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Abstract
Machine Learning (ML) processes are integrated into de-
vices and services that affect many aspects of daily life.
As a result, basic understanding of ML concepts becomes
essential for people of all ages, including children. We stud-
ied if 10-12 years old children can understand basic ML
concepts through direct experience with a digital stick-like
device, in a WoZ-based experiment. To assess children’s
understanding we applied an experimental design includ-
ing a pretest, a gesture recognition training activity, and
a posttest. The tests included validating children’s under-
standing of the gesture training activity, other gesture de-
tection processes, and application to ML processes in daily
scenarios. Our findings suggest that children are able to un-
derstand basic ML concepts, and can even apply them to a
new context. We conclude that ML learning activities should
allow children to sample their own examples and evaluate
them in an iterative way, and proper feedback should be
designed to gradually scaffold understanding.
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Introduction
Machine Learning (ML) processes are implemented into
many devices and services which become integral to ev-
eryday live. For example, when tagging photos on social
media, ML is used to identify faces, and when interacting
with speech-based personal assistant services, ML is used
for speech detection. As ML services become more ubiq-
uitous, understanding basic ML processes is important for
people of all ages, including children [11]. Children are able
to learn complex concepts from a relatively young age [4],
and exposure of complex knowledge has the potential to
enhance children’s everyday skills [7]. As commonly done
in digital products and services, ML is typically concealed
with ”black boxes” [9], which limit people’s ability to con-
struct basic understanding of ML concepts [12]. Accord-
ing to Sun [12], ML concepts can be categorized into 6 key
building blocks: (1) Data labeling; (2) Feature extraction;
(3) Model selection; (4) Parameter tuning; (5) Evaluation;
and (6) Real-world application. ML concepts are not trivial,
and there is a justified reason to ”black box” them in con-
sumer products. The HCI community can help address this
challenge by creating tools & activities that uncover ML con-
cepts and promote understanding [8]. However, some of
the ML concepts are harder to understand than others and
may burden the learning process. In line with previous re-
search concerning the design of learning experiences for
children [9, 13], we suggest to strike the right balance be-
tween ”black boxing” some concepts and uncovering others,
while encouraging recognition of a specific abstract con-
cept. We set out to study if 10-12 years old children can
understand key ML concepts. We chose to uncover two
of the six building blocks, based on prior work on ML sys-
tems for novices [8]. These systems define Data Labeling
(DL) and Evaluation as the key building blocks for a novice
learning experience [12]. The DL building block is further
defined as having three key elements: Sample size; Sample

versatility; and Negative examples. The Evaluation build-
ing block is defined as testing and iterating according to
feedback accuracy [6]. Building on the above, we aimed to
explore if children can understand the three key elements of
DL through an iterative process of sampling and evaluation.
We focused on a physical experience involving tennis-like
movement (tennis gestures) detection as it is a realistic ac-
tivity for children of that age. In addition, direct experience
with physical objects has been suggested as means to fa-
cilitate learning of abstract concepts [10]. Our goal was to
assess if uncovering DL and Evaluation building blocks may
facilitate children’s understanding of ML concepts and tech-
nologies in the world around them.

Related Work
ML concepts are hard to comprehend, not only for children
but also for experienced computer engineers [8]. With the
demand to lower the barrier for basic understanding of ML,
simplified ML tools are becoming accessible to non-experts
[1]. These systems include Crayons, aimed at UI designers,
and Gestalt [8], an IDE that facilitates ML techniques. Both
systems uncover DL and evaluation.
To the best of our knowledge, there is no academic re-
search on ML experiences for children, although some work
was conducted on introducing data science concepts to
children [3].
Few non-academic projects have been designed to intro-
duce ML concepts to non-experts of all ages. For example,
Quick Draw and The Teachable Machine from Google’s AI
experiments initiative. Quick Draw is a game, in which a
previously-trained image recognition algorithm identifies
what users are drawing in real time. Teachable Machine
goes further by uncovering ML building blocks: users cap-
ture images as examples for the computer vision algorithm,
label them and evaluate the system’s ability to identify new
examples.
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In our study we used the Scratch Nodes prototype [5], a
digital stick-like device designed for physical play, that can
detect movement using accelerometer. We employed a
Wizard of Oz methodology (See sidebar 3) to overcome
problems with consistency and accuracy in a fully imple-
mented ML version.

Test 1 - Scenarios
”Jon is a 6 years old boy.
When he goes to sleep he is
afraid of the sounds he hears
and worries that some noises
are indicating that something
bad is happening. His par-
ents bought him a device that
can detect bad noises and
alert when needed."
"Gal is a basketball player,
he wants to improve his shot.
He received a bracelet that
can predict if his shot will be
accurate even before the ball
reaches the basket."

Test 2 - Tennis Gestures
Participants were asked to
play with a device that de-
tect tennis gesture, in order
to experience its detection
capability. Children were
asked to explain the devices’
detection process.

Method
In order to assess children’s understanding of ML concepts,
we applied an experimental design including three phases:
a pretest, a training activity, and a posttest. The pretest was
designed to test previous understanding of ML concepts.
The training activity was designed to uncover the DL and
Evaluation building blocks by training the device to detect
a tennis Serve gesture. To verify understanding of the con-
cepts involved in the training activity, in this stage we asked
children to explain it verbally (device training explanation).
The posttest was designed to assess if children can apply
their knowledge to new context. The pretest and posttest
involved two types of assessments: daily-scenario tests and
tennis-gestures tests. Children performed both tests in the
pretest and posttest (See Figure 1). In the daily-scenarios
tests we included ML-related technologies in situations
that are familiar to children of that age (a basketball-throw
scenario, or an unfamiliar-noise scenario, (see sidebar 1).
The researcher read the written scenarios, and asked chil-
dren to try and explain the underlying process. The two
scenarios were counterbalanced between participants
(pretest/posttest). In the tennis-gesture tests children were

Figure 1: Experimental design

told that the device can recognize a Forehand or a Back-
hand gesture. They were asked to perform the gesture, and
to try and explain the gesture detection process (see side
bar 2). Forehand and Backhand gestures were counterbal-
anced between participants (pretest/posttest).

Participants
The participants were recruited through a Scratch after-
school program, with at least one year of experience in
Scratch coding, to verify basic understanding of computa-
tional concepts such as events and feedback. This specific
after school program had boys only. Nine boys in ages 10-
12 volunteered to participate in this preliminary study (fur-
ther studies will include a balanced gender sample). The
experiment took place during the children’s after school pro-
gram, in a quiet dedicated room. We followed ethics guide-
lines including IRB, parental consents, children consent,
and parental approval for pictures and videos.

Procedure
Children participated one at a time, and were told they will
play with a new device that was developed in a lab. All ses-
sions were documented by video. The experiment began
with the pretest. After the pretest the children were intro-
duced to the training activity, in which they trained the de-
vice to detect a tennis Serve. Children were informed that
the device has a movement sensor that records movement,
then sends the movement data to the computer where the
data is accumulated and processed according to the label
the children will define. During the activity, children were
invited to train the device by performing gestures and la-
beling them. This stage was termed sampling stage. They
were then invited to evaluate their training by testing the de-
tection accuracy. This stage was termed evaluation stage.
Children were informed that they can iterate between sam-
pling and evaluation stages. The ”Wizard” used a computer
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that was connected to a speaker. The child began the sam-
pling stage, performed ”Serve” movement, and labeled
them. The Wizard ”added” the label to the system. In the
evaluation stage the child evaluated his own sampling by
performing new gestures. According to a predefined proto-
col (See sidebar 4), the Wizard generated audio feedback
from the speaker, based on the child’s labeling. The chil-
dren thought the feedback was automatically generated
by the computational system based on their training. The
training process was defined as successful according to the
DL key elements, if it included (1) Sufficient sampling; (2)
Versatile sampling; and (3) Negative examples [6].

WoZ Method
Wizard of Oz (WoZ) is a
known rapid-prototyping
research method [2]. A hu-
man ”Wizard” simulates the
system’s intelligence and
interacts with the user. In
WoZ the users believe that
they interact with a working
technology, while instead
the feedback is given by a
human.

WoZ protocol
In order to successfully train
the device children were
expected to sample:

• 6 standard Serve ex-
amples (Sample size)

• 6 different Serves
(Sample versatility)

• 6 wrong examples
of Serve (Negative
examples)

Protocol was defined based
on a technical pilot using the
ESP ML system that yielded
good detection accuracy with
6 examples of each element.

During the evaluation stage and according to protocol, the
Wizard generated feedback designed to gradually uncover
DL elements. Feedback for insufficient sampling was fail-
ure in detecting new Serve gestures, hinting at the need
for appropriate Sample size. Feedback for lack of Sample
versatility or lack of Negative examples was indicated by
another researcher (not the Wizard) who asked to evaluate
the device. For Sample versatility he deliberately performed
various types of Serves that were not included in the child’s
sample. The result was failure in detecting the Serve ges-
tures. For lack of Negative examples, the researcher per-
formed gestures that were not a Serve, but had the same
movement pattern. These gestures were detected as a
serve. This strict protocol allowed to identify ML concepts
that are easier to understand than others. The training ac-
tivity ended with a device-training explanation to verify un-
derstanding. Children were asked: ”How would you explain
the device-training you conducted to a friend?” The training
activity was followed by the posttest.

Findings
Two researchers coded the videos, evaluating children’s
understanding of DL & Evaluation building blocks in each

Figure 2: Summary of results: the number of children that showed
understanding of the DL key elements

of the phases (pretest; training activity; posttest). Specifi-
cally, the researchers identified explanations related to DL
key elements (Sample size, Sample Versatility, Negative
examples) in children’s responses and classified them as
accurate or inaccurate understanding (see Figure 2). The
few disagreements between coders were discussed and
resolved .

Pretest findings
In the scenarios pretest, 7 out of 9 children showed no in-
dication for ML understanding. Out of the 7, 2 children had
no explanation and 5 children provided inaccurate answers
(e.g. ”It has a microphone, when it hears a loud sound it
will alert that it’s a bad noise”). The 2 children that showed
indication for ML understanding, mentioned sampling and
negative examples as the underlying process (e.g. ”The
programmer can pre-define bad noise and good noises”).
In the tennis-gestures pretest, 3 out of 9 children had no
explanation, and 6 provided inaccurate answers for the de-
tection process (e.g. ”It detects sudden movement from one
point to another”).

Training activity explanation
At the end of the training activity the children were asked
how they would explain the training to a friend. The ma-
jority of children (8 out of 9) used all three key elements of
DL in their responses: ”I showed the stick number of ex-
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amples, if you show only one example, it will identify only a
specific movement” (Sample Size); ”I showed it many types
of Serve because different people perform Serves differ-
ently” (Versatile Samples); ”I’ve showed it what is a Serve
and what is not a Serve, so now the device know when I am
doing something which is not Serve” (Negative examples).
One child stated only one element (Sample size). None of
the children gave inaccurate explanation.Figure 3: A child sampling a Serve

in the training activity; "Wizard" on
the left Posttest

In the tennis-gestures test (Backhand/ Forehand), 8 out of 9
children explained at least one key element of DL (e.g. ”the
developer showed the sensor a few examples, just like I did
with the Serve”); 5 out of 9 children explained at least 2 key
elements (e.g. ”Like with the Serve, the developer showed
it what is a Serve and what is not a Serve”); 2 out of 9 chil-
dren explained all 3 elements (e.g. ”the developer taught
the device to recognize the stick’s movement like I did, by
showing it different examples of what is a Backhand and
different examples of what is not a Backhand”). Only one
child responded with an inaccurate explanation, ”It detects
according to the height of the device”.

In the daily-scenarios test (ML technologies in a completely
different context from tennis Serve gesture), 8 out of 9 chil-
dren explained at least one key element of DL (e.g. ”The
developer programmed the sensor with examples of loud
noises”); 5 out of 9 children indicated at least 2 key ele-
ments (e.g. ”We will show it many noises, every noise will
be different, it might take a million years”); One child was
able to explain all three elements (”It has microphones,
someone defines which sounds are friendly and which are
not, for example a balloon pop verses a bomb, they did it
with many sounds”). Only one child was not able to find any
explanation for the scenario.

Discussion
We studied if children can understand basic ML concepts
through direct experience. Our findings suggest, that chil-
dren are able to understand basic ML concepts. In the
pretest, most participants showed no understanding of the
DL and Evaluation ML building blocks. After the training ac-
tivity, most children could accurately state all key elements
of DL. Furthermore, the posttest indicated that the majority
of the children were able to apply some of their knowledge
to a new context: not only to different tennis gestures but
also to daily scenarios. Our findings further indicate that
some DL key-elements were easier to understand than oth-
ers. Sample-size was easier, and almost all children under-
stood it after the direct experience with sampling & eval-
uation. Samples versatility and Negative examples were
harder to understand, but scaffolding by the researcher sup-
ported understanding in most cases. These elements were
also less likely to be applied to new context in the scenario
test. These results suggest that specific building blocks
of ML have the potential to be understood by children as
young as 10 years old. According to these preliminary re-
sults ML learning experience for children can uncover all 3
key DL elements as long as they include proper scaffold-
ing. Our findings show that different types of feedback can
greatly enhance children’s understanding, and system de-
signers should introduce compatible feedback gradually.

In sum, we argue that children should have more opportu-
nities to interact directly with ML. Learning activities, should
allow children to sample and evaluate in an iterative way,
and proper feedback should be designed to gradually scaf-
fold the harder concepts. One example from our study is
that inaccurate feedback served as an effective scaffolding,
encouraging children to iterate more and sample more data,
leading to better understanding how to fulfill ML require-
ments. ML is becoming common in children’s daily lives,
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and early exposure to the underlying processes of ML can
facilitate children’s understanding of the world around them
and their ability to solve related problems [10, 7].

Limitations
As this is a work in progress, this study has several limita-
tions. Participants sample size was small, limited to children
with prior experience in Scratch and to boys only, as ex-
plained in the method section. The WoZ research method
has known limitations, mainly human involvement that may
interfere with the activity. In our case, none of the children
were aware or asked about the human intervention.
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