FCFS, (5) it uses the same atomic
instruction set as our algorithm, (6) it makes no assumptions on what and how
memory is allocated (in [8] it is assumed that all allocated pointers must point to

even addresses).

3.2 The algorithm

Two memory records (nodes) are allocated for each process. On DSM machines,
these two records reside in the process local memory; on CC machines, these two
records reside in the shared memory. In the algorithm, the following symbols are

used:

& — this symbol is used to obtain an object’s memory location address (and
not the value in this address). For example, &var is the memory location

address of variable var.

— — this symbol is used to indicate a pointer to data of a field in a specific
memory location. For example, assume var is a variable that is a struct
with a field called number. We now define another variable loc := &var
s.t. loc points to var. Using loc — number we would get the value of

var.number.
Q —the queue in the algorithm is denoted by Q. Q is only used for explanations

27

and does not appear in the algorithm’s code.

Algorithm 1 The GME algorithm: Code for process p

Type: QNode: { session: int, go: bool, next: QNode*,
active: € {YES, NO, HELP}
status: € {ENABLED, WAIT, TRY HELP, NO_HELP} }
Shared: Head: type QNode*, initially null > pointer to the first node in Q
T'ail: type QNode*, initially null > pointer to the last node in Q
Lock: type ME lock > mutual exclusion lock
Nodesp[0, 1]: each of type QNode, initial value immaterial > nodes local to p
in DSM
Local: s: int > the session of p
nodey: type QNode*, initial value immaterial > pointer to p’s currently used
node
pred,: type QNode*, initial value immaterial > pointer to p’s predecessor node
nexty: type QNode*, initial value immaterial > pointer to p’s successor node
temp_head,: type QNode*, initial value immaterial > temporarily save the
head
currenty,: € {0, 1}, initial value immaterial > the index for p’s current node
procedure Thread(s: int) > s is the session p wants to attend

> Begin Doorway

1: node, := &Nodesp|current,] > pointer to current node for this attempt to enter

p’s CS
2: node, — session 1= s > p’s current session
3: node, — go := false > may spin locally on it later
4: node, — next := null > pointer to successor

28

3

10:

12:
13:

14:

15:

16:
17:
18:
19:
20:

21:
22:
23:
24:
25:

: node, — status := WAIT

: node, — active := YES

: pred, := FAS(Tail, node,)

. if pred, = null then

Head := node,
else

pred, — next := node,

if pred, — session = s then
session

advance Head?
Head := node,
end if

else

> p isn’t enabled

> p’s node is active

> p enters its current node to Q

> End Doorway

> was Q empty before p entered?
> node,, is the first in Q

> p has pred

> notify pred

> do we have the same session?

if not CAS(pred,, — status, ENABLED, NO_HELP) then

> should wait for help from pred?

await node, — go = true > wait until released by pred with the same

else if not CAS(pred, — active, YES, HELP) then > should help

> help advance Head

> we have different sessions

if CAS(pred, — active, YES, HELP) then > pred’s node is still active?

await node, — go = true

> wait until release by a process with a different session

else
Head := node,
end if
end if
end if

> pred’s node is inactive in Q thus p is enabled

29

26: node, — status := ENABLED > can enter the CS

> Try helping the successor

27: next, := node, — next > save next pointer locally
28: if next, # null then > has successor?
29: if next, — session = s then > we have the same session
30: if CAS(node, — status, ENABLED, TRY HELP) then

31: next, — go := true > make your successor enabled
32: end if

33: end if

34: end if

35: critical section

36: Acquire(Lock) > Mutual exclusion entry section

37: temp_head, := Head > save current head locally

38: if CAS(Tail, temp_head,, null) then > remove node from tail if it is the only

node in Q
39: CAS(Head, temp_head,, null) > try removing it from the head
40: else if temp_head,, — next # null then > head has successor
41: temp_head, := temp_head, — next > advance the temp head
42 Head := temp_head, > advance the head
43: temp_head, — go := true > enable the new head

44: else if not CAS(temp_head, — active, YES, NO) then
> someone in Tail but hasn’t notify to its predecessor in time

45: temp_head, := temp_head, — next > advance the temp head

30

46: Head := temp_head, > advance the head

47: temp_head, — go := true > enable the new head
48: end if

49: Release(Lock) > Mutual exclusion exit section
50: current, := 1 — current, > toggle for further use

end procedure

3.3 Further explanations

To better understand the algorithm, we explain below several delicate design issues

which are crucial for the correctness of the algorithm.

1. Why does each process p need two nodes N odes,|0] and Nodes,[1]? This
is done to avoid a deadlock. Assume each process has a single node instead
of two, and consider the following execution. Suppose p is in its CS, and ¢
completed its doorway. p resumes and executes its exit section. p completes
its exit section while ¢ is in the queue but has not notified p that ¢ is p’s
successor (line 11). p leaves its status field as ENABLED and changes its
active field to NO (line 44), so ¢ should be able to enter its CS, no matter
what session ¢ requests. p starts another attempt to enter its CS, before ¢
resumes and executes either line 13 or line 19 (depends on which session p
requests). p uses its single node and sets status to WAIT and active to YES
in its doorway (lines 5 and 6, respectively). Notice, in that execution, ¢’s
predecessor’s node is p’s node while p’s predecessor’s node is ¢’s node, see

figure D).

31

session — x session—y

active —NO active — YES

a
() status — ENABLED status — WAIT

next next

session—y

session — x
active — YES ive —
(b) active — YES

status — WAIT

status — WAIT

next next

Figure 2: Deadlock scenario while using only one node for each process. (a)
process p completes its iteration while ¢ hasn’t executed line 11 yet. (b) process p
starts the algorithm again with the same node.
Now, ¢ continues and (by executing either line 13 or line 19) sees that p
is not enabled and p’s node is active, so ¢ spins on its go bit. Also, p (by
executing either line 13 or line 19) sees that ¢ 1s not enabled and its node is
active, so p also spins on its go bit. No process will release ¢, and a deadlock

occurs. This problem is resolved by having each process owns two nodes.

2. Why do we need the CAS operations at lines 13 and 30? The CAS operations
at these lines prevent a potential race condition that may violate the mutual

exclusion property.

Assume we replace the CAS operations at lines 13 and 30, as follows: (see

figure)

* At line 13, p checks if pred, — status # ENABLED. If so, p

32

13: if pred, — status # ENABLED then
14: await node, — go = true
else
14.5: pred, — status := NO_HELP
15: if not CAS(pred,, — active, YES, HELP) then

16: Head := node,
17: end if
18: end if

27: next, := node, — next
28: if next, # null then

29: if next, — session = s then

30: if node, — status = ENABLED then
30.5: node, — status := TRY HELP
31: next, — go := true

32: end if

33: end if

34: end if

Figure 3: The GME algorithm without CAS operation on status field

waits at line 14. Otherwise, at line 14.5, p executes pred, — status =

NO HELP.

* Atline 30, p checks if node, — status = ENABLED. If so, at line
30.5, p executes node, — status = T'RY _H ELP and then continues

to line 31 and helps p’s successor.

Suppose p is the predecessor of ¢, and they both request the same session s.

p executes line 30, sees that its own status is still ENABLED, and continues

33

session —x session — x session —x

status — NO_HELP status — ENABLED status — ENABLED

(a)

next next next |
i |

p g’s first node g’s second node

session —x

session —y session —x

status — NO_HELP status — ENABLED

status — ENABLED

(b)

go - true

next

next

p g's first node g’s second node

Figure 4: GME violation scenario while not using CAS operation on status. (a)

process ¢ enters again with a different node. (b) process ¢ enters again with its

first node.
to line 30.5 but does not execute this statement yet. Then, ¢ executes line 13,
sees that p’s status is ENABLED, executes line 14.5, changes p’s status to
NO_HFELP and continues to ¢’s CS. g completes its CS, executes ¢’s exit
section, and starts the algorithm again using ¢’s second node. ¢ requests the
same session as before, s, and continues to ¢’s CS since ¢’s predecessor is
enabled. ¢ completes its exit code and enters the entry code again using ¢’s
first node, but now ¢ requests a different session s’ # s. Notice, ¢’s first node
is the same node that p has seen as its successor (see figure). ¢ continues
to line 20 (because it does not request the same session as its predecessor).
And so, ¢ waits until its go bit is set to true. Now, p executes line 30.5
that changes p’s status to TRY HFELP, continues to line 31 that sets ¢’s
first node’s go bit to frue and enters its CS. ¢ sees that its go bit is rue and
also enters its CS. Therefore, both p and ¢, which request different sessions,

are in their CSs at the same time. This problem is resolved by using the

34

CAS operations, so a process atomically sees status is ENABLFED and
changes the value of status. That way, we guarantee that only one process
could see that status is ENABLFED. If the process sees it at line 13, then
its predecessor won’t continue to line 31. If the process sees it at line 30,
then its successor won’t continue to the critical section before getting the
help.

We use four different values for the status field (WAIT, ENABLED,
TRY HELP, NO_HFELP) to make the code more clear. Although, we
only need two values and we can use a simple boolean variable. If we use
a simple boolean variable, assume it is called enabled, then at line 26, the
process sets its own enabled to true, while at lines 13 and 30, the process

may set this enabled to false while the process is still enabled.

. Why do we need the CAS operations at lines 15, 19, and 44? The CAS op-
erations at these lines are used to prevent a potential race condition that may
cause a deadlock.

Assume we replace the CAS operations are at lines 15, 19, and 44, as fol-

lows: (see figure B))

* At line 15, p checks if pred, — active # Y ES. If so, p sets Head
to its node at line 16. Otherwise, at line 16.5, p executes pred, —

active = HELP.

» Atline 19, p checks if pred, — active = Y ES. If so, at line 19.5, p

executes pred, — active = HELP.

* At line 44, p checks if temp_head, — active = Y ES. If so, p exe-

cutes lines 45-47 and advances Head. Otherwise, p continues to line

35

12: if pred, — session = s then
13: if not CAS(pred,, — status, ENABLED, NO_HELP) then

14: await node, — go = true
15: else if pred, — active # YES then
16: Head := node,
else

16.5: pred, — active := HELP
17: end if

18: else

19: if pred, — active = YES then
19.5: pred, — active := HELP
20: await node, — go = true
21: else

22: Head := node,

23: end if

24: end if

44: else if temp_head, — active = YES
45: temp_head, := temp_head, — next
46: Head := temp_head,
47: temp_head, — go := true
else
47.5: temp_head, — active :== NO
48: end if

Figure 5: The GME algorithm without CAS operation on active field

47.5 and executes temp_head, — active = NO.

Suppose p is at line 44 while its successor ¢ is at line 15. ¢ executes line

15 and sees its predecessor’s node’s active equals to YES. So ¢ continues

36

to line 16.5 but does not execute it yet. Now, p continues and sees that the
active field of the first node in the queue is YES, so p continues to line 47.5.
Then, p sets this node’s active field to NO, while g sets it to HELP. Next,
p completes its exit section and ¢ enters its CS. Since no process advanced
Head, Head still points to the same node. Assume another process, r, wants
to enter its CS and requests a different session than ¢. r starts the algorithm
and gets ¢’s node as its predecessor’s node (at line 7). r continues to line
19, as r requests a different session than its predecessor ¢, and sees that
its predecessor’s node’s active field is set to YES. Then, r continues to line
19.5, notifying that it did not help to advance Head, and waits at line 20 for
the go bit to be set to true. q completes its CS, advances Head at line 42,
sets the new first node’s go bit to frue (line 43), and completes its exit code.
But the new first node is ¢’s node, since no process advanced Head when p
completed its CS. All the new processes will wait until » becomes enabled,
but no process can help r becoming enabled and a deadlock occurs. This
problem is resolved by using the CAS operations at lines 15, 19, and 44, so a
process atomically sees active as Y E'S and changes its value. That way, we
guarantee that only one process could see that active is Y E.S, while another
process would see a different value and would advance Head.

We use three different values for the active field (Y ES, NO, HELP) to
make the code more clear. Although, we only need two values and we can
use a simple boolean variable. If we use a simple boolean variable, assume it
is called active, then at line 6, each process sets its active field to true, and
at lines 15, 19 and 44, we use the CAS operations to change active from

true to false. While it’s true that the node is not active when a process

37

executes line 44, the node is still active when a process executes either line

15 or 19 but the active’s value is changed to false.

. Why don t we use a dummy node? The head is being set for the first time at
line 9 by the first process that executes the algorithm. The head can be set in
line 9 only by one process, the first process, because of the use of the FAS
operation at line 7. Only the first process returns null from this operation.
The other times that a process may set the head at line 9 is when another
process, say ¢, sets the tail to null in ¢’s exit section, and then ¢ should set
the head to null and clear the queue. That means the algorithm is returned

to its initial state.

. Why do we need line 39, although the algorithm is correct without line 39?
We can remove line 39, and the algorithm would still be correct, as we would
override Head at line 9 with the next process that executes the algorithm. We
have added this line for semantics reasons, as we do not want to get into a
situation where Head points to a node that is no longer active while there are
no processes that want to execute the algorithm. That is, when no processes

are executing the algorithm, Head and Tail should be null.

. Is it essential to include lines 43 and 47 within the ME critical section?
We can move lines 43 and 47 outside the ME critical section (CS), and the
algorithm would still be correct. At these lines, we use a local variable
temp_head, which no other process can change. We placed these lines in-
side the ME CS for better readability. If we move these lines outside the
ME CS, we would need to check if we executed line 38, line 40, or line 44,

and only if we executed lines 40 or 44, we then should set go.

38

7. Who can set process p's go bit to true when p waits at line 20? By inspecting
the code, we can see that p’s go bit can be changed to true either in the entry
section (line 31) or in the exit section (lines 43 and 47). Assume p spins on
its go bit at line 20. p would stop spinning when its go bit changed to true
by another process. Since p is at line 20, p has already tested the condition
at line 12 and got false. This means that p has requested a different session
than its predecessor. Thus, p’s predecessor will not reach line 31 because the
predecessor will see (line 29) that its successor requests a different session.
Each process that acquires the ME lock causes Head to be advanced by
exactly one step. Therefore, the process that will change p’s go bit to true is
the last process that acquires the ME lock and requests the same session as

p’s predecessor.

8. The algorithm might become simpler if one can obviate the use of Head. Is
the use of Head necessary? We have tried to simplify the algorithm by not
using Head, as done for mutual exclusion in the implementation of the MCS
lock [25]. Solving the GME problem is more complex than solving ME.
There are more possible race conditions that should be avoided, and using
Head helped us in the design of the algorithm. In particular, in the exit code,
in lines 43 & 47 the new process at the head of the queue is enabled, by a
process that is exiting. We do not see how to implement this in constant time

without using Head.

39

4 Correctness proof

We prove that our algorithm satisfies the following properties: mutual exclusion,
starvation freedom, group bounded exit, strong group concurrent entering, FCFS
and FIFE. Also, we prove our algorithm uses only O(n) shared memory locations
(that is, constant space complexity per process) and its RMR complexity is O(1)
in both the CC and the DSM models. To prove all of these properties we will also

show that the algorithm satisfies the following properties:

* Deadlock freedom: If a process is trying to enter its critical section, then
some process, not necessarily the same one, eventually enters its critical
section. (Notice that deadlock freedom is a weaker property than starvation

freedom.)

» Strong-FCFS: If aprocess p completes its doorway before a process g (enters
or) completes its doorway and the two processes request different sessions,

then ¢ does not enter its critical section before p does.

Consider an execution e. The notions, notations, definitions, lemmas and theorems
in this proof are with respect to e. The following notions and notations are used in

this proof:

1. Doorway: A process p is considered to be in its doorway while running

statements 1-7.

2. The i-th iteration: A process p during its i-th iteration (i.e., its ¢-th attempt

to enter its critical section) is denoted by p’.

3. Enabled: A process p' is enabled if it can enters its critical section within a

bounded number of its own steps.

40

4. Follows: A process ¢’ follows a process p' if and only if p’ completes its

doorway before ¢’.

5. Predecessor: A process p' is the predecessor of a process ¢’ if and only if

¢’ follows p?, and each process that follows p also follows ¢”.

6. Successor: A process ¢’ is the successor of a process p' if and only if p’ is

the predecessor of ¢/.

7. Passed over: A pointer = passed over p'’s node if and only if x points to

¢’’s node and ¢’ follows p'.

8. Q: A p”’snode is considered to be in Q if and only if node,, passed over Tail

and Head didn’t pass over p'’s node.
Lemma 1. For every process p at iteration i and process q at iteration j,
» Each adds exactly one node to Q.
» Each has at most one predecessor and at most one successor.
 p' and ¢’ have different predecessors and different successors.

Proof. The fact that a process in a specific iteration adds exactly one node to Q,
may only have a single predecessor, and p’ and ¢’ have different predecessors
follows from the fact that the last step of the doorway at line 7 is an atomic Fetch-
And-Set (FAS) operation, which updates pred with the last pointer that was in
Tail and atomically updates Tail with the process’ node, and so add it to Q. Each
process has at most one predecessor initialized at line 7 into pred variable. At line

11, each process updates its predecessor’s successor with its own node. Then, each

41

process has at most one successor. Assume on the contrary that p’ and ¢’ have the
same successor, say r°, that means either 7 has two predecessors in contradiction
to this lemma, or r* runs the algorithm twice, but each process runs an iteration

only once. Therefore, p’ and ¢’ have different successors. O

Remark. Assume Head points to p'’s node and ¢’ follows p' and x — 1 processes
that follow p'. In the sequel, when we write “a process causes Head to be advanced
by x steps”’, we mean it either (1) sets Head to point to ¢’ s node, or (2) lets another
process know it should advance Head to ¢’ s node. Also, when we write "Head s

node” we refer to the node that Head points to.

Lemma 2. Each process p' that completes its exit section, causes Head to be ad-

vanced by exactly one step.

Proof. Assume on the contrary that p’ completes its exit section but does not cause
Head to be advanced by exactly one step.

p' completed its CS and started its exit section. We assumed that p’ has already
completed its exit section, so it had to acquire the mutual exclusion (ME) lock Lock
at line 36, execute the ME CS (lines 37-48), and release Lock at line 49. At the
beginning of the ME CS, p saved the current value of Head in its local variable
temp _head. The ME CS includes three lines that can change Head, lines 39, 42,
and 46. Any process that enters its exit section can execute at most one of these

lines as a result of the if-else statement. There are three options:

1. p' got true at line 40 or line 44. Then, it continued to line 41 or 45 respec-
tively and saved in its local variable temp head the successor of the node
that Head pointed to. It continued to line 42 or 46 respectively and set Head

to its temp _head which advanced Head by one step.

42

2. p’ got true at line 38, so at that point, Tail was equal to Head, which means
that there was only one node in Q. Then, no process changed Tail. That
means no process has executed line 7 yet. Thus, both Tail and Head didn’t
have a successor at this moment. p’ got true at line 38, so it continued to

line 39. Here we have two more options:

* p’ successfully executed the CAS operation at line 39, so no other pro-
cess changed Head at this point, and p* atomically changed Head to
be null. Notice that the successor of Head was null, so p’ advanced
Head to be its successor, which means p’ advanced Head by exactly

one step.

+ p’executed line 39 and the CAS operation at this line failed, so another
process changed Head after p’ executed line 37 but before it executed
line 39. These lines are being executed inside the ME CS along with
the other lines that change Head in the exit code (lines 42 and 46). So
while p’ was about to execute line 39, no other process could change
Head in its exit section. Therefore, there must be another process in its
entry section that changed Head. p’ reached line 39, so it successfully
executed the CAS operation at line 38 and set Tail with null. Also, it
means that while p’ executed line 38, no other process changed Tail.
Therefore, no other process executed line 7 before p’ successfully ex-
ecuted line 38. Let ¢/ be the process that executed line 7 immediately
after p’ successfully executed line 38 and before p’ executed line 39.
So ¢’ got null to its pred at line 7 and atomically set Tail to point to its
node. If ¢ got null to its pred at line 7 then it is the first process that

completed its doorway after the process that Head points to its node

43

completed its doorway (by using the FAS operation). Thus, ¢’ is the
successor of the process that Head points to its node. ¢’ continued to
line 9 because it saw at line 8 that its pred is null. At line 9, ¢’ set
Head to its node and so it advanced the previous Head to its successor.

p' failed to execute the CAS operation at line 39.

3. p’ got false in all the conditions (lines 38, 40, and 44). So at the time p’ tried
to execute the CAS operation at line 38, Tail and Head pointed to different
nodes, which means Head’s node had a successor other than null. At the
time p° tried to execute line 40, the Head’s node’s successor hasn’t executed
line 11 yet to set Head’s node’s next to point to its successor’s node and
let the other processes know it is its successor. And if p’ got false at line
44, then the CAS operation at this line succeeded and changed the active
of the Head’s node to NO. At the time p’ executed line 44, no other process
executed lines 15 and 19 that could have changed the active of the Head’s
node. p' completed its exit section without changing Head, but the successor
of'the Head’s node would get to line 15 or 19, depends if it requests the same
session as its predecessor or not, and the CAS operation at these lines would
fail because p* has already changed the active of the Head’s node to NO. If
it would get to line 15, then it would succeed with the condition at this line
and continue to line 16. If it would get to line 19, then it would fail with
the condition at this line and continue to line 22. At these lines (16 and
22), it would set Head to point to its own node which is the Head’s node’s
successor. Therefore, it would advance Head by exactly one step for p’ as a

result of p’ successfully executed the CAS operation at line 44.

In all the cases above, p’ completes its exit section and either advances Head or

44

lets another process know it should advance Head by exactly one step. We proved
that there is no valid scenario that p’ completed its exit section without causing

Head to be advanced by exactly one step. [

Lemma 3. Assume there are only two processes, p and q. p'® is the predecessor
of ¢/, and they request different sessions. Then, p' causes Head to be advanced

before ¢’ is enabled.

Proof. Assume on the contrary that ¢/ becomes enabled before p° causes Head to
be advanced. p’ is the predecessor of ¢7, so ¢’ gets p’s node as its pred at line 7
and it must continue to line 12. p* and ¢’ request different sessions, then ¢ must

execute line 19. There are two cases:

1. ¢’ successfully executes the CAS operation at line 19. Therefore, it contin-
ues to line 20 and spins on its go until another process sets true to ¢’’s go.
But we assumed there are only two processes, p and g, so p must change
¢’’s go to true to let ¢ becomes enabled. p’ and ¢’ request different sessions
which means p cannot change ¢’’s go to true at line 31 (because of line 29),
so it must change ¢’’s go to true in its exit section. But to be able to change
¢’’s go to true, Head must point to ¢’’s node. According to lemma 2 and as-
suming we have only two processes, Head must point to p*’s node. p’ must
change ¢’’s go to true in the exit section, so p’ must advance Head by one
step to let ¢/ know it can be enabled, which contradicts the assumption that

¢’ becomes enabled before p* advances Head.

2. ¢’ executes line 19 but the CAS operation at this line fails. Therefore, ¢’
continues to line 22 and becomes enabled. But if the CAS operation at line

19 fails, then p®’s active is not YES at this time. p’ sets its active to YES

45

in its doorway. This can be changed either by its successor ¢’ at line 19 (or
15 if they request the same session) if the CAS operation succeeds, but ¢/
fails with the CAS operation at this line, or by a process in its exit section at
line 44. According to lemma [and the assumption that there are only two
processes, p’ must reach the exit section and change Head’s node’s active,
that is p®’s node’s active in this case, to be NO at line 44. But by doing so,
p' lets another process (¢’ in this case) know that it should advance Head by
one step for p’, in contradiction to the assumption that ¢’ becomes enabled

before p' causes Head to be advanced.

We see that under the lemma’s assumptions, there is no case that ¢ can become

enabled before p’ causes Head to be advanced. Il

Convention. For simplicity, for the rest of this proof, we would consider the same
process p that appears in two different iterations, p' and p’ where i # j, as two
different processes. Such that whenever we write "process’ we mean a process in

a specific iteration.
The following notions are used in the following definition:

* A group is closed if it is the maximal group s.t. it includes exactly one
process that does not have a predecessor in this group. (Thus, every other

process has a predecessor in this group.)

* S, is the maximal set of groups s.t. each group is a closed group of processes

that request session X.

* Let (G; and G, be disjoint groups of processes. G5 follows (75 if a process

in G4 follows a process in G'1.

46

Definition 1. S* is a group in S, that follows k — 1 other groups in S,. A process
is the first in S* if and only if its predecessor requests session y # x. A process is

the last in S* if and only if its successor requests session z # x. Then:

1. h-th process in group: A process p' is the h-th process in a group S* if and
only if p' follows h — 1 processes that are in Sk. For simplicity, we would

consider p's node as the h-th node in S*.

2. Group follows: A group S; follows a group S* if and only if a process

¢ € S;follows a process p' € S¥.

3. Group predecessor: A group S is the predecessor of a group S; (s.t. © #y)
if and only if the last process p' € S¥ is the predecessor of the first process
¢ €8}

4. Group successor: A group S; is the successor of a group S* (s.t. x # y)
if and only if the first process ¢¢ € S; is the successor of the last process

p e Sk

5. Group enters CS: A group S* enters its critical section if and only if at least

one of its processes is enabled.

6. Group waits: A group S* waits if and only if all its processes are not en-

abled.

7. Group completes CS: A group S* completes its critical section if and only

if all its processes complete their critical sections.

Lemma 4. Assume p' € S¥ and ¢/ € S;. If S¥ is the predecessor ofS;, then p'

and ¢’ request different sessions.

47

Proof. Assume by contradiction that S} is the predecessor of S! but p’ and ¢’
request the same session, s. Let a be the last process in S* and b be the first
process in SL. Then, by definition, a is the predecessor of b. a is in the same group
as p' so it requests the same session as p?, which is s. b is in the same group as ¢’ so
it requests the same session as ¢/, which is also s. That means a and b request the
same session - s. According to definition [l, @ and b are in the same group, which
means that S* = S Therefore, S* is not the predecessor of S, in contradiction

to the assumption. [

Lemma 5. Assume Head points to ¢’ s node. Then, if p' causes Head to be ad-

vanced, p' and ¢’ are in the same group.

Proof. We prove it by induction on the number of processes that run the algorithm.
We look at two base cases - n = 1 and n = 2. In the base case that n = 1 there
is only one process, so p' = ¢/, that means ¢’’s node is p*’s node and so they are
in the same group. In the other base case, we assume p* # ¢’. Assume on the
contrary that p’ and ¢’ are not in the same group, which means that they request

different sessions. There are two options:

1. p' is the predecessor of ¢/. According to lemma [, p’ causes Head to be
advanced before ¢/ enters its CS. By lemma [, we know that p’ can cause
Head to be advanced by exactly one step, so p* can only cause Head to be
advanced from p“’s node and can’t cause Head to be advanced from ¢’’s

node, which contradicts the lemma assumption.

2. p' is the successor of ¢7. According to lemma [J, ¢/ causes Head to be ad-
vanced before p enters its CS. By lemma [, we know that ¢’ can cause Head

to be advanced by exactly one step, so ¢’ causes Head to be advanced from

48

¢’’s node. Therefore, p* can’t cause Head to be advanced from ¢’’s node,

which contradicts the lemma assumption.

Next, we assume that the lemma holds for n processes and prove that it also
holds for n + 1 processes. Let py, po, ..., p,, be the processes that the lemma holds
for, which means that if those processes cause Head to be advanced from another
process’ node, then they request the same session and are in the same group. Let
Pnt1 be the (n 4 1)-th process that we want to prove the lemma also holds for.

Note, in this lemma’s proof, from now on, for readability, any time we say a
process advances Head, it means that the process causes Head to be advanced.

We define S as a function that gets a process as an input and returns the group
that this process belongs to, s.t. S(p') is the group that contains process p’.

Assume p,, 1 advanced Head from p;’s node, 1 < k£ < n + 1. Then, we want
to show that p,,; is in the same group as pi. If £ = n + 1 then it immediately
follows that the lemma holds, so we assume & # n + 1 = 1 < k < n. We have

two options:

1. p advances Head from a node of a process that p;, follows, say without loss
of generality that it is p;. So by the induction assumption p; and p; are in
the same group, S(px) = S(p1). Now, again without loss of generality, we
assume p; advances Head from ps’s node, p, advances Head from p3’s node
and so on until p;_, advances Head from p;_’s node. By the induction as-
sumption, all of these processes are in the same group, S(p1) = S(p2) =
S(ps) = ... = S(pk—2) = S(pr—1)- Then, py_; must advance some process
that follows pi. Assume, without loss of generality, p,_; advances Head
from py.1’s node and py,; advances Head from pj2’s node, py o advances

Head from p;, 3’s node and so on until p,,_; advances Head from p,,’s node

49

and we have only left p,, that advances Head from p,,;1’s node. By the in-

duction assumption, all of these processes are in the same group, S(py_1) =

S(pk+1) = S(pk+2) = 5(pk+3) = e = S(pn—1> = S(ﬁn) = S(an).
Therefore, we get S(pr) = S(p1) = S(p2) = S(p3) = ... = S(pr_2) =
S(pr-1) = S(pr+1) = S(Pr+2) = S(prts) = . = S(pu-1) = S(pa) =

S(pn+1) = S(pr) = S(pn+1) and p, 41 and py, are in the same group.

. pr advances Head from a process’ node that follows py, say p;, s.t. p; fol-
lows py and p,, 1 follows p;. So by the induction assumption p; and p; are
in the same group, S(px) = S(p;). Now, without loss of generality, we as-
sume p; advances Head from p;’s node, p; advances Head from p,’s node,
po advances Head from p3’s node and so on until p;_» advances Head from
pr—1’s node. By the induction assumption, all of these processes are in the
same group, S(p;) = S(p1) = S(p2) = S(ps) = ... = S(Pr—2) = S(pr—1).
Then, px_; must advance other process that follows p,. Assume, without
loss of generality, p;_; advances Head from p;.;’s node and p;. . ; advances
Head from py.5’s node, pi.» advances Head from p, 3’s node and so on un-
til p;_» advances Head from p;_;’s node. By the induction assumption, all
of these processes are in the same group, S(px—1) = S(Pr+1) = S(Pri2) =
S(prs3) = ... = S(pi—2) = S(pi_1). Then, p;_; must advance other process
that follows p;. Again, assume without loss of generality that p;, _; advances
Head from p;,’s node and p;,; advances Head from p; 5’s node, p;.- ad-
vances Head from p;,3’s node and so on until p,,_; advances Head from
pr’s node, and we only have p,, left that advances Head from p,,,;’s node.

By the induction assumption, all of these processes are in the same group,

S(pi-1) = SPir1) = S(pir2) = SPiys) = . = S(pa—1) = S(pn) =

50

S(pnt1). Therefore, we get S(pr) = S(pi) = S(p1) = S(p2) = S(p3) =
o = Spr—2) = S(pr-1) = Sowr1) = Sur2) = Sres) = ... =
S(pi2) = S(pi-1) = S(pis1) = S(pi+2) = S(pirs) = . = S(pa-1) =
S(pn) = S(pn+1) = S(pk) = S(pns+1) and p,41 and py are in the same
group.

]

Lemma 6. For every process that executes line 9, either its node is the first node
that has been added to Q, or there is another process that has already successfully

executed line 38.

Proof. Let p’ be the process that executes line 9, so p’ gets true in the condition at
line 8. That means pred, is null. pred, is being set at line 7 by atomically Fetch-
And-Set (FAS) operation that sets pred, with the last value of Tail. If p*’s node is
the first node that has been added to Q, then Tail is null (Tail is initialized to null
at the very beginning of the algorithm) and the lemma holds.

Now, assume p’’s node is not the first node that has been added to Q. Therefore,
some process changed Tail and set its value with null. Tail can be set at line 7 in
the entry code and at line 38 in the exit code. Each process that starts the algorithm
executes line 7 in its doorway, but at this line, the process sets Tail with its node
which can’t be null. So the only line Tail could be changed back to null is line 38
in the exit code if the CAS operation at this line succeeds. That means there must
be another process in its exit section to execute line 38 successfully and the lemma

holds. u

Lemma 7. For every process that executes line 16 or line 22, there is another

process that has already successfully executed the CAS operation at line 44.

51

Proof. Assume on the contrary that process p’ executes line 16 or line 22 but no
process completes its CS and could execute line 44 in its exit section. If p executes
line 16 or line 22, then it also executes line 15 or line 19 respectively. But to get to
lines 16 or 22, p’ must fail with the CAS operation at lines 15 or 19 respectively.
That means p’s pred’s active is not YES. Each process sets its active to YES in
its doorway and does not change it in its entry section anymore. This active can
be changed by its successor at lines 15 and 19 if the CAS operation succeeds or
by some process in its exit section at line 44 if the CAS operation succeeds. p’
fails to execute the CAS operation at line 15 or 19, so there is another process that

changed p'’s predecessor’s active at line 44 in its exit section. contradiction. [J

Lemma 8. Let p' s node be the h-th node in group S%. If Head passes over p'’s

node, then at least h processes in S* completed their critical sections.

Proof. Assume Head passed over p'’s node, so Head should be advanced by at
least h steps. Let g be the number of processes in S¥ that have already caused
Head to be advanced. According to lemma], those ¢ processes caused Head to
be advanced in a total of g steps. A process causes Head to be advanced by either
advance Head in its exit section or let another process know it should advance
Head in its entry section. Let g; be the number of processes from the g processes
that advanced Head in their exit sections, and g, be the number of processes from
the g processes that let other processes know that they should advance Head in
their entry sections, s.t. g = g1 + go.

Head was advanced by g; steps in the exit code. Head should be advanced by
additional h — g, steps to pass over p'’s node. We denoted g; as the number of
processes in S* that completed their CSs and advanced Head in their exit sections,

so no other process from S¥ can advance Head in its exit section other than those

52

g1 processes. According to lemma [§, no other process from any group can cause
Head to be advanced other than the g processes from S*. That means Head must
be advanced by h — g; steps in the entry code.

Head can be changed in the entry code at lines 9, 16 and 22. Let f = f; + fo
be the number of processes that execute lines 9, 16 and 22, s.t. f; is the number of
processes that execute line 9 and f5 is the number of processes that execute either

line 16 or line 22.

« Line 9 - If a process ¢/ changes Head at line 9, then by lemma [, ¢/’s node
is either the first node that has been added to Q or there is another process
that successfully executed line 38, which means it also completed its CS. If
¢’’s node is the first node that has been added to Q, then it didn’t advance
Head because Head has not pointed to any node yet. So assume all nodes of
all the f; processes that executed this line are not the first nodes that have
been added to Q. By lemma [ll, each process has a different predecessor.
Therefore, for each process that executes line 38 and sets Tail with null,
there is at most one process that can see Tail as null, and according to lemma

B, there must be f; processes that completed their CS and executed line 38.

 Lines 16 and 22 - If Head was changed at line 16 or line 22 by f, processes,
then by lemmas 7 and [I], there must be f, processes that successfully exe-

cuted the CAS operation at line 44 and so they also completed their CS.

We get that Head was advanced by exactly f steps in the entry code, as a result
of exactly f processes that completed their CSs and have already executed the
line that asks another process to advance Head in its entry section. Therefore,

f=p=h-g&ef+ta=pt+ta=h=h=g+gp=9g=>h=g gis

53

the number of processes in S¥ that caused Head to be advanced. Therefore, it also
indicates that at least g processes completed their CSs, which means that at least
h processes in S¥ completed their CSs if Head passed over p’s node and it is the

h-th node in S*. O

Lemma 9. [f Head passes over the last node in S¥, then all the processes in S*

completed their critical sections.

Proof. Let h be the number of processes in S*. Then, the node of the last process
in S*, say p, is the h-th node in S*. According to lemma B, if Head passes over
p'’s node, then h processes in S¥ completed their CSs. Thus, all the processes in

S* completed their CSs. O

Lemma 10. Assume S is the predecessor of S;. Then, if S; completed its critical

section, S¥ also completed its critical section.

Proof. Suppose S, completed its CS. S* is the predecessor of S;. Then, the last
process in S¥, say p', is the predecessor of the first process in S;, say ¢/. Assume
by contradiction that S* hasn’t completed its CS yet. That means there is at least
one process in S* that hasn’t completed its CS yet. According to lemma [, Head
hasn’t passed over the last node in S* yet, which is p’’s node.

By inspecting the algorithm’s code, p’ sets its node’s active to YES in its door-
way and doesn’t change its active in its entry section anymore. We know Head
hasn’t passed over p*’s node yet, so p’s node’s active couldn’t be changed to NO
(line 44).

S; completed its CS so all the processes in this group completed their CSs,
including ¢’. ¢’ has already entered its CS. Head hasn’t passed over p'’s node

yet, so ¢’’s pred, which is p'’s node, is not null. Thus, ¢/ executed line 12 and

54

continued to line 19, because p’ and ¢’ request different sessions by corollary 4.

We have two options:

* ¢’ gets true for the condition at line 19. Then, it continues to line 20 and waits
on its go, which can be changed only in the exit code (lines 43 and 47) when
Head points to ¢’’s node. But if Head points to ¢’’s node then Head passed
over ¢’’s predecessor’s node, which is p’s node, but we already proved that

Head hasn’t passed over p'’s node.

* ¢’ gets false for the condition at line 19. Then, it continues to line 22, sets
Head to its node, and continues to its CS. But to get false at line 19, the
active of ¢/’s predecessor’s node, p’s node, had to be different than YES.
We’ve already proved that p’s node’s active couldn’t be changed in the exit
code, so it should have changed in the entry code. By lemmall, each process
has a different predecessor, which means p’ is the predecessor only for ¢.
So the only process that can change p'’s node’s active in its entry section is
¢’. In the entry code, the active of the predecessor’s node can be changed at
line 15, if they request the same session, or at line 19 if they request different

sessions. Therefore, the active of p'’s node couldn’t change at all.

Then, in both cases, ¢’ waits at line 20 at least until all the processes in S¥ complete
their CSs according to lemma P Therefore, ¢/ can’t complete its CS as long as S*
hasn’t completed its CS yet. Therefore, S; hasn’t completed its CS yet and we get

a contradiction. O

Lemma 11. Assume Sf/ follows S*. If S?j completed its critical section, then S*

also completed its critical section.

55

Proof. Let S be a set of all the groups that S; follows. We prove this lemma by
induction on the number of groups that S} follows, say |S| = A. If |S| = A = 0,
then S; doesn’t follow any group and the lemma is vacuously true. In the base
case A = 1, S; follows only one group, S*. That means S* is the predecessor of
S; and according to lemma [L0, S* completed its CS too, and so the lemma holds.

Next, assume the lemma holds for A groups and we show that it also holds for
|S| = A+ 1 groups. Let’s assume on the contrary that it doesn’t hold for A + 1
groups, which means there is a group in S that hasn’t completed its CS yet, say S¥.
This group must have a successor group from S or be the predecessor group of S;.
If it has a successor group from S, then its successor group has already completed
its CS by the induction assumption and according to lemma [10], S* also completed
its CS. If S* is the predecessor of S; then again according to lemma [L0, S* also

completed the CS. contradiction. [

Lemma 12. Assume ¢’ follows p' and ¢’ executes line 19. Then, if the CAS oper-

ation fails, it must be that p' has already completed its critical section.

Proof. ¢’ executes line 19. If it gets to line 19, then it requests a different session
than its predecessor. Assume by contradiction that ¢’ gets false at line 19 while p’
hasn’t completed its CS yet. If ¢/ gets false at line 19, then it fails to execute the
CAS operation at this line, so the active for its predecessor’s node is not YES. In
its doorway, each process sets its active to YES and doesn’t change it in its entry
section (by code inspection). By lemma [l| and inspecting the algorithm’s code, the
only process that can change the active of ¢7’s predecessor in its entry section is
its successor, ¢. ¢’ can change its predecessor’s active at lines 15 and 19 if the
CAS operation succeeds, but it can succeed only if active is not YES. So another

process has to change ¢/’s predecessor’s active in its exit section at line 44. It

56

can be changed at line 44 if the CAS operation at this line succeeds. If a process
executes line 44 on ¢/’s predecessor’s node, then it also makes Head pass over
this node. ¢’ requests a different session than its predecessor, which means that its
node is the first node in its group and its predecessor’s node is the last node in a
different group, say S*. According to lemma [, all the processes in S* completed
their CSs. Therefore, by lemma [L1], all the groups that S* follows also completed
their CSs. We get that all the groups that ¢/ follows completed their CSs, so all
the processes that ¢/ follows completed their CSs, including p?, in contradiction to

the assumption. O
Lemma 13. Ifp' is at line 26, then it is enabled.

Proof. By definition, a process p' is enabled if it can enter its CS within a bounded
number of its own steps. If p’ is at line 26, then it changes its status to ENABLED
and continues to line 27. At this line, p’ sets a local variable next, with the value
in node, — next and continues to line 28 to check if its next is null or it already
has a successor. If next, is null, then p’ continues to its CS. Otherwise, next,, is
not null and p* has a successor. p’ continues to line 29 and checks if it requests
the same session as its successor. If p’ and its successor request different sessions,
then p’ continues to its CS. If they request the same session, p’ continues to line 30
and checks using the CAS operation if its successor needs help to become enabled.
p' tries to execute the CAS operation and change its status to TRY HELP to let
its successor know that it is trying to help. If p fails to execute the CAS operation,
then it does not need to help its successor and so p’ continues to its CS. And if
p® succeeds to execute the CAS operation, then it continues to line 31, sets its

successor’s go to true, and continues to its CS. We can see that no matter how p

57

continues from line 26, no other process can prevent p’ from entering its CS and

p' can enter its CS within a bounded number of its own steps. [
Lemma 14. Assume ¢’ follows p'. If p* is not enabled then ¢’ is not enabled.

Proof. Let P be a set of all the processes that follow p’. We prove the lemma by
induction on the number of processes that follow p’, say |P| = k. If k = 0, then
no process follows p* and the lemma is vacuously true, so we assume k£ > 0. In
the base case, k = 1, only one process follows p’, say ¢’. p is not enabled, then by
lemma [13, it can’t reach line 26 and set its status to ENABLED. Also, p’ sets its
active to YES in its doorway and doesn’t change it in its entry section anymore.
¢’ reaches line 12 as its pred is not null (p*’s node). If ¢’ requests the same session
as p', then it continues to line 13, sees its predecessor is not enabled, and spins
on its go at line 14. Otherwise, ¢’ continues to line 19, sees that its predecessor’s
node’s active is still YES, and spins on its go at line 20. ¢’ spins on its go until
another process changes its value to true. According to the base case, p’ and ¢’ are
the only active processes. Therefore, p’ is the only process that can release ¢’ and
the lemma holds.

We assume the lemma holds for k processes and prove that it also holds for
|P| = k 4 1 processes. Assume by contradiction that the lemma does not hold for
|P| = k + 1 processes, then there is a process in P, say ¢/, that is enabled to enter
its CS while p’ is not enabled.

Suppose p'’s node is the h-th node in its group and ¢’ has not entered its CS yet.
According to lemma [, at least & processes completed their CSs. But if p’s node
is the h-th node in its group, then p’ is the h-th process in its group. That means, p’
follows h — 1 processes from its group. Even if all these processes complete their

exit sections, according to lemma [, they cause Head to be advance by exactly

58

h — 1 steps, which leads Head to point to p*’s node. By the induction assumption,
p* and all the processes that follow p’ (except for ¢ which has not entered its CS
yet) are not enabled, so they can’t complete their exit sections. Therefore, Head
can’t pass over p'’s node at this moment.

By inspecting the algorithm, there are four options:

1. ¢’’spred isnull. This case is invalid because ¢/ € P which means it follows

p’, then it must have a predecessor.

2. ¢’’s predecessor’s status is ENABLED. ¢’’s predecessor is either p’ or an-
other process from P, which means ¢’’s predecessor is not enabled (by the
induction assumption). Each process sets its status to WAIT in its doorway
(line 5) and to ENABLED later in its entry section at line 26. According to
lemma [13, ¢7’s predecessor can’t set its status to ENABLED and ¢/ must

continue to line 14 and spin on its go.

3. ¢?’s goistrue. ¢’ sets its go value to false in its doorway at line 3. A process
can set true in ¢’’s go at line 31 if it is ¢7°’s predecessor or at lines 43 or 47 in
the exit code. ¢’’s predecessor is not enabled by the induction assumption,
soitcan’treach line 31. Therefore, another process must be in its exit section
and execute either line 43 or line 47 on ¢’ ’s node, which means Head points
to ¢’’s node at this moment. But we proved that Head can’t pass over p'’s
node, then it can’t reach ¢’’s node. Therefore, no process can set ¢’’s go to

true.

4. ¢’’s predecessor’s active is not YES. Each process sets its active to YES
in its doorway (line 6) and does not change this value in its entry section

anymore. The lines that can change a process’ active from YES are lines

59

15 and 19 in the entry code that are being executed by its successor, or line
44 in the exit code. We assume ¢’’s predecessor’s active is not YES, then
the CAS operations at lines 15 and 19 fail. Then, there is another process
that changes ¢’’s predecessor’s active in its exit section at line 44. To do so,
Head must point to ¢’’s predecessor’s node. ¢’’s predecessor is either p’ or
another process in P that follows p’. Either way, we proved Head can’t pass
over p*’s node so it also can’t pass over ¢’’s predecessor’s node. Therefore,

no process can change ¢’’s predecessor’s active from YES.

We get that as long as p* and ¢ processes that follow p’ are not enabled, ¢’ that also

follows p' is not enabled in contradiction to the assumption that ¢ is enabled. []

Theorem 1 (Strong-FCFS). If process p' completes its doorway before process ¢’
(enters or) completes its doorway and the two processes request different sessions,

then ¢’ does not enter its critical section before p' does.

Proof. Suppose p' € S*. p' completes its doorway before ¢ completes its door-
way, which means ¢’ follows p’ and so ¢’’s group follows S*. If p’ is not enabled
then by lemma [14 ¢’ is not enabled too. Therefore, we assume p° is enabled but
has not entered its CS yet.

Denote the successor of S* as S; s.t. © # y (by lemma H) but y may be equal
to ¢7’s session, which means ¢’’s group may follow S; or be equal to this group.
Let r¢ be the last process in S* and 7“5 be the first process in S;, then r{ is the
predecessor of 75 . If r is not enabled then by lemma [14] ¢’ is not enabled too. So
suppose r{ is enabled.

B

According to lemma 4, r§ and rg request different sessions, then r; cannot

reach line 13 (as a result of line 12), see that its predecessor’s status is ENABLED

60

and become enabled. Also, 7, ’s predecessor, which is 7{, can’t reach line 31 (as
a result of line 29), set 75 ’s go to true and help rg become enabled. Then, by
inspecting the algorithm’s code, 7"5 ’s go can be set to true only by another process
in its exit section (lines 43 and 47). Therefore, 7"5 can become enabled in two

options:
1. rg sees its go is true at line 20.

2. rg sees its predecessor’s node is not active.

r®’s node is the last node in S* and p’ has not entered its CS yet, then according
to lemma [, Head cannot pass over 7§’s node. Therefore, r%’s active can’t be
changed to NO and Head can’t reach r5’s node, so 75 ’s go can’t be changed to
true. Then, the only option for r§ to become enabled is to see its predecessor’s
active, r{’s active, is not YES (at line 19). But we’ve already proved that r{*’s
active can’t be changed in the exit code to NO as long as p’ hasn’t entered its CS.
Each process sets its active to YES in its doorway (line 6) and doesn’t change it in
its doorway anymore. Therefore, r{*’s active can be changed only by its successor,
rg ,atlines 15 and 19. But rg requests a different session than its predecessor so it
can’t reach line 15 (by line 12). At line 19, rg can set its predecessor’s active to
Y ES if the CAS operation at this line succeeds, but then it must continue to line
20 and spin on its go. We get that if p’ has not entered its CS yet, rg can’t become

enabled. According to lemma [14], ¢7, that follows (or equals to) 7"5 , can’t become

enabled too. Therefore, ¢’ cannot enter its CS before p* does. Il
Corollary 1.1 (FCFS). The algorithm satisfies FCFS.

Proof. This follows immediately from the fact that the algorithm satisfies strong-
FCFS according to theorem |[I.]

61

Theorem 2 (FIFE). If process p' completes its doorway before process ¢’ enters
its doorway, the two processes request the same session, and ¢’ enters its critical
section before p' does, then p' enters its critical section within a bounded number

of its own steps.

Proof. Assume by contradiction that ¢/ is in its CS but p’ is not enabled. p’ com-
pletes its doorway before ¢/ enters its doorway, so ¢’ follows p’. According to
lemma [14, if p’ is not enabled then ¢’ is not enabled which contradicts the as-

sumption that ¢’ is in its CS. O

Theorem 3 (Mutual exclusion). If two processes are in their critical sections at

the same time, then they request the same session.

Proof. Let p* and ¢’ request different sessions and assume by contradiction that
they are in their CSs at the same time. Assume, without loss of generality, that
p' enters its CS before ¢ does. According to theorem [I], the algorithm satisfies
Strong-FCFS, then p’ completes its doorway before ¢/ does, so p’ executes line 7

before ¢’ does. There are two cases:
1. ¢’ is the successor of p.
2. ¢’ follows p’ but it is not p*’s successor.

According to lemma [14, once we prove that ¢/ must wait until p’ completes its
CS in case [I], it would immediately follow that ¢/ must wait until p° completes its
CS in case . So let’s prove case [I. We assume that ¢/ is in its CS while p’ is
in its CS and both request different sessions. Therefore, ¢/ must execute line 8.
According to lemma 9, as long as p' is in its CS, Head can’t pass over p*’s node,

which means Head can’t reach ¢/’s node. Then, ¢’ gets p*’s node at line 7 as its

62

pred which is not null and continues from line 8 all the way to line 12. We assume
that ¢/ and p’ request different sessions, so ¢/ continues to line 19. ¢’ follows p’
and p' is still in its CS, so by lemma [12], ¢/ gets true at line 19 and continues to
line 20. Then, it waits at line 20 until another process changes its go from false to
true. The successor of ¢/ is p’. p’ couldn’t change ¢’’s go at line 31, because they
request different sessions and so it gets false at line 29. The other lines that can
change ¢’’s go are lines 43 and 47 in the exit code. These lines are being executed
on Head, so to execute these lines on ¢’’s node, Head must reach ¢’’s node. But
as we proved before, Head can’t reach ¢’’s node as long as p’ is in its CS. Thus, ¢’
must wait as long as p is in its CS. Therefore, it also must wait in case . We get
that as long as p’ is in its CS, ¢/ must wait in contradiction to the assumption that

it is in its CS while p’ is in its CS. O

Definition 2 (Bounded entry). If a process p' is in its entry section, while no other
process is in its critical section or exit section, then some process can complete its

entry section within a bounded number of its own steps.

Theorem 4 (Group bounded exit). If a process p' is in its exit section, then (1)
some process can complete its exit section within a bounded number of its own

steps, and (2) p' eventually completes its exit section.

Proof. Let P be the set of all the active processes that are in their exit sections,

then

1. some process in P can complete its exit section within a bounded number

of its own steps, and

2. all the other processes in P eventually complete their exit sections.

63

Notice that the exit code contains a mutual exclusion (ME) algorithm, other than
that it contains one more line (line 50) that each process can execute without de-
pending on another process. The lines within the ME CS are wait-free, without
any loops or await operations, and can be executed by the process without de-
pending on another process. Then, to guarantee that our GME algorithm satisfies
bounded exit, the mutual exclusion used in the exit code (lines 36 and 49) must
satisfy three properties, (1) starvation-freedom, (2) bounded exit, and (3) bounded
entry. While the famous MCS lock [25] does not satisfy the bounded exit prop-
erty, there are variants of it, like the mutual exclusion algorithms in [|L1, [17], that
satisfy all the above three properties.

Let’s use, for example, one of the algorithms that are described in [[11}, [17]. Let

P, be the set of all the active processes in this ME algorithm, s.t. P4 C P. Then,

1. Suppose a process p' € P, is in its ME exit section, then according to the
property bounded exit which this ME algorithm satisfies, p’ can complete

the ME algorithm within a bounded number of its own steps.

2. Assume all the processes in P4 are in their entry sections, then according to
the bounded entry property, which this ME algorithm satisfies, some process
in Py, say p’, can complete its ME entry section within a bounded number
of its own steps and enters its ME CS. We have already proved at the begin-
ning of this theorem’s proof, that a process can complete the ME CS within
a bounded number of its own steps, so p’ can complete its ME CS and con-
tinues to its ME exit section. Then, according to the previous section, p* can

complete the ME algorithm within a bounded number of its own steps.

Therefore, there is always a process that can complete the ME algorithm within a

64

bounded number of its own steps. And according to the starvation freedom prop-
erty which this ME algorithm also satisfies, all the other processes in P4 even-
tually enter their ME CSs and complete the ME algorithm and so the theorem is

correct.]

Theorem 5 (Deadlock freedom). If'a process is trying to enter its critical section,
then some process, not necessarily the same one, eventually enters its critical sec-

tion.

Proof. Assume by contradiction that some set of processes P are in their entry
sections and none of them can ever access its CS, which means all of them are
not enabled and never will be. Let ¢’ be the first process in P that completed
its doorway. Thus, all the other processes in P follow ¢’. The fact that ¢’ is not
enabled and never will be, means that ¢/ must spin either at line 14 or line 20
since all the other lines in the entry code do not contain any loop, are wait-free,
and can be executed in a constant number of ¢/’s steps. Any other execution path
would lead ¢ to its CS and contradicts the assumption. From here it follows that
Tail was not null when ¢’ completed its doorway. Therefore, there exists another
process, say p’, s.t. p' ¢ P and p' is the predecessor of ¢/. Let P’ be a set of
all the processes that ¢’ follows, including p’. That means all the processes in
P’ completed their doorway sections before ¢/ did. We denoted ¢’ as the first
process in P that completed its doorway, s.t. ¢/ is the first process that completed
its doorway and would never enter its CS, so all the processes in P’ eventually are
enabled and enter their CSs. Now, the processes in P’ complete their CSs and enter
their exit sections. According to theorem H|, the algorithm satisfies group bounded
exit. Therefore, each process in P’ eventually completes its exit section, and by

lemma [, causes Head to be advanced by exactly one step. Suppose one process

65

in P’ has not yet completed its exit section and caused Head to be advanced, say
p® without loss of generality. Then, all the other processes in P’ caused Head to
be advanced by exactly | P'| — 1 steps, which caused Head to point to p*’s node.
Therefore, when p* completes its exit section, it causes Head to be advanced from

p*’s node to ¢/’s node. Here we have three options:

1. p' executes line 38 before ¢/ executes line 7. Therefore, p’ successfully
executes line 38 and sets Tail to null. Then, ¢’ executes line 7 and sets its

pred to null, so it gets true at line 8 and becomes enabled.

2. p' executes line 38 after ¢/ executes line 7, but also p’ executes line 40 after
¢’ executes line 11. Therefore, p* continues from line 38 to line 40 without
changing Tail. At line 40, p’ sees that the Head’s next is not null, so p’
advances Head to its next, which is ¢/’s node, and sets ¢’’s node’s go to

true. Therefore, ¢/ can’t spin on its go and becomes enabled.

3. p'executes line 38 after ¢’ executes line 7, but also p* executes line 40 before
¢’ executes line 11. Therefore, p’ continues from line 38 to line 40 without
changing Tail. At line 40, p’ sees that the Head’s node’s next has not been
set yet, so it continues to line 44. If ¢/ executes line 19 after p’ executes line
44, then ¢’ becomes enabled because the CAS operation at line 44 would
end successfully and ¢’’s node is not active anymore. So we assume that ¢’
executes line 19 before p’ executes line 44, then ¢’ waits on its go at line 20,
and p’ fails to executes the CAS operation at line 44. Thus, p° gets true in
the condition at line 44 and advances Head to its next, which is ¢’’s node,
and sets ¢’’s node’s go to true. Therefore, ¢/ stops spinning on its go and

becomes enabled.

66

We get that there is no case in which ¢’ never becomes enabled to enter its CS

which contradicts the assumption. [
Corollary 5.1 (Starvation freedom). The algorithm satisfies starvation freedom.

Proof. This follows from the fact that the algorithm satisfies both FCFS (corollary
[I.1)) and deadlock freedom (theorem [3). [

Lemma 15. When no process is active, then Q is empty.

Proof. Assume by contradiction that Q is not empty s.t. Q includes a node, say a,
when no process is active. That means, either Tail points to a or Head points to a or
both of them. At the very beginning of the algorithm, Tail and Head are initialized
with null. Therefore, at least one process has already executed the algorithm and
completed the algorithm because there is no active process. Let P be the set of
all the processes that completed their iterations. All the processes in P completed
their exit sections, and according to lemma [, each of them caused Head to be
advanced by exactly one step. Let’s check the execution path of the last process
in P that acquired the ME lock, say p’, in its exit section. At this time, all the
processes in P except for p’ have already caused Head to be advanced by exactly
| P| — 1 steps. Therefore, at this time, Head pointed to a. a is the last node that has
been entered to Q at line 7. Therefore, at the time p* acquired the ME lock, Tail
pointed to a. p* acquired the lock at line 36 and continued to line 37 in which it
saved Head’s current value in its own local variable, which was a pointer to a. p’
continued to line 38 and using the CAS operation, it atomically saw both Tail and
its local variable pointed to a and set Tail with null. Then, p’ continued to line 39,
as the CAS operation at line 38 succeeded, and using another CAS operation, it

atomically saw both Head and its local variable pointed to a and set Head with null.

67

p' released the ME lock and completed its iteration. Then, after all the processes
completed their iterations and while no more active processes, Head and Tail are

null. contradiction. O]

Theorem 6 (Strong group concurrent entering). If a process p' requests a session
x, and p' completes its doorway before any conflicting process starts its door-
way, then (1) some process with session x can complete its entry section within a
bounded number of its own steps, and (2) p' eventually completes its entry section,

even if other processes do not leave their critical sections.

Proof. According to theorem [I, the algorithm satisfies strong-FCFS, so p’ enters
its CS before any conflicting process does. Assume p’ € S*. Let P be a set of all
the active processes in S¥, s.t. all the processes in P request session z. Denote
D1, P2, P3, -, Pt € P s.t. py is the predecessor of ps, ps is the predecessor of ps,
and so on. Note, p' is also active and in S* then p is one of these processes.

We prove the theorem by induction on the number of processes in P, |P| = ¢.
In the base case, t = 1: There is only one active process p; = p' € P. if p'
executes line 7 and gets null as its pred, then p’ is immediately enabled and the
theorem holds. Otherwise, there is a node that is still in Q. Then, this node was in
Q before p’ completes its doorway. By the theorem assumption, p’ completes its
doorway before any conflicting process enters its doorway, so the node was in Q
while there were no active processes, and by lemma [13, it cannot be that a node is
in Q before p’ has added its node.

Next, we assume the theorem holds for ¢ processes and shows it also holds for

|P| =t + 1 processes. We have two cases:

1. The theorem holds for these ¢ processes ps, p3, ..., prr1 € P and we prove

68

it also holds for p;. p; is the first active process because p' is in P and no
conflicting process enters its doorway before p’ completes its doorway. So
according to lemma [15, p; gets null to its pred at line 7. Then, it continues
to line 9 as it sees its pred is null (line 8), sets Head to its own node and

becomes enabled, and the theorem holds for all the ¢ + 1 processes in P.

2. The theorem holds for ¢ processes in P including p;. Assume, without loss
of generality, that the theorem holds for py, po, p3, ..., p; and we prove it also
holds for p;11 € P. According to the induction assumption, p; is either

enabled or eventually be enabled. Here we also have two options:

* p; 1s enabled, then if p;,; executes line 13 after p; executes line 26,
Pt sees p; is enabled and p,, 1 becomes enabled too and the theorem
holds. Otherwise, p;.1 spins on its go at line 14 until p; sets it to true.
p¢ 1s enabled so it reaches line 31 as its successor has already executed
line 11, they both requested the same session, and p;,; couldn’t change
p;’s status at line 13. Therefore, p; sets p;.1’s go to true at line 31 and

pt+1 becomes enabled and the lemma holds.

* p:isnot enabled but by the induction assumption it eventually becomes
enabled. Then, p;,; sees p; is not enabled and spins on its go at line
14 until its successor, p;, becomes enabled. p, eventually becomes
enabled and sets p;,1’s go to true at line 31 and so p;,; eventually

becomes enabled too.

]

Theorem 7 (Constant RMR complexity). The RMR complexity of the algorithm
is O(1) in both the CC and the DSM models.

69

Proof. By inspecting the algorithm, it is easy to count steps and see that except
the busy-waiting loops at lines 14 and 20 in the entry code and the use of a Mutual
Exclusion (ME) lock in the exit code, it takes a constant number of steps for a
process to enter its CS and complete its exit section. By using an ME algorithm that
also has a constant RMR complexity in both the CC and the DSM models, such as
in [[11, 17], the RMR complexity of the algorithm’s exit code is O(1). Therefore, it
is sufficient to prove that for every process p’, p’ performs O(1) RMRs at both lines
14 and 20, because these lines are the only busy-waiting loops in the algorithm.
p' checks at line 12 if it requests the same session as its predecessor. If so, it can
only spin at line 14. Otherwise, it can only spin at line 20. p' spins on node,, — go
no matter if it spins at line 14 or line 20. We will prove that while the process is
executing line 14 or line 20, it performs only a constant number of RMRs in both

models:

« DSM model: p’ spins on node, — go. node, points to either Nodes,[0]
or Nodes,[1] as follows from line 1 in the algorithm. Both of them were
initialized as local to process p*’s memory. Thus, the algorithm performs

O(1) RMRs in the DSM model.

* CC model: We prove that in one iteration of a process, there is at most one
cache invalidation. Before p’ spins on node, — go either at line 14 or line
20, its value migrates to p'’s local cache, since p* sets the value to false at
line 3. Except for line 3, the value can be updated at lines 31, 43, and 47.
All these lines update the value to true. Then, no matter which line is being
executed first or being executed at all, the value of p*’s node, — go can be
changed from false to true only once. Therefore, when a process executes

one of the lines above, p’ that spins at line 14 or line 20, would have a

70

cache invalidation and perform one RMR to read the new value of node, —
go. Since the new value is necessarily equal to true, p’ stops spinning on
node, — go and proceeds to its CS. Therefore, there is only one RMR
during the loop execution, and the algorithm has O(1) RMR complexity in
the CC model.

]

Theorem 8. The algorithm uses constant space per process and total O(n) shared

memory locations.

Proof. By inspecting the algorithm’s code, the algorithm uses two shared memory
locations Head and Tail, and each process that runs the algorithm uses two nodes.
The algorithm also uses an ME lock, so when we use an ME algorithm that also
uses constant space per process and total of O(n) shared memory locations such as

in [[11, 17], our algorithm uses O(2+n+n) = O(n) shared memory locations. [

Theorem 9. The algorithm satisfies (1) mutual exclusion, (2) starvation freedom,
(3) group concurrent entering, (4) group bounded exit, (5) FCFS (even strong-
FCFS), and (6) FIFE. Furthermore, the algorithm has constant RMR complexity
in both the CC and the DSM models, it uses constant space per process and a
total of O(n) shared memory locations, and it does not require to assume that the

number of processes or the number of sessions are prior known.

Proof. The properties mutual exclusion, starvation freedom, group concurrent en-
tering, group bounded exit, FCFS (strong-FCFS), and FIFE, follow from theorem
B, corollary B.1|, theorem [, theorem M, corollary (theorem [1), and theorem
respectively. According to theorem [7, the algorithm has constant RMR com-

plexity in both the CC and the DSM models, and according to theorem J, it uses

71

constant space per process and a total of O(n) shared memory locations. The other

properties are easily verified by inspecting the code of the algorithm. [

72

5 Discussion

With the wide availability of multi-core systems, synchronization algorithms like
GME are becoming more important for programming such systems. In concur-
rent programming, processes (or threads) are often sharing data structures and
databases. The GME problem deals with coordinating access to such shared data
structures and shared databases.

We have presented a new GME algorithm that is the first to satisfy several
desired properties. Based on our algorithm, it would be interesting to design other
GME algorithms, such as abortable GME [[16] and recoverable GME [[13]], which

will preserve the properties of our algorithm.

73

References

[1]

2]

[3]

[4]

[5]

[6]

[7]

[8]

A. Aravind and W.H. Hesselink. Group mutual exclusion by fetch-and-
increment. ACM Trans. Parallel Comput., 5(4), 2019.

R. Atreya, N. Mittal, and S. Peri. A quorum-based group mutual exclusion al-
gorithm for a distributed system with dynamic group set. [EEE Transactions

on Parallel and Distributed Systems, 18(10), 2007.

J. Beauquier, S. Cantarell, A. K. Datta, and F. Petit. Group mutual exclusion
in tree networks. In Proc. of the 9th International Conference on Parallel

and Distributed Systems, pages 111-116, 2002.

V. Bhatt and C.C. Huang. Group mutual exclusion in O(log n) RMR. In
Proc. 29th ACM Symp. on Principles of Distributed Computing, pages 45—
54,2010.

G. E. Blelloch, P. Cheng, and P. B. Gibbons. Room synchronization. In Proc.
of the 13th Annual Symposium on Parallel Algorithms and Architectures,
pages 122—133, 2001.

K. M. Chandy and J. Misra. The drinking philosophers problem. ACM Trans-
actions on Programming Languages and Systems, 6:632—646, 1984.

P.L. Courtois, F. Heyman, and D.L Parnas. Concurrent control with Readers

and Writers. Communications of the ACM, 14(10):667-668, 1971.

T.S. Craig. Building FIFO and priority-queuing spin locks from atomic swap.
Technical Report TR-93-02-02, Dept. of Computer Science, Univ. of Wash-

ington, February 1993.

74

[9] R. Danek and V. Hadzilacos. Local-spin group mutual exclusion algorithms.
In 18th international symposium on distributed computing, October 2004.
LNCS 3274 Springer Verlag 2004, 71-85.

[10] E. W. Dijkstra. Solution of a problem in concurrent programming control.

Communications of the ACM, 8(9):569, 1965.

[11] R. Dvir and G. Taubenfeld. Mutual exclusion algorithms with constant rmr
complexity and wait-free exit code. In Proc. of the 21st international con-

ference on principles of distributed systems (OPODIS 2017), October 2017.

[12] S. Gokhale and N. Mittal. Fast and scalable group mutual exclusion, 2019.
arXiv:1805.04819.

[13] W. Golab and A. Ramaraju. Recoverable mutual exclusion. In Proc. 2016
ACM Symposium on Principles of Distributed Computing, pages 65-74,
2016.

[14] V. Hadzilacos. A note on group mutual exclusion. In Proc. 20th symp. on

Principles of distributed computing, pages 100-106, 2001.

[15] Y. He, K. Gopalakrishnan, and E. Gatni. Group mutual exclusion in linear

time and space. Theoretical Computer Science, 709:31-47, 2018.

[16] P.Jayanti. Adaptive and efficient abortable mutual exclusion. In Proc. 22nd
ACM Symp. on Principles of Distributed Computing, pages 295-304, July
2003.

[17] P.Jayanti, S. Jayanti, and S. Jayanti. Towards an ideal queue lock. In Proc.

75

http://arxiv.org/abs/1805.04819

21st International Conference on Distributed Computing and Networking,
ICDCN 2020, pages 1-10, 2020.

[18] P. Jayanti, S. Petrovic, and K. Tan. Fair group mutual exclusion. In Proc.

[19]

[20]

[21]

[22]

[23]

[24]

[25]

22th ACM Symp. on Principles of Distributed Computing, pages 275-284,
July 2003.

Yuh-Jzer Joung. Asynchronous group mutual exclusion. In Proc. 17th ACM

Symp. on Principles of Distributed Computing, pages 51-60, August 1998.

Yuh-Jzer Joung. Asynchronous group mutual exclusion. Distributed Com-

puting, 13(4):189-206, 2000.

H. Kakugawa, S. Kamei, and T. Masuzawa. A token-based distributed group
mutual exclusion algorithm with quorums. /EEE Transactions on Parallel

and Distributed Systems, 19(9):1153—-1166, 2008.

P. Keane and M. Moir. A simple local-spin group mutual exclusion algorithm.
In Proc. 18th ACM Symp. on Principles of Distributed Computing, pages 23—
32, 1999.

P. Keane and M. Moir. A simple local-spin group mutual exclusion algorithm.

IEEFE Transactions on Parallel and Distributed Systems, 12(7), 2001.

L. Lamport. A new solution of Dijkstra’s concurrent programming problem.

Communications of the ACM, 17(8):453-455, August 1974.

J.M. Mellor-Crummey and M.L. Scott. Algorithms for scalable synchro-
nization on shared-memory multiprocessors. ACM Trans. Comput. Syst.,

9(1):21-65, 1991.

76

[26] M. Takamura, T. Altman, and Y. Igarashi. Speedup of Vidyasankar’s algo-

rithm for the group k-exclusion problem. Inf. Process. Lett., 91(2):85-91,
2004.

[27] M. Toyomura, S. Kamei, and H. Kakugawa. A quorum-based distributed
algorithm for group mutual exclusion. In Proc. of the 4th International Con-
ference on Parallel and Distributed Computing, Applications and Technolo-
gies, pages 742-746, 2003.

[28] K. Vidyasankar. A simple group mutual /-exclusion algorithm. Inf. Process.
Lett., 85(2):79-85, 2003.

[29] Kuen-Pin Wu and Yuh-Jzer Joung. Asynchronous group mutual exclusion in
ring networks. In Proc. 13th Inter. Parallel Processing Symposium and 10th

Symp. on Parallel and Distributed Processing, pages 539-543, 1999.

77

[*
*
mraxem | *YNINNMAN
awnntutay | AN

-~

YONINA MINNAN TOIND
avNNnN ’ymb NIN AN 990 N2

PN DI90N - (M.Sc.) W ININD MIONN

N1YIA0 DY MNIAPY NTTN DY DNNION
9901 75 MaY P PINRT NIV DY IVap

MNP DIYHN YV

nN»

RN NN

TR0 ININ NOAP OVO MYITHN POND NYIND MN Ny

O MMINNPAN 1IN ,AVNNN PYTND NIN AN 790 N2 MIPNHNN J1YDNA

2021 oy

,LAUNNN PYTND RN PN 07N TH9AIND T /9179 HW INDITNA NyHa ® Ny

PONAN PMINNAN tOI0N

nmhn 0o

2579 DNINONN .NMXIAPD N TTNN NYIND NPYI PIND OIPINON I ® NTiaya
NYIN INND YANN NN TIPY pOMIPN YOPI NWIN 90 yNann ,ND2D Tpn
9oV 1o [/’ n8ap Dym” 00 NN TP NDNON NP TN DVAIPN YyoPd
12N 22PN DNOY YOIPN YOPO NWID DIRYI NXIAPN NMIKD DO»VYN DXDONNN
NN TN DNOY SOIPN YOPO NYID DIRYI KD NV MNIAPO DO»YN 0NN
RValey!
NYINN Y2 PINAD NYRIN OIPIMOND NI N NTIAYD INN OIPINOND
PO OTINA O) PINT PIDD MY DY NYIAP NYDIVD Dya MNAPS NTTNN
NPYNIN DIPIVORD 03 NI 9002 .ININ GMYUN PIOT DTNa 0N PHLVN H91ON
AP OV TPMPIY MND Oy NPT PPV DXONN NN DY NN TWANNIY

:DIN2N MNONN NN PADN DNPINDONN

P9 Dapna 0NOY YOIPN YOPI RNDND D1 O2ONN NV IVITD IYHY .1

AVON IMN NN DYPAN 002V ON

2251 NION2 NIN IR IOV Y0P YOPI NI YRR TONN OX D3PI MYywD .2

27 YW 91D YON NVID

WO YPIANY TONN PRI S WO YPIAN p TONN DX D3P W HM3PY owd .3
NDMON TP DX OOVND 5127 5 WO YPINN NYID TONN (1) IR 22PN NN
N DOV 927 5V 1901 p PONN (2)-))0V MO DV DIDN I90N1 1DV
.DNOY YVIPN YOPA DIRNN) PITY OINK O2ONN ONX D) 1OV NONION TP

(NP SY NPaPN ND2D DY ANY NPIN NNON D) PODN DIPINNONN)

TONN (1) I OV DNV TIPA RNN) p TONN OXR D3P 7V VDN DR 4

(2)-1 YoV MY DY DIDN 99012 1YY NN TP NN DOYVYND D19 nwdd

A0V NN TIP NN OOV 12T SV 1902 p TONN

1YY doorway-n NN OOWN p TOIN OX MDDV NIYRID RID K3V ZWRWY 5
DY DIVD DVPIN OONNN 2V 1DV doorway-2 DII) ¢ INN TONNY 9D
D)D) p PONNVY 29D 1DV HOIPN YOPD DIDND 51D KD ¢ TOIN IN M1 M

IOV 0PN YoPd

doorway-nN NR OYYN p TONN ON MDDINT IRYIY HYRID KID K3IYW ZWRIWY' L6
IMN NN DYPIAN OONNN MY 1OV doorway-2 ©ID) ¢ TONNY 29D 1YV
0)2) p TOON IR ,p TONIN 29D 1YY YOIPN YOPD DD g TONM VoD

2OV MDY DY DIDN 990N 1DV MOIPN YOPO

TPV D°DONN TN DY NN AYAND DIPIMNOND HIVDNT MDIYYT? DIRNY .7
DO YAND D91 O2PDNN MDD ,D2IVD DY NPMPIY MND DY NPT

DIDN NN DO2IVON MND) "MV 19N

NI OIPN DY YNIN PONNY NIV [PIID HMNDNRT W) 79 DYI3p WD .8
N2WON NX YNID 91 XD PONNN OX (RMR) pMIN PNIDND DY) NavN)
NP0 YN N NTIAY OIPIMOND IOV NIDT IN DY NNVNI TPORPD
ST MAY PRLVN SDON PIT DTV MY PMIN PIDRD MWD DY IIAP

NN amun Paon

MMPN VYN DEPI TONN 93 NAY TH3 PION NIY NP DIPY MDD .9

ona

OPN MINMN NPMLN MY VIV NIVIY DIPIMOND HIVDIOR MW .10

NAONM-NRNYN ,NDNI-NNIP ,NDND ,NINIP), 077NN O Taynn 112

93PN NU2” SY AN APNN NNONN 0Y) NP SV 9apn N’ MNONN

N Sy XD N NTIAYA NNYRID OONN "NNAP SV NMON o™ ("neap Sv

aMYN PIT DTN PMIN PIDRD MY DV NPOIOY PNNNNN DONN DY 123NND

.[9J-2 nomn nan

Sy

Y NN L1998 NIVA IN T DY NNIYNRID MININY ,MXIAPD N TTN Ny nrya
.D22MOM DRNPN NPYA NN TPORIPN TTNN NYINN N»Ya DR 199NN NI10)I0
POMIPN YOPY DID) NINY A WO VPN TONN MNP 171N NN N»yaa
NN DVPIAN DNV ONIND IO IMIND DNYY 20PN YOPI RYPND DRV DONN
AYON IMN

NI (1) WX MXIAPS DOTTAN NYINN NPYI PINGD DIPINON I 1 NTIAYa
PNVN 92100 PIDT DT NAY PN NIDND MY OV NYIAP NPNDD Dya NWURIN
OV NN AVARNY NYUNRIN NIN (2)-1 (DSM) IM2N mwn NIt DT Ny oxn (CC)
DNIPINONN DD .ONIYD DV IPMPIY MNd 0Y NPT MY 05NN MnNd
NVN NNON AN DMI”PN KD MNIAPY NOTTNN NYIND DY PNINSY DY DNYPN
DIPIMONN OV TTIA TONIN NAY OIPNN NPDD Q0N I55N MIVNN MNONN
MPIN MNON PNV PADN DIPIOND ,)D DY I .IYap NN N DAy Imn
NNYNRIN NNIAPN NN OVIPN YOPY DIDND NYPINY NNURIN NIXIIAPN MDDV
NNIAPA OVIPN YOPD DIDND YPINY NYURIN TONNM PO0IPN YOPS DIDNY
20PN YOPO DIDNY IRV PPV NNIAPIN PYNRIN TONNN NIN NNION
0”)7ITINN OTAYNN 212 0PN OOINMN DPNMIVNX DIVD’)I2 YHNYHN DIPINOND

99NM-NNNIYA ,NDNN-NNIP NN ,INIP 0

	Introduction
	Motivation and results
	The GME problem
	Further explanations
	Related work

	Preliminaries
	Computational model
	The CC and DSM machine architectures
	RMR complexity: counting remote memory references

	The GME Algorithm
	An informal description
	The algorithm
	Further explanations

	Correctness proof
	Discussion

